National Library of Energy BETA

Sample records for direct push technology

  1. Innovative Direct Push Technologies for Characterization of the 216-Z-9 Trench at DOE's Hanford Site

    SciTech Connect (OSTI)

    Bratton, W.; Moser, K.; Holm, R. [Vista Engineering Technologies, LLC, Washington (United States); Morse, J.; Tortoso, A. [US Department of Energy - Richland Operations Office, Washington (United States)

    2008-07-01

    Because of the significant radiological and chemical hazards present at the 216-Z-9 Trench at the US Department of Energy Hanford Site, the only practical subsurface characterization methods are those that minimize or control airborne vapors and particles. This study evaluates and compares the performance of two Direct Push Technologies (Hydraulic Hammer Rig (HHR) and Cone Penetrometer Testing (CPT)) with traditional cable tool drilling in similar difficult geologic conditions. The performance was based on the depth of penetration, the ability to collect representative vadose zone soil samples, the penetration rate, and the relative cost. The HHR achieved deeper penetration depths and faster penetration rates than CPT techniques, while still maintaining the waste minimization benefits of direct push technologies. Although cable tool drilling achieved the deepest penetration, the safety and disposal concerns due to the soil cuttings that were generated made this drilling approach both slow and costly compared to the direct push techniques. (authors)

  2. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    SciTech Connect (OSTI)

    William M. Davis

    1999-11-03

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface.

  3. Push technology at Argonne National Laboratory.

    SciTech Connect (OSTI)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  4. Wireline system for multiple direct push tool usage

    DOE Patents [OSTI]

    Bratton, Wesley L.; Farrington, Stephen P.; Shinn, II, James D.; Nolet, Darren C.

    2003-11-11

    A tool latching and retrieval system allows the deployment and retrieval of a variety of direct push subsurface characterization tools through an embedded rod string during a single penetration without requiring withdrawal of the string from the ground. This enables the in situ interchange of different tools, as well as the rapid retrieval of soil core samples from multiple depths during a single direct push penetration. The system includes specialized rods that make up the rod string, a tool housing which is integral to the rod string, a lock assembly, and several tools which mate to the lock assembly.

  5. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect (OSTI)

    Borden, R. E.; Cherry, Robert Stephen

    2000-09-01

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced ~7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe® rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The system was tested in a

  6. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect (OSTI)

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  7. Characterization of Direct Push Vadose Zone Sediments from the T and TY Waste Management Areas

    SciTech Connect (OSTI)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-06-08

    This report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 5 direct push characterization holes emplaced to investigate vadose zone contamination associated with leaks from tanks 241-TY-105 (UPR-200-W-152) and 241-TY-106 (UPR-200-W-153). Tank 241-TY-105 is estimated to have leaked 35,000 gal of tributyl phosphate (TBP) waste from the uranium recovery process to the vadose zone in 1960. Tank 241-TY-106 is estimated to have leaked 20,000 gal of TBP-uranium recovery waste to the vadose zone in 1959. Although several drywells in the vicinity of tank 241-TY-106 contain measurable quantities of cesium-137 and/or cobalt-60, their relatively low concentrations indicate that the contaminant inventory in the vadose zone around tank 241-TY-106 is quite small. Additionally, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 7 direct push characterization holes emplaced to investigate vadose zone contamination associated with an overfill event and leak from tank 241-T-101.

  8. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  9. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  10. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  11. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    SciTech Connect (OSTI)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  12. Bioenergy Technologies Office New Directions | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Directions Bioenergy Technologies Office New Directions New Directions and New Business Opportunities for BETO Valerie Reed, Acting Director, BETO, U.S. Department of Energy ...

  13. DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology

    Broader source: Energy.gov [DOE]

    In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization.

  14. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  15. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  16. Direct Chemical Oxidation. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-12-01

    The DOE complex has a need to demonstrate technologies that are alternatives to incineration for the destruction of organic solvents, chlorinated hydrocarbons, plastics, and organic solids. The current industry practice for the targeted waste streams is treatment by incineration. There has been increased public concern on the use of incinerators because of the potential release of products of incomplete combustion, dioxins, furans, and emission of radionuclides. Direct Chemical Oxidation is a technology for the destruction of organic solids and liquids that uses peroxydisulfate as the oxidant to destroy organics and treats residue immobilized using phosphate ceramic solidification.

  17. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  18. Geothermal Direct Use Technology and Marketplace Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology and Marketplace Workshop Geothermal Direct Use Technology and Marketplace Workshop Geothermal energy applications are emerging across a much wider spectrum of cascaded ...

  19. Geothermal Direct Use Technology & Marketplace Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEOTHERMAL DIRECT USE TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................ 1 WORKSHOP SUMMARY ........................................................................................................................ 2 GEOTHERMAL RESOURCES IN THE EASTERN UNITED STATES .............................................................. 3 GEOTHERMAL DEEP DIRECT USE TECHNOLOGY

  20. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am ...

  1. Information Technology Project Management - DOE Directives, Delegation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.1 Admin Chg 1, Information Technology Project Management by Denise Hill Functional areas: Administrative Change, Information Technology, Project Management, The Order provides...

  2. Technology Readiness Assessment Guide - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4A, Technology Readiness Assessment Guide by Ruben Sanchez Functional areas: Technical Capability The Guide assists individuals and teams involved in conducting Technology...

  3. Workshop on Direct Use Technology in the Marketplace

    Broader source: Energy.gov [DOE]

    Lower temperature geothermal technologies can supply a cascade of applications from the same heat resource, from geothermal energy to direct heat and agricultural uses.

  4. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  5. Geothermal Direct Use Technology and Marketplace Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Geothermal energy applications are emerging across a much wider spectrum of cascaded uses, from lower temperature geothermal energy production to direct heating and cooling, to agricultural uses. The Energy Department is at the forefront of this discussion, the workshop report addresses applications for the Eastern United States.

  6. Pushing schedule derivation method

    SciTech Connect (OSTI)

    Henriquez, B.

    1996-12-31

    The development of a Pushing Schedule Derivation Method has allowed the company to sustain the maximum production rate at CSH`s Coke Oven Battery, in spite of having single set oven machinery with a high failure index as well as a heat top tendency. The stated method provides for scheduled downtime of up to two hours for machinery maintenance purposes, periods of empty ovens for decarbonization and production loss recovery capability, while observing lower limits and uniformity of coking time.

  7. Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research (DEER) Conference | Department of Energy Events » Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference From 2002 to 2012, the Directions in Engine-Efficiency and Emissions Research (DEER) Conference gathered professionals in the engine community to share the latest in advanced combustion engine research and development. The DEER

  8. Push-pull betatron pair

    DOE Patents [OSTI]

    Kerst, Donald W.

    1986-01-01

    A push-pull betatron accelerator with two coaxial betatron tubes in which two electron beams are alternately accelerated in opposite directions of rotation. Both tubes are linked by the same alternating current accelerating flux produced by one or more accelerating flux coils. The betatron tubes are provided with guide fields having alternating current components which are in the same direction and having direct current biasing components which are in opposite directions. One electron beam is accelerated when the accelerating flux is changing between its negative maximum and its positive maximum, while the other beam is accelerated when the accelerating flux is changing between its positive maximum and its negative maximum. In another embodiment, there is only one betatron tube, in which two electron beams are alternately accelerated in opposite directions of rotation; and in still another embodiment, there are two tubes in which electrons are accelerated alternately, but the AC components for the guide fields are in opposite directions for the two tubes, while the DC biasing components are polarized the same for both tubes.

  9. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Info (EERE)

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  10. Push-pull betatron pair

    DOE Patents [OSTI]

    Kerst, D.W.

    1984-02-22

    The disclosed push-pull betatron accelerator has first and second coaxial betatron tubes in which first and second electron beams are alternately accelerated in opposite directions of rotation. Both tubes are linked by the same alternating current accelerating flux, produced by one or more accelerating flux coils. The betatron tubes are provided with first and second guide fields having alternating current components which are in the same direction. The first and second guide fields have direct current biasing components which are in opposite directions for the two betatron tubes. In this way, the full advantages of guide field biasing are achieved. The first electron beam is accelerated in the first tube when the accelerating flux is changing between its negative maximum and its positive maximum values. The second electron beam is accelerated in the second tube when the accelerating flux is changing between its positive maximum value and its negative maximum value. In another embodiment, there is only one betatron tube, in which two electron beams are alternately accelerated in opposite directions of rotation.

  11. New Directions in Fuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Technology New Directions in Fuels Technology All fuels have their pros and cons that become evident at large scale, and while biofuels are a critical part of the energy future, they are not the only solution deer09_wright.pdf (828.49 KB) More Documents & Publications Drop In Fuels: Where the Road Leads After Petroleum Thermochemical Conversion Proceeses to Aviation Fuels

  12. H2USA Accomplishments Push Hydrogen Infrastructure Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy H2USA Accomplishments Push Hydrogen Infrastructure Forward H2USA Accomplishments Push Hydrogen Infrastructure Forward April 21, 2015 - 4:47pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. A fuel cell electric vehicle (FCEV) at a fueling station in California. Sunita Satyapal Director, Fuel Cell Technologies Office In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization plans. Since then, Toyota, Hyundai,

  13. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect (OSTI)

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  14. Thermal batteries: A technology review and future directions

    SciTech Connect (OSTI)

    Guidotti, R.A.

    1995-07-01

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couples that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.

  15. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  16. Sample push-out fixture

    DOE Patents [OSTI]

    Biernat, John L.

    2002-11-05

    This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

  17. Information Technology Project Execution Model Guide - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE G 415.1-1, Information Technology Project Execution Model Guide by Denise Hill Functional areas: Information Technology, Project Management The guide was developed in...

  18. Buffalo Pushes Energy-Efficient Affordable Housing in New York...

    Energy Savers [EERE]

    Buffalo Pushes Energy-Efficient Affordable Housing in New York Buffalo Pushes Energy-Efficient Affordable Housing in New York Better Buildings Residential Network member PUSH ...

  19. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  20. Magellan @ NERSC Pushes Energy Efficiency Envelope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    @ NERSC Pushes Energy Efficiency Envelope Magellan @ NERSC Pushes Energy Efficiency Envelope February 23, 2011 At NERSC, the Magellan scientific cloud computing testbed is pushing the bounds of power and cooling efficiency. The system was not only installed to require less cooling energy, but it's also been configured to simulate a wide range of data center parameters and instrumented with sensors, allowing staff to study and tune Magellan's efficiency. Innovative Installation NERSC staff

  1. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  2. Y-12 continues to push the state-of-the-art in machining - Or...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    continues to push the state-of-the-art in machining - Or: Machining technology helped give U.S. edge during Cold War (title used in The Oak Ridger) The decade of the 1960"s brought...

  3. Energy/environment/technology two visions, two directions

    SciTech Connect (OSTI)

    Fox-Penner, P.

    1995-12-31

    This paper compares the energy policies proposed by the U.S. Congress and the U.S. Department of Energy (DOE). Connections between energy, economy, environment, and technology are discussed in some detail. The National Energy Policy Plan of the DOE is summarized, and the impact of budget cuts proposed by Congress are projected. Aspects of the DOE plan which are emphasized include research and development, minimization of regulation, and eliminating redundant government and private industry efforts. 5 figs., 5 tabs.

  4. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  5. Small and Powerful: Pushing the Boundaries of Nano-Magnets |...

    Office of Science (SC) Website

    and Powerful: Pushing the Boundaries of Nano-Magnets Basic Energy Sciences (BES) BES ... Small and Powerful: Pushing the Boundaries of Nano-Magnets Newly discovered particles ...

  6. Fossil analysis pushes back human split from other primates by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil analysis pushes back human split from other primates Fossil analysis pushes back human split from other primates by two million years C. abyssinicus revealed answers about ...

  7. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  8. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  9. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  10. Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  11. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  12. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions to HAZMAT Challenge LANL's HAZMAT Reesponse Ready Room and Training Facility are ready to welcome this year's Challengers Technical Area 64 - HAZMAT Response...

  13. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  14. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  15. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions Call Hilton Santa Fe Buffalo Thunder at (505) 455-5555 for shuttle information from the airport and downtown Santa Fe. Driving Directions to Hilton Santa Fe Buffalo Thunder Hilton Santa Fe Buffalo Thunder is located 15 minutes north of Santa Fe. Directions from Albuquerque (bypassing downtown Santa Fe) Take Interstate 25 north towards Santa Fe for approximately 50 miles. From Interstate 25, exit right onto the 599 Northbound Bypass for approximately 14 miles and continue to

  16. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOE Patents [OSTI]

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  17. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOE Patents [OSTI]

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  18. Community Wind: Once Again Pushing the Envelope of Project Finance

    SciTech Connect (OSTI)

    bolinger, Mark A.

    2011-01-18

    In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota

  19. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct removal of edge-localized pollutant emission in a near-infrared bremsstrahlung measurement J. K. Anderson, a) P. L. Andrew, b) B. E. Chapman, D. Craig, and D. J. Den Hartog Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 ͑Presented on 10 July 2002͒ Visible and near-infrared electron-ion bremsstrahlung measurements in fusion research devices, used to determine the effective ionic charge (Z eff ), are often plagued by pollutant emission

  20. On Parallel Push-Relabel based Algorithms for Bipartite Maximum Matching

    SciTech Connect (OSTI)

    Langguth, Johannes; Azad, Md Ariful; Halappanavar, Mahantesh; Manne, Fredrik

    2014-07-01

    We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial (graph) problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing maximum transversal of a matrix. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a testset comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for the parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs.

  1. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Broader source: Energy.gov [DOE]

    Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

  2. EERE Success Story—Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

  3. 'Data Deluge' Pushes Mass Spec Imaging to New Heights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Data Deluge' Pushes Mass Spec Imaging to New Heights 'Data Deluge' Pushes Mass Spec Imaging to New Heights MANTISSA Team Takes Novel Approach to Improve Experimental Data Analysis July 15, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov MANTISSA Ion-intensity visualization of the 20 most important ions in a mouse brain segment selected by the CX/CUR algorithm. Of the 20 ions, little redundancy is present, pointing to the effectiveness of the CX approach for information

  4. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    2002-06-01

    New Technology May Replace Conventional Steelmaking Resulting in Significant Energy and Operating Cost Savings While Reducing Emissions.

  5. Science and Technology Review March 2012 Nikolic, R J 30 DIRECT...

    Office of Scientific and Technical Information (OSTI)

    electrogenic bacteria and microbial fuel cell technologies can produce clean, renewable energy and purify water; and (6) Chemical Sensor Is All Wires, No Batteries - Livermore's...

  6. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  7. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  8. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  9. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  10. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    SciTech Connect (OSTI)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  11. Direct wafer bonding technology for large-scale InGaAs-on-insulator transistors

    SciTech Connect (OSTI)

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Masafumi; Nakane, Ryosho; Li, Jian; Kao, Yung-Chung

    2014-07-28

    Heterogeneous integration of III-V devices on Si wafers have been explored for realizing high device performance as well as merging electrical and photonic applications on the Si platform. Existing methodologies have unavoidable drawbacks such as inferior device quality or high cost in comparison with the current Si-based technology. In this paper, we present InGaAs-on-insulator (-OI) fabrication from an InGaAs layer grown on a Si donor wafer with a III-V buffer layer instead of growth on a InP donor wafer. This technology allows us to yield large wafer size scalability of III-V-OI layers up to the Si wafer size of 300 mm with a high film quality and low cost. The high film quality has been confirmed by Raman and photoluminescence spectra. In addition, the fabricated InGaAs-OI transistors exhibit the high electron mobility of 1700 cm{sup 2}/V s and uniform distribution of the leakage current, indicating high layer quality with low defect density.

  12. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOE Patents [OSTI]

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  13. NREL Efforts Push Hydrogen Vehicles Further Along - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efforts Push Hydrogen Vehicles Further Along November 17, 2015 Woman stands outside in front of a podium next to a hydrogen fueling pump. NREL Associate Laboratory Director Barb Goodman at the dedication ceremony for the new hydrogen fueling station at NREL. Photo by Ellen Jaskol The inaugural National Hydrogen and Fuel Cell Day, held in October, was too new for Hallmark to make a card for the occasion. But at the Energy Department's National Renewable Energy Laboratory (NREL), the day was cause

  14. Industry, academic collaborators push for energy solutions | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Industry, academic collaborators push for energy solutions By Catherine Shen November 24, 2014 Tweet Widget Google Plus One Share on Facebook Stewart Prager, director of the Princeton Plasma Physics Laboratory, gives the opening talk Nov. 14 at the third annual meeting of the Princeton E-ffiliates Partnership, a program that connects experts from industry and academia to create long-term solutions to problems of energy and the environment. Prager described work at the lab

  15. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  16. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  17. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  18. Report on the testing of the no-flow push bit

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-10-09

    Testing was carried out in the Engineering Testing Laboratory, 305 Building- 300 Area, during June, July and August of 1996. This testing was to develop and proof test a new sampler insert which would prevent purge gas from flowing through a push-mode core drilling bit - and subsequently prevent rotation of the Rotary Mode Core Sampling System (RMCSS) when the push bit was used. The testing involved push-mode sampling with both a new push mode insert and a rotary insert in a push mode bit into two simulants. A total of sixty final test runs showed that the inserts are sucessful in preventing purge flow and hence in preventing rotation with a push-mode bit installed.

  19. Buffalo Pushes Energy-Efficient Affordable Housing in New York | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Buffalo Pushes Energy-Efficient Affordable Housing in New York Buffalo Pushes Energy-Efficient Affordable Housing in New York Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The initiative will create energy-efficient, affordable housing by renovating two vacant historic buildings and building one new multifamily structure. Part of the project's

  20. Resolution Limits of Electron-beam Lithography Pushed Towards the Atomic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale | MIT-Harvard Center for Excitonics Resolution Limits of Electron-beam Lithography Pushed Towards the Atomic Scale 10.22.2013

  1. Vehicle Technologies Office Merit Review 2015: Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  2. Vehicle Technologies Office Merit Review 2014: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  3. Vehicle Technologies Office Merit Review 2016: Ash-Durable Catalyzed Filters for Gasoline Direct Injection (GDI) Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  4. MHK Technologies/LUKAS | Open Energy Information

    Open Energy Info (EERE)

    left an or front back or high down to a uni directional one way horizontal push These energies are free renewable but still undeveloped yet in navigations Mooring Configuration...

  5. Vehicle Technologies Office Merit Review 2014: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-dilution...

  6. Vehicle Technologies Office Merit Review 2015: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-dilution...

  7. Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Vehicle Technologies Office Merit Review 2016: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  9. Materials en Multi-junction Solar Cells to Push CPV Efficiencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ceem.ucsb.edurss News and Events - Center for Energy Efficient Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% http:www.compoundsemiconductor.net...

  10. Lower crude oil prices to help push down gasoline pricesLower...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower crude oil prices to help push down gasoline prices Falling crude oil prices should lead to lower U.S. retail gasoline prices this year compared to last year. The U.S. Energy ...

  11. Proc. of the workshop on pushing the limits of RF superconductivity.

    SciTech Connect (OSTI)

    Kim, K-J., Eyberger, C., editors

    2005-04-13

    For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are either imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop

  12. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  13. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a Research to Development to Application structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  14. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  15. The role of particle pushing in solidification synthesis of composites with different types of matrices

    SciTech Connect (OSTI)

    Rohatgi, P.K.; Narendranath, C.S.; Asthana, R.; Tewari, S.N.

    1994-12-31

    The pushing or engulfment of inclusions by a solidification front is a phenomenon common to solidification processing of a variety of multiphase materials. The theoretical models of particle pushing based on surface energies, thermal properties and solute screening have been reviewed and the commonality of the interaction phenomena has been highlighted using examples from widely different types of matrices such as metals, organics, biological cells, and oxides. Special emphasis has been placed on microstructures of discontinuously reinforced metal matrix composites, such as Al-fly ash, Al-SiC and Al-C where the need for a critical understanding of the particle pushing phenomenon is essential to design and obtain the requisite composite microstructure. Results of the experiments on Al-SiC composites have been examined using these models, and the need for future work is discussed.

  16. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOE Patents [OSTI]

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  17. Compact two-beam push-pull free electron laser

    DOE Patents [OSTI]

    Hutton, Andrew (Yorktown, VA)

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  18. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect (OSTI)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  19. Waste compatibility safety issues and final results for tank 241-T-110 push mode samples

    SciTech Connect (OSTI)

    Nuzum, J.L.

    1997-05-15

    This document is the final laboratory report for Tank 241-T-110. Push mode core segments were removed from risers 2 and 6 between January 29, 1997, and February 7, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-T-110 Push Mode Core Sampling and analysis Plan (TSAP) and Safety Screening Data Quality Objective (DQO). None of the subsamples submitted for total alpha activity (AT) or differential scanning calorimetry (DSC) analyses exceeded the notification limits stated in DQO.

  20. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  1. Direct Research & Development Transactions

    Broader source: Energy.gov [DOE]

    DOE direct research and development transactions include contracts, grants, and cooperative agreements, and technology investment agreements (TIA’s). For transactions other than TIA’s, the US...

  2. BACnet's Future Directions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and building controllers BACnet International has developed and deployed a BACnet ... technologies. Future Directions Smart Grid Cyber- Security Moving Forward Integration

  3. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. Direct Observation of the Transition from Indirect to Direct...

    Office of Scientific and Technical Information (OSTI)

    Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  5. Store operation with conditional push of a tag value to a queue

    SciTech Connect (OSTI)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-07-28

    According to one embodiment, a method for a store operation with a conditional push of a tag value to a queue is provided. The method includes configuring a queue that is accessible by an application, setting a value at an address in a memory device including a memory and a controller, receiving a request for an operation using the value at the address and performing the operation. The method also includes the controller writing a result of the operation to the address, thus changing the value at the address, the controller determining if the result of the operation meets a condition and the controller pushing a tag value to the queue based on the condition being met, where the tag value in the queue indicates to the application that the condition is met.

  6. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  7. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  8. Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage

    SciTech Connect (OSTI)

    Yang, L.H.

    2008-07-01

    The technology of a pushing-through gallery with oxygen-enriched fire-seepage combustion was studied during shaft-free UCG in this article, and the main experiment parameters were probed. The test results were analyzed in depth. The patterns of variation and development were pointed out for the fire source moving speed, temperature field, leakage rate, the expanding diameter for the gasification gallery, and blasting pressure. Test results showed that, with the increase in the wind-blasting volume, the moving velocity for the fire source speeded up, and the average temperature for the gallery continuously rose. Under the condition of oxygen-enriched air blasting, when O{sub 2} contents stood at 90%, the moving speed for the fire source was 4-5 times that of air blasting. In the push-through process, the average leakage rate for the blasting was 82.23%, with the average discharge volume of 3.43 m{sup 3}/h and average gallery diameter of 7.87 cm. With the proceeding of firepower seepage, the extent of dropping for the leakage rate increased rapidly, and the drop rate for the blasting pressure gradually heightened.

  10. Departmental Directives Program Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M 251.1-1B, Departmental Directives Program Manual by Website Administrator Functional areas: Information Technology, The Manual supplements DOE O 251.1B. Cancels DOE M 251.1-1A....

  11. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  12. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  13. Push-pull radio frequency circuit with integral transistion to waveguide output

    DOE Patents [OSTI]

    Bennett, Wilfred P.

    1987-01-01

    A radio frequency circuit for ICRF heating includes a resonant push-pull circuit, a double ridged rectangular waveguide, and a coupling transition which joins the waveguide to the resonant circuit. The resonant circuit includes two cylindrical conductors mounted side by side and two power vacuum tubes attached to respective ends of a cylindrical conductor. A conductive yoke is located at the other end of the cylindrical conductors to short circuit the two cylindrical conductors. The coupling transition includes two relatively flat rectangular conductors extending perpendicular to the longitudinal axes of a respective cylindrical conductor to which the flat conductor is attached intermediate the ends thereof. Conductive side covers and end covers are also provided for forming pockets in the waveguide into which the flat conductors extend when the waveguide is attached to a shielding enclosure surrounding the resonant circuit.

  14. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  15. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:49pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that will help push

  16. Reversing the brain drain from Eastern European countries: the push' and pull' factors

    SciTech Connect (OSTI)

    Vizi, E.S. Hungarian Academy of Sciences, Budapest Yeshiva Univ., New York, NY )

    1993-01-01

    A mass departure of intellectuals is going on in countries such as Poland, Russia, the Ukraine, Czechoslovakia, Hungary, Bulgaria, and Romania. There is growing concern about the increasing number of intellectuals who have left, or are going to leave, these countries. The main problem is not that scientists and intellectuals are leaving to go abroad to work under better conditions - that is certainly beneficial for science as a whole. Rather, the problem occurs when they do not return. The migration of professionals, even if it is only temporary, only reflects the operation of an international market for specialized human capital. However, a minimum level of human capital is indispensable to a country's economic development. A loss of skilled human resources will ultimately have a grave impact on the economy and jeopardize development programs. There are several reasons for this migration. Top-level scientists have always been drawn to countries that offer greater attractions - facilities, salaries, career prospects, satisfaction, prestige. Drastic changes are needed in the official policy toward R D in Eastern European Countries. The atmosphere must be changed to make it more favorable for intellectual work. In addition, international agencies and governments of developed countries should help these poorer countries to reverse the brain drain. A program of Science and Technology for stability should be created in order to provide direct assistance to basic and applied scientific and technical research in these countries. 16 refs., 3 tabs.

  17. DOE's Office of Technology Transitions Issues First Call to Launch New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies from National Laboratories to Market | Department of Energy DOE's Office of Technology Transitions Issues First Call to Launch New Energy Technologies from National Laboratories to Market DOE's Office of Technology Transitions Issues First Call to Launch New Energy Technologies from National Laboratories to Market February 5, 2016 - 2:34pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - As part of a continued push to encourage energy innovation and

  18. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect (OSTI)

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  19. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  20. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    SciTech Connect (OSTI)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  1. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  2. DRIVING DIRECTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Alamo Street San Antonio, Texas 78205 (210) 222-1400 San Antonio International Airport DIRECTIONS Take Interstate 281 south to Commerce Street. Continue west on Commerce...

  3. Strategic Direction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  4. Information Technology Project Management - DOE Directives, Delegation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE G 200.1-1 App A, Appendix A Glossary on Dec 03, 2012 DOE G 200.1-1 Ch 4, Requirements Definition Stage on Dec 03, 2012 DOE G 200.1-1 App B, List of Abbreviations on Dec 03,...

  5. Geothermal Direct Use Technology & Marketplace Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... has the potential for reducing our dependence on the ... fuel sources applied to CO2 factors August 17, 2015 ... Reduction Rules for Coal-Fired Power Plants Thermal (GHP) ...

  6. Direct Grid Technologies | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 11717 Product: New York State-based micro-inverter maker targeting thin-film PV. Coordinates: 47.236391, -122.291097 Show Map Loading map......

  7. Uncertainty with New Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid experiences the effects of aging infrastructure, a push toward renewable ... carbon lead-acid batteries for transmission and distribution improvement, ...

  8. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  9. Direct Frisk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Federal Financial Interventions and Subsidies in Energy in Fiscal Year 2013 March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Direct Federal Financial Interventions and Subsidies in Energy in Fiscal Year 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses,

  10. SUPPLEMENTAL DIRECTIVE

    National Nuclear Security Administration (NNSA)

    15.1 Approved: 09-03-14 PROJECT OVERSIGHT FOR INFORMATION TECHNOLOGY (PO-IT) IA. *!~~~~1 llV ~~:I National Nuclear Security Administration NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of the Information Management and Chief Information Officer (OCIO) CONTROLLED DOCUMENT AVAILABLE ONLINE AT: http://nnsa.energy.gov OFFICE OF PRIMARY INTEREST (OPI): Office of Policy and Governance printed copies are uncontrolled THIS PAGE IS INTENTIONALLY BLANK. NNSA SD 415.1 09-03-14 PROJECT OVERSIGHT FOR

  11. Mutant Fatty Acid Desaturase and Method for Directed Mutagenesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9-18:0-ACP Desaturase (185 KB) Technology Marketing Summary This technology provides methods for specifically optimizing the activity of enzynes in a desired direction. By...

  12. Prism Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Prism Solar Technologies Inc Jump to: navigation, search Name: Prism Solar Technologies Inc Place: Stone Ridge, New York Zip: 12484 Sector: Solar Product: JV formed between Direct...

  13. Vehicular Thermoelectrics: The New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New Green Technology Vehicular Thermoelectrics: The New Green Technology Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference ...

  14. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guides (Text version available here) Cancelling a Directive New Canceling a Directive The process for canceling directives (Text version available here) Directives Templates...

  15. DIRECTIONAL COUPLERS

    DOE Patents [OSTI]

    Nigg, D.J.

    1961-12-01

    A directional coupler of small size is designed. Stripline conductors of non-rectilinear configuration, and separated from each other by a thin dielectric spacer. cross each other at least at two locations at right angles, thus providing practically pure capacitive coupling which substantially eliminates undesirable inductive coupling. The conductors are sandwiched between a pair of ground planes. The coupling factor is dependent only on the thickness and dielectric constant of the dielectric spacer at the point of conductor crossover. (AEC)

  16. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and ...

  17. DIRECTIONAL ANTENNA

    DOE Patents [OSTI]

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  18. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  19. Direct Methanol Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Methanol Fuel Cells Los Alamos National Laboratory Contact LANL About This Technology Direct methanol fuel cells provide an alternative power source for mobile devices. Direct methanol fuel cells provide an alternative power source for mobile devices. Technology Marketing SummaryLANL has developed an intellectual property portfolio in Direct Methanol Fuel Cells that may permit companies to participate in the emerging DMFC market while minimizing R&D risks and expenditures. Our

  20. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  1. California schemin': how about direct rebates?

    SciTech Connect (OSTI)

    2010-03-15

    California is pushing ahead with its own climate bill to reduce statewide emissions to 1990 levels by 2020. Some 75--80 percent of the measures required to meet the 2020 reductions in greenhouse gas (GHG) emissions will be met through the 33 percent renewable portfolio standard (RPS), stringent energy efficiency initiatives, and a long list of other mandatory requirements affecting the transport sector. The balance will be met through market- and pricing-oriented mechanisms, including auctioning of GHG emission permits. In early January, an advisory committee proposed that roughly 75 percent of the collected proceeds should be distributed directly to households with the balance used to assist badly affected industries, especially those with few options to transition to a lower carbon regime.

  2. Raven Technology | Open Energy Information

    Open Energy Info (EERE)

    technology known as "AC-Direct," which seeks to overcome the limitations of inverters and synchronous generators for mobile, off-grid, and distributed power applications....

  3. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  4. Director, Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Solar Energy Technologies Office (SETO) is to provide the overall programmatic and technical oversight, policy, management, and strategic direction necessary for a balanced...

  5. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  6. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  7. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more ...

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  9. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  10. Efficient Placement of Directional Antennas

    SciTech Connect (OSTI)

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  11. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  12. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and format Directives Templates Justification Memoranda Per Secretarial Memo, Enterprise Risk Management (ERM) Framework for Directives, dated July 9, 2012, by September 1, 2012,...

  13. Exploration Technologies Technology Needs Assessment

    Broader source: Energy.gov [DOE]

    The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

  14. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  15. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  16. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  17. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  18. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  19. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directives Current Directives List Directives are the Department of Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors Current Draft Archives by Website Administrator More filters Less filters Directive Type Order Guide Manual Policy Notice Cancellation Notice HQ Order Sec of Energy Notice Justification Memorandum Certification Memo 0 Series Series All 0000 Subject Classification 100 Leadership/Management

  20. Program Peer Review New Directions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review New Directions Program Peer Review New Directions BETO Program Peer Review - New Directions, 2013 program_management_review2013_directions_reed.pdf (1.03 MB) More Documents & Publications Bioenergy Technologies Office New Directions October 2013 News Blast BETO Monthly News Blast, June 2013

  1. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directives Tools by Website Administrator Title Author Type Modified Processing a Policy or Notice Website Administrator Page Feb 26, 2014 09:17 AM Types of Directives Website Administrator Page Jan 10, 2014 10:16 AM Crosswalk of Directives Numbering System Website Administrator File Mar 26, 2014 01:41 PM Directives Templates Website Administrator Page Jun 30, 2016 12:19 PM Implementation Plan Template Website Administrator File Jan 10, 2014 01:20 PM Directives Certification Letter Website

  2. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following new and revised Directives are available over the Internet on the Office of Management's home page for Directives at: https:www.directives.doe.gov...

  3. Directing Biomolecules to Intracellular Microcompartments and Scaffolds -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Directing Biomolecules to Intracellular Microcompartments and Scaffolds Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Cheryl Kerfeld and James Kinney at Berkeley Lab have identified peptide targeting signals that can direct selected enzymes, metabolites, and other macromolecules to microcompartments or scaffolds used to engineer reactions in cells and non-cellular systems. To achieve methods of inserting

  4. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  5. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the ... European Diesel Engine Technology: An Overview 3-Cylinder Turbocharged Gasoline Direct ...

  6. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  7. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a ...

  8. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  9. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-05-15

    The order establishes requirements, assigns responsibilities, and provides guidance for federal mobile technology management and employee use of both government furnished and personally-owned mobile devices within DOE and NNSA. Establishes requirements for use of User Agreements to govern mobile devices used for official duties. Does not cancel other directives.

  10. FY04 Engineering Technology Reports Technology Base

    SciTech Connect (OSTI)

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  11. Departmental Directives Program Policy - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional areas: Information Technology, The Policy provides formal and organized communication of the Department's expectations for performance of work within the DOE complex....

  12. Browse Archived Directives - DOE Directives, Delegations, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue Date Start date End date Subjects match any Administration Environment Finance Health Human Resources Information Technology Management and Operations Procurement Safety...

  13. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  14. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  15. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  16. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  17. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  18. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  19. Direct Spectroscopic Evidence for Phase Competition between the...

    Office of Scientific and Technical Information (OSTI)

    Direct Spectroscopic Evidence for Phase Competition between the Pseudogap and ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Laboratory Directed Research and Development Program: FY 2015...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Directed Research and Development Program: FY 2015 Annual Report Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Direct Global Power Inc DGP | Open Energy Information

    Open Energy Info (EERE)

    Inc (DGP) Place: Claverack, New York Zip: 12513 Product: Direct Global Power is a photovoltaic market development and technology commercialization company. Coordinates:...

  2. Remote interactive direct volume rendering of AMR data (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Remote interactive direct volume rendering of AMR data Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  3. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measuremen...

    Office of Scientific and Technical Information (OSTI)

    Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  4. Direct Measurement of the Neutral Weak Dipole Moments of the...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... We present direct measurements of the neutral weak anomalous magnetic dipole moment, asub ...

  5. Shell trajectory measurements from direct-drive implosion experiments...

    Office of Scientific and Technical Information (OSTI)

    A technique to measure the shell trajectory in direct-drive inertial confinement fusion ... Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ABLATION; EMISSION; ...

  6. Direct Drive Wave Energy Buoy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Drive Wave Energy Buoy 15direcolumbiapowerrhinefrank.ppt (1.58 MB) More Documents & Publications Wave Tank WEC Array Analysis Ocean Power Technologies (TRL 7 8 System) - ...

  7. Energizing American Competitiveness in Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of single crystal silicon using directional solidification. To compete in the clean energy race, inventing new technologies is not enough. We have to make them to sell...

  8. Vehicle Technologies Office: Proceedings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Proceedings Directions in Engine-Efficiency and Emissions ... Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

  9. New directions in mechanics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kassner, Michael E.; Nemat-Nasser, Sia; Suo, Zhigang; Bao, Gang; Barbour, J. Charles; Brinson, L. Catherine; Espinosa, Horacio; Gao, Huajian; Granick, Steve; Gumbsch, Peter; et al

    2004-09-15

    The Division of Materials Sciences and Engineering of the US Department of Energy (DOE) sponsored a workshop to identify cutting-edge research needs and opportunities, enabled by the application of theoretical and applied mechanics. The workshop also included input from biochemical, surface science, and computational disciplines, on approaching scientific issues at the nanoscale, and the linkage of atomistic-scale with nano-, meso-, and continuum-scale mechanics. This paper is a summary of the outcome of the workshop, consisting of three main sections, each put together by a team of workshop participants. Section 1 addresses research opportunities that can be realized by the applicationmore » of mechanics fundamentals to the general area of self-assembly, directed self-assembly, and fluidics. Section 2 examines the role of mechanics in biological, bioinspired, and biohybrid material systems, closely relating to and complementing the material covered in Section 1. In this manner, it was made clear that mechanics plays a fundamental role in understanding the biological functions at all scales, in seeking to utilize biology and biological techniques to develop new materials and devices, and in the general area of bionanotechnology. While direct observational investigations are an essential ingredient of new discoveries and will continue to open new exciting research doors, it is the basic need for controlled experimentation and fundamentally- based modeling and computational simulations that will be truly empowered by a systematic use of the fundamentals of mechanics. Section 3 brings into focus new challenging issues in inelastic deformation and fracturing of materials that have emerged as a result of the development of nanodevices, biopolymers, and hybrid bio–abio systems. As a result, each section begins with some introductory overview comments, and then provides illustrative examples that were presented at the workshop and which are believed to highlight the

  10. Highly Directional Antenna for Improved Communications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Highly Directional Antenna for Improved Communications Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Researchers at Iowa State University and Ames Laboratory have developed a highly tunable, high directivity microwave antenna with utility for military and mobile communications. Description Directional antennas are used in advanced systems to optimize or maximize transmission/receiving in some directions while suppressing it in others, and are used in

  11. Interfacial shear strength of cast and directionally solidified NiAl-sapphire fiber composites

    SciTech Connect (OSTI)

    Tewari, S.N.; Asthana, R. . Chemical Engineering Dept.); Noebe, R.D. . Intermetallics Branch)

    1993-09-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  12. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  13. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  14. Recently Canceled Directives - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Recently Canceled Directives Directives and other requirements documents canceled in the last 90 days. All Recently Issued/Updated Recently Canceled Directives Recently Rescinded Delegations by Website Administrator More filters Less filters Filters applied Δ Hide filters ∇ Show filters (0) [X] Remove all Document Type Cancellation Notice Certification Memo Delegation Designation Guide HQ Order Invoked Technical Standards Justification Memorandum Manual Notice Order

  15. Directives Help - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help by Website Administrator All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need. Navigating the DOE Directives, Delegations, and Requirements Portal A guide for using the new portal is available here. Navigation Tools The links at the top of the page will take you to the major elements of the site--directives, delegations and requirements. The

  16. Directives Requiring Additional Documentation - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delegations, and Requirements Requiring Additional Documentation by Website Administrator PDF document icon DirectivesRequiringAdditionalDocumentation (1).pdf - PDF document, 35 KB (36219

  17. Directives Quarterly Updates

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly.

  18. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management's home page for Directives at https:www.directives.doe.govdirectives APRIL 2015 DOE O 325.2, Position Management and Classification The order establishes ...

  19. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  20. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  1. Quantum technology and its applications

    SciTech Connect (OSTI)

    Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil

    2010-12-10

    considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.

  2. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  3. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  4. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  5. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Technology - 2015 November New Laser Pump Wins R&D 100 Award October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron X-Ray Experiment August New ARC Front End Proves Its Mettle July Two NIF&PS Technologies Named R&D 100 Finalists ELI Beamlines Officials Tour HAPLS Project June Measuring NIF Implosions with a Bang Dante: Measuring NIF's Inferno May HAPLS Team Reaches Key Milestone Supplying

  6. OTEC mooring technology

    SciTech Connect (OSTI)

    Shields, D.R.; Wendt, R.L.; Johnson, B.A.

    1982-12-01

    This report summarizes existing technology for mooring components which may be suitable for OTEC use. Due to the platform size, depth of water, and length of design life required for an operational OTEC plant, only large and high capacity mooring components were investigated. The report contains engineering, test, and manufacturer's data on wire rope, synthetic rope (nylon, polyester and Kevlar), anchors, deck fittings and machinery, and design concepts for tension leg platform mooring systems. A significant portion of the effort was directed to the assessment of synthetic rope technology and its application to moorings.

  7. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting ReSeaRch & development at Sandia national laboRatoRieS The bridge to a new way of lighting the world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science and Technology 1 9 7 7 Begins investing in gallium nitride (GaN) materials, physics, and device capabilities 1 9 9 5 Launches its Grand Challenge Laboratory Directed Research and Development Project, "A

  8. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  9. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  10. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  11. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buckman Direct Diversion Project Buckman Direct Diversion Project This project takes surface water from the Rio Grande, and then treats and distributes these waters to the city and county of Santa Fe through their drinking water distribution systems. August 1, 2013 Water flumes at Buckman Direct Diversion Project Water flumes at Buckman Direct Diversion Project The City of Santa Fe and Santa Fe County completed the construction of the Buckman Direct Diversion (BDD) Project in December 2010. The

  12. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  13. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  14. Directives Certification Letter - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directives & Documents Directives & Documents Policy & Guidance Policy & Guidance contains Project Management related orders, guides, handbooks, templates, standard operating procedures, and industry standards that allow Federal Project Directors and project teams to comply with applicable laws and regulations while putting in place most effective project managemetn practices that increase probability of project success. Proceed to Policy & Guidance >> Publications

  15. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  16. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    SciTech Connect (OSTI)

    Coudel, L. Kumar, K. Kishor; Arnas, C.

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  17. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  18. Image processing technology

    SciTech Connect (OSTI)

    Van Eeckhout, E.; Pope, P.; Balick, L.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to advance image processing and visualization technologies for environmental characterization. This was effected by developing and implementing analyses of remote sensing data from satellite and airborne platforms, and demonstrating their effectiveness in visualization of environmental problems. Many sources of information were integrated as appropriate using geographic information systems.

  19. Ultrasonic Clothes Drying Technology

    ScienceCinema (OSTI)

    Patel, Viral; Momen, Ayyoub

    2016-05-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE?s Building Technologies Office in 2014.

  20. Science & Technology - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 / june Science & Technology - 2014 June First Isotope-Specific Radiograph Using MEGa-rays Produced LLNL and its partners from the Institute Laue Langevin (ILL) in Grenoble, France, the Technical University of Darmstadt in Germany, and the European Synchrotron Radiation Facility (ESRF) in Grenoble have conducted a series of experiments to validate the performance of the LLNL-patented Dual Isotope Notch Observation (DINO) detector system. In a successful test of this Laboratory Directed

  1. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace065_rinkevich_2011_o.pdf (512.16 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged

  2. 2010 Directions in Engine-Efficiency and Emissions Research (DEER)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations | Department of Energy Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations September 27-30, 2010 Detroit, Michigan Monday, September 27, 2010 A View from the Bridge, Plenary Session, Panel Discussion Advanced Combustion Technologies, Part 1 Poster Presentation Session 1: Advanced Combustion Technologies and Emission Control Technologies

  3. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  4. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  5. Directional recoil rates for WIMP direct detection

    SciTech Connect (OSTI)

    Alenazi, Moqbil S.; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E Rm 201, Salt Lake City, Utah 84112-0830 (United States)

    2008-02-15

    New techniques for the laboratory direct detection of dark matter weakly interacting massive particles (WIMPs) are sensitive to the recoil direction of the struck nuclei. We compute and compare the directional recoil rates dR/dcos{theta} (where {theta} is the angle measured from a reference direction in the sky) for several WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivie's late-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to distinguish the beginning of the recoil track from its end (lack of head-tail discrimination), we introduce a folded directional recoil rate dR/d|cos{theta}|, where |cos{theta}| does not distinguish the head from the tail of the track. We compute the CS{sub 2} and CF{sub 4} exposures required to distinguish a signal from an isotropic background noise, and find that dR/d|cos{theta}| is effective for the standard dark halo and some but not all anisotropic models.

  6. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  7. About Direct Current

    Broader source: Energy.gov [DOE]

    Learn about Direct Current -- a podcast about the energy that lights our homes, powers our lives and shapes our world.

  8. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  9. Direct process for explosives

    DOE Patents [OSTI]

    Akst, I.B.; Stinecipher, M.M.

    1982-10-12

    A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

  10. Methods of Conditioning Direct Methanol Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search Methods of Conditioning Direct Methanol Fuel Cells Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing Summary Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode

  11. MHK Technologies/EPAM | Open Energy Information

    Open Energy Info (EERE)

    configurations The Diaphragm configuration originally developed for pumps and valves provides push and pull out of plane motion in a compact design that can be versatile...

  12. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Quarterly Updates by Diane Johnson Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly. FY2016 FY 16, Q2 - January through March 2016 FY2015 FY15, Q1 - October through December 2014 FY15, Q3 - April through June 2015 FY15, Q4 - July through September 2015 FY 2014 FY14, Q1 - October through December 2013 FY14, Q2 - January through March 2014 FY14, Q3 - April

  13. Technology Transfer Working Group (TTWG) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Working Group (TTWG) Technology Transfer Working Group (TTWG) With the passage of the Energy Policy Act of 2005, Title X, Sec. 1001, the Secretary of Energy was directed to establish a Technology Transfer Working Group (TTWG), to include representatives from DOE National Laboratories and single purpose research facilities. The same section of the Act also directs the Secretary to appoint a Technology Transfer Coordinator. The duties of the Technology Transfer Coordinator

  14. Direct Conversion of Biomass into Transportation Fuels - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Direct Conversion of Biomass into Transportation Fuels Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryLos Alamos National Laboratory is developing a portfolio of technologies related to catalytic processes for converting oligosaccharides into hydrocarbons under mild conditions.DescriptionWe are seeking a co-development partner interested in teaming to further develop the technology, including pursuit of Federal-funding opportunities, and

  15. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  16. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  17. Users speak out on technology deployment

    SciTech Connect (OSTI)

    Peters, Mark; Prochaska, Marty; Cromer, Paul; Zewatsky, Jennifer

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Ice Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.

  18. Contact Technology Transitions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Technology Transitions Contact Technology Transitions Please use this form to send us your comments, report problems, and/or ask questions about information on the Office of Technology Transition website. All entries on the form will go to the Office of Technology Transitions at the Department of Energy. If you wish to contact a specific laboratory, please do so directly on this page. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to

  19. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  20. MHK Technologies/Direct Energy Conversion Method DECM | Open...

    Open Energy Info (EERE)

    a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4...

  1. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  2. Vehicle Technologies Office: Directions in Engine-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At DEER, original equipment manufacturers, suppliers, entrepreneurs, national laboratories, universities, and nonprofit organizations attend presentations and poster exhibits ...

  3. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Broader source: Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  4. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  5. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  6. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-09-10

    To define requirements and responsibilities for implementing the Department of Energy (DOE) Directives Program in support of the Secretary's memorandum of September 10, 2007, Principles Governing Departmental Directives. See also the current list of Directives Requiring Further Documentation, as required by Appendix D of this Order. Supersedes DOE P 251.1A, DOE O 251.1B, DOE M 251.1-1B.

  8. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  9. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.directives.doe.govdirectivesdirectives July 2013 DOE O 243.1B Admin Chg 1, Records Management Program - The order sets forth requirements and responsibilities for ...

  10. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  11. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-05-26

    Effective immediately the following Department of Energy directive is canceled: DOE P 111.1, Departmental Organization Management System, dated 08-27-96.

  12. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  13. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  14. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmaps Technology Roadmaps June 2, 2016 Solid-State Lighting 2016 R&D Plan The Solid-State Lighting (SSL) R&D Plan is a consolidation of the Department of Energy (DOE) SSL Multi-Year Program Plan (MYPP) and the DOE SSL Manufacturing R&D Roadmap that DOE has published and updated in previous years. The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The R&D Plan also reviews SSL technology

  15. LED Directional Lamps

    SciTech Connect (OSTI)

    2012-11-01

    Solid-state lighting program technology fact sheet that provides an overview of the current performance of LED PAR-, BR-, R-, and AR-shaped lamps, which were all investigated by CALiPER in 2012.

  16. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  17. Laboratory Directed Research & Development (LDRD) Tri-Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security AdministrationLaboratory Directed Research and Development Securing the future of our nation through cutting-edge science and technology Laboratory Directed Research and Development Laboratory Directed Research and Development Menu Performance Metrics Annual Reports Nuclear Security Global Security Scientific Security Energy Security Innovation for our nation The Laboratory Directed Research and Development (LDRD) program was authorized by Congress in 1991 to fund

  18. Geothermal Direct-Use Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct-Use Basics Geothermal Direct-Use Basics August 14, 2013 - 1:46pm Addthis Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk. Learn more about direct-use of geothermal applications from the EERE Geothermal Technologies Office. Addthis Related Articles

  19. CSP technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  1. 2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will develop crosscutting technologies that directly support and complement the Office of Nuclear Energy's (NE) development of new and advanced reactor concepts and fuel cycle technologies. 2012 Nuclear Energy Enabling Technology Factsheet (1.81 MB) More Documents & Publications NEET Workshop 2010 Advanced Sensors and

  2. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  3. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  4. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-13

    The order establishes directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors. The second draft is being submitted for review owing to extensive revisions to the first draft.

  5. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.directives.doe.govdirectives-browsec8- operatoror&c10&c12&bstart0 January 2014 DOE O 343.1, Federal Substance Abuse Testing Program - The Order establishes the ...

  6. AISI direct steelmaking program

    SciTech Connect (OSTI)

    Aukrust, E.

    1991-01-09

    AISI with co-funding from DOE has initiated a research and development program aimed at the development of a new process for direct steelmaking, and the program is discussed in this document. The project is expected to cost about $30 million over a three-year period, with the government providing approximately 77 percent of the funds and AISI the balance. In contrast to current steelmaking processes which are largely open and batch, the direct steelmaking process would be closed and continuous. Further, it would use coal directly, thereby avoiding the need for coke ovens. The second year of the Direct Steelmaking Program (November 29, 1989, through November 28, 1990) was a year of significant accomplishment. The various research programs proceeded essentially on schedule and the pilot plant, the centerpiece of the program, was completed about three months behind schedule but began operation in almost a picture-perfect manner. This report presents the last years accomplishments.

  7. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  8. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  9. Directions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions The Laboratory is on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Rd. Bldg. 88, Berkeley, CA 94720. To make the Lab easily accessible, the Lab has its own shuttle service that takes people around the site, to downtown Berkeley, and to the BART station. Parking spaces can sometimes be difficult to find at the 88-Inch Cyclotron, so make sure to prearrange for a parking permit with our Administrative Office. Further

  10. 1996 Laboratory directed research and development annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  11. MHK Technologies/Seabased | Open Energy Information

    Open Energy Info (EERE)

    TRL 4: Proof of Concept Technology Description The co-developed UppsalaSeabased AB Wave Energy Converter is a point absorber that consists of a direct-drive permanent magnet...

  12. Columbia Power Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    company is involved in the following MHK Technologies: Direct Drive Power Generation Buoy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:...

  13. 2009 Directions in Engine-Efficiency and Emissions Research (DEER)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations | Department of Energy Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2009 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 3-6, 2009 Dearborn, Michigan Plenary Session: A View from the Bridge Lunch: Sponsored by Caterpillar, Inc. Technical Session 1: Advanced Combustion Technologies, Part 1 Poster Presentation Session 1: Advanced Combustion Technologies and Emission Control

  14. 2011 Directions in Engine-Efficiency and Emissions Research (DEER)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations | Department of Energy Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2011 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations October 3-6, 2011 Detroit, Michigan Monday, October 3, 2011 A View from the Bridge, Plenary Session, Panel Discussion High-Efficiency Engine Technologies, Part 1 Poster Presentation Session 1: High-Efficiency Engine Technologies Tuesday, October 4, 2011 Panel Session:

  15. 2012 Directions in Engine-Efficiency and Emissions Research (DEER)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations | Department of Energy Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations October 16-19, 2012 Dearborn, Michigan Tuesday, October 16, 2012 Welcome Remarks, Plenary Session, Panel Discussion High-Efficiency Engine Technologies, Part 1 Poster Presentation Session 1: High-Efficiency Engine Technologies Wednesday, October 17, 2012 Panel Session:

  16. Pulse Thermal Processing of Functional Materials Using a Directed Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc - Energy Innovation Portal Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryUsing pulses of high density infrared light from a directed plasma arc, ORNL researchers invented a method to thermally process thin films and other functional materials on

  17. Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The US | Department of Energy Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid. deer09_whitaker.pdf (488.25 KB) More Documents & Publications E85 Optimized

  18. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  19. Vorbeck Materials Licenses Graphene-based Battery Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Link to Article:http:www.whitehouse.govblog20130405lab-market-does-america-s-next-top-energy-innovator-program Pacific Northwest National Laboratory Technology ...

  20. MHK Technologies/Brandl Generator | Open Energy Information

    Open Energy Info (EERE)

    direct connected magnets that induce an electrical current when they move through the induction coils. This drawing shows the basic idea. Technology Dimensions Width (m) 10 Height...

  1. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  2. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  3. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  4. New Directions in Engines -- The Road Ahead | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- The Road Ahead New Directions in Engines -- The Road Ahead The future of internal combustion engines will depend on improved technology and significant evolution as new alternatives enter the mix as an impaact or regulation deer09_pinson.pdf (291.68 KB) More Documents & Publications Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Diesel Passenger Car Technology for Low Emissions and CO2 Compliance ORC Closed Loop Control Systems for Transient

  5. Field Controlled Direct-Write Electrospinning | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Controlled Direct-Write Electrospinning Technology available for licensing: Electrospinning is rapidly becoming a popular technology with a myriad of applications in many different fields and industries. Fibers with a nano-scale width, or nanofibers, exhibit a high aspect ratio and provide a very large degree of anisotropy, which enhances energy transfer efficiency and other beneficial parameters in many technology fields, such as thermoelectric, photoelectric and RF/microwave

  6. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy Savers [EERE]

    Electric Drive Technologies Annual Progress Report Vehicle ... FY14EDTAnnualReport.pdf (15.14 MB) More Documents & Publications Vehicle Technologies Office: 2015 ...

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  8. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will ...

  9. Chicago Operations Office: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  10. Appropriate Technology Management Information System

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    From 1978 to 1981, the Department of Energy (DOE) awarded more than 2200 small grants worth more than $25 million to individuals, organizations and small businesses across the nation for the purposes of researching, developing and demonstrating appropriate technologies. Grants were given in the full range of technology areas, including conservation, solar, biomass, wind, geothermal, and hydro power. The final report from each DOE grantee was reviewed in an effort to extract information about new ideas and proven concepts that could be of value to the public. To manage the growing wealth of information from the grant reports, and to monitor the report review process, the Appropriate Technology Management Information System (ATMIS), a computer data base, was developed. The ATMIS can classify data into numerous categories (technology area, geographic location, project status, etc.). This manual was generated directly from the data base.

  11. Technology applications bulletins: Number one

    SciTech Connect (OSTI)

    Koncinski, W. Jr.

    1989-02-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), operates five facilities for the US Department of Energy (DOE): the Oak Ridge National Laboratory (ORNL), which is a large, multidisciplinary research and development (R and D) center whose primary mission is energy research; the Oak Ridge Y-12 Plant, which engages in defense research, development, and production; and the uranium-enrichment plants at Oak Ridge; Paducah, Kentucky; and Portsmouth, Ohio. Much of the research carried out at these facilities is of interest to industry and to state or local governments. To make information about this research available, the Energy Systems Office of Technology Applications publishes brief descriptions of selected technologies and reports. These technology applications bulletins describe the new technology and inform the reader about how to obtain further information, gain access to technical resources, and initiate direct contact with Energy Systems researchers.

  12. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  13. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  14. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  15. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  16. PUSH-PULL POWER REACTOR

    DOE Patents [OSTI]

    Froman, D.K.

    1959-02-24

    Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.

  17. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information » Directions & Maps Directions & Maps The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. Contact Us thumbnail of 1350 Central Avenue Bradbury Science Museum 1350 Central Avenue 505 667-4444 Email Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the

  18. Directed Quantum Chaos

    SciTech Connect (OSTI)

    Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)

    1997-07-01

    Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}

  19. SERAPHIM: A propulsion technology for fast trains

    SciTech Connect (OSTI)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  20. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal catalyst that can significantly reduce the cost of hydrogen fuel cells while maintaining performance. Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal

  1. SRNL Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/2014 SEARCH SRNL GO About LDRD Initiatives & Research Priorities Current Projects LDRD Technologies LDRD Contacts LDRD Home SRNL Home SRNL Laboratory Directed Research & Development (LDRD) Resources LDRD Annual Reports * 2013 * 2012 * 2011 * 2010 DOE LDRD Homepage DOE Order FY13 SRNL LDRD Annual Report The FY13 SRNL LDRD Annual Report has been released This important program displays both the breadth of SRNL's research efforts and the depth of our commitment to expand the capability

  2. Status & Direction for Onboard Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLEAN POWER ... FROM CONCEPT TO PRODUCTION Manufacturing for the Hydrogen Economy Manufacturing for the Hydrogen Economy Status & Direction for Onboard Hydrogen Storage Andy Abele Quantum Fuel Systems Technologies Worldwide, Inc. July 2005 This presentation does not contain any proprietary or confidential information. Hydrogen Storage - It's More Than a Tank Hydrogen storage systems on H 2 vehicles must: * Contain * Control * Regulate * Monitor * Distribute * Meter * Refill * Survive

  3. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide

  4. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  5. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  6. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  7. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  9. Program Direction and Analysis | U.S. DOE Office of Science ...

    Office of Science (SC) Website

    Communications and Public Affairs Grants & Contracts Support Human Resources and Administration Information Technology and Services Program Direction and Analysis Scientific and...

  10. Time history prediction of direct-drive implosions on the Omega...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CONFIGURATION; COUPLING; DIRECT DRIVE LASER IMPLOSION; LASERS; NEUTRONS; OMEGA FACILITY; ...

  11. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Download the presentation slides from Arkema at the July 17, 2012, Fuel Cell Technologies Program webinar, "Fuel Cells for Portable Power." Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides (790.15 KB) More Documents & Publications

  12. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  13. Fact #801: October 28, 2013 Gasoline Direct Injection Continues to Grow

    Broader source: Energy.gov [DOE]

    Gasoline Direct Injection (GDI) is an engine technology that improves fuel economy and engine performance by injecting fuel directly into the combustion chamber, allowing for a more complete and...

  14. Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  15. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  20. Letter: Direction and Guidance for Implementing Direct DOE Relationship &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding for EMSSABs | Department of Energy Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs From: Assistant Secretary, Jessie Hill Roberson (EM-11) To: Mr. Monte Wilson, Chair, INEEL Citizens Advisory Board This letter is in response to a November 21, 2003 letter regarding direction and guidance for implementing direct DOE relationship and funding

  1. Direct Observation of the Transition from Indirect to Direct...

    Office of Scientific and Technical Information (OSTI)

    Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin ... Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States ...

  2. Complier-Directed Automatic Performance Tuning (TUNE) Final Report

    SciTech Connect (OSTI)

    Chame, Jacqueline

    2013-06-07

    TUNE was created to develop compiler-directed performance tuning technology targeting the Cray XT4 system at Oak Ridge. TUNE combines compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation. The goal of this performance-tuning technology is to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, TUNE aims to make compiler technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  3. Tailoring dielectric resonator geometries for directional scattering and Huygens metasurfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Sinclair, Michael B.

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymorein a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.less

  4. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site map An overview of the available content on this site. Keep the pointer still over an item for a few seconds to get its description. Directives Delegations Other Requirements Top 10 Directives Help Directives Tools RevCom

  5. Energy and technology review

    SciTech Connect (OSTI)

    Poggio, A.J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  6. Recent DOE Directives Changes

    Broader source: Energy.gov [DOE]

    On September 1, 2009, the Department of Energy (DOE) manuals were revised and issued to correspond with the following recent Contractor Requirements Documents (CRDs) changes to the following Directives: DOE M 205.1-8 Administrative Change 1—Cyber Security Incident Management Manual; DOE M 205.1-7 Administrative Change 1—Security Controls for Unclassified Information Systems Manual; DOE M 205.1-6 Administrative Change 1—Media Sanitization Manual; DOE M 205.1-5 Administrative Change 1—Cyber Security Process Requirements Manual

  7. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  8. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, Mohsen

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  9. MHK Technologies/Hidroflot | Open Energy Information

    Open Energy Info (EERE)

    unit s individual push into a single output line Each platform acts as an independent power station producer of 6MW A wave power park consisting of 8 10 platforms in a one square...

  10. Technology and Engineering Development Facility | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rick recalls that Ray Orbach, then head of the Office of Science and undersecretary, was pushing George Malosh to create an infrastructure program that they could take to Congress. ...

  11. NREL: Technology Deployment - Disaster Resilience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilience NREL works directly with federal agencies, emergency managers, community leaders, and home and business owners to deliver technologies, tools, and long-term energy solutions for each phase of disaster resiliency planning. Our comprehensive energy solutions address the full spectrum of multi-jurisdictional resilience planning-before and after disaster strikes. Natural Disasters, By the Numbers Graphic showing an exclamation mark inside of a triangle, with the number 144 below it. There

  12. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid electrolyte reduces corrosion & electrolyte management problems * Low temperature * Quick start-up and

  13. Renewable Energy Technologies - Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  15. Digital Sensor Technology

    SciTech Connect (OSTI)

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  16. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  17. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  18. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  19. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  20. Vehicle Technologies Office Propulsion Materials Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Construction | Department of Energy UQM Technologies, Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt044_ley_2016_o_web.pdf (1.13 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Unique Lanthide-Free Motor

  1. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  2. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOE Patents [OSTI]

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  3. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  4. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  5. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  6. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Sorbent Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbent Technologies Licensed for Use in Biomass-to- Biofuel Conversion Process with Carbon Capture and Storage Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has granted a license for two of its patented sorbent technologies: carbon dioxide (CO 2 ) removal and water-gas shift (WGS) reaction enhancement to CogniTek Management Systems "CogniTek," a renewable energy systems developer. CogniTek plans to implement a regenerable magnesium sorbent,

  8. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  9. MHK Technologies/WEGA wave energy gravitational absorber | Open...

    Open Energy Info (EERE)

    cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount...

  10. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  11. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  12. NETL: SOFC Core Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  13. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  14. TUNE: Compiler-Directed Automatic Performance Tuning

    SciTech Connect (OSTI)

    Hall, Mary

    2014-09-18

    This project has developed compiler-directed performance tuning technology targeting the Cray XT4 Jaguar system at Oak Ridge, which has multi-core Opteron nodes with SSE-3 SIMD extensions, and the Cray XE6 Hopper system at NERSC. To achieve this goal, we combined compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation, which have been developed by the PIs over the past several years. We examined DOE Office of Science applications to identify performance bottlenecks and apply our system to computational kernels that operate on dense arrays. Our goal for this performance-tuning technology has been to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, we aim to make our technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  15. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  16. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  17. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  18. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  19. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  20. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  1. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Technology First National Technology Center Center Electronic Equipment - manufactured to withstand 8 milliseconds of voltage disruption CBEMA Curve - Chips ...

  2. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  3. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY ... of the nation's energy system and secure U.S. leadership ...

  4. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  5. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  6. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  7. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  8. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  9. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  12. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  13. Direct growth of graphene on Si(111)

    SciTech Connect (OSTI)

    Thanh Trung, Pham Joucken, Frdric; Colomer, Jean-Franois; Robert, Sporken; Campos-Delgado, Jessica; Raskin, Jean-Pierre; Hackens, Benot; Santos, Cristiane N.

    2014-06-14

    Due to the need of integrated circuit in the current silicon technology, the formation of graphene on Si wafer is highly desirable, but is still a challenge for the scientific community. In this context, we report the direct growth of graphene on Si(111) wafer under appropriate conditions using an electron beam evaporator. The structural quality of the material is investigated in detail by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, high resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. Our experimental results confirm that the quality of graphene is strongly dependent on the growth time during carbon atoms deposition.

  14. Method and Apparatus for High-Efficiency Direct Contact Condensation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Geothermal Geothermal Find More Like This Return to Search Method and Apparatus for High-Efficiency Direct Contact Condensation National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication White Paper (925 KB) Technology Marketing Summary Geothermal resources, the steam and water that lie below the earth's surface, have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power

  15. Directed Evolution of Microbe Producing Biofuels Using in Vivo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transcription Factor Based Biosensors - Energy Innovation Portal Directed Evolution of Microbe Producing Biofuels Using in Vivo Transcription Factor Based Biosensors Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have invented a method of using transcription factors expressed in vivo to evolve, screen, and select for microorganisms producing an intracellular small molecule of interest,

  16. Directed Spontaneous Assembly of Membrane Protein with Amphiphilic Block

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copolymers - Energy Innovation Portal Directed Spontaneous Assembly of Membrane Protein with Amphiphilic Block Copolymers Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention describes a method for using membrane proteins (MPs) in synthetic systems for biosensor design, high-throughput drug-screening, catalysis or energy harvesting. DescriptionCurrent efforts in the art face a challenge that practical applications involving liposomes have been

  17. Cost Effectiveness of Technology Solutions for Future Vehicle Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cost Effectiveness of Technology Solutions for Future Vehicle Systems Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission reductions by added engine technology to determine if there is an overall positive or negative benefit. deer08_ryan.pdf (409.63 KB) More Documents & Publications European Diesel Engine Technology: An Overview 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro

  18. Comparison of Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and challenges. See how fuel cell technologies compare with one another. This comparison chart is also available as a fact sheet. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW-100 kW 60% direct H2;a 40% reformed

  19. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  20. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  1. Innovative Process Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Process Technologies Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA), will focus on

  2. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  3. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  5. Soil washing technology evaluation

    SciTech Connect (OSTI)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  6. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  8. Directional detector of gamma rays

    DOE Patents [OSTI]

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  9. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    www.directives.doe.gov Directives are the Department of Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors. New - DOE O 430.1C, Real Property Asset Management https://www.directives.doe.gov/news/0430.1C-new The directive establishes an integrated corporate-level, performance based approach to the life-cycle management of our real property assets. It links real property asset planning, programming, budgeting

  10. DOE Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Directives DOE Directives Directives are the Department of Energy's primary means to communicate and institutionalize directives and policies and to establish requirements, responsibilities, and procedures for Departmental elements and contractors. DOE O 413.3A - Program and Project Management for the Acquisition of Capital Assets DOE G 413.3-1 - Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A DOE G 413.3-2 - Quality Assurance Guide for Project Management

  11. Los Alamos shares Nano 50 award for directed assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano 50 award for directed assembly Los Alamos shares Nano 50 award for directed assembly Nano 50 Awards recognize "the top 50 technologies, products, and innovators that have significantly impacted, or will impact, the development of nanotechnology." September 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  12. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  13. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  14. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  16. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information, use the DOE Phonebook. Latest content created by this user Dec 29, 2015 Information Technology Project Execution Model Guide for Small and Medium Projects Jul 07,...

  17. Direct Cooled Power Electronics Substrate

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  19. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  20. 2008 Geothermal Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  1. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  2. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  3. Directives for Review FY 2015 - DOE Directives, Delegations,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2015 by Diane Johnson Excel spreadsheet icon DirectivesUpForReview-EOFY2015.xls - Excel spreadsheet, 64 KB (66048

  4. Directives for Review FY 2015 - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements FY 2015 by Diane Johnson Excel spreadsheet icon DirectivesUpForReview-EOFY2015.xls - Excel spreadsheet, 64 KB (66048

  5. Crosswalk of Directives Numbering System - DOE Directives, Delegations,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Requirements Crosswalk of Directives Numbering System by Website Administrator PDF document icon CROSWLK-3-27-2014.pdf - PDF document, 132 KB (135996 bytes

  6. Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states

    SciTech Connect (OSTI)

    Fortes, Raphael; Rigolin, Gustavo

    2013-09-15

    We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The three techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: Optimal direct teleportation protocols using directly partially entangled states. We put in a single formalism all strategies of direct teleportation. We extend these techniques for multipartite partially entangle states. We give upper bounds for the optimal efficiency of these protocols.

  7. Technical Comparative Analysis of "Best of Breed" Turnkey Si-Based Processes and Equipment, to be Used to Produce a Combined Multi-entity Research and Development Technology Roadmap for Thick and Thin Silicon PV

    SciTech Connect (OSTI)

    Hovel, Harold; Prettyman, Kevin

    2015-03-27

    A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques

  8. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  9. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  10. DOE Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Directives DOE Directives DOE Directives Initiated by the IG DOE O 221.3A, Establishment of Management Decisions on Office of Inspector General Reports - April 19, 2008 DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of Inspector General - April 19, 2008 DOE O 221.2A, Cooperation with the Office of Inspector General - February 25, 2008 DOE O 224.2A, Auditing of Programs and Operations - November 9, 2007

  11. Vehicle Technologies Program Implementation

    SciTech Connect (OSTI)

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  12. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  13. Technology Transfer Ombudsman Program

    Broader source: Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  14. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  15. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  16. Science & Technology - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Technology - 2016 February NIF Optics Damage Repair is 2015 Top Technology Pick ... of what takes place when NIF's 192 laser beams enter the pencil eraser-sized gold ...

  17. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  18. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  19. SSL Technology Development Workshop

    Broader source: Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...

  20. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  1. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  2. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Item Packaging and Transportation for Offsite Shipment of Materials of National Security Interest https:www.directives.doe.govinformational-purposes-only...

  3. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Sunlight Direct | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developed a system that tracks and concentrates solar energy for distributed power generation Website: www.sunlight-direct.com Coordinates: 33.0013938,...

  5. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  6. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  7. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2015 eere.energy.gov Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 Outline * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities 2 | Fuel Cell Technologies Program Source: US DOE 7/21/2015

  8. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE

  9. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Technologies Program (GTP) Program Topic Areas *Low Temperature, Geopressured and Coproduced Resources *Innovative Exploration Technologies National Goals *Economy Putting people to work in the near- term, and in the future *Security Developing and expanding

  10. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  11. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  12. Fuel & Lubricant Technologies

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  14. Geothermal Technologies Office April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report Geothermal Technologies Office April 2016 1 2015 Annual Report | Geothermal Technologies Office Director's Message Geothermal Technologies Office FY 2016 Budget at a Glance Enhanced Geothermal Systems Hydrothermal Program Low-Temperature and Coproduced Resources Systems Analysis Events and Highlights People Acronyms Resources Table of Contents 2 2 3 7 13 17 19 23 26 28 2015 Achievements Geothermal Technologies Office Steam, West Flank of Coso, NV The 2015 Annual Report of the

  15. Information Technology | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the nation's scientific agenda. Leading the division is the chief information officer. The CIO is responsible for providing information from the labs information technology systems to Jefferson Lab management, the overall IT vision, the information architecture for computing and IT, and oversight

  16. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  17. 1 | Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.6.1.2 Analysis for Production - Technical & Market May 20, 2013 Technology Area Review: Biochemical Conversion Sue Jones, Aye Meyer Organization: Pacific Northwest National Laboratory PNNL-SA-95160 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statement * Support the DOE Bioenergy Technologies Office's goal to reduce the estimated mature technology processing cost for converting

  18. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Meeting * Open invitation for peer review 12 | Building Technologies Office ... data flows with Building Component Library * Seamless information flow from ...

  19. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  20. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Technology Integration Overview

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  4. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  6. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment in Buildings R&D yielded an ROI of 15:1 from 1978 to 2000 The Buildings Technologies Program researches and Energy Efficiency & deploys new technologies to make homes and Renewable Energy commercial buildings more affordable, energy efficient, and better performing The investment in Buildings R&D yielded an

  7. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  8. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  9. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  10. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  11. Compression Technology and Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M ohawk Innovative Technology, Inc. HYDROGEN TRANSMISSION AND DISTRIBUTION WORKSHOP NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO COMPRESSION TECHNOLOGY AND NEEDS Hooshang Heshmat, PH.D. February 25 TH , 2014 ® M ohawk Innovative Technology, Inc. * Overall pipeline delivery steps, production to file up * Different types of compressors * Pipeline compressor development steps and accomplishments * Need for Forecourt Compression system * Other major components: drive, sealing, pipeline,

  12. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  13. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  14. Chapter 4 — Advancing Clean Electric Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter describes the current status and future outlook for power generation technologies, and identifies RDD&D directions that will contribute to a portfolio of technology options that can meet future regional demands. A combination of flexible technology options will be required to meet increasing power needs in the U.S. and globally. The QTR focuses on technological advances to meet U.S. energy needs and challenges, recognizing that these also offer opportunities for cooperative research that will expedite the international deployment of these technologies.

  15. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  16. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step in the transition of a technology from the lab to commercialization. ...

  17. Annual Report on Technology Transfer and Related Technology Partnering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology ...

  18. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  19. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  20. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  1. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf (4.58 ...

  2. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  3. Technology reviews: Shading systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  4. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  5. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  6. Green buildings: DOE`s historical role and new directions

    SciTech Connect (OSTI)

    Millhone, J.P.

    1994-12-31

    The Department of Energy`s (DOE) Office of Building Technologies (OBT) has traditionally played a major role in the development of {open_quotes}green buildings{close_quotes} technologies. OBT`s mission is to reduce the amount of fossil-based energy consumed by new and existing buildings, and improved energy efficiency is a critical factor in the green movement. A number of OBT`s programs also address other, non-energy facets of green technology, including the development of CFC-free insulation and appliances, indoor air quality research, and the development of standards for water-consuming appliances. This paper describes OBT`s strategy for enhancing the energy efficiency of the buildings sector, and outlines new directions in the area of green buildings technology resulting from recent Congressional legislation and administration initiatives.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  10. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  11. Browse Draft Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Draft Directives Current Draft Archives by Website Administrator More filters Less filters Directive Type Order Guide Manual Policy Notice Cancellation Notice HQ Order Sec of Energy Notice Justification Memorandum Certification Memo 0 Series Series All 0000 Subject Classification 100 Leadership/Management Planning 200 Information and Analysis 300 Human Resources 400 Work Processes 500 Business and Support Services 1100 Org. Authorities, Functions and Internal Relationships 1200 External

  12. Konarka Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  13. Gerar Technology | Open Energy Information

    Open Energy Info (EERE)

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  14. EKB Technology | Open Energy Information

    Open Energy Info (EERE)

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  15. Rubicon Technology | Open Energy Information

    Open Energy Info (EERE)

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  16. Shorepower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  17. PCN Technology | Open Energy Information

    Open Energy Info (EERE)

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  18. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  19. Briza Technologies | Open Energy Information

    Open Energy Info (EERE)

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  20. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  1. Minerals Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  2. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  3. Overview of High-Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Engine Technologies Overview of High-Efficiency Engine Technologies Perspective on past and current status, and future directions in heavy- and light-duty diesel engines deer11_eckerle.pdf (2.51 MB) More Documents & Publications Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Innovative Approaches to Improving Engine Efficiency Enabling High Efficiency Clean Combustion

  4. Module bay with directed flow

    DOE Patents [OSTI]

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  5. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  6. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation's electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80%

  7. Harsh Environment Silicon Carbide Sensor Technology for Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instrumentation | Department of Energy Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C. high_pisano_silicon_carbide_sensor.pdf (841.42 KB) More Documents &

  8. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Liquefaction Aqueous Phase Utilization: Characterization, Upgrading, and Steam Reforming May 21, 2013 Technology Area Review: Bio-Oil Technology Karl Albrecht, Robert Dagle, Daniel Howe, Mark Gerber Organization: PNNL PNNL-SA-95131 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statement * GOAL: Increase carbon yield to liquid fuels and diminish hydrogen upgrading requirements by

  9. Microsoft Word - Applications of HVDC Technologies - Summary FINAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications of HVDC Technologies: Workshop Summary Page 1 Applications of HVDC Technologies: Workshop Summary Page 2 Introduction The advantages of high-voltage direct current (HVDC) transmission over conventional high-voltage alternating current (HVAC) technologies are well established for long-distance, point-to-point power transfers. 1 HVDC has also been deployed in subterranean and submarine applications where overhead lines are impractical and where HVAC has higher electrical losses. HVDC

  10. High-Efficiency Engine Technologies Session Introduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Efficiency Engine Technologies Session Introduction High-Efficiency Engine Technologies Session Introduction Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_rotz.pdf (2.26 MB) More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Super Truck -- 50% Improvement In Class 8 Freight Efficiency Vehicle Technologies Office Merit

  11. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  12. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  13. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration | Department of Energy … Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration Technology integration merit review results 2010_amr_08.pdf (989.58 KB) More Documents & Publications 2012 Annual Merit Review Results Report - Technology Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  15. Nonimaging radiant energy direction device

    DOE Patents [OSTI]

    Winston, Roland

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  17. DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER

    DOE Patents [OSTI]

    Windsor, A.A.

    1959-05-01

    An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)

  18. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  19. Direct Searches for New Physics at the E +- E- B-Factories (Conference...

    Office of Scientific and Technical Information (OSTI)

    Direct Searches for New Physics at the E +- E- B-Factories Citation Details In-Document ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate CO2 ... Visit OSTI to utilize additional information resources in energy science and technology. A ...