Sample records for direct irradiance dni

  1. Comparison of Direct Normal Irradiance Derived from Silicon and Thermopile Global Hemispherical Radiation Detectors: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2010-01-01T23:59:59.000Z

    Concentrating solar applications utilize direct normal irradiance (DNI) radiation, a measurement rarely available. The solar concentrator industry has begun to deploy numerous measurement stations to prospect for suitable system deployment sites. Rotating shadowband radiometers (RSR) using silicon photodiodes as detectors are typically deployed. This paper compares direct beam estimates from RSR to a total hemispherical measuring radiometer (SPN1) multiple fast thermopiles. These detectors simultaneously measure total and diffuse radiation from which DNI can be computed. Both the SPN1 and RSR-derived DNI are compared to DNI measured with thermopile pyrheliometers. Our comparison shows that the SPN1 radiometer DNI estimated uncertainty is somewhat greater than, and on the same order as, the RSR DNI estimates for DNI magnitudes useful to concentrator technologies.

  2. DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND

    E-Print Network [OSTI]

    Heinemann, Detlev

    Ertragsprognose Solarthermischer Kraftwerke ­ standardization of yield prognosis for solar thermal power plants) are needed for the planning of a solar thermal power plant at a given site. Direct solar irradiance is highly). As for concentrating solar power (CSP) the frequency distribution of DNI is of special importance, special attention

  3. ARM - Measurement - Shortwave broadband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarization ARMdownwelling irradiance ARM

  4. ARM - Measurement - Shortwave broadband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarization ARMdownwelling irradiance

  5. ARM - Measurement - Shortwave narrowband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarizationupwelling irradiance ARM

  6. ARM - Measurement - Shortwave narrowband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarizationupwelling irradiance ARMnormal

  7. Direct Observation of Ion-irradiation-induced Chemical Mixing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion-irradiation induced elemental mixing and dissolution of 25–50 nm titanium oxycarbonitrides in a nanostructured ferritic alloy irradiated at 173 K. The...

  8. Direct and indirect effects of alpha-particle irradiations of human prostate tumor cells

    E-Print Network [OSTI]

    Wang, Rong, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    The objective of this project is to establish a model system to study the direct effect, the bystander effect and the combinational effect of alpha-particle irradiations of human prostate tumor cells, toward the goal of ...

  9. Direct-Normal Solar Irradiance -A Closure Experiment, Halthore et al. 1 Comparison of Model Estimated and Measured Direct-Normal

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    ). This is the energy in the solar spectrum falling per unit time on a unit area of a surface oriented normal to the Sun Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time extinction of solar energy without regard to the details of the extinction - whether absorption or scattering

  10. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility

    SciTech Connect (OSTI)

    Ramis, R., E-mail: rafael.ramis@upm.es [E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, P. Cardenal Cisneros 3, E-28040 Madrid (Spain); Temporal, M. [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B.; Brandon, V. [CEA, DIF, F-91297 Arpajon (France)

    2014-08-15T23:59:59.000Z

    The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed.

  11. DNI-predictability_paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUM SULFATE: A REVIEWThis rcportJ

  12. A FUSION METHOD FOR CREATING SUB-HOURLY DNI-BASED TMY FROM LONG-TERM SATELLITE-BASED AND

    E-Print Network [OSTI]

    Boyer, Edmond

    , Marroco Abstract In order to correctly perform Concentrated Solar Power (CSP) plant electric energy output study of a Concentrated Solar Power (CSP) plant, the industry usually performs electric energy output-TERM GROUND-BASED IRRADIATION DATA Etienne WEY 1 , Claire THOMAS 1 , Philippe BLANC 2 , Bella ESPINAR 2

  13. Directly-irradiated Two-zone Solar Thermochemical Reactor for H2O/CO2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy

  14. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

  15. Single atom sputtering events: direct observation of near-surface depleted zones in ion-irradiated tungsten

    SciTech Connect (OSTI)

    Current, M. I.; Wei, C. Y.; Seidman, D. N.

    1980-03-01T23:59:59.000Z

    The three-dimensional spatial arrangement of vacancies contained in depleted zones (DZs), of ion-irradiated tungsten specimens, was determined with atomic resolution by the field-ion microscope (FIM) technique. These DZs were detected in the near-surface region of specimens which had been irradiated in situ at less than or equal to15 K with 20 keV W/sup +/, 30 keV W/sup +/, Kr/sup +/, Cu/sup +/, or Ar/sup +/ ions. The values of the ion dose employed were small (less than or equal to 10/sup 13/ ions cm/sup -2/); therefore, each DZ analyzed was the result of the impact of a single projectile ion. At the irradiation temperature (less than or equal to 15/sup 0/K) both the self-intersitital atoms and vacancies were immobile, so that the primary state of radiation damage was preserved. The following properties of each DZ were determined: the total number of vacancies; the number of vacancies in the near-surface region; the spatial extent - that is, the dimensions required to determine a volume; the average vacancy concentration; the average vacancy concentration associated with the non-surface region; the first-nearest neighbor cluster distribution for the vacancies in the near-surface region; the radial distribution function of all the vacancies; the distribution of vacancies as a function of depth normal to the irradiated surface; and the sputtering yield. Most of the above properties of the near-surface DZs had similar values to those of the DZs detected in the bulk of the FIM specimens. The total number of vacancies detected in the near-surface region wasapproximately consistent with theoretical estimates of the average sputtering yield. The sputtering yield of individual DZs exhibited significant fluctuations from the measured average sputtering yield.

  16. Direct observation of the primary state of damage in ion-irradiated platinum and tungsten. Report No. 4300

    SciTech Connect (OSTI)

    Pramanik, D

    1980-09-01T23:59:59.000Z

    The primary state of damage in platinum and tungsten caused by ions of varying mass and energy, was investigated using the field ion microscope (FIM). The damage could be classified into three morphological types: (a) depleted zones (DZs); (b) voids; (c) dislocation loops. Platinum specimens of 99.999% purity were irradiated in situ at 60 K with 20 keV Kr/sup +/ ions to a dose of (3 to 5) x 10/sup 12/ ion cm/sup -2/ and examined by the pulse field-evaporation technique at 60 K. The experimental conditions were created such that each depleted zone was created by a single incident ion. All three morphological types were observed.

  17. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDirac ChargeDiracDirect

  18. Direct observation of the primary state of damage of ion-irradiated tungsten: I. Three-dimensional spatial distribution of vacancies

    SciTech Connect (OSTI)

    Wei, C Y; Current, M I; Seidman, D N

    1980-10-01T23:59:59.000Z

    The results of an extensive field-ion microscope (FIM) investigation of the primary state of damage of ion-irradiated tungsten are presented. Two-pass zone-refined single crystals of tungsten were irradiated in situ, at less than or equal to 15 K, with a magnetically analyzed beam of various ions at a background pressure of (5 to 10)x10/sup -10/ torr in the absence of the imaging electric field. The value of the standard fluence was small enough (5 x 10/sup 12/cm/sup -2/) to guarantee that each depleted zone (DZ) detected was associated with a single projectile ion. After an irradiation each specimen was examined on an atom-by-atom basis employing the pulse field-evaporation technique.

  19. IRRADIATION EXPERIMENTS &

    E-Print Network [OSTI]

    McDonald, Kirk

    IRRADIATION EXPERIMENTS & FACILITIES AT BNL: BLIP & NSLS II Peter Wanderer Superconducting Magnet). Current user: LBNE ­ materials for Project X. · Long Baseline Neutrino Experiment ­ Abandoned gold mine

  20. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Wagner, M. J.

    2011-08-01T23:59:59.000Z

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

  1. Safer Food with Irradiation

    E-Print Network [OSTI]

    Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

    2003-01-21T23:59:59.000Z

    This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

  2. ARM - Measurement - Shortwave spectral direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarizationupwellingdiffuse downwellingdirect

  3. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOE Patents [OSTI]

    Volegov, Petr L. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Mosher, John C. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Kraus, Jr., Robert H. (Los Alamos, NM)

    2009-08-11T23:59:59.000Z

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  4. agr-1 irradiation experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E. Schwartz Department Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time Schwartz, Stephen E. 13 An Experiment at HiRadMat:...

  5. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  6. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  7. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

    1985-01-01T23:59:59.000Z

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  8. Irradiation Creep in Graphite

    SciTech Connect (OSTI)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13T23:59:59.000Z

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  9. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12T23:59:59.000Z

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  10. Use of OCA and APOLLO in Heliosat-4 method for the assessment of surface downwelling solar irradiance

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the German Aerospace Center (DLR), for the assessment of surface downwelling solar irradiance (SSI). Each-based assessments of surface downwelling solar irradiance (SSI) are more and more used in the domain of solar energy, diffuse and direct surface irradiance for use in various domains: solar energy, biomass, agriculture

  11. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    SciTech Connect (OSTI)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01T23:59:59.000Z

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  12. Irradiation Stability of Carbon Nanotubes 

    E-Print Network [OSTI]

    Aitkaliyeva, Assel

    2010-01-14T23:59:59.000Z

    Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion ...

  13. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M. [Charles University in Prague, Prague 12116 (Czech Republic); Ruder Boskovic Institute, Zagreb 10000 (Croatia); Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P. [Ruder Boskovic Institute, Zagreb 10000 (Croatia); Drazic, G. [Jozef Stefan Institute, Ljubljana 1000 (Slovenia); Salamon, K. [Institute of Physics, Zagreb 10000 (Croatia); Bernstorff, S. [Sincrotrone Trieste, Basovizza 34012 (Italy); Holy, V. [Charles University in Prague, Prague 12116 (Czech Republic)

    2009-08-10T23:59:59.000Z

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  14. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  15. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01T23:59:59.000Z

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  16. Direct Laser Synthesis of Functional Coatings

    SciTech Connect (OSTI)

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01T23:59:59.000Z

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  17. atr-a1 irradiation experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E. Schwartz Department Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time Schwartz, Stephen E. 13 An Experiment at HiRadMat:...

  18. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOE Patents [OSTI]

    Benjamin, Robert F. (Los Alamos, NM); Mitchell, Kenneth B. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  19. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  20. Spectral solar irradiance before and during a Harmattan dust spell

    SciTech Connect (OSTI)

    Adeyefa, Z.D. [Federal Univ. of Technology, Akure (Nigeria)] [Federal Univ. of Technology, Akure (Nigeria); Holmgren, B. [Uppsala Univ. (Sweden)] [Uppsala Univ. (Sweden)

    1996-09-01T23:59:59.000Z

    Measurements of the ground-level spectral distributions of the direct, diffuse and global solar irradiance between 300 and 1100 nm were made at Akure (7.15{degree}N, 5.5{degree}E), Nigeria, in December 1991 before and during a Harmattan dust spell employing a spectroradiometer (LICOR LI-1800) with 6 nm resolution. The direct spectral solar irradiance which was initially reduced before the dust storm was further attenuated by about 50% after the spell. Estimated values of the Angstrom turbidity coefficient {beta} indicated an increase of about 146% of this parameter while the Angstrom wavelength-exponent {alpha} decreased by about 65% within the 2-day study period. The spectral diffuse-to-direct and diffuse-to-global ratios suggest that the main cause of the significant reduction in solar irradiance at the surface was the scattering by the aerosol which led to an increase in the diffuse component. The global irradiance though reduced, was less sensitive to changing Harmattan conditions. It is recommended that solar energy devices that use radiation from Sun and sky be used under fluctuating Harmattan conditions. There are some deviations from the Angstrom formula under very turbid Harmattan conditions which could be explained by the relative increase of the particle sizes. 31 refs., 12 figs., 3 tabs.

  1. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  2. Proton irradiation effect on SCDs

    E-Print Network [OSTI]

    Yan-Ji Yang; Jing-Bin Lu; Yu-Sa Wang; Yong Chen; Yu-Peng Xu; Wei-Wei Cui; Wei Li; Zheng-Wei Li; Mao-Shun Li; Xiao-Yan Liu; Juan Wang; Da-Wei Han; Tian-Xiang Chen; Cheng-Kui Li; Jia Huo; Wei Hu; Yi Zhang; Bo Lu; Yue Zhu; Ke-Yan Ma; Di Wu; Yan Liu; Zi-Liang Zhang; Guo-He Yin; Yu Wang

    2014-04-19T23:59:59.000Z

    The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was $3\\times10^{8}\\mathrm{protons}/\\mathrm{cm}^{2}$ over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at $-60\\,^{\\circ}\\mathrm{C}$, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit.

  3. Cool covered sky-splitting spectrum-splitting FK

    SciTech Connect (OSTI)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26T23:59:59.000Z

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  4. SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L. Erickson1, Carlos F. M. Coimbra2 and Alberto E. Cerpa1

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L data for ground solar irradiance (direct normal and global irradiance) is a major obstacle for the de- velopment of adequate policies to promote and take advan- tage of existing solar technologies. Although

  5. Neutron irradiation of beryllium pebbles

    SciTech Connect (OSTI)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01T23:59:59.000Z

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  6. Statistical criteria for characterizing irradiance time series.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01T23:59:59.000Z

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  7. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  8. sterilization by irradiation Arne Miller

    E-Print Network [OSTI]

    -1:2006 Equipment characterization (6) Product definition (7) Process definition (8) Installation Qualification (9.1) Operational Qualification (9.2) · Performance Qualification (9.3) - later #12;3 Equipment characterization samples shall be irradiated to defined and uniform doses. #12;9 9.1 Installation qualification (A.9

  9. Occlusion-Aware Hessians for Error Control in Irradiance Caching /

    E-Print Network [OSTI]

    Schwarzhaupt, Jorge Andres

    2013-01-01T23:59:59.000Z

    Control for Irradiance Caching. ” In ACM Transactions on Graphics,Control for Irradiance Caching. ” In ACM Transactions on Graphics,

  10. Possibility for irradiated beryllium at CERN

    E-Print Network [OSTI]

    McDonald, Kirk

    Possibility for irradiated beryllium at CERN RaDIATE meeting, 22nd July 2013 M. Calviani (CERN ­ Engineering Department ­ Sources, Target and Interactions Group) #12;Irradiated beryllium at CERN 2 Two possibilities exists at CERN to obtain irradiated beryllium for testing: beam windows, and in particular

  11. Irradiation-induced phenomena in carbon

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

  12. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01T23:59:59.000Z

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  13. GTL-1 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; G. S. Chang; N. E. Woolstenhulme; D. M. Wachs

    2012-01-01T23:59:59.000Z

    The primary objective of the Gas Test Loop (GTL-1) miniplate experiment is to confirm acceptable performance of high-density (i.e., 4.8 g-U/cm3) U3Si2/Al dispersion fuel plates clad in Al-6061 and irradiated under the relatively aggressive Booster Fast Flux Loop (BFFL) booster fuel conditions, namely a peak plate surface heat flux of 450 W/cm2. As secondary objectives, several design and fabrication variations were included in the test matrix that may have the potential to improve the high-heat flux, high-temperature performance of the base fuel plate design.1, 2 The following report summarizes the life of the GTL-1 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

  14. Overlay welding irradiated stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-08-01T23:59:59.000Z

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,{alpha} reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods.

  15. Formation of TiO{sub 2} nanorods by ion irradiation

    SciTech Connect (OSTI)

    Zheng, X. D.; Ren, F., E-mail: fren@whu.edu.cn; Cai, G. X.; Hong, M. Q.; Xiao, X. H.; Wu, W.; Liu, Y. C.; Li, W. Q.; Ying, J. J.; Jiang, C. Z. [School of Physics and Technology, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China)

    2014-05-14T23:59:59.000Z

    Ion beam irradiation is a powerful method to fabricate and tailor the nanostructured surface of materials. Nanorods on the surface of single crystal rutile TiO{sub 2} were formed by N{sup +} ion irradiation. The dependence of nanorod morphology on ion fluence and energy was elaborated. With increasing ion fluence, nanopores grow in one direction perpendicular to the surface and burst finally to form nanorods. The length of nanorods increases with increasing ion energy under same fluence. The development of the nanorod structure is originated from the formation of the nanopores while N{sub 2} bubbles and aggregation of vacancies were responsible for the formation of nanopores and nanorods. Combining C{sup +} ion irradiation and post-irradiation annealing experiments, two qualitative models are proposed to explain the formation mechanism of these nanorods.

  16. Experimental and Computer Simulation Study of Radioactivity of Materials Irradiated by Intermediate Energy Protons

    E-Print Network [OSTI]

    Yu. E. Titarenko; O. V. Shvedov; V. F. Batyaev; E. I. Karpikhin; V. M. Zhivun; R. D. Mulambetov; S. G. Mashnik; R. E. Prael; W. B. Wilson

    1999-08-23T23:59:59.000Z

    The results of measurements and computer simulations of radioactivities and dose rates as functions of decay time are presented for Pb-nat and Bi-209 irradiated by 1.5-GeV protons, Co-59, Cu-63, and Cu-65 irradiated by 0.13- and 1.2-GeV protons, and Th-232 and U-nat irradiated by 0.1- and 0.8-GeV protons. The activities and dose rates are measured by direct high-precision gamma spectrometry. The irradiations were made using external beams extracted from the ITEP U-10 proton synchrotron. Simulations made using the LCS and CINDER'90 code systems are compared with measurements.

  17. Nuclear plant irradiated steel handbook

    SciTech Connect (OSTI)

    Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

    1986-09-01T23:59:59.000Z

    This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

  18. RERTR-13 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01T23:59:59.000Z

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  19. Proton Irradiation Study of GFR Candidate Ceramics

    SciTech Connect (OSTI)

    Jian Gan; Yong Yang; Clayton Dickson; Todd Allen

    2009-05-01T23:59:59.000Z

    This work investigated the microstructural response of ZrC, ZrN, TiN, and SiC irradiated with 2.6 MeV protons at 800ºC to a single dose in the range of 1.5 to 3.0 displacement per atom (dpa), depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed and is small when measured using XRD for the irradiated samples up to 1.5 dpa for 6H-SiC, and up to 3.0 dpa for ZrC and ZrN. In comparison to Kr ion irradiation at 800ºC to 10 dpa from the previous studies, the proton-irradiated ceramics at 3.0 dpa show less irradiation damage to the lattice structure. The irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. The irradiated ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 3.0 dpa consists of a black dot defect type at high density.

  20. Irradiation Effects on Microstructure Change in Nanocrystalline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects on Microstructure Change in Nanocrystalline Ceria - Phase, lattice Stress, Grain Size and Boundaries. Irradiation Effects on Microstructure Change in Nanocrystalline Ceria...

  1. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Energy Savers [EERE]

    and Health Assessments conducted an independent assessment of the safety-significant ventilation systems at the Oak Ridge National Laboratory (ORNL) Irradiated Fuels...

  2. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect (OSTI)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01T23:59:59.000Z

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  3. Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats

    E-Print Network [OSTI]

    Shepherd, David Preston

    1967-01-01T23:59:59.000Z

    SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Submitted to the Graduate College of the Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject: Zoology SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Approved as to style and content by: (Chairman of Committee) (Head...

  4. X. CORRELATIONS BETWEEN DIFFUSE AND GLOBAL IRRADIANCE For numerous applications, particularly those

    E-Print Network [OSTI]

    Oregon, University of

    in the Pacific Northwest along with cor- responding data from the Solar Energy Mete- orological Research33 X. CORRELATIONS BETWEEN DIFFUSE AND GLOBAL IRRADIANCE For numerous applications, particularly the direct and diffuse components of the incident solar intensity. Because constant care is needed to measure

  5. Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials

    E-Print Network [OSTI]

    Parikh, Atul N.

    Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials Atul N-directing agents in the synthesis of microporous materials. The method relies on the exposure of the sample. This method is applicable in making new materials from organic­inorganic pre- cursors and holds promise

  6. 24-hours ahead global irradiation forecasting using Multi-Layer Cyril Voyant1*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ; it is shown that the most relevant is based on a multi- output MLP using endogenous and exogenous input data ahead. In the case of solar plants, the driving factor is the global solar irradiation (sum of direct and diffuse solar radiation projected on a plane (Wh/m²)). This paper focuses on the 24-hours ahead forecast

  7. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16T23:59:59.000Z

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  8. Cavity morphology in a Ni based superalloy under heavy ion irradiation with hot pre-injected helium. II

    SciTech Connect (OSTI)

    Zhang, He; Yao, Zhongwen, E-mail: yaoz@me.queensu.ca; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen's University Kingston, Ontario K7L 3N6 (Canada); Kirk, Marquis A. [Material Science Division, Argonne National Laboratory Argonne, Illinois 60439 (United States)

    2014-03-14T23:59:59.000Z

    In the current investigation, TEM in-situ heavy ion (1?MeV Kr{sup 2+}) irradiation with helium pre-injected at elevated temperature (400?°C) was conducted to simulate in-reactor neutron irradiation induced damage in CANDU spacer material Inconel X-750, in an effort to understand the effects of helium on irradiation induced cavity microstructures. Three different quantities of helium, 400 appm, 1000 appm, and 5000 appm, were pre-injected directly into TEM foils at 400?°C. The samples containing helium were then irradiated in-situ with 1?MeV Kr{sup 2+} at 400?°C to a final dose of 5.4 dpa (displacement per atom). Cavities were formed from the helium injection solely and the cavity density and size increased with increasing helium dosage. In contrast to previous heavy ion irradiations with cold pre-injected helium, heterogeneous nucleation of cavities was observed. During the ensuing heavy ion irradiation, dynamical observation showed noticeable size increase in cavities which nucleated close to the grain boundaries. A “bubble-void” transformation was observed after Kr{sup 2+} irradiation to high dose (5.4?dpa) in samples containing 1000 appm and 5000 appm helium. Cavity distribution was found to be consistent with in-reactor neutron irradiation induced cavity microstructures. This implies that the distribution of helium is greatly dependent on the injection temperature, and helium pre-injection at high temperature is preferred for simulating the migration of the transmutation produced helium.

  9. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    E-Print Network [OSTI]

    Kai Cai; Richard H. Durisen; Aaron C. Boley; Megan K. Pickett; Annie C. Mejia

    2007-10-17T23:59:59.000Z

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two and three-armed modes.

  10. Current Status of Concentrator Photovoltaic (CPV) Technology

    SciTech Connect (OSTI)

    Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

    2015-01-01T23:59:59.000Z

    This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

  11. AGC-1 Irradiation Experiment Test Plan

    SciTech Connect (OSTI)

    R. L. Bratton

    2006-05-01T23:59:59.000Z

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  12. Magnetization measurements and XMCD studies on ion irradiated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements and XMCD studies on ion irradiated iron oxide and core-shell ironiron-oxide nanomaterials. Magnetization measurements and XMCD studies on ion irradiated iron oxide...

  13. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  14. Experimental and Computer Simulation Study of Radionuclide Production in Heavy Materials Irradiated by Intermediate Energy Protons

    E-Print Network [OSTI]

    Yu. E. Titarenko; O. V. Shvedov; V. F. Batyaev; E. I. Karpikhin; V. M. Zhivun; R. D. Mulambetov; A. N. Sosnin; S. G. Mashnik; R. E. Prael; T. A. Gabriel; M. Blann

    1999-08-19T23:59:59.000Z

    The results of measurements and computer simulations are presented for the yields of residual product nuclei in thin targets: U-nat irradiated by 0.1, 0.8, 1.2, and 1.6 GeV and Tc-99 irradiated by 0.2, 0.8, 1.0, 1.4, and 1.6 GeV protons. The yields were measured at ITEP by direct high-precision gamma spectrometry. About 820 cross sections are presented and used in comparison between measured yields and simulations by the LAHET, INUCL, CEM95, HETC, CASCADE, YIELDX, and ALICE codes.

  15. Dept. Computaci on. Universidade da Coru~na Apellidos: Nombre: DNI

    E-Print Network [OSTI]

    Barreiro, Alvaro

    ) psicofuncionalismo 1 #12; (c) funcionalismo gen#19;erico 5. (1.5 puntos) (a) Siendo PCog el conjunto de procesos

  16. File:NREL-bhutan-10kmsolar-dni.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdf Jump to:

  17. AGC-1 Post Irradiation Examination Status

    SciTech Connect (OSTI)

    David Swank

    2011-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

  18. Directions and Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element...

  19. RERTR-12 Insertion 2 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01T23:59:59.000Z

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  20. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect (OSTI)

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01T23:59:59.000Z

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  1. Selective irradiation of the vascular endothelium

    E-Print Network [OSTI]

    Schuller, Bradley W

    2007-01-01T23:59:59.000Z

    We developed a unique methodology to selectively irradiate the vascular endothelium in vivo to better understand the role of vascular damage in causing normal tissue radiation side-effects.The relationship between vascular ...

  2. Introduction The bay scallop, Argopecten irradi-

    E-Print Network [OSTI]

    71(3) 17 Introduction The bay scallop, Argopecten irradi- ans amplicostatus, has been present (Garcia-Cubas, 1968). Historical Uses Mollusks were used by the pre-Co- lumbian cultures in Mexico as food

  3. Neutron Irradiation Measurement for Superconducting Magnet

    E-Print Network [OSTI]

    McDonald, Kirk

    close to reactor core · Sample cool down by He gas loop: 10K ­ 20K · Fast neutron flux (En>0.1MeV): 1.4x. Materials, 49, p161 (1973&74) Reactor n on Al Reactor n on Cu fluence up to 2*1022 n/m2 (En>0.1MeV) RRR Irradiation at KUR · Kyoto Univ. Research Reactor Institute · MW max. thermal power · Irradiation cryostat

  4. Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten

    SciTech Connect (OSTI)

    Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

    2011-12-01T23:59:59.000Z

    The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

  5. Botryllus schlosseri (Tunicata) whole colony irradiation: Do senescent zooid resorption and immunological resorption involve similar recognition events

    SciTech Connect (OSTI)

    Rinkevich, B.; Weissman, I.L. (Israel Oceanographic and Limnological Research, Haifa (Israel))

    1990-02-01T23:59:59.000Z

    The colonial tunicate Botryllus schlosseri undergoes cyclic blastogenesis where feeding zooids are senescened and resorbed and a new generation of zooids takes over the colony. When non-identical colonies come into direct contact, they either reject each other or fuse. Fusion is usually followed by the resorption of one of the partners in the chimera (immunological resorption). The striking morphological similarities between the two resorption phenomena suggest that both may involve tissue destruction following self-nonself recognition events. Here we attempt to modify these two events by whole colony gamma irradiation assays. Three sets of experiments were performed: (1) different doses of whole colony irradiation for determination of irradiation effects (110 colonies); (2) pairs of irradiated-nonirradiated isografts of clonal replicates for the potential of reconstruction of the irradiated partners (23 pairs); (3) chimeras of irradiated-nonirradiated partners for analysis of resorption hierarchy. Mortality increased with the irradiation dose. All colonies exposed to more than 5,000 rads died within 19 days, while no colony died below 2,000 rads. The average mortality periods, in days, for doses of 6,000-8,000, 5,000, and 2,500-4,000 rads were 14.4 +/- 3.1 (n = 24), 19.8 +/- 6.0 (n = 15), and 19.6 + 5.1 (n = 22), respectively. Younger colonies (3-6 months old) may survive radiation better than older ones (more than 13 months). Many morphological alterations were recorded in irradiated colonies: ampullar contraction and/or dilation, accumulation of pigment cells within ampullae, abnormal bleeding from blood vessels, sluggish blood circulation, necrotic zones, reduction in bud number, and irregularities in zooid and system structures. With doses of 3,000-4,000 rads and above, irradiation arrested the formation of new buds and interrupted normal takeover.

  6. The effects of continuous prenatal and postnatal low dose gamma irradiation on the hemopoietic system of immature Spanish goats

    E-Print Network [OSTI]

    DeShaw, James Richard

    1967-01-01T23:59:59.000Z

    Blood Cell Counts (RBC) 28 Irradiation period Post-irradiation period Hematocrit (Ht) 28 31 Irradiation period Post-irradiation period 34 38 Hemoglobin (Hg) 40 Irradiation period Post-irradiation period 40 43 Mean Corpuscular Volume (MCV...) Irradiation period Post-irradiation period 44 47 TABLE OF CONTENTS (Continued) Chapter Page Mean Corpuscular Hemoglobin (MCH) Irradiation period Post-irradiation period 4B 51 White Blood Cells (WBC) 53 Irradiation period post-irradiation period 53...

  7. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect (OSTI)

    Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2012-10-01T23:59:59.000Z

    As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

  8. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect (OSTI)

    Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2014-05-01T23:59:59.000Z

    As part of the High Temperature Reactors (HTR) R&D program, a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. While not possible to obtain by direct measurements in the tests, crucial fuel conditions (e.g., temperature, neutron fast fluence, and burnup) are calculated using core physics and thermal modeling codes. This paper is focused on AGR test fuel temperature predicted by the ABAQUS code's finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for qualification of AGR-1 thermocouple data. Abnormal trends in measured data revealed by the statistical analysis are traced to either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. The main thrust of this work is to exploit the variety of data obtained in irradiation and post-irradiation examination (PIE) for assessment of modeling assumptions. As an example, the uneven reduction of the control gas gap in Capsule 5 found in the capsule metrology measurements in PIE helps identify mechanisms other than TC drift causing the decrease in TC readings. This suggests a more physics-based modification of the thermal model that leads to a better fit with experimental data, thus reducing model uncertainty and increasing confidence in the calculated fuel temperatures of the AGR-1 test.

  9. Method for monitoring irradiated fuel using Cerenkov radiation

    DOE Patents [OSTI]

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21T23:59:59.000Z

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  10. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  11. Direct Loan Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

  12. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  13. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review

  14. Heavy-section steel irradiation program. Semiannual progress report, September 1993--March 1994

    SciTech Connect (OSTI)

    Corwin, W.R. [Oak Ridge National Lab., TN (United States)

    1995-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only component in the primary pressure boundary for which, if it should rupture, the engineering safety systems cannot assure protection from core damage. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, ft is vital to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. The Heavy-Section Steel (HSS) Irradiation Program has been established; its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties of typical pressure-vessel steels, as they relate to light-water RPV integrity. The program includes the direct continuation of irradiation studies previously conducted within the HSS Technology Program augmented by enhanced examinations of the accompanying microstructural changes. During this period, the report on the duplex-type crack-arrest specimen tests from Phase 11 of the K{sub la} program was issued, and final preparations for testing the large, irradiated crack-arrest specimens from the Italian Committee for Research and Development of Nuclear Energy and Alternative Energies were completed. Tests on undersize Charpy V-notch (CVN) energy specimens in the irradiated and annealed weld 73W were completed. The results are described in detail in a draft NUREG report. In addition, the ORNL investigation of the embrittlement of the High Flux Isotope RPV indicated that an unusually large ratio of the high-energy gamma-ray flux to fast-neutron flux is most likely responsible for the apparently accelerated embrittlement.

  15. Heavy ion irradiation of crystalline water ice

    E-Print Network [OSTI]

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01T23:59:59.000Z

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  16. Laboratory for Characterization of Irradiated Graphite

    SciTech Connect (OSTI)

    Karen A. Moore

    2010-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

  17. Irradiation effects on borosilicate waste glasses

    SciTech Connect (OSTI)

    Roberts, F.P.

    1980-06-01T23:59:59.000Z

    The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

  18. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01T23:59:59.000Z

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  19. Heavy-Section Steel Irradiation Program

    SciTech Connect (OSTI)

    Rosseel, T.M.

    2000-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  20. Effects of neutron flux and irradiation temperature on irradiation embrittlement of A533B steels

    SciTech Connect (OSTI)

    Suzuki, Masahide; Onizawa, Kunio; Kizaki, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    Irradiation embrittlement of A533B steels with low copper contents were investigated from the point of dose rate and irradiation temperature effects. Change of neutron flux in the range from {minus}10{sup 12} to {minus}10{sup 13} n/cm{sup 2}/s (E > 1 MeV) did not have a significant effect on the embrittlement. Irradiation temperature change of 1 C resulted in the transition temperature shift ({Delta}T{sub 41J}) of about 1 C and yield stress change ({Delta}{sigma}{sub y}) of about 0.8 MPa. Factors that might affect the embrittlement of low copper steels are also discussed.

  1. Understanding the Irradiation Behavior of Zirconium Carbide

    SciTech Connect (OSTI)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-10-11T23:59:59.000Z

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

  2. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  3. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  4. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  5. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  6. Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect (OSTI)

    Not Listed

    2013-04-01T23:59:59.000Z

    This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

  7. The Sun and Climate Solar Irradiance

    E-Print Network [OSTI]

    Walter, Frederick M.

    The Sun and Climate #12;Solar Irradiance The Solar Constant f = 1.4 x 106 erg/cm2/s. Over is higher when the Sun is more magnetically active. ·The Sun was magnetically active, and the climate the Sun Drive Climate? #12;The Temperature's Rising #12;Sunspots and CO2 What is Cause and What is Effect

  8. Low energy electron irradiation of an apple 

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01T23:59:59.000Z

    is the need to achieve a uniform dose over the entire surface of convoluted shapes. The main goal of this research was to calculate the dose distribution produced by low energy electron irradiation of a typical complex shape, an apple, using Monte Carlo...

  9. Radiation damage in neutron irradiated boron carbide

    SciTech Connect (OSTI)

    Shcherbak, V.I.; Bykov, V.N.; Rudenko, V.A.; Tarasikov, V.P.

    1986-09-01T23:59:59.000Z

    In view of the fact that there is no information on the microstructure of specimens of boron carbide containing up to 60% B 10 isotope and irradiated at a temperature of 350-370 C, the authors undertook a detailed study of the radiation-induced defects in such material. The microstructure of unexposed boron carbide is characterized by the presence of pores originating during the technological process, dislocations, and twins. Irradiation of B/sub 4/C leads to the formation of defects measuring 3-20 nm and exhibiting a contrast that is characteristic of dislocation loops or two-dimensional second-phase precipitates and spherical pores measuring 1-4 nm in diameter. A specific microstructural feature of irradiated boron carbide is the formation of 30 nm wide zones that are free from pores and other radiation-induced defects near the gain boundaries. The obtained results indicate that irradiation of boron carbide in the 350-370 C range leads to the formation of several types of defects that can be detected by their image contrast under different conditions of photographing.

  10. Low energy electron irradiation of an apple

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01T23:59:59.000Z

    simulation. A software package, MCNP (Monte Carlo N-Particle), was used to simulate an electron beam irradiation with a 1.0, 1.5 and 2.0 MeV sources on an apple modeled by interconnecting two spheres. The apple radii were 4.4 cm (perpendicular to its axis...

  11. SIPS: Solar Irradiance Prediction System Stefan Achleitner

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    SIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when

  12. Response of neutron-irradiated RPV steels to thermal annealing

    SciTech Connect (OSTI)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01T23:59:59.000Z

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  13. Total solar irradiance during the Holocene F. Steinhilber,1

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

  14. Irradiation Embritlement in Alloy HT-­9

    SciTech Connect (OSTI)

    Serrano De Caro, Magdalena [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

  15. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    SciTech Connect (OSTI)

    Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  16. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07T23:59:59.000Z

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  17. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box

  18. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  19. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  20. Effects of stress on microstructural evolution during irradiation

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

    1992-12-31T23:59:59.000Z

    Many theories have been postulated to describe irradiation creep but few have been supported with microstructural evidence. The purpose of this paper is to review microstructural studies of the effects of stress during irradiation in order to assess the validity of the available irradiation creep theories. Microstructural studies based on high voltage electron, ion, proton and neutron irradiation will be described, with major emphasis placed on interpreting behavior demonstrated in austenitic steels. Special attention will be given to work on fast neutron irradiated Nimonic PE16, a precipitation strengthened superalloy.

  1. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01T23:59:59.000Z

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  2. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  3. Evolution of nanoripples on silicon by gas cluster-ion irradiation

    SciTech Connect (OSTI)

    Lozano, Omar; Chen, Q. Y.; Wadekar, P. V.; Chinta, P. V. [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 88204 (United States); Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Tilakaratne, B. P.; Wang, X. M.; Wijesundera, D.; Chu, W. K. [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 88204 (United States); Seo, H. W. [Department of Physics and Astronomy, University of Arkansas, Little Rock, AR 72204 (United States); Tu, L. W. [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ho, N. J. [Department of Materials and Optoelectronic Sciences and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2013-06-15T23:59:59.000Z

    Si wafers of (100), (110) and (111) orientations were bombarded by gas cluster ion beam (GCIB) of 3000 Ar-atoms/cluster on average at a series of angles. Similar surface morphology ripples developed in different nanoscales. A simple scaling functional satisfactorily describe the roughness and wavelength of the ripple patterns as a function of dosage and angle of incidence. The ripples are formed orthogonal to the incident cluster-ions at large off-normal angles. An ellipsoidal pattern was created by two consecutive irradiations incident in mutually orthogonal directions with unequal exposure times between each irradiation, from 7:1 to 10:1, beyond which the original ripple imprints would be over-written. This work was inspired by use of the ripples to seed growth of controlled nanostructures without patterning by lithography or predeposition of catalysts.

  4. Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant

    E-Print Network [OSTI]

    Cronin, Steve

    Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency

  5. Progress Report for Proposal entitled " The Direct Radiative Forcing of Biomass Burning Aerosols: Investigations during

    E-Print Network [OSTI]

    Progress Report for Proposal entitled " The Direct Radiative Forcing of Biomass Burning Aerosols irradiances (DSWI) at the surface and the atmospheric heating/cooling rate profiles. For example, the DSWI the Clouds and the Earth's Radiant Energy System (CERES) instrument from the Tropical Rainfall Measuring

  6. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    SciTech Connect (OSTI)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-02-01T23:59:59.000Z

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos.

  7. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  8. Art Directable Tornadoes

    E-Print Network [OSTI]

    Dwivedi, Ravindra

    2011-08-08T23:59:59.000Z

    of the Twisters? [Bond 1996], ?Tornado? [Nosseck 1996] and ?Hancock? [Berg 2008]. 5 (a) (b) Figure 4: Simulated tornadoes in "The Day After Tomorrow". (a) Twin tornadoes [Emmerich 2004]. (b) Tornado with a huge funnel [Emmerich 2004...]. The film "The Day after Tomorrow" [Emmerich 2004], had a variety of tornadoes with different shapes and sizes and the shots required a lot of art direct-ability to make it visually appealing and believable (Figure 4). In 2009, an animated movie ?Cloudy...

  9. Intra-hour Direct Normal Irradiance solar forecasting using genetic programming

    E-Print Network [OSTI]

    Queener, Benjamin Daniel

    2012-01-01T23:59:59.000Z

    in Electrical Engineering (Applied Ocean Sciences) byElectrical Engineering (Applied Ocean Sciences) University

  10. A NEW HIGH FREQUENCY GLOBAL-TO-DIRECT IRRADIANCE CONVERSION METHODOLOGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , it is essential to have appropriate simulation and design tools, which must be fed with a certain range of input generation (especially CSP without energy storage) can affect power system operations in several ways [13

  11. TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM 1979-2003 Laura Riihimaki

    E-Print Network [OSTI]

    Oregon, University of

    in large part on the data provided by the Global Energy Balance Archive. Additional data from the United is important for assessing the risks and reliability of power generated from solar energy facilities States National Solar Radiation Data Base (NSRDB) in the Liepert study contributes to some variation

  12. Intra-hour Direct Normal Irradiance solar forecasting using genetic programming

    E-Print Network [OSTI]

    Queener, Benjamin Daniel

    2012-01-01T23:59:59.000Z

    the NIP was mounted on an Eppley SMT-3 Solar Tracker.The SMT-3 can orient in a two-axis (azimuth/elevation) planeincidence to the sun. The SMT-3 tracks the sun using built-

  13. Materials Modification Under Ion Irradiation: JANNUS Project

    SciTech Connect (OSTI)

    Serruys, Y.; Trocellier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.-O.; Henry, S.; Kaietasov, O. [CSNSM, Bat. 104, Orsay Campus (France); Trouslard, Ph. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2004-12-01T23:59:59.000Z

    JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM.

  14. Gamma irradiation in a saturated tuff environment

    SciTech Connect (OSTI)

    Bates, J.K.; Oversby, V.M.

    1984-12-31T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide doped SRL 165 and PNL 76-68 glasses in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The reaction, and subsequent actinide release, of both glasses depends on the dynamic interaction between radiolysis effects which cause the solution pH to become more acidic and glass reaction which drives the pH more basic. The use of large gamma irradiation dose rates to accelerate reactions that would occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons are made between the present results and data obtained by reacting the same or similar glasses using MCC-1 and NNWSI rock cup procedures. 11 references, 3 figures.

  15. Neutron irradiation of beryllium: Recent Russian results

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

    1992-12-31T23:59:59.000Z

    Results on postirradiation tensile and compression testing, swelling and bubble growth during annealing for various grades of beryllium are presented. It is shown that swelling at temperatures above 550{degrees}C is sensitive to material condition and response is correlated with oxygen content. Swelling on the order of 15% can be expected at 700{degrees}C for doses on the order of 10{sup 22} n/cm{sup 2}. Bubble growth response depends on irradiation fluence.

  16. ARM - Measurement - Longwave narrowband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling irradiance ARM Data Discovery Browse Data

  17. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling irradiance ARM DatagovMeasurementsNet

  18. ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarizationupwelling irradiance ARM Data

  19. Irradiation response and stability of nanoporous materials

    SciTech Connect (OSTI)

    Fu, Engang [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory; Zepeda-Ruiz, L [Lawrence Livermore national Laboratory; Bringa, E. [CONICET, Universidad de Cuyo, Argentina; Nastasi, Mike [University of Nebraska, Lincoln, NE; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-08-28T23:59:59.000Z

    Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

  20. Magnetic phase formation in irradiated austenitic alloys

    SciTech Connect (OSTI)

    Gussev, Maxim N [ORNL] [ORNL; Busby, Jeremy T [ORNL] [ORNL; Tan, Lizhen [ORNL] [ORNL; Garner, Francis A. [Radiation Effects Consulting, Richland, WA] [Radiation Effects Consulting, Richland, WA

    2014-01-01T23:59:59.000Z

    Austenitic alloys are often observed to develop magnetic properties during irradiation, possibly associated with radiation-induced acceleration of the ferrite phase. Some of the parametric sensitivities of this phenomenon have been addressed using a series of alloys irradiated in the BOR-60 reactor at 593K. The rate of development of magnetic phase appears to be sensitive to alloy composition. To the first order, the largest sensitivities to accelerate ferrite formation, as explored in this experiment, are associated with silicon, carbon and manganese and chromium. Si, C, and Mn are thought to influence diffusion rates of point defects while Cr plays a prominent role in defining the chromium equivalent and therefore the amount of ferrite at equilibrium. Pre-irradiation cold working was found to accelerate ferrite formation, but it can play many roles including an effect on diffusion, but on the basis of these results the dominant role or roles of cold-work cannot be identified. Based on the data available, ferrite formation is most probably associated with diffusion.

  1. Upgrade to the Birmingham Irradiation Facility

    E-Print Network [OSTI]

    Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

    2015-01-01T23:59:59.000Z

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 ?A and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

  2. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect (OSTI)

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26T23:59:59.000Z

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  3. Satellite-Based Solar Resource Data Sets for India 2002-2012

    SciTech Connect (OSTI)

    Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

    2014-02-01T23:59:59.000Z

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

  4. Directional spherical multipole wavelets

    SciTech Connect (OSTI)

    Hayn, Michael; Holschneider, Matthias [Institute for Mathematics, University Potsdam, Am Neuen Palais 10, 144 69 Potsdam (Germany)

    2009-07-15T23:59:59.000Z

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  5. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23T23:59:59.000Z

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  6. Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation

    E-Print Network [OSTI]

    Booij, Wilfred Edwin

    Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

  7. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  9. Directed Diffusion Fabio Silva

    E-Print Network [OSTI]

    Heidemann, John

    nodes can cache, or transform data, and may direct interests based on previously cached data (Section 3 University of Southern California Los Angeles, CA, USA 90089 ¶ Computer Science Department University of California, Los Angeles Los Angeles, CA, USA 90095 {fabio,johnh,govindan,estrin}@isi.edu February 10, 2004 1

  10. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  11. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Daniel M. Harper, M.P.H. A Diverse Environmental Public Health Workforce to Meet the Diverse Environmental Health Challenges on environmental health and to build part nerships in the profession. In pursuit of these goals, we will feature

  12. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT John Sarisky, R.S., M.P.H. Developing Environmental Public Health Leadership Editor's note: NEHA strives to provide up to of these goals, we will feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  13. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Daneen Farrow Collier, M.S.P.H. Editor's note: NEHA strives to pro vide up-to-date and relevant informa tion on environmental health the Environmental Health Services Branch (EHSB) of the Centers for Disease Control and Pre vention (CDC) in every

  14. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Brian Hubbard, M.P.H. Editor the Environmental Health Services Branch (EHSB) of the Centers for Disease Con trol and Prevention (CDC) in every environmental health programs and professionals to antici pate, identify, and respond to adverse envi ronmental

  15. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  16. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  17. Electron-Irradiation Induced Nanocrystallization of Pb(II) in Silica Gels Prepared in High Magnetic Field

    E-Print Network [OSTI]

    Kaito, Takamasa; Kaito, Chihiro

    2015-01-01T23:59:59.000Z

    In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (II)-doped dried silica gels prepared in a high magnetic field such as B = 10 T. Hydrogels made from a sodium metasilicate solution doped with lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallin...

  18. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    SciTech Connect (OSTI)

    Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

    2013-01-31T23:59:59.000Z

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

  19. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fiscal year 2013 are provided and include information derived from: 1) irradiation of hydrogen-doped zircaloy cladding in High Flux Isotope Reactor (HFIR); 2) mechanical...

  20. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material...

  1. au ion irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under laser irradiation of Au nanoparticles in the presence of Thorium aqua-ions CERN Preprints Summary: Initiation of nuclear reactions in Thorium nuclei is experimentally...

  2. acute uv irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products, e.g., OH radicals, with the aid of UV irradiation by microwave discharge electrodeless lamp, photo-catalysts, and auxiliary oxidants. The results of...

  3. Photoinduced Formation of Zinc Nanoparticles by UV Laser Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metallic Zn nanoparticles growing on the exposed surface of the crystal. Higher fluence laser exposure generates accumulated surface metal just outside of the irradiated spot. We...

  4. Irradiation-induced defect clustering and amorphization in silicon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guidance on experimental approaches to reveal the onset of these processes. Citation: Weber WJ, and F Gao.2010."Irradiation-induced defect clustering and amorphization in silicon...

  5. Modification of Defect Structures in Graphene by Electron Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

  6. Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

  7. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and...

  8. apres irradiation globale: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    necessary for the evaluation of global irradiance on inclined surface which is needed for photovoltaic Boyer, Edmond 7 Caractristiques lectriques de diodes Au-Si(N) ralises aprs...

  9. Response of Strontium Titanate to Ion and Electron Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interface under electron irradiation. Citation: Zhang Y, J Lian, Z Zhu, WD Bennett, LV Saraf, JL Rausch, CA Hendricks, RC Ewing, and WJ Weber.2009."Response of...

  10. Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS

    Broader source: Energy.gov (indexed) [DOE]

    10 Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS WATTS BAR NUCLEAR PLANT, TENNESSEE AND HANFORD SITE, RICHLAND, WASHINGTON U. S. DEPARTMENT OF ENERGY...

  11. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01T23:59:59.000Z

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  12. alpha particle irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

  13. alpha particles irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

  14. alpha particle irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

  15. apres irradiation alpha: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edmond 8 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

  16. Microstructural examination of irradiated vanadium alloys

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Chung, H.M. [Argonne National Lab., IL (United States)

    1997-04-01T23:59:59.000Z

    Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

  17. Mitigation of irradiation embrittlement by annealing

    SciTech Connect (OSTI)

    Amayev, A.D.; Kryukov, A.M.; Levit, V.I.; Platonov, P.A.; Sokolov, M.A. [Kurchatov Inst., Moscow (Russian Federation)

    1996-12-31T23:59:59.000Z

    The main results of a complex investigation carried out in Russia of post irradiation annealing and reembrittlement of WWER-440 reactor pressure vessel materials are presented. The dependence of the Charpy transition temperature recovery on annealing temperature and fluence was established. Charpy specimens were reirradiated after annealing at 340, 380, 420, and 460 C. Experimental values of the Charpy transition temperature after reirradiation are compared to that predicted by three methods. At annealing temperatures equal to or above 420 C, results of the analysis indicate that, of the methods investigated, the lateral shift method gives the best result for estimating the transition temperature shift due to reirradiation.

  18. Stress-induced patterns in ion-irradiated Silicon: a model based on anisotropic plastic flow

    E-Print Network [OSTI]

    Scott A. Norris

    2012-07-24T23:59:59.000Z

    We present a model for the effect of stress on thin amorphous films that develop atop ion-irradiated silicon, based on the mechanism of ion-induced anisotropic plastic flow. Using only parameters directly measured or known to high accuracy, the model exhibits remarkably good agreement with the wavelengths of experimentally-observed patterns, and agrees qualitatively with limited data on ripple propagation speed. The predictions of the model are discussed in the context of other mechanisms recently theorized to explain the wavelengths, including extensive comparison with an alternate model of stress.

  19. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect (OSTI)

    Michael Cornforth

    2012-03-26T23:59:59.000Z

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  20. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    SciTech Connect (OSTI)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M. [Physics Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Moharram, A. H. [Physics Dept., College of Science and Arts, King Abdulaziz Univ., Rabigh 21911 (Saudi Arabia)

    2013-12-16T23:59:59.000Z

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  1. Atomistic simulation of Er irradiation induced defects in GaN nanowires

    SciTech Connect (OSTI)

    Ullah, M. W., E-mail: mohammad.ullah@helsinki.fi; Kuronen, A.; Djurabekova, F.; Nordlund, K. [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 (Finland); Stukowski, A. [Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2014-09-28T23:59:59.000Z

    Classical molecular dynamics simulation was used to irradiate a GaN nanowire with rear-earth erbium (Er). Ten cumulative irradiations were done using an ion energy of 37.5?keV on a 10?×?10?nm{sup 2} surface area which corresponds to a fluence of 1?×?10{sup 13?}cm{sup ?2}. We studied the location and types of defects produced in the irradiation. Er implantation leads to a net positive (expansion) strain in the nanowire and especially at the top region a clear expansion has been observed in the lateral and axial directions. The lattice expansion is due to the hydrostatic strain imposed by a large number of radiation induced defects at the top of the NW. Due to the large surface-to-volume ratio, most of the defects were concentrated at the surface region, which suggests that the experimentally observed yellow luminescence (YL) in ion implanted GaN NWs arises from surface defects. We observed big clusters of point defects and vacancy clusters which are correlated with stable lattice strain and the YL band, respectively.

  2. fcc-hcp phase transformation in Co nanoparticles induced by swift heavy-ion irradiation

    SciTech Connect (OSTI)

    Sprouster, D. J.; Giulian, R.; Schnohr, C. S.; Araujo, L. L.; Kluth, P.; Byrne, A. P.; Foran, G. J.; Johannessen, B.; Ridgway, M. C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Department of Physics, Faculty of Science, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Australian Nuclear Science and Technology Organization, Menai, New South Wales 2234 (Australia); Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2009-09-15T23:59:59.000Z

    We demonstrate a face-centered cubic (fcc) to hexagonally close-packed (hcp) phase transformation in spherical Co nanoparticles achieved via swift heavy-ion irradiation. Co nanoparticles of mean diameter 13.2 nm and fcc phase were first formed in amorphous SiO{sub 2} by ion implantation and thermal annealing and then irradiated at room temperature with 9-185 MeV Au ions. The crystallographic phase was identified with x-ray absorption spectroscopy and electron diffraction and quantified, as functions of the irradiation energy and fluence, with the former. The transformation was complete at low fluence prior to any change in nanoparticle shape or size and was governed by electronic stopping. A direct-impact mechanism was identified with the transformation interaction cross-section correlated with that of a molten ion track in amorphous SiO{sub 2}. We suggest the shear stress resulting from the rapid thermal expansion about an ion track in amorphous SiO{sub 2} was sufficient to initiate the fcc-to-hcp phase transformation in the Co nanoparticles.

  3. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    SciTech Connect (OSTI)

    Cornforth, Michael N. [The University of Texas Medical Branch at Galveston, TX (United States)

    2013-05-03T23:59:59.000Z

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  4. Predictive Reactor Pressure Vessel Steel Irradiation Embrittlement Models: Issues and Opportunities

    SciTech Connect (OSTI)

    Odette, George Robert [UCSB; Nanstad, Randy K [ORNL

    2009-01-01T23:59:59.000Z

    Nuclear plant life extension to 80 years will require accurate predictions of neutron irradiation-induced increases in the ductile-brittle transition temperature ( T) of reactor pressure vessel (RPV) steels at high fluence conditions that are far outside the existing database. Remarkable progress in mechanistic understanding of irradiation embrittlement has led to physically motivated T correlation models that provide excellent statistical fi ts to the existing surveillance database. However, an important challenge is developing advanced embrittlement models for low fl ux-high fl uence conditions pertinent to extended life. These new models must also provide better treatment of key variables and variable combinations and account for possible delayed formation of late blooming phases in low copper steels. Other issues include uncertainties in the compositions of actual vessel steels, methods to predict T attenuation away from the reactor core, verifi cation of the master curve method to directly measure the fracture toughness with small specimens and predicting T for vessel annealing remediation and re-irradiation cycles.

  5. Evolution of the nanostructure OF VVER-1000 RPV materials under neutron irradiation and post irradiation annealing

    SciTech Connect (OSTI)

    Miller, Michael K [ORNL; Chernobaeva, A. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Shtrombakh, Ya. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Erak, D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Zabusov, Oleg O. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Russell, Kaye F [ORNL; Nanstad, Randy K [ORNL

    2009-01-01T23:59:59.000Z

    A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10{sup 23} m{sup -2} (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10{sup 23} m{sup -2} (E > 0.5 MeV). High number densities of 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the {Delta}T{sub 41 J} ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiOffice of Science (US)C, but had dissolved into the matrix after 24 h at 450 C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

  6. Heavy-Section Steel Irradiation (HSSI) Program (W6953) Monthly Letter Status Report - February 2001 - ORNL/HSSI (6953) MLSR-2001/5.

    SciTech Connect (OSTI)

    Rosseel, T.M.

    2001-03-26T23:59:59.000Z

    The primary goal of the Heavy-Section Steel Irradiation (HSSI) Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure vessel (RPV) integrity. The program includes studies of the effects of irradiation on the degradation of mechanical and fracture properties of vessel materials augmented by enhanced examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and post-irradiation mitigation are being examined on a wide range of fracture properties. This program will also maintain and upgrade computerized databases, calculational procedures, and standards relating to RPV fluence-spectra determinations and embrittlement assessments. Results from the HSSI studies will be incorporated into codes and standards directly applicable to resolving major regulatory issues that involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf welds. Six technical tasks and one for program management are now contained in the HSSI Program.

  7. Heavy-Section Steel Irradiation (HSSI) Program (W6953) Monthly Letter Status Report - March 2001 - ORNL/HSSI (W6953) MLSR-2001/6.

    SciTech Connect (OSTI)

    Rosseel, T.M.

    2001-04-20T23:59:59.000Z

    The primary goal of the Heavy-Section Steel Irradiation (HSSI) Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure vessel (RPV) integrity. The program includes studies of the effects of irradiation on the degradation of mechanical and fracture properties of vessel materials augmented by enhanced examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and post-irradiation mitigation are being examined on a wide range of fracture properties. This program will also maintain and upgrade computerized databases, calculational procedures, and standards relating to RPV fluence-spectra determinations and embrittlement assessments. Results from the HSSI studies will be incorporated into codes and standards directly applicable to resolving major regulatory issues that involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf welds. Six technical tasks and one for program management are now contained in the HSSI Program.

  8. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  9. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  10. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  15. Analysis of tritium transport in irradiated beryllium

    SciTech Connect (OSTI)

    Cho, S.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    Analysis of the beryllium tritium release results with simple analytical models indicated that tritium behavior in Be is not dominated by one simple mechanism, but by a combination of several mechanisms including surface processes and helium bubbles. A model was developed and the initial version of the model included tritium diffusion in the beryllium and the beryllium oxide, second order desorption at the solid/gas interface and diffusion through interconnected porosity. Fundamental data, tritium diffusion and desorption coefficients for Be and BeO, were derived from experimental data using the model. Beryllium is a metal to which one can generally apply the concepts of diffusion, solubility, surface processes and traps. Tritium transport in the irradiated beryllium is affected by processes occurring in the bulk, He bubbles, the bulk/surface and surface/gas interfaces. There are two types of solid/gas surfaces in the irradiated Be. One is the surface at the pure Be/He bubble interface where no oxide layer exists and the other is the surface at the BeO layer/purge gas interface. Although the material characteristics of the Be and BeO layer are different and have different activation barriers, the surface processes can be applied to both interfaces.

  16. Optimisation of buildings' solar irradiation availability

    SciTech Connect (OSTI)

    Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2010-04-15T23:59:59.000Z

    In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

  17. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01T23:59:59.000Z

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  18. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect (OSTI)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn; Wang, Kedian; Mei, Xuesong [School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xianning Westroad, Xi'an 710049 (China) [School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xianning Westroad, Xi'an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054 (China)

    2014-03-15T23:59:59.000Z

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  19. Proton irradiation effects on critical current of bulk single-crystal superconducting YBCO wire

    SciTech Connect (OSTI)

    Khanna, S.M. [Defence Research Establishment Ottawa, Ontario (Canada)] [Defence Research Establishment Ottawa, Ontario (Canada); Figueredo, A.M. [National Research Council, Boucherville, Quebec (Canada). Industrial Materials Inst.] [National Research Council, Boucherville, Quebec (Canada). Industrial Materials Inst.

    1997-12-01T23:59:59.000Z

    The authors have investigated the effects of 10 MeV proton irradiation on the magnetization M and critical current density J{sub c} of bulk single-crystal YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) superconducting thick wire filaments produced through laser-heated floating zone (LHFZ) technique. M and J{sub c} were determined both along the length and perpendicular to the length of the wire. Radiation-induced enhancement of J{sub c} along the length of the wire was observed while there was a small decrease in J{sub c} {perpendicular} to its length. J{sub c} values along the length of the wire up to {approximately}1.4 {times} 10{sup 5} A/cm{sup 2} at 77K and {approximately}1.3 {times} 10{sup 6} A/cm{sup 2} at 30K and in applied magnetic field H = 1 T were observed in the irradiated samples. In the unirradiated sample, the difference in magnetization {Delta}M at a given field in the magnetic hysteresis loop for increasing and decreasing field applied {perpendicular} to the sample length was observed to depend on the orientation of the sample about its axis. This indicates anisotropy in J{sub c} along the sample length. This anisotropy increased on irradiation relative to the direction of irradiation. They believe that these J{sub c} values along the length are amongst the highest published J{sub c} values for bulk high temperature superconductor (HTS) thick wire filament.

  20. Damage Profiles and Ion Distribution in Pt-irradiated SiC. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Damage Profiles and Ion Distribution in Pt-irradiated SiC. Damage Profiles and Ion Distribution in Pt-irradiated SiC. Abstract: Single crystalline 6H-SiC samples were irradiated at...

  1. SHORT COMMUNICATION UV microspot irradiator at Columbia University

    E-Print Network [OSTI]

    Brenner, David Jonathan

    available for radiation biology research at the Radiological Research Accelerator Facility (RARAF), Columbia: 26 May 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The Radiological Research Accelerator Facility at Columbia University has recently added a UV microspot irradiator to a microbeam irradiation

  2. IRRADIANCE MAPS APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    IRRADIANCE MAPS APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS - A CASE STUDY FOR THE GERMAN energy yield of a PV system,methods based on irradiance maps published by weather services or others-connected PV systems. DATA USED Hourly time series from ground and satellite-derived horizontal global

  3. SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic

    E-Print Network [OSTI]

    Brenner, David Jonathan

    SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic channels M implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel

  4. Retention of Hydrogen Isotopes in Neutron Irradiated Tungsten

    SciTech Connect (OSTI)

    Yuji Hatano; Masashi Shimada; Yasuhisa Oya; Guoping Cao; Makoto Kobayashi; Masanori Hara; Brad J. Merrill; Kenji Okuno; Mikhail A. Sokolov; Yutai Katoh

    2013-03-01T23:59:59.000Z

    To investigate the effects of neutron irradiation on hydrogen isotope retention in tungsten, disk-type specimens of pure tungsten were irradiated in the High Flux Isotope Reactor in Oak Ridge National Laboratory followed by exposure to high flux deuterium (D) plasma in Idaho National Laboratory. The results obtained for low dose n-irradiated specimens (0.025 dpa for tungsten) are reviewed in this paper. Irradiation at coolant temperature of the reactor (around 50 degrees C) resulted in the formation of strong trapping sites for D atoms. The concentrations of D in n-irradiated specimens were ranging from 0.1 to 0.4 mol% after exposure to D plasma at 200 and 500 degrees C and significantly higher than those in non-irradiated specimens because of D-trapping by radiation defects. Deep penetration of D up to a depth of 50-100 µm was observed at 500 degrees C. Release of D in subsequent thermal desorption measurements continued up to 900 degrees C. These results were compared with the behaviour of D in ion-irradiated tungsten, and distinctive features of n-irradiation were discussed.

  5. Standard Guide for Packaging Materials for Foods to Be Irradiated

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

  6. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  7. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  8. Direct Federal Financial

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s cDirect

  9. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,CollapseDirections &

  10. Directives Points of Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  11. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab Management's

  12. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  13. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  14. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  15. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  16. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  17. Directions_Crossroads_Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  18. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    Models of diffuse solar radiation, Renew Energ, 33 (2008) [solar irradiance for analyzing areally- totalized PV systems, Sol Energsolar irradiance for analyzing areally- totalized PV systems, Sol Energ

  19. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11T23:59:59.000Z

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  20. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  1. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01T23:59:59.000Z

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  2. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  3. Recovery of niobium from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  4. Controlled doping of graphene using ultraviolet irradiation

    SciTech Connect (OSTI)

    Luo Zhengtang [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pinto, Nicholas J.; Davila, Yarely [Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, 00792 (Puerto Rico); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 (United States)

    2012-06-18T23:59:59.000Z

    The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

  5. AGC-3 Irradiation Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence Hull

    2014-08-01T23:59:59.000Z

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

  6. UV Direct-Writing of Metals on Polyimide

    E-Print Network [OSTI]

    Ng, Jack Hoyd-Gigg; Mccarthy, Aongus; Suyal, Himanshu; Prior, Kevin; Hand, Duncan P

    2008-01-01T23:59:59.000Z

    Conductive micro-patterned copper tracks were fabricated by UV direct-writing of a nanoparticle silver seed layer followed by selective electroless copper deposition. Silver ions were first incorporated into a hydrolyzed polyimide surface layer by wet chemical treatment. A photoreactive polymer coating, methoxy poly(ethylene glycol) (MPEG) was coated on top of the substrate prior to UV irradiation. Electrons released through the interaction between the MPEG molecules and UV photons allowed the reduction of the silver ions across the MPEG/doped polyimide interface. The resultant silver seed layer has a cluster morphology which is suitable for the initiation of electroless plating. Initial results showed that the deposited copper tracks were in good agreement with the track width on the photomask and laser direct-writing can also fabricate smaller line width metal tracks with good accuracy. The facile fabrication presented here can be carried out in air, at atmospheric pressure, and on contoured surfaces.

  7. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    E-Print Network [OSTI]

    Menke, Sven

    2012-01-01T23:59:59.000Z

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  8. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W. (Los Altos, CA)

    1997-01-01T23:59:59.000Z

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  9. Conclusions and Policy Directions,

    SciTech Connect (OSTI)

    Wilbanks, Thomas J [ORNL; Romero-Lankao, Paty [National Center for Atmospheric Research (NCAR); Gnatz, P [National Center for Atmospheric Research (NCAR)

    2011-01-01T23:59:59.000Z

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  10. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect (OSTI)

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T. [Photonics and Electronics Science and Engineering Center, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan)

    2008-11-03T23:59:59.000Z

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  11. AGC-1 Pre-Irradiation Data Report Status

    SciTech Connect (OSTI)

    William Windes

    2011-08-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All samples in the experiment will be fully characterized before irradiation, irradiated in the Advanced Test Reactor (ATR), and then re-examined to determine the irradiation induced changes to key materials properties in the different graphite grades. The information generated during the AGC experiment will be utilized for NRC licensing of NGNP reactor designs, shared with international collaborators in the Generation IV Information Forum (GIF), and eventually utilized in ASME design code for graphite nuclear applications. This status report will describe the process the NGNP Graphite R&D program has developed to record the AGC1 pre-irradiation examination data.

  12. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01T23:59:59.000Z

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  13. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01T23:59:59.000Z

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  14. AGC-2 Irradiation Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence C. Hull

    2012-07-01T23:59:59.000Z

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

  15. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    SciTech Connect (OSTI)

    Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

    2013-10-07T23:59:59.000Z

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

  16. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect (OSTI)

    Sarantopoulou, E., E-mail: esarant@eie.gr; Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C. [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S. [N.C.S.R. “Demokritos”, Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, Patriarchou Gregoriou Str. Aghia Paraskevi, Athens 15310 (Greece); Velentzas, A. D. [University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens 15784 (Greece)

    2014-09-14T23:59:59.000Z

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm?²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, ?-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  17. The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds

    SciTech Connect (OSTI)

    Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31T23:59:59.000Z

    Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

  18. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  19. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect (OSTI)

    Karen A. Moore

    2011-05-01T23:59:59.000Z

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  20. Irradiation Stability of Carbon Nanotubes and Related Materials

    E-Print Network [OSTI]

    Aitkaliyeva, Assel 1985-

    2012-09-28T23:59:59.000Z

    Application of carbon nanotubes (CNTs) in various fields demands a thorough investigation of their stability under irradiation. Open structure, ability to reorganize and heal defects, and large surface-to-volume ratio of carbon nanotubes affect...

  1. Irradiation facilities at the Los Alamos Meson Physics Facility

    SciTech Connect (OSTI)

    Sandberg, V.

    1990-01-01T23:59:59.000Z

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

  2. Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

    SciTech Connect (OSTI)

    J M Harp; P D Demkowicz; S A Ploger

    2012-10-01T23:59:59.000Z

    The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

  3. Recovery of germanium-68 from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  4. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

    2008-07-01T23:59:59.000Z

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  5. On the optical properties of Ag+15 ion beam irradiated TiO2 and SnO2 thin films

    E-Print Network [OSTI]

    Thakur, Hardeep; Thakur, P; Sharma, K K; Singh, Abhinav Pratap; Kumar, Yogesh; Kumar, Ravi; Chae, Keun Hwa

    2011-01-01T23:59:59.000Z

    In this study, the effects of 200 MeV Ag+15 ion irradiation on the optical properties of TiO2 and SnO2 thin films prepared by RF magnetron sputtering technique were investigated. These films were characterized by the UV-vis spectroscopy and it was observed that with increase in irradiation fluence the transmittance for the TiO2 films systematically increases while that for SnO2 decreases. Absorption spectra of the irradiated samples showed a minor changes in indirect bandgap from 3.44 to 3.59 eV for TiO2 while that for SnO2 significant modifications in the direct bandgap from 3.92 to 3.6 eV were observed on increasing irradiation fluence. The observed modifications in the optical properties of both TiO2 and SnO2 systems with irradiation can be attributed to controlled structural disorder/defects in the system.

  6. Use of laser extensometer for mechanical test on irradiated materials

    SciTech Connect (OSTI)

    Brillaud, C.; Meylogan, T.; Salathe, P. [Electricite de France, Avoine (France)

    1996-12-31T23:59:59.000Z

    Techniques have been developed by EDF`s hot laboratory in Chinon for performing mechanical tests on irradiated materials. Some of these techniques aim to facilitate strain measurements, which are particularly difficult to perform on irradiated specimens at high temperatures or on subsize specimens. Recent progress has been driven by laser technology combined with software development. The use of this technique, which allows strain measurements without contact on the specimen, is described for tensile (especially on subsize specimens), fatigue and creep tests.

  7. USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING

    SciTech Connect (OSTI)

    K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

    2012-07-01T23:59:59.000Z

    In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

  8. Initiate test loop irradiations of ALSEP process solvent

    SciTech Connect (OSTI)

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell

    2014-09-01T23:59:59.000Z

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  9. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-01T23:59:59.000Z

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore »geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹? to 1.2 10¹?W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  10. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000258879711); Radha, P. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Myatt, J. F. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marozas, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Marshall, F. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Michel, D. T. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000166894359); Regan, S. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Seka, W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Shvydky, A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340402672); Bates, J. W. [U. S. Naval Research Lab., Washington, DC (United States)] (ORCID:0000000188087240); Betti, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Boehly, T. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Bonino, M. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, T. J. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Craxton, R. S. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000158858227); Delettrez, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Edgell, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Epstein, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340628444); Fiksel, G. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Fitzsimmons, P. [General Atomics, San Diego, CA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Froula, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Goncharov, V. N. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Harding, D. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kalantar, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Karasik, M. [U. S. Naval Research Lab., Washington, DC (United States); Kessler, T. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Knauer, J. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kurz, C. [General Atomics, San Diego, CA (United States); Lafon, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LaFortune, K. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacGowan, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); McCrory, R. L. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); McKenty, P. W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Meeker, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meyerhofer, D. D. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)

    2015-05-01T23:59:59.000Z

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹? to 1.2 10¹?W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  12. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  13. Policy Procedure Administrative Directive Title: _____________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Policy ­ Procedure ­ Administrative Directive Title: _____________________________________ Policy-President _____________ See also: Related Policies, Procedures and Agreements: Relevant Legislation and Regulations: ____________________________________________________________________________ Background and Purpose: ____________________________________________________________________________ Policy

  14. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13T23:59:59.000Z

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  15. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect (OSTI)

    Blaise, Collin

    2014-07-01T23:59:59.000Z

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47´1025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53´1025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2´10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

  16. Heavy-section steel technology and irradiation programs-retrospective and prospective views

    SciTech Connect (OSTI)

    Nanstad, Randy K [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Rosseel, Thomas M [ORNL] [ORNL; Merkle, John Graham [ORNL] [ORNL; Sokolov, Mikhail A [ORNL] [ORNL

    2007-01-01T23:59:59.000Z

    In 1965, the Atomic Energy Commission (AEC), at the advice of the Advisory Committee on Reactor Safeguards (ACRS), initiated the process that resulted in the establishment of the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL). Dr. Spencer H. Bush of Battelle Northwest Laboratory, the man being honored by this symposium, representing the ACRS, was one of the Staff Advisors for the program and helped to guide its technical direction. In 1989, the Heavy-Section Steel Irradiation (HSSI) Program, formerly the HSST task on irradiation effects, was formed as a separate program, and this year the HSST/HSSI Programs, sponsored by the U.S. Nuclear Regulatory Commission (USNRC), celebrate 40 years of continuous research oriented toward the safety of light-water nuclear reactor pressure vessels. This paper presents a summary of results from those programs with a view to future activities. The HSST Program was established in 1967 and initially included extensive investigations of heavy-section low-alloy steel plates, forgings, and welds, including metallurgical studies, mechanical properties, fracture toughness (quasi-static and dynamic), fatigue crack-growth, and crack arrest toughness. Also included were irradiation effects studies, thermal shock analyses, testing of thick-section tensile and fracture specimens, and non-destructive testing. In the subsequent decades, the HSST Program conducted extensive large-scale experiments with intermediate-size vessels (with varying size flaws) pressurized to failure, similar experiments under conditions of thermal shock and even pressurized thermal shock (PTS), wide-plate crack arrest tests, and biaxial tests with cruciform-shaped specimens. Extensive analytical and numerical studies accompanied these experiments, including the development of computer codes such as the recent Fracture Analysis of Vessels Oak Ridge (FAVOR) code currently being used for PTS evaluations. In the absence of radiation damage to the RPV, fracture of the vessel is improbable. However, exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The HSSI Program has conducted a series of experiments to assess the effects of neutron irradiation on RPV material behavior, especially fracture toughness. These studies have included RPV plates and welds, varying chemical compositions, and fracture toughness specimens up to 4 in. thickness. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. Results from the HSST and HSSI Program are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety.

  17. Electron beam irradiation of gemstone for color enhancement

    SciTech Connect (OSTI)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26T23:59:59.000Z

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  18. Synthesis of nanosize BPO{sub 4} under microwave irradiation

    SciTech Connect (OSTI)

    Wang, Rui, E-mail: wr_wrwr@163.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China) [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116023 (China); Jiang, Heng; Gong, Hong; Zhang, Jun [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)] [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

    2012-08-15T23:59:59.000Z

    Highlights: ? Nanosize BPO{sub 4} are prepared under microwave-irradiation conditions. ? This reaction is only performed at less than 640 W power for 2.5–5 min. ? The particles of sample irradiated at 400 W are 40–90 nm in size and well dispersed. ? A simple, fast and green procedure for synthesis of nanosize BPO{sub 4} is developed. -- Abstract: Nanosize BPO{sub 4} was synthesized using H{sub 3}BO{sub 3} and H{sub 3}PO{sub 4} (85%) as raw materials under microwave irradiation. This reaction was performed at powers lower than 640 W and irradiation time ranging from 2.5 min to 5 min, which were only a fraction of the time required for conventional synthetic procedures. The structure of the as-prepared BPO{sub 4} is analogous to that of a high cristobalite. The particle sizes of the samples irradiated at 640 and 400 W range from 40 nm to 90 nm and 30 nm to 60 nm, respectively. The effects of different conditions on the experimental outcome are also discussed.

  19. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect (OSTI)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08T23:59:59.000Z

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  20. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets

    SciTech Connect (OSTI)

    Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Hu, Li-Xiang; Yin, Yan; Shao, Fu-Qiu; Zhuo, Hong-Bin; Ma, Yan-Yun; Yang, Xiao-Hu [College of Science, National University of Defense Technology, Changsha 410073 (China); Luo, Wen [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-09-15T23:59:59.000Z

    It is demonstrated that bright femtosecond X-rays can be obtained by irradiating a moderate laser onto a helium micro-droplet. The laser ponderomotive force continuously sweeps electrons from the droplets and accelerates them forward. The electrons exposed in the outrunning laser field oscillate transversely and emit photons in the forward direction. The total flux of photons with energies above 1?keV is as high as 10{sup 9}/shot which is about 10-fold enhancement compared with betatron oscillation under similar laser conditions. The maximum achieved peak brightness is up to 10{sup 21} photons/s/mm{sup 2}/mrad{sup 2}/0.1%BW. By adjusting laser and droplet parameters, we can get tunable X-rays with required brightness and energy.

  1. Measurements of the divergence of fast electrons in laser-irradiated spherical targets

    SciTech Connect (OSTI)

    Yaakobi, B.; Solodov, A. A.; Myatt, J. F.; Delettrez, J. A.; Stoeckl, C.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2013-09-15T23:59:59.000Z

    In recent experiments using directly driven spherical targets on the OMEGA laser system, the energy in fast electrons was found to reach ?1% of the laser energy at an irradiance of ?1.1 × 10{sup 15} W/cm{sup 2}. The fraction of these fast electrons absorbed in the compressed fuel shell depends on their angular divergence. This paper describes measurements of this divergence deduced from a series of shots where Mo-coated shells of increasing diameter (D) were suspended within an outer CH shell. The intensity of the Mo–K? line and the hard x-ray radiation were found to increase approximately as ?D{sup 2}, indicating wide divergence of the fast electrons. Alternative interpretations of these results (electron scattering, radiation excitation of K?, and an electric field due to return current) are shown to be unimportant.

  2. Thermal Effects Induced by Laser Irradiation of Solids

    SciTech Connect (OSTI)

    Galovic, S. [Vinca Institute of Nuclear Sciences, P. O. Box 522, 11001 Belgrade, Serbia (Serbia and Montenegro)

    2004-12-01T23:59:59.000Z

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation of thermal perturbation. Focus is on optically opaque media. The derived models are compared to existing models neglecting the thermal memory effect. In this way it has been possible to determine the range of value of existing models and to indicate the additional employment of photothermal methods in determining through experimentation the thermal memory properties of solids. These properties have not as yet been experimentally determined in any medium, nor has the methodology for the experimental measurement of thermal memory parameters been suggested in the literature. Their recognition is highly significant not only for further fundamental research, but for many modern applications as well.

  3. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    SciTech Connect (OSTI)

    Brown, Thomas [Studsvik, Inc., 5605 Glenridge Drive NE, Suite 705, Atlanta, GA (United States)] [Studsvik, Inc., 5605 Glenridge Drive NE, Suite 705, Atlanta, GA (United States); Poncet, Bernard [electricite de France, 154 Avenue Thiers, CS 60018, 69458 Lyon Cedex 06 (France)] [electricite de France, 154 Avenue Thiers, CS 60018, 69458 Lyon Cedex 06 (France)

    2013-07-01T23:59:59.000Z

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. The BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)

  4. Transient fission gas release during direct electrical heating experiments

    SciTech Connect (OSTI)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.

    1983-12-01T23:59:59.000Z

    The gas release behavior of irradiated EBR-II fuel was observed to be dependent on several factors: the presence of cladding, the retained gas content, and the energy absorbed. Fuel that retained in excess of 16 to 17 ..mu..moles/g of fission gas underwent spallation as the cladding melted and released 22 to 45% of its retained gas, while fuel with retained gas levels below approx. 15 to 16 ..mu..moles/g released less than approx. 9% of its gas as the cladding melted. During subsequent direct electrical heating ramps, fuel that did not spall released an additional quantity of gas (up to 4 ..mu..moles/g), depending on the energy absorbed.

  5. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01T23:59:59.000Z

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  6. On the Absorption and Redistribution of Energy in Irradiated Planets

    E-Print Network [OSTI]

    Hansen, Brad

    2008-01-01T23:59:59.000Z

    We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

  7. Direct/Indirect Costs - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CCMD) and describes various estimating techniques for direct and indirect costs. g4301-1chp7.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 7...

  8. Threshold irradiation dose for amorphization of silicon carbide

    SciTech Connect (OSTI)

    Snead, L.L.; Zinkle, S.J.

    1997-03-01T23:59:59.000Z

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si{sup +} at 1 x 10{sup -3} dpa/s and with fission neutrons irradiated at 1 x 10{sup -6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340{+-}10K.

  9. Irradiated Microsphere Gamma Analyzer for Examination of Particle Fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Various

    2014-06-01T23:59:59.000Z

    Fabrication of the first series of fuel compacts for the current US tristructural isotropic (TRISO) coated particle fuel development and qualification effort was completed at Oak Ridge National Laboratory (ORNL) in 2006. In November of 2009, after almost 3 years and 620 effective full power days of irradiation in the Advanced Test Reactor at Idaho National Laboratory (INL), the first Advanced Gas Reactor irradiation test (AGR-1) was concluded. Compacts were irradiated at a calculated timeaveraged, volume-averaged temperature of 955–1136°C to a burnup ranging from 11.2–19.5% fissions per initial metal atom and a total fast fluence of 2.2–4.3·1025 n/m2 [1]. No indication of fission product release from TRISO coating failure was observed during the irradiation test, based on real-time monitoring of gaseous fission products. Post-irradiation examination (PIE) and hightemperature safety testing of the compacts has been in progress at both ORNL and INL since 2010, and have revealed small releases of a limited subset of fission products (such as silver, cesium, and europium). Past experience has shown that some elements can be released from TRISO particles when a defect forms in the SiC layer, even when one or more pyrocarbon layers remain intact and retain the gaseous fission products. Some volatile elements can also be released by diffusion through an intact SiC layer during safety testing if temperatures are high enough and the duration is long enough. In order to understand and quantify the release of certain radioactive fission products, it is sometimes necessary to individually examine each of the more than 4000 coated particles in a given compact. The Advanced Irradiated Microsphere Gamma Analyzer (Advanced- IMGA) was designed to perform this task in a remote hot cell environment. This paper describes the Advanced- IMGA equipment and examination process and gives results for a typical full compact evaluation.

  10. Directions - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-WriteDirections About

  11. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect (OSTI)

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology Longowal, Punjab-148106 (India); Sonkawade, R. G. [School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025 (India)

    2013-02-05T23:59:59.000Z

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  12. Tensile Hoop Behavior of Irradiated Zircaloy-4 Nuclear Fuel Cladding

    SciTech Connect (OSTI)

    Jaramillo, Roger A [ORNL; Hendrich, WILLIAM R [ORNL; Packan, Nicolas H [ORNL

    2007-03-01T23:59:59.000Z

    A method for evaluating the room temperature ductility behavior of irradiated Zircaloy-4 nuclear fuel cladding has been developed and applied to evaluate tensile hoop strength of material irradiated to different levels. The test utilizes a polyurethane plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. These measurements coupled with ram force data provide a load-displacement characterization of the cladding response to internal pressurization. The development of this simple, cost-effective, highly reproducible test for evaluating tensile hoop strain as a function of internal pressure for irradiated specimens represents a significant advance in the mechanical characterization of irradiated cladding. In this project, nuclear fuel rod assemblies using Zircaloy-4 cladding and two types of mixed uranium-plutonium oxide (MOX) fuel pellets were irradiated to varying levels of burnup. Fuel pellets were manufactured with and without thermally induced gallium removal (TIGR) processing. Fuel pellets manufactured by both methods were contained in fuel rod assemblies and irradiated to burnup levels of 9, 21, 30, 40, and 50 GWd/MT. These levels of fuel burnup correspond to fast (E > 1 MeV) fluences of 0.27, 0.68, 0.98, 1.4 and 1.7 1021 neutrons/cm2, respectively. Following irradiation, fuel rod assemblies were disassembled; fuel pellets were removed from the cladding; and the inner diameter of cladding was cleaned to remove residue materials. Tensile hoop strength of this cladding material was tested using the newly developed method. Unirradiated Zircaloy-4 cladding was also tested. With the goal of determining the effect of the two fuel types and different neutron fluences on clad ductility, tensile hoop strength tests were performed on cladding for these varying conditions. Experimental data revealed negligible performance differences for cladding containing TIGR vs non-TIGR processed fuel pellets. Irradiation hardening was observed in tensile hoop data as the strength of the cladding increased with increasing neutron dose and appeared to saturate for a fast fluence of 1.7 1021 neutrons/cm2.

  13. HTS wire irradiation test with 8 GeV protons

    SciTech Connect (OSTI)

    S. Feher; H. Glass; Y. Huang; P.J. Limon; D.F. Orris; P. Schlabach; M.A. Tartaglia; J.C. Tompkins

    1999-11-02T23:59:59.000Z

    The radiation level at High Energy Particle Accelerators (HEPA) is relatively high. Any active component which should be close to the accelerator has to be radiation hard. Since High Temperature Superconductors (HTS) have a great potential to be used in HEPAs (e.g., in superconducting magnets, current leads, RF cavities), it is important to understand the radiation hardness of these materials. A radiation test of HTS wire (Bi-2223) was performed at Fermilab. The HTS sample was irradiated with 8 GeV protons and the relative I{sub c} was measured during the irradiation. The total radiation dose was 10 Mrad, and no I{sub c} degradation was observed.

  14. Thermal response of photovoltaic cell to laser beam irradiation

    E-Print Network [OSTI]

    Yuan, Yu-Chen

    2014-01-01T23:59:59.000Z

    This paper firstly presents the concept of using dual laser beam to irradiate the photovoltaic cell, so as to investigate the temperature dependency of the efficiency of long distance energy transmission. Next, the model on the multiple reflection and absorption of any monochromatic light in multilayer structure has been established, and the heat generation in photovoltaic cell has been interpreted in this work. Then, the finite element model has been set up to calculate the temperature of photovoltaic cell subjected to laser irradiation. Finally, the effect of temperature elevation on the efficiency and reliability of photovoltaic cell has been discussed to provide theoretical references for designing the light-electricity conversion system.

  15. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01T23:59:59.000Z

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  16. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect (OSTI)

    Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

    2014-05-12T23:59:59.000Z

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  17. Light water reactor mixed-oxide fuel irradiation experiment

    SciTech Connect (OSTI)

    Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-06-01T23:59:59.000Z

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

  18. Delayed neutrons from the neutron irradiation of ²³?U

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10T23:59:59.000Z

    transient control rod transit time from full insertion in the core to full extraction and the controlled power excursion itself all contribute to the inherent delay of the reactor pulse. When the reactor was operating at 300 watts the desired count time...) was redesigned to reduce a sample’s pneumatic flight time from over 1,600 milliseconds to less than 450 milliseconds. Four saturation irradiations were performed at reactor powers of 100 and 200 kW for 300 seconds and one burst irradiation was performed using...

  19. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  20. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  1. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  3. Directional impedance of geared transmissions

    E-Print Network [OSTI]

    Wang, Albert Duan

    2012-01-01T23:59:59.000Z

    The purpose of this research is to develop a design tool for geared actuation systems that experience bidirectional exchange of energy with the environment. Despite the asymmetry of efficiency depending on the direction ...

  4. Regional 166 Direct Loan (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Development Services Agency's (ODSA) Regional 166 Direct Loan provides low-interest loans to businesses creating new jobs or preserving existing employment opportunities in the State of Ohio.

  5. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  6. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  7. Quantum direct communication with authentication

    SciTech Connect (OSTI)

    Lee, Hwayean [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Institut fuer Experimentalphysik, Universitaet Wien (Austria); Lim, Jongin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Yang, HyungJin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Department of Physics, Korea University, Chochiwon, Choongnam (Korea, Republic of)

    2006-04-15T23:59:59.000Z

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  8. Directions

    E-Print Network [OSTI]

    Apr 13, 2013 ... Another Option is to fly to Chicago O'Hare International Airport (ORD), and then either rent a car and drive (about 2 to 2.5 hours) to Purdue, ...

  9. Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene 

    E-Print Network [OSTI]

    Woo, Sung Oh

    2014-08-06T23:59:59.000Z

    This research investigates the effect of electron irradiation on transport properties in graphene Field Effect Transistor (FET) devices. Upon irradiation, graphene is doped with electrons and adsorbs molecules by transfer of accumulated electrons...

  10. Ion irradiation of Fe-Fe oxide core-shell nanocluster films:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    irradiation of Fe-Fe oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties. Ion irradiation of Fe-Fe oxide core-shell nanocluster films:...

  11. Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties 

    E-Print Network [OSTI]

    Chae, Sung Hee

    2007-09-17T23:59:59.000Z

    This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce ...

  12. Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties

    E-Print Network [OSTI]

    Chae, Sung Hee

    2007-09-17T23:59:59.000Z

    This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

  13. Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene

    E-Print Network [OSTI]

    Woo, Sung Oh

    2014-08-06T23:59:59.000Z

    This research investigates the effect of electron irradiation on transport properties in graphene Field Effect Transistor (FET) devices. Upon irradiation, graphene is doped with electrons and adsorbs molecules by transfer of accumulated electrons...

  14. Radiochemical Transformation of High Pressure Methane under Gamma, Electron, and Neutron Irradiation

    E-Print Network [OSTI]

    Clemens, Jeffrey Tyler

    2014-05-01T23:59:59.000Z

    The chemical effects of irradiation on high pressure methane and noble gas mixtures were investigated using gamma, electron beam, and neutron irradiation sources. The gamma source used was the La-140 source from the Nuclear Science Center (NSC...

  15. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Abstract: In this study, porous silicon...

  16. Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide

    E-Print Network [OSTI]

    Boyer, Edmond

    Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide CNRS 6622, Parc Valrose, 06108 Nice cedex 2, France ABSTRACT Low energy ion irradiation was used

  17. Amorphization Processes in Au Ion Irradiated GaN at 150 - 300...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes in Au Ion Irradiated GaN at 150 - 300 K. Amorphization Processes in Au Ion Irradiated GaN at 150 - 300 K. Abstract: Epitaxial single-crystal gallium nitride (GaN) films...

  18. Thermal evolution of microstructure in ion-irradiated GaN. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolution of microstructure in ion-irradiated GaN. Thermal evolution of microstructure in ion-irradiated GaN. Abstract: The thermal evolution of the microstructure created by...

  19. Damage and Microstructure Evolution in GaN under Au Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Microstructure Evolution in GaN under Au Ion Irradiation. Damage and Microstructure Evolution in GaN under Au Ion Irradiation. Abstract: Damage and microstructure evolution in...

  20. Irradiation Testing of Blanket Materials at the HFR Petten with On Line Tritium Monitoring

    SciTech Connect (OSTI)

    Magielsen, A.J.; Laan, J.G. van der; Hegeman, J.B.J.; Stijkel, M.P.; Ooijevaar, M.A.G

    2005-07-15T23:59:59.000Z

    Irradiation experiments are performed in support of fusion blanket technology development. These comprise ceramic solid breeder materials, and a liquid Lithium Lead alloy, as well as blanket subassemblies and components. Experimental facilities at the HFR to study tritium release, permeation characteristics, and neutron irradiation performance, have recently been extended. This paper gives an overview on the tritium breeding materials irradiation programme and describes the facilities required for irradiation testing and on-line tritium measurement.

  1. RIS-M-2352 DETERMINATION OF RETAINED GAS IN IRRADIATED FUEL SAMPLES

    E-Print Network [OSTI]

    -IRRADIATION EXAMINATION; RADIATION CHEMISTRY; SPENT FUELS; URANIUM DIOXIDE; XENON; XENON ISOTOPES UDC 621.039.548 ISBN 87

  2. E-Print Network 3.0 - assembly duct irradiated Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Environmental Energy Technologies Division, Energy Performance of Buildings Group Collection: Energy Storage, Conversion and Utilization 3 POST-IRRADIATION...

  3. Proton Irradiation Damage Assessment of Carbon Reinforced Composites

    E-Print Network [OSTI]

    McDonald, Kirk

    Proton Irradiation Damage Assessment of Carbon Reinforced Composites: 2-D & 3-D Weaved Structures carbon-carbon composite ATJ Graphite 3D CC composite AGS Beam-on-Target tests show clearly that carbon composites are better absorbers of thermo- mechanical shock. This is attributed to the very low coeff

  4. RETHINKING SATELLITE BASED SOLAR IRRADIANCE MODELLING R. W. Mueller

    E-Print Network [OSTI]

    Heinemann, Detlev

    -German Aerospace Center; 5-Ecole des Mines de Paris ABSTRACT Accurate solar irradiance data are not only necessary for an efficient planning and operation of solar energy systems. Within the European project of the climate system, but also absolutely necessary for an efficient planning and operation of solar energy

  5. Development of a chemical dosimeter for electron beam food irradiation

    E-Print Network [OSTI]

    Rivadeneira, Ramiro Geovanny

    2006-08-16T23:59:59.000Z

    uniform irradiation treatment on apple-phantoms (a complex shaped target) and GAFCHROMIC® HD-810 films using electron beams from (1) a 2 MeV Van de Graaff (VDG) accelerator, (2) a 10 MeV Linear Accelerator (LINAC), and (3) X-rays from a 5 MeV LINAC...

  6. adt materials irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adt materials irradiated First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Umsetzung von ADTs ADT in...

  7. Compressive Strength of Gamma-Irradiated Polymer Concrete

    E-Print Network [OSTI]

    North Texas, University of

    Compressive Strength of Gamma-Irradiated Polymer Concrete Gonzalo Marti´nez-Barrera,1,2 Uriel concrete (PC) was developed by using differ- ent concentrations of silica sand as aggregate of Plastics Engineers INTRODUCTION Polymer concrete (PC) is a particulate composite where thermoset resins

  8. SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES

    E-Print Network [OSTI]

    Heinemann, Detlev

    SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES Annette Hammer.Heinemann@uni-oldenburg.de 2Enecolo AG, Lindhof 235, CH-8617 M¨onchaltorf 3Fraunhofer Insitute for Solar Energy Systems Wiemken3, Hans Georg Beyer4, Vincent van Dijk5, Jethro Betcke5 1Dept. of Energy and Semiconductor Research

  9. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

  10. The modelling of irradiation embrittlement in submerged-arc welds

    SciTech Connect (OSTI)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H. [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31T23:59:59.000Z

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database.

  11. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  13. Simultaneous Irradiation and Imaging of Blood Vessels During Pulsed

    E-Print Network [OSTI]

    Barton, Jennifer K.

    energy produced hemorrhage. In larger vessels, coagula often were attached to the superficial vessel wall; port wine stains INTRODUCTION Previous studies examining the effect of la- ser irradiation on cutaneous preparation. The short pulse duration illus- trated an extreme; energy was deposited quickly Contract grant

  14. Lymphocyte depletion in peripheral blood of gamma irradiated rats

    E-Print Network [OSTI]

    Goldin, Eric Michael

    1972-01-01T23:59:59.000Z

    38. F. H. Hager, A study of the effect of partial-body irradiation on the early reduction of circulating lymphocytes. (Thesis) Texas AKM University, 1969. 39. G. D'Angelo and M. Lacombe, A practical diluent for electz onic white cell counts. Amer...

  15. The AGR-1 Irradiation -Objectives, Success Criteria and Risk Management

    SciTech Connect (OSTI)

    James Kendall

    2006-06-01T23:59:59.000Z

    The AGR-1 experiment being conducted by the US Department of Energy Advanced Gas Reactor Fuel Development and Qualification Program (AGR fuel program) will irradiate TRISO-coated particle fuel in compacts under conditions representative of a Very High Temperature Reactor (VHTR) core. The anticipated fuel performance requirements of a prismatic core VHTR significantly exceed established TRISO-coated particle fuel capability in terms of burnup, temperature and fast fluence. AGR-1 is the first in a planned series of eight irradiations leading to the qualification of low enriched uranium coated particle fuel compacts for service in a VHTR, as identified in an overall Technical Program Plan produced at the beginning of the program . The AGR-1 experiment is scheduled for insertion in the Advanced Test Reactor (ATR) in the first quarter of fiscal year 2007 and to be irradiated for a period of up to approximately two and a half years. The irradiation rig, designated a "test train" is designed to provide six independently controlled (for temperature) and monitored (for fission product gas release) capsules containing fuel samples.

  16. atomic hydrogen irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen irradiation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Synergistic Formation of Radicals...

  17. Dose characterization of the rad source 2400 x-ray irradiator

    E-Print Network [OSTI]

    Wagner, Jennifer Ann Koop

    2009-05-15T23:59:59.000Z

    The RS 2400 irradiator has been looked to as a replacement for discontinued gamma irradiators. The RS 2400 has a cylindrical, rather than point, x-ray source, which yields higher dose rates. The irradiator unit allows the user to set the current...

  18. Evaluating Quality and Palatability Characteristics of Beef Subprimals Treated with Low-dose Irradiation

    E-Print Network [OSTI]

    Arnold, John

    2012-02-14T23:59:59.000Z

    . Paired subprimals were randomly assigned to treated (irradiated) and control (non-irradiated) groups. The treated group was irradiated with a surface dose of 1-1.5 kGy. Following treatment, subprimals were fabricated into thirds and randomly assigned...

  19. Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    (TIM) measures the Sun's net energy output, or total solar irradiance (TSI). TSI is the spatially NASA/NOAA mission that will measure total solar irradiance to monitor changes in incident solar energy measurements of total solar irradiance to monitor changes in solar energy driving Earth's climate system

  20. Capillary Electrophoresis Separation of Protein Composition of c-Irradiated Food Pathogens Listeria

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Capillary Electrophoresis Separation of Protein Composition of c-Irradiated Food Pathogens Listeria proteins expression which may be related to the resistance or sensitivity of food pathogens to c-irradiation Composition of c-Irradiated Food Pathogens Listeria monocytogenes and Staphylococcus aureus. PLoS ONE 7(3): e

  1. A new, lower value of total solar irradiance: Evidence and climate significance

    E-Print Network [OSTI]

    data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variationsA new, lower value of total solar irradiance: Evidence and climate significance Greg Kopp1 14 January 2011. [1] The most accurate value of total solar irradiance during the 2008 solar minimum

  2. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01T23:59:59.000Z

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  3. Directives Review Board - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review Board

  4. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01T23:59:59.000Z

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (more »in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.« less

  5. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi [Idaho National Lab. (INL), Idaho Falls, ID (United States).Fusion Safety Program; Cao, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Otsuka, T. [Kyushu Univ., Fukuoka (Japan). Interdisciplinary Graduate School of Engineering Science; Hara, M. [Univ. of Toyama (Japan). Hydrogen Isotope Center; Kobayashi, M. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Oya, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Hatano, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.

    2015-01-01T23:59:59.000Z

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (<5µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.

  6. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect (OSTI)

    Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3×105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

  7. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect (OSTI)

    Scott A. Ploger; Paul A. Demkowicz; John D. Hunn; Jay S. Kehn

    2014-05-01T23:59:59.000Z

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  8. Irradiation hardening and loss of ductility of type 316L(N) stainless steel plate material due to neutron-irradiation

    SciTech Connect (OSTI)

    Horsten, M.G.; Vries, M.I. de [Netherlands Energy Research Foundation, Petten (Netherlands)

    1996-12-31T23:59:59.000Z

    Type 316 stainless steel is the primary candidate austenitic structural material for fusion first wall constructions. Here, type 316L(N) stainless steel plate material has been irradiated up to 10 dpa at temperatures of 80, 225, 325, and 425 C in the High Flux Reactor (HFR) of Petten. Tensile tests have been performed in the temperature range from RT to 575 C at a conventional strain rate of 5 {times} 10{sup {minus}4} s{sup {minus}1}. The results of the tensile tests are analyzed in terms of irradiation hardening and loss of ductility due to irradiation. Tensile properties saturate in the early stage (within 0.65 dpa) at the lowest applied irradiation temperature. It is indicated that the most severe degradation of tensile ductility occurs in the temperature range of 275 to 350 C. Comparison with literature data revealed a large scatter in irradiation hardening at irradiation temperatures above 325 C.

  9. Irradiated Materials Testing Complex (IMTL) The Irradiated Materials Testing Laboratory provides the capability to conduct high temperature

    E-Print Network [OSTI]

    Kamat, Vineet R.

    provides the capability to conduct high temperature corrosion and stress corrosion cracking of neutron next to a hot cell. This configuration allows us to disconnect the autoclave from its water loop, maneuver it into the hot cell, where the neutron irradiated specimens can be safely mounted

  10. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Franco, Manuel,

    2014-08-01T23:59:59.000Z

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.

  11. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    SciTech Connect (OSTI)

    Kyser, E.

    2010-06-17T23:59:59.000Z

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  12. Direct estimation of decoherence rates

    E-Print Network [OSTI]

    Vladimír Bužek; Peter Rapcan; Jochen Rau; Mario Ziman

    2012-07-30T23:59:59.000Z

    The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of the off-diagonal elements of a density operator in the decoherence basis. We address the question of how to experimentally access such a nonlinear parameter directly without the need of complete process tomography. In particular, we design a simple experiment working with two copies of the channel, in which the registered mean value of a two-valued measurement directly determines the value of the average decoherence rate. No prior knowledge of the decoherence basis is required.

  13. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    SciTech Connect (OSTI)

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Shinjeong-dong Jeongeup-si Jellabuk-do 580-185 (Korea, Republic of)

    2010-06-02T23:59:59.000Z

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250 deg. C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.

  14. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01T23:59:59.000Z

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  15. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    SciTech Connect (OSTI)

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01T23:59:59.000Z

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  16. Embryonic effects transmitted by male mice irradiated with 512 MeV/u {sup 56}Fe nuclei

    SciTech Connect (OSTI)

    Wiley, L.M.; Van Beek, M.E.A.B.; Raabe, O.G.

    1994-06-01T23:59:59.000Z

    High-energy, high-charge nuclei may contribute substantially to the yearly equivalent dose in space flight from galactic cosmic radiation (GCR) at solar minimum. The largest single heavy-ion component is {sup 56}Fe. We used the mouse embryo chimera assay to test 512 MeV/u {sup 56}Fe nuclei for effects on the rate of proliferation of embryonic cells transmitted by sperm from irradiated mice. Male CD1 mice were acutely irradiated with 0.01, 0.05, or 0.1 Gy (LET, 184 keV/{mu}m; fluence, 3.5 x 10{sup 4}-3.3 x 10{sup 5} nuclei/cm{sup 2}; average dose rate, 0.02 Gy/min) at the Lawrence Berkeley Laboratory BEVATRON/BEVALAC Facility in Berkeley, CA. Irradiated males were bred weekly for 7 weeks to nonirradiated females and their four-cell embryos were paired with control embryos, forming aggregation chimeras. After 30-35 h of culture, chimeras were dissociated to obtain {open_quotes}proliferation ratios{close_quotes} (number of cells contributed by the embryo from the irradiated male/total number of cells in the chimera). Significant dose-dependent decreases in proliferation ratios were obtained across all three dose groups for postirradiation week 2 (P < 0.05 to P < 0.003). The 0.01- and 0.05-Gy dose groups also produced significant decreases in proliferation ratios for postirradiation week 1 (P < 0.05 to P < 0.01) and the 0.05-Gy dose group produced significant decreases in proliferation ratios for postirradiation week 6 (P < 0.05). Postirradiation weeks 1, 2 and 6 correspond to irradiation of epididymal sperm, testicular spermatids and spermatogonia, respectively. We calculate that only about 5% of sperm in the 0.1-Gy, 2.5% in the 0.05-Gy and 0.5% in the 0.01-Gy dose groups sustained direct hits from {sup 56}Fe nuclei. However, up to 47% of sperm during postirradiation weeks 1 and 2 transmitted proliferation ratios that were at or below one standard deviation from control mean proliferation ratios. 26 refs., 4 figs., 10 tabs.

  17. Advanced electron microscopic techniques applied to the characterization of irradiation effects and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment

    SciTech Connect (OSTI)

    Rooyen, I.J. van; Lillo, T.M.; Trowbridge, T.L.; Madden, J.M. [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Wu, Y.Q. [Boise State University, Boise, ID 83725-2090 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Goran, D. [Brucker Nano Gmbh, Berlin, 12489 (Germany)

    2013-07-01T23:59:59.000Z

    Preliminary electron microscopy of coated fuel particles from the AGR-1 experiment was conducted using characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and wavelength dispersive spectroscopy (WDS). Microscopic quantification of fission-product precipitates was performed. Although numerous micro- and nano-sized precipitates observed in the coating layers during initial SEM characterization of the cross-sections, and in subsequent TEM diffraction patterns, were indexed as UPd{sub 2}Si{sub 2}, no Ag was conclusively found. Additionally, characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates in the presence of significantly higher concentrations of Pd and U. The electron microscopy team followed a multi-directional and phased approach in the identification of fission products in irradiated TRISO fuel. The advanced electron microscopy techniques discussed in this paper, not only demonstrate the usefulness of the equipment (methods) as relevant research tools, but also provide relevant scientific results which increase the knowledge about TRISO fuel particles microstructure and fission products transport.

  18. Future Directions for Magnetic Sensors

    E-Print Network [OSTI]

    and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

  19. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  20. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  1. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    and the Caribbean, an estimated 50 million persons lack access to an improved water supply. WSPs are a preventive Direct from CDC Environmental Health Services Branch CAPT Rick Gelting, PhD, PE Water leader of the Global Water, Sanitation, and Hygiene Team in CDC's En vironmental Health Services Branch

  2. Direct Hamiltonization for Nambu Systems

    E-Print Network [OSTI]

    Maria Lewtchuk Espindola

    2008-10-13T23:59:59.000Z

    The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any mechanical system described by the equation d{\\bf r}/dt={\\bf A(r)} is a Nambu system.

  3. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    SciTech Connect (OSTI)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-09-03T23:59:59.000Z

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  4. UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    E-Print Network [OSTI]

    Yeo, K L; Krivova, N A; Solanki, S K; Unruh, Y C; Morrill, J

    2015-01-01T23:59:59.000Z

    Total solar irradiance and UV spectral solar irradiance have been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The NRLSSI and SATIRE-S models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modelling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral s...

  5. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect (OSTI)

    Irastorza, Igor G.; García, Juan A., E-mail: Igor.Irastorza@cern.ch, E-mail: jagarpas@unizar.es [Laboratorio de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2012-10-01T23:59:59.000Z

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength ?{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. ?{sub a}?>2?L. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  6. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect (OSTI)

    Stephanie Austad

    2010-06-01T23:59:59.000Z

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  7. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    SciTech Connect (OSTI)

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01T23:59:59.000Z

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  8. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  9. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01T23:59:59.000Z

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  10. TEM Examination of Advanced Alloys Irradiated in ATR

    SciTech Connect (OSTI)

    Jian Gan, PhD

    2007-09-01T23:59:59.000Z

    Successful development of materials is critical to the deployment of advanced nuclear power systems. Irradiation studies of candidate materials play a vital role for better understanding materials performance under various irradiation environments of advanced system designs. In many cases, new classes of materials have to be investigated to meet the requirements of these advanced systems. For applications in the temperature range of 500 800ºC which is relevant to the fast neutron spectrum burner reactors for the Global Nuclear Energy Partnership (GNEP) program, oxide dispersion strengthened (ODS) and ferritic martensitic steels (e.g., MA957 and others) are candidates for advanced cladding materials. In the low temperature regions of the core (<600ºC), alloy 800H, HCM12A (also called T 122) and HT 9 have been considered.

  11. Offline multiple adaptive planning strategy for concurrent irradiation of the prostate and pelvic lymph nodes

    SciTech Connect (OSTI)

    Qi, Peng; Xia, Ping, E-mail: xiap@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States)] [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Pouliot, Jean; Roach, Mack [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California 94143 (United States)] [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California 94143 (United States)

    2014-02-15T23:59:59.000Z

    Purpose: Concurrent irradiation of the prostate and pelvic lymph nodes (PLNs) can be challenging due to the independent motion of the two target volumes. To address this challenge, the authors have proposed a strategy referred to as Multiple Adaptive Planning (MAP). To minimize the number of MAP plans, the authors’ previous work only considered the prostate motion in one major direction. After analyzing the pattern of the prostate motion, the authors investigated a practical number of intensity-modulated radiotherapy (IMRT) plans needed to accommodate the prostate motion in two major directions simultaneously. Methods: Six patients, who received concurrent irradiation of the prostate and PLNs, were selected for this study. Nine MAP-IMRT plans were created for each patient with nine prostate contours that represented the prostate at nine locations with respect to the PLNs, including the original prostate contour and eight contours shifted either 5 mm in a single anterior-posterior (A-P), or superior-inferior (S-I) direction, or 5 mm in both A-P and S-I directions simultaneously. From archived megavoltage cone beam CT (MV-CBCT) and a dual imaging registration, 17 MV-CBCTs from 33 available MV-CBCT from these patients showed large prostate displacements (>3 mm in any direction) with respect to the pelvic bones. For each of these 17 fractions, one of nine MAP-IMRT plans was retrospectively selected and applied to the MV-CBCT for dose calculation. For comparison, a simulated isocenter-shifting plan and a reoptimized plan were also created for each of these 17 fractions. The doses to 95% (D95) of the prostate and PLNs, and the doses to 5% (D5) of the rectum and bladder were calculated and analyzed. Results: For the prostate, D95 > 97% of the prescription dose was observed in 16, 16, and 17 of 17 fractions for the MAP, isocenter-shifted, and reoptimized plans, respectively. For PLNs, D95 > 97% of the prescription doses was observed in 10, 3, and 17 of 17 fractions for the three types of verification plans, respectively. The D5 (mean ± SD) of the rectum was 45.78 ± 5.75, 45.44 ± 4.64, and 44.64 ± 2.71 Gy, and the D5 (mean ± SD) of the bladder was 45.18 ± 2.70, 46.91 ± 3.04, and 45.67 ± 3.61 Gy for three types of verification plans, respectively. Conclusions: The MAP strategy with nine IMRT plans to accommodate the prostate motions in two major directions achieved good dose coverage to the prostate and PLNs. The MAP approach can be immediately used in clinical practice without requiring extra hardware and software.

  12. Characterization of CMPO and its radiolysis products by Direct Infusion ESI-MS

    SciTech Connect (OSTI)

    G. S. Groenewold; G. Elias; B. J. Mincher; S. P. Mezyk

    2012-09-01T23:59:59.000Z

    Direct infusion electrospray ionization-mass spectrometry (ESI-MS) approaches were developed for rapid identification of octyl,phenyl,(N,N-(diisobutyl)carbamoylmethyl) phosphine oxide (CMPO) and impurity compounds formed during alpha and gamma irradiation experiments. CMPO is an aggressive Lewis base, and produces extremely abundant metal complex ions in the ESI-MS analysis that make identification of low abundance compounds that are less nucleophilic challenging. Radiolysis products were identified using several approaches including restricting ion trapping so as to exclude the abundant natiated CMPO ions, extraction of acidic products using aqueous NaOH, and extraction of basic products using HNO3. These approaches generated protonated, natiated and deprotonated species derived from CMPO degradation products formed via radiolytic cleavages of several different bonds. Cleavages of the amide and methylene-phosphoryl bonds appear to be favored by both forms of irradiation, while alpha irradiation also appears to induce cleavage of the methylene-carbonyl bond. The degradation products observed are formed from recombination of the initially formed radicals with hydrogen, methyl, isopropyl and hydroxyl radicals that are derived either from CMPO, or the dodecane solvent.

  13. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect (OSTI)

    Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

    2012-09-01T23:59:59.000Z

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

  14. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect (OSTI)

    Paul Demkowicz; Scott Ploger; John Hunn

    2012-05-01T23:59:59.000Z

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  15. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  16. Method for improving performance of irradiated structural materials

    DOE Patents [OSTI]

    Megusar, Janez (Belmont, MA); Harling, Otto K. (Hingham, MA); Grant, Nicholas J. (Winchester, MA)

    1989-01-01T23:59:59.000Z

    Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

  17. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    SciTech Connect (OSTI)

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01T23:59:59.000Z

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  18. Electron Beam Irradiation for Improving Safety of Fruits and Vegetables

    E-Print Network [OSTI]

    Adavi, Megha Sarthak

    2012-07-16T23:59:59.000Z

    to pathogens. Conventional techniques of sanitizing washes may not be effective since the organic matter released from the fresh produce use up the free chlorine thus reducing the sanitizing potential of wash water just when it is needed most and a heat... treatment step to kill pathogens cannot be applied if the purpose is to consume fresh produce. Electron beam (e-beam) irradiation was used to treat cut cantaloupe, cut roma tomatoes, baby spinach, romaine lettuce which were surface inoculated with a...

  19. Irradiation test of electrical insulation materials performed at

    E-Print Network [OSTI]

    McDonald, Kirk

    required for the sample irradiation Depth of bean penetration in water for various beam energy value H20 energy as 10 ­ 11 MeV is necessary Scaling from water to G10 Courtesy S. Wronka #12;Experimental;Structure 6 MeV 12 MeV 15 MeV Real electron energy MeV 4 8 11 Depth of water penetration (range 80

  20. Ion irradiation induced structural and electrical transition in graphene

    SciTech Connect (OSTI)

    Zhou Yangbo; Wang Yifan; Xu Jun; Fu Qiang; Wu Xiaosong; Yu Dapeng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Liao Zhimin [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, Dublin 2 (Ireland); Duesberg, Georg S. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, Dublin 2 (Ireland); School of Chemistry, Trinity College, Dublin 2 (Ireland)

    2010-12-21T23:59:59.000Z

    The relationship between the electrical properties and structure evolution of single layer graphene was studied by gradually introducing the gallium ion irradiation. Raman spectrums show a structural transition from nano-crystalline graphene to amorphous carbon as escalating the degree of disorder of the graphene sample, which is in correspondence with the electrical transition from a Boltzmann diffusion transport to a carrier hopping transport. The results show a controllable method to tune the properties of graphene.

  1. Sandia National Laboratories: direct measurement of combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct measurement of combustion intermediate Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling &...

  2. Direct calibration of PICKY-designed microarrays.

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  3. Direct calibration of PICKY-designed microarrays

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  4. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  5. On the Absorption and Redistribution of Energy in Irradiated Planets

    E-Print Network [OSTI]

    Brad Hansen

    2008-01-18T23:59:59.000Z

    We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate optical depths can lead to temperature inversions in the planetary atmosphere, which may be of some relevance to recent observational findings.

  6. Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets

    E-Print Network [OSTI]

    Phil Arras; Lars Bildsten

    2006-01-15T23:59:59.000Z

    We consider the thermal structure and radii of strongly irradiated gas giant planets over a range in mass and irradiating flux. The cooling rate of the planet is sensitive to the surface boundary condition, which depends on the detailed manner in which starlight is absorbed and energy redistributed by fluid motion. We parametrize these effects by imposing an isothermal boundary condition $T \\equiv T_{\\rm deep}$ below the photosphere, and then constrain $T_{\\rm deep}$ from the observed masses and radii. We compute the dependence of luminosity and core temperature on mass, $T_{\\rm deep}$ and core entropy, finding that simple scalings apply over most of the relevant parameter space. These scalings yield analytic cooling models which exhibit power-law behavior in the observable age range $0.1-10 {\\rm Gyr}$, and are confirmed by time-dependent cooling calculations. We compare our model to the radii of observed transiting planets, and derive constraints on $T_{\\rm deep}$. Only HD 209458 has a sufficiently accurate radius measurement that $T_{\\rm deep}$ is tightly constrained; the lower error bar on the radii for other planets is consistent with no irradiation. More accurate radius and age measurements will allow for a determination of the correlation of $T_{\\rm deep}$ with the equilibrium temperature, informing us about both the greenhouse effect and day-night asymmetries.

  7. Effects of mass loss for highly-irradiated giant planets

    E-Print Network [OSTI]

    W. B. Hubbard; M. F. Hattori; A. Burrows; I. Hubeny; D. Sudarsky

    2006-10-27T23:59:59.000Z

    We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. (2004, A&A 419, L13-L16) predict the highest rate, based on the theory of Lammer et al. (2003, Astrophys. J. 598, L121-L124). Scaling the theory of Watson et al. (1981, Icarus 48, 150-166) to parameters for a highly-irradiated exoplanet, we find an escape rate ~102 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes = 0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

  8. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect (OSTI)

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01T23:59:59.000Z

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  9. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22T23:59:59.000Z

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  10. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  11. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, Ronald D. (Albuquerque, NM); Heck, G. Michael (Albuquerque, NM); Kohler, Stewart M. (Albuquerque, NM); Watts, Alfred C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  12. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12T23:59:59.000Z

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  13. Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment

    SciTech Connect (OSTI)

    Nanstad, R. K. [Materials Science and Technology Division, Oak Ridge National Laboratory; Yamamoto, T. [University of California Santa Barbara; Sokolov, M. A. [Materials Science and Technology Division, Oak Ridge National Laboratory

    2014-01-25T23:59:59.000Z

    New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (? < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1×10{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

  14. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    SciTech Connect (OSTI)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-07-01T23:59:59.000Z

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab.

  15. Booster irradiation to the spleen following total body irradiation. A new immunosuppressive approach for allogeneic bone marrow transplantation

    SciTech Connect (OSTI)

    Lapidot, T.; Singer, T.S.; Salomon, O.; Terenzi, A.; Schwartz, E.; Reisner, Y.

    1988-10-15T23:59:59.000Z

    Graft rejection presents a major obstacle for transplantation of T cell-depleted bone marrow in HLA-mismatched patients. In a primate model, after conditioning exactly as for leukemia patients, it was shown that over 99% of the residual host clonable T cells are concentrated in the spleen on day 5 after completion of cytoreduction. We have now corroborated these findings in a mouse model. After 9-Gy total body irradiation (TBI), the total number of Thy-1.2+ cells in the spleen reaches a peak between days 3 and 4 after TBI. The T cell population is composed of both L3T4 (helper) and Lyt-2 (suppressor) T cells, the former being the major subpopulation. Specific booster irradiation to the spleen (5 Gy twice) on days 2 and 4 after TBI greatly enhances production of donor-type chimera after transplantation of T cell-depleted allogeneic bone marrow. Similar enhancement can be achieved by splenectomy on day 3 or 4 after TBI but not if splenectomy is performed 1 day before TBI or 1 day after TBI, strengthening the hypothesis that, after lethal TBI in mice, the remaining host T cells migrate from the periphery to the spleen. These results suggest that a delayed booster irradiation to the spleen may be beneficial as an additional immunosuppressive agent in the conditioning of leukemia patients, in order to reduce the incidence of bone marrow allograft rejection.

  16. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Uwaba, Tomoyuki; Ito, Masahiro; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, Bruce J.; Wootan, David W.; Carmack, Jon

    2011-06-16T23:59:59.000Z

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39E26 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  17. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Tomoyuki Uwaba; Masahiro Ito; Kozo Katsuyama; Bruce J. Makenas; David W. Wootan; Jon Carmack

    2011-05-01T23:59:59.000Z

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  18. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    SciTech Connect (OSTI)

    Michael A. Pope; Hans D. Gougar; John M. Ryskamp

    2013-09-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a particular batch scheme). The volume of test space in IPTs is larger in MATRIX than in ATR with comparable magnitude of neutron flux. In addition to the IPTs, the Cylindrical MATRIX concept features test spaces at the centers of fuel assemblies where very high fast flux can be achieved. This magnitude of fast flux is similar to that achieved in the ATR A-positions, however, the available volume having these conditions is greater in the MATRIX design than in the ATR. From the analyses performed in this work, it appears that the Cylindrical MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this statement must be qualified by acknowledging that this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design matures. Also, some of the requirements were not strictly met, but are believed to be achievable once features to be added later are designed.

  19. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01T23:59:59.000Z

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  20. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box office

  1. DOE Directives | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010Conferencing andContactsCriminalTraining

  2. Payroll Check Direct Deposit Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysicsParticipantsPartnersC.Payroll Check Direct

  3. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    SciTech Connect (OSTI)

    Shih, Chunghao [ORNL] [ORNL; Katoh, Yutai [ORNL] [ORNL; Snead, Lance Lewis [ORNL] [ORNL; Steinbeck, John [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  4. Irradiation of commercial, high-Tc superconducting tape for potential fusion applications: electromagnetic transport properties

    SciTech Connect (OSTI)

    Aytug, Tolga [ORNL; Gapud, Albert A. [University of South Alabama, Mobile; List III, Frederick Alyious [ORNL; Leonard, Keith J [ORNL; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Zhang, Yanwen [ORNL; Greenwood, N T [University of South Alabama, Mobile; Alexander, J A [University of South Alabama, Mobile; Khan, A [University of South Alabama, Mobile

    2015-01-01T23:59:59.000Z

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  5. Urologic robots and future directions

    E-Print Network [OSTI]

    Mozer, Pierre; Stoianovici, Dan; 10.1097/MOU.0b013e32831cc1ba

    2008-01-01T23:59:59.000Z

    PURPOSE OF REVIEW: Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. RECENT FINDINGS: Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. SUMMARY: The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-use...

  6. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  7. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  8. Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa

    SciTech Connect (OSTI)

    Baek, Jong-Hyuk [KAERI] [KAERI; Byun, Thak Sang [ORNL] [ORNL; Maloy, S [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

    2014-01-01T23:59:59.000Z

    The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

  9. SUBTHRESHOLD DISPLACEMENT DAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATION

    E-Print Network [OSTI]

    Drosd, R.

    2010-01-01T23:59:59.000Z

    DAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATIONDAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATIONby irradiating copper-aluminum alloys at high tempera­ tures

  10. The second and third NGNP advanced gas reactor fuel irradiation experiments

    SciTech Connect (OSTI)

    Grover, S. B.; Petti, D. A. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

    2012-07-01T23:59:59.000Z

    The United States Dept. of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is currently scheduled to irradiate a total of five low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The irradiations are being accomplished to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas cooled reactors. The experiments will each consist of at least six separate capsules, and will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The effluent sweep gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The second experiment (AGR-2) started irradiation in June 2010, and the third and fourth experiments have been combined into a single larger irradiation (AGR-3/4) that is currently being assembled. The design and status of the second through fourth experiments as well as the irradiation results of the second experiment to date are discussed. (authors)

  11. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar Irradiance And Power Output Variability In November 2009, UC Merced deployed a SunPower PV system provided with single axis tracking

  12. Accumulation and Recovery of Disorder in Au2+-Irradiated Cd2Nb2O7...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the disorder has been observed below room temperature. Citation: Jiang W, WJ Weber, and LA Boatner.2005."Accumulation and Recovery of Disorder in Au2+-Irradiated...

  13. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01T23:59:59.000Z

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  14. Effect of {gamma}-irradiation on strength of concrete for nuclear-safety structures

    SciTech Connect (OSTI)

    Vodak, F. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Trtik, K. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Sopko, V. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Kapickova, O. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Demo, P. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic)]. E-mail: demo@fzu.cz

    2005-07-01T23:59:59.000Z

    Concrete applied for construction of nuclear power plant (NPP) Temelin (Czech Republic) has been exposed to {gamma}-irradiation up to dose 6x10{sup 5} Gy. Depending on the level of irradiation, changes in strength, porous structure and phase composition of the concrete have been studied. It is found that irradiation lowers both the strength of concrete (about 10%) and volume (resp. surface) of porous space. On the other hand, {gamma}-irradiation increases the ratio of calcite, CaCO{sub 3}, in the concrete. Observed effects are discussed with respect to safety of NPPs.

  15. all-sky solar irradiance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations...

  16. Testicular damage and regeneration in rats following low-level gamma irradiation

    E-Print Network [OSTI]

    Maxwell, Wesley Howard

    1974-01-01T23:59:59.000Z

    of these animals were examined using several recognized histological procedures. The sequential damage and recovezy of the germinal epithelium was s'tudied for S4 days post-irradiation. The lower dose rate (7 R/hr) resulted in temporari. ly arresting meiotic...- ation of the germinal epithelium of rats irradiated with 7 R/hr was seen by 84 days post-irradiation. However, this same time iv. was not sufficient for total recovery of the rats irradiated to a total dose of 1000 R, at 14 R/hr. ACKNOWLEDGEMENT...

  17. alpha-particles microbeam irradiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

  18. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    114 Solar Irradiance And Power Output Variabilitytechniques for solar power output with no exogenous inputs.and their effect on solar power output. For large scale

  19. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    SciTech Connect (OSTI)

    Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10T23:59:59.000Z

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

  20. Supine Craniospinal Irradiation Setup with Two Spine Fields

    SciTech Connect (OSTI)

    Liu, Arthur K. [University of Colorado Denver, Department of Radiation Oncology, Aurora, Colorado (United States)], E-mail: arthur.liu@uchsc.edu; Thornton, Dale; Backus, Jennifer; Dzingle, Wayne; Stoehr, Scott; Newman, Francis [University of Colorado Denver, Department of Radiation Oncology, Aurora, Colorado (United States)

    2009-10-01T23:59:59.000Z

    Craniospinal irradiation is an integral part of treatment for a number of cancers. Typically, patients are positioned prone, which allows visualization of field matches. However, a supine position allows better airway access for patients requiring anesthesia, and is more comfortable for patients. One potential difficulty with supine positioning occurs when the patient is tall and requires matching 2 spine fields. We describe a technique to match the spine fields using light fields on the bottom of the treatment table, and verified the approach on a phantom. The accuracy of the technique is demonstrated for the first 4 patients, with the majority of field gaps and overlaps below our clinical tolerance of 2 mm.

  1. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23T23:59:59.000Z

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  2. Gamma irradiation effects on the biodegradation of lignin

    E-Print Network [OSTI]

    Krysinski, Thomas Leon

    1966-01-01T23:59:59.000Z

    4/ X / 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 Wavelength in microns 8. 0 9. 0 28 CHAPTER VI RESULTS AND CONCLUSIONS A commercia I CLS was irradiated in a dry state to various total dose levels of Co-60 gamma rays. The effects on the structure... structure of lignin and lignin derivatives, some alteration in the structure of these compounds may be necessary before any of the above treatment processes can yield a higher reduction in the residual lignin content. For many years the effects of gamma...

  3. A Search for Channel Deformation in Irradiated Vanadium Tensile Specimens

    SciTech Connect (OSTI)

    Gelles, David S.; Toloczko, Mychailo B.; Kurtz, Richard J.

    2010-02-26T23:59:59.000Z

    A miniature tensile specimen of V-4Cr-4Ti which had be irradiated in the 17J test at 425°C to 3.7 dpa was mechanically polished, deformed to 3.9% strain at room temperature, and examined by scanning and transmission electron microscopy in order to look for evidence of channel deformation. It was found that uniform deformation can occur without channel deformation, but evidence for channeling was found with channels appearing most prominently after the onset of necking. The channeling occurs on wavy planes with large variations in localized deformation from channel to channel.

  4. Toward Understanding Dynamic Annealing Processes in Irradiated Ceramics

    E-Print Network [OSTI]

    Myers, Michael

    2013-03-04T23:59:59.000Z

    values (given in the legend in units of 1012 cm?2 s?1), and (c) with a pulsed beam with different values of toff (given in the legend in units of 10?3 s) and all the other parameters fixed (fluence = 2.4 ? 1014 cm?2, ton = 1 ms, and Fon = 1.2 ? 1013... ions does not render ZnO amorphous at RT. Ion-beam-produced disorder has been intensively investigated in ZnO [2?12]. For a wide range of irradiation conditions, the level of stable post-implantation disorder in the ZnO crystal bulk depends...

  5. The effects of alpha particle irradiation on stainless steel

    E-Print Network [OSTI]

    Shipp, John Douglas

    1999-01-01T23:59:59.000Z

    and an approximation based on the first year's fluence. . . . . . . . . 17 CHAPTER I INTRODUCTION The storage of Weapons Grade Plutonium (WGPu) pits has prompted this study of the effects of alpha particle irradiation on stainless steel. Previous studies of alpha... and properties of WGPu. ISOTOPE Pu-239 Pu-240 P0-241 Density* Crystal Structure* ATOMIC ABD. (/o) 94. 0 5. 8 0. 2 15. 7 g/cm' BCC 'Note: The density and crystal structure of elemental plutonium is 19. 7 g/cm' and FCC, respectively...

  6. Low Dose Irradiation Facility | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - CenterLinksLow Dose Irradiation Facility

  7. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | NationalCurriculum IntroductionInvestor14,566Irradiation

  8. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIron is the KeyIrradiation Effects

  9. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIron is the KeyIrradiation

  10. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIron is theIrradiation Effects on

  11. Ion heating dynamics in solid buried layer targets irradiated by ultra-short intense laser pulses

    E-Print Network [OSTI]

    Huang, Lingen; Kluge, Thomas; Lei, Anle; Yu, Wei; Cowan, Thomas E

    2013-01-01T23:59:59.000Z

    We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD2-Al-CD2 sandwich target geometry. We find enhanced deuteron ion heating in a layer compressed by the expanding aluminium layer. A pressure gradient created at the Al-CD2 interface pushes this layer of deuteron ions towards the outer regions of the target. During its passage through the target, deuteron ions are constantly injected into this layer. Our simulations suggest that the directed collective outward motion of the layer is converted into thermal motion inside the layer, leading to deuteron temperatures higher than those found in the rest of the target. This enhanced heating can already be observed at laser pulse durations as low as 100 femtoseconds. Thus, detailed experimental surveys at repetition rates of several ten laser shots per minute are in reach at current high-power laser systems, which would allow for pr...

  12. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    SciTech Connect (OSTI)

    Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M. [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420 (United States)

    2013-02-07T23:59:59.000Z

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

  13. Direct synthesis of magnesium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Kennewick, WA); Severa, Godwin (Honolulu, HI); Jensen, Craig M. (Kailua, HI)

    2012-04-03T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  14. Direct synthesis of calcium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Dublin, CA); Majzoub, Eric H. (Pleasanton, CA)

    2009-10-27T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  15. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Baraban, Larysa; Makarov, Denys; Leiderer, Paul; Erbe, Artur

    2008-01-01T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  16. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Larysa Baraban; Christian Kreidler; Denys Makarov; Paul Leiderer; Artur Erbe

    2008-07-10T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  17. Direct laser initiation of PETN

    SciTech Connect (OSTI)

    Early, J. W. (James W.); Kennedy, J. E. (James E.)

    2001-01-01T23:59:59.000Z

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  18. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01T23:59:59.000Z

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  19. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  20. Preliminary Comparison of Reaction Rate theory and Object Kinetic Monte Carlo Simulations of Defect Cluster Dynamics under Irradiation

    SciTech Connect (OSTI)

    Stoller, Roger E [ORNL; Golubov, Stanislav I [ORNL; Becquart, C. S. [Universite de Lille; Domain, C. [EDF R& D, Clamart, France

    2006-09-01T23:59:59.000Z

    The multiscale modeling scheme encompasses models from the atomistic to the continuum scale. Phenomena at the mesoscale are typically simulated using reaction rate theory (RT), Monte Carlo (MC), or phase field models. These mesoscale models are appropriate for application to problems that involve intermediate length scales ( m to >mm), and timescales from diffusion (~ s) to long-term microstructural evolution (~years). Phenomena at this scale have the most direct impact on mechanical properties in structural materials of interest to nuclear energy systems, and are also the most accessible to direct comparison between the results of simulations and experiments. Recent advances in computational power have substantially expanded the range of application for MC models. Although the RT and MC models can be used simulate the same phenomena, many of the details are handled quite differently in the two approaches. A direct comparison of the RT and MC descriptions has been made in the domain of point defect cluster dynamics modeling, which is relevant to both the nucleation and evolution of radiation-induced defect structures. The relative merits and limitations of the two approaches are discussed, and the predictions of the two approaches are compared for specific irradiation conditions.

  1. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    SciTech Connect (OSTI)

    Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

    1996-06-01T23:59:59.000Z

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

  2. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    SciTech Connect (OSTI)

    Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

    1997-05-01T23:59:59.000Z

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

  3. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01T23:59:59.000Z

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  4. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  5. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01T23:59:59.000Z

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  6. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; Darrell Knudson; John Crepeau; S. Curtis Wilkins

    2009-04-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions. This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.

  7. The effect of neutron irradiation on silicon carbide fibers

    SciTech Connect (OSTI)

    Newsome, G.A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-01-01T23:59:59.000Z

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon{trademark} CG, Tyranno, Hi-Nicalon{trademark}, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers.

  8. ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES

    SciTech Connect (OSTI)

    Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

    2012-12-10T23:59:59.000Z

    Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

  9. Irradiation testing of a niobium-molybdenum developmental thermocouple

    SciTech Connect (OSTI)

    Knight, R.C.; Greenslade, D.L.

    1991-10-01T23:59:59.000Z

    A need exists for a radiation-resistant thermocouple capable of monitoring temperatures in excess of the limits of the chromel/alumel system. Tungsten/rhenium and platinum/rhodium thermocouples have sufficient temperature capability but have proven to be unstable because of irradiation-induced decalibration. The niobium/molybdenum system is believed to hold great potential for nuclear applications at temperatures up to 2000 K. However, the fragility of pure niobium and fabrication problems with niobium/molybdenum alloys have limited development of this system. Utilizing the Fast Flux Test Facility, a developmental thermocouple with a thermoelement pair consisting of a pure molybdenum and a niobium-1%zirconium alloy wire was irradiated fro 7200 hours at a temperature of 1070 K. The thermocouple performed flawlessly for the duration of the experiment and exhibited stability comparable to a companion chromel/alumel unit. A second thermocouple, operating at 1375 K, is currently being employed to monitor a fusion materials experiment in the Fast Flux Test Facility. This experiment, also scheduled for 7200 hours, will serve to further evaluate the potential of the niobium-1%zirconium/molybdenum thermoelement system. 7 refs., 7 figs.

  10. Janus Experiments: Data from Mouse Irradiation Experiments 1972 - 1989

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Janus Experiments, carried out at Argonne National Laboratory from 1972 to 1989 and supported by grants from the US Department of Energy, investigated the effects of neutron and gamma radiation on mouse tissues primarily from B6CF1 mice. 49,000 mice were irradiated: Death records were recorded for 42,000 mice; gross pathologies were recorded for 39,000 mice; and paraffin embedded tissues were preserved for most mice. Mouse record details type and source of radiation [gamma, neutrons]; dose and dose rate [including life span irradiation]; type and presence/absence of radioprotector treatment; tissue/animal morphology and pathology. Protracted low dose rate treatments, short term higher dose rate treatments, variable dose rates with a same total dose, etc. in some cases in conjunction with radioprotectors, were administered. Normal tissues, tumors, metastases were preserved. Standard tissues saved were : lung, liver, spleen, kidney, heart, any with gross lesions (including mammary glands, Harderian gland with eye, adrenal gland, gut, ovaries or testes, brain and pituitary, bone). Data are searchable and specimens can be obtained by request.

  11. Simulation of Electron-Beam Irradiation of Skin Tissue Model

    SciTech Connect (OSTI)

    Miller, John H.; Suleiman, Atef; Chrisler, William B.; Sowa, Marianne B.

    2011-01-03T23:59:59.000Z

    Monte Carlo simulation of electrons stopping in liquid water was used to model the penetration and dose distribution of electron beams incident on the full-thickness EpiDermTM skin model (MatTek, Ashland, VA). This 3D tissue model has a fully developed basement membrane separating an epidermal layer of keratinocytes in various stages of differentiation from a dermal layer of fibroblast embedded in collagen. The simulations were motivated by a desire to selectively expose the epidermal layer to low linear-energy-transfer (LET) radiation in the presence of a non-irradiated dermal layer. Using the variable energy electron microbeam at the Pacific Northwest National Laboratory (PNNL) as a model of device characteristics and irradiation geometry, we find that at the highest beam energy available (90 keV), the estimated 90th percentile of penetration remains in the epidermal layer. To investigate the depth-dose distribution, we calculated lineal energy spectra for 10um thick layers near the 10th, 50th, and 90th percentile of penetration by the 90 keV electron beam. Biphasic spectra showed an increasing component of "stoppers" with increasing depth. Despite changes in the lineal energy spectra, the main effect on dose deposition with increasing depth is the screening effect of tissue above the layer of interest.

  12. West Virginia Direct Loan Program (West Virginia)

    Broader source: Energy.gov [DOE]

    The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

  13. Packing Directed Joins Aaron Michael Williams

    E-Print Network [OSTI]

    Williams, Aaron

    that the conjecture does hold for directed graphs with directed paths from every source to every sink. Schrijver [13 a mathematician. Bad decisions kept me out the game." "Rock over London, Rock on Chicago!" iv #12;Contents 1

  14. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-31T23:59:59.000Z

    This Notice extends 15 Office of Security and Emergency Operation directives that have expired or will expire until December 31, 2001. This Notice will remain in effect until its expiration date or until new/revised directives are published. The following statement will be added to the summary of the extended directives-DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  15. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film. Direct Electrochemistry and Electrocatalysis of Myoglobin...

  16. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  17. Strategic Directions for Hydrogen Delivery Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the Strategic Directions for Hydrogen Delivery Workshop held May 7-8, 2003 in Washington, DC. Author: Energetics

  18. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  19. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  20. DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY

    E-Print Network [OSTI]

    DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Compiled by Greta E. Marlatt Dudley Knox Library://www.nps.edu/Library/Research%20Tools/Bibliographies/index.html #12;DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Complied INTENTIONALLY LEFT BLANK #12;4 Table of Contents DIRECTED ENERGY WEAPONS GENERAL

  1. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02T23:59:59.000Z

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  2. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25T23:59:59.000Z

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  3. Irradiation requirements of Nb3Sn based SC magnets electrical insulation

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed

  4. Characterization and In-Situ Ion-Irradiation of MA957 ODS Steel Djamel Kaoumi1

    E-Print Network [OSTI]

    Motta, Arthur T.

    Characterization and In-Situ Ion-Irradiation of MA957 ODS Steel Djamel Kaoumi1 , Arthur Motta1 Laboratory, Argonne, IL 060493, USA INTRODUCTION Oxide dispersion strengthened (ODS) Ferritic. EXPERIMENT Material Characterization Prior to Irradiation MA957 ODS alloy (Fe­14Cr­1Ti­0.3Mo­0.25Y2O3

  5. PublishedbyManeyPublishing(c)IOMCommunicationsLtd Influence of UV irradiation and ozone on

    E-Print Network [OSTI]

    PublishedbyManeyPublishing(c)IOMCommunicationsLtd Influence of UV irradiation and ozone. Kelly*1 The corrosion of Ag in an atmosphere of ozone and humidity with or without irradiation corrosion product to chloride in the reduction solution. The presence of both ozone and UV radiation

  6. Neutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate thin films

    E-Print Network [OSTI]

    Ferreira, Paulo J.

    changes.1 Damage accumulates when fast neutrons undergo scattering collisions with atomic nuclei resultingNeutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate://scitation.aip.org/termsconditions. Downloaded to ] IP: 146.6.84.63 On: Wed, 23 Oct 2013 17:34:29 #12;Neutron irradiation effects on domain wall

  7. P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS

    E-Print Network [OSTI]

    Heinemann, Detlev

    P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS A. Hammer, D project SATELLIGHT an attempt is made to use satellite methods to derive daylight and solar irradiance). In daylighting applications, knowledge of the lumi- nance distribution of the sky is of primary concern. Thus

  8. Irradiated Esophageal Cells are Protected from Radiation-Induced Recombination by MnSOD Gene Therapy

    E-Print Network [OSTI]

    Engelward, Bevin

    Irradiated Esophageal Cells are Protected from Radiation-Induced Recombination by MnSOD Gene. Irradiated Esophageal Cells are Protected from Radiation- Induced Recombination by MnSOD Gene Therapy. Radiat,a Bevin Engelward,b Michael Epperlya and Joel S. Greenbergera,1 a Departments of Radiation Oncology

  9. channelling investigation of the behaviour of urania under low-energy ion irradiation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    comportement du dioxyde d'uranium irradi´e avec des ions de basse ´energie Directeur de th`ese: Fr before they realize what they can really achieve. His vision on science always motivates me to explore images. He taught me how to polish a sample especially a so fragile material like uranium dioxide

  10. Data-Driven Model for Solar Irradiation Based on Satellite Observations

    E-Print Network [OSTI]

    Anitescu, Mihai

    available at any solar energy production plant. Mathematically, these techniques fall into the categoryData-Driven Model for Solar Irradiation Based on Satellite Observations Ilias Bilionisa , Emil M a data-driven model for solar irradiation based on satellite ob- servations. The model yields

  11. Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation

    E-Print Network [OSTI]

    New Mexico, University of

    Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation Nathan J. Withers are reported. Optical degradation is evaluated by tracking the dependence of photoluminescence intensity on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20

  12. Functionally grading the shape memory response in NiTi films: Laser irradiation

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Functionally grading the shape memory response in NiTi films: Laser irradiation A. J. Birnbaum, G://jap.aip.org/about/rights_and_permissions #12;Functionally grading the shape memory response in NiTi films: Laser irradiation A. J. Birnbaum,a G and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film

  13. 20th century changes in surface solar irradiance in simulations and observations

    E-Print Network [OSTI]

    20th century changes in surface solar irradiance in simulations and observations A. Romanou,1 B December 2006; accepted 5 February 2007; published 8 March 2007. [1] The amount of solar irradiance reaching the surface is a key parameter in the hydrological and energy cycles of the Earth's climate. We

  14. 2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for

    E-Print Network [OSTI]

    Recanati, Catherine

    the operating of the solar plant, the same actors along with operators and maintenance companies may need2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases explores the possibilities provided by satellite-based surface solar irradiation databases

  15. Incident and in situ irradiance in Lakes Cadagno and Lucerne: A comparison of methods and models

    E-Print Network [OSTI]

    Sommaruga, Ruben

    Incident and in situ irradiance in Lakes Cadagno and Lucerne: A comparison of methods and models Key words: Lake Lucerne, Lake Cadagno, PAR, UV-A, UV-B, irradiance regime, radiative transfer models) at the field stations Kastanienbaum at Lake Lucerne (434 m a.s.l.) and Piora at Lake Cadagno (1923 m a

  16. Irradiation and Potassium Sorbate Compared as Preservation Treatments for Atlantic Cod, Gadus morhua

    E-Print Network [OSTI]

    Irradiation and Potassium Sorbate Compared as Preservation Treatments for Atlantic Cod, Gadus for seafood applications pending approval by the U.S. Food and Drug Administration (FDA). Various chemicals of these two seafood preserva- tion methods (irradiation vs. sorbate ABSTRACT-Treatments offresh Atlantic cod

  17. EFFECT OF EXCIMER LASER IRRADIATION OF BIODEGRADABLE POLYMER ON ITS CHEMICAL BONDING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    EFFECT OF EXCIMER LASER IRRADIATION OF BIODEGRADABLE POLYMER ON ITS CHEMICAL BONDING Paper M1306 profile is favorable for surface treatment. The effects of excimer laser irradiation on the surface to their biocompatibility and biodegradability. Being biodegradable, poly lactic acid (PLA) is used in food packaging

  18. Principal Investigator: Guerrero, Thomas TITLE: Oral antisense oligonucleotides to mitigate GI crypt survival post-irradiation

    E-Print Network [OSTI]

    Warren, Joe

    GI crypt survival post-irradiation A. SPECIFIC AIMS Gastrointestinal (GI) injury is a major cause and contributor of death after whole-body irradiation (Jarrett 1999; NCRP 2001), agents to mitigate the effects of antisense oligonucleotide drugs. Isis Pharmaceuticals was the first to secure Food and Drug Administration

  19. mock fish before in irradiation studies in which we either embedded the inoculum evenly throughout

    E-Print Network [OSTI]

    mock fish before in irradiation studies in which we either embedded the inoculum evenly throughout., AND J. D. KAYLOR. 1977. Variations in the microbial log reduction curves of irradiated cod fillets. The effectiveness of EDTA as a fish preserva- tive. J. Milk Food Technol. 30:277-2B3. WINARINO, F. G., C. R. STUMBO

  20. Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C

    E-Print Network [OSTI]

    Han, Weizhong

    The irradiation damage behaviors of single crystal (SC), coarse-grained (CG), and nanograined (NG) copper (Cu) films were investigated under Helium (He) ion implantation at 450 °C with different ion fluences. In irradiated ...

  1. Response of 9Cr-ODS Steel to Proton Irradiation at 400 °C

    SciTech Connect (OSTI)

    Jianchao He; Farong Wan; Kumar Sridharan; Todd R. Allen; A. Certain; Y. Q. Wu

    2014-09-01T23:59:59.000Z

    The stability of Y–Ti–O nanoclusters, dislocation structure, and grain boundary segregation in 9Cr-ODS steels has been investigated following proton irradiation at 400 °C with damage levels up to 3.7 dpa. A slight coarsening and a decrease in number density of nanoclusters were observed as a result of irradiation. The composition of nanoclusters was also observed to change with a slight increase of Y and Cr concentration in the nanoclusters following irradiation. Size, density, and composition of the nanoclusters were investigated as a function of nanocluster size, specifically classified to three groups. In addition to the changes in nanoclusters, dislocation loops were observed after irradiation. Finally, radiation-induced enrichment of Cr and depletion of W were observed at grain boundaries after irradiation.

  2. Irradiation effects on base metal and welds of 9Cr-1Mo (EM10) martensitic steel

    SciTech Connect (OSTI)

    Alamo, A.; Seran, J.L.; Rabouille, O.; Brachet, J.C.; Maillard, A.; Touron, H.; Royer, J. [CEA Saclay, Gif-sur-Yvette (France)

    1996-12-31T23:59:59.000Z

    9Cr martensitic steels are being developed for core components (wrapper tubes) of fast breeder reactors as well as for fusion reactor structures. Here, the effects of fast neutron irradiation on the mechanical behavior of base metal and welds of 9Cr-1Mo (EM10) martensitic steel have been studied. Two types of weldments have been produced by TIG and electron beam techniques. Half of samples have been post-weld heat treated to produce a stress-relieved structure. The irradiation has been conducted in the Phenix reactor to doses of 63--65 dpa in the temperature range 450--459 C. The characterization of the welds, before and after irradiation, includes metallographic observations, hardness measurements, tensile and Charpy tests. It is shown that the mechanical properties of the welds after irradiation are in general similar to the characteristics obtained on the base metal, which is little affected by neutron irradiation.

  3. Direct Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirectDirectDirect

  4. Pb+ irradiation of synthetic zircon (ZrSiO4): Infrared spectroscopic investigation

    SciTech Connect (OSTI)

    Zhang, Ming [University of Cambridge; Boatner, Lynn A [ORNL; Salje, Ekhard K.H. [University of Cambridge; Honda, Shin-ichi [ORNL; Ewing, Rodney C. [University of Michigan

    2008-01-01T23:59:59.000Z

    The structural variations of synthetic zircon (ZrSiO{sub 4}) single crystals irradiated at room temperature by 280 keV Pb{sup +} ions (with fluences up to 1 x 10{sup 15} ions/cm{sup 2}) were investigated using infrared (IR) spectroscopy. Like metamict zircon whose crystal structure is damaged and amorphized by naturally occurring {alpha}-decay events, the Pb{sup +}-irradiated zircon crystals show a dramatic decrease in reflectivity. However, no significant decrease in wavenumbers of the stretching vibrations of SiO{sub 4} tetrahedra in zircon was detected. The Pb{sup +}-implanted zircon exhibits new IR bands, indicating irradiation-induced new vibrations or domains, clusters or phases in addition to SiO{sub 2} and ZrO{sub 2}. IR features consistent with those of Pb silicates (with a divalent state, i.e., Pb{sup 2+}) are also found in the irradiated sample. This finding implies that some of the radiogenic Pb in natural zircon might not actually reside in the zircon lattice or in ZrSiO{sub 4} phases, but form new local domains or clusters. Infrared bands of OH-stretching vibrations were also detected in the irradiated synthetic zircon, which was originally free from OH features prior to the irradiation. These results indicate that H can easily diffuse into the irradiated layer or into irradiated-induced phases to form OH or and hydrous species after the irradiated material is damaged. The type and content of hydrous species vary with irradiation fluences.

  5. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    SciTech Connect (OSTI)

    Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

    2012-04-01T23:59:59.000Z

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  6. Standard practice for dosimetry in electron beam and X-Ray (Bremsstrahlung) irradiation facilities for food processing

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2005-01-01T23:59:59.000Z

    Standard practice for dosimetry in electron beam and X-Ray (Bremsstrahlung) irradiation facilities for food processing

  7. Rolling-circle replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    SciTech Connect (OSTI)

    Shavitt, O.; Livneh, Z.

    1989-06-01T23:59:59.000Z

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers.

  8. Impact of electron irradiation on electron holographic potentiometry

    SciTech Connect (OSTI)

    Park, J. B.; Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Berger, D. [Technische Universität Berlin, Zentraleinrichtung für Elektronenmikroskopie, Strae des 17. Juni 135, 10623 Berlin (Germany); Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Koslow, I.; Kneissl, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2014-09-01T23:59:59.000Z

    While electron holography in the transmission electron microscope offers the possibility to measure maps of the electrostatic potential of semiconductors down to nanometer dimensions, these measurements are known to underestimate the absolute value of the potential, especially in GaN. We have varied the dose rates of electron irradiation over several orders of magnitude and observed strong variations of the holographically detected voltages. Overall, the results indicate that the electron beam generates electrical currents within the specimens primarily by the photovoltaic effect and due to secondary electron emission. These currents have to be considered for a quantitative interpretation of electron holographic measurements, as their negligence contributes to large parts in the observed discrepancy between the measured and expected potential values in GaN.

  9. Radiation effects on microstructures and properties of irradiated materials

    SciTech Connect (OSTI)

    Mansur, L.K.

    1996-12-01T23:59:59.000Z

    Development of structural materials to withstand aggressive radiation environments has been carried out on an international scale over the past four decades. Major radiation-induced changes in properties include swelling, creep and embrittlement. The basic work, stimulated by technology, to understand and control these phenomena, has been heavily oriented toward the evolution of microstructures and their effects on properties. Microstructural research has coupled analyses by high resolution techniques with theoretical modeling to describe and predict microscopic features and the resulting macroscopic properties. A short summary is presented of key physical considerations that drive these changes during irradiation. Such processes begin with displacement cascades, and lead to property changes through the diffusion and clustering of defects.

  10. Irradiation behavior of pressurized water reactor control materials

    SciTech Connect (OSTI)

    Demars, R.V.; Dideon, C.G.; Pardue, E.B.S.; Pavinich, W.A.; Thornton, T.A.; Tulenko, J.S.

    1983-07-01T23:59:59.000Z

    Postirradiation examinations have been conducted as part of an extensive Babcock and Wilcox (B and W) program in reactor control materials performance characterization. These examinations of fixed burnable poison rods and control rods confirmed operational performance and extended the material behavior data base for irradiated absorber materials used in B and W-designed pressurized water reactors. These examinations included visual, dimensional, and destructive examinations. They were conducted at B and W's Lynchburg Research Center hot cell facilities on Ag-In-Cd control rods. Al/sub 2/O/sub 3/-B/sub 4/C burnable poison rods, and B/sub 4/C control rods. The visual and dimensional exams revealed no discernible exterior damage on any of these components. Destructive examinations provided data on absorber swelling, gas release, and open porosity.

  11. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    SciTech Connect (OSTI)

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01T23:59:59.000Z

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  12. Fission-product release from irradiated LWR fuel

    SciTech Connect (OSTI)

    Osborne, M.F.; Lorenz, R.A.; Wichner, R.P.

    1982-01-01T23:59:59.000Z

    An experimental investigation of fission product release from commercial LWR fuel under accident conditions is being conducted at Oak Ridge National Laboratory (ORNL). This work, which is sponsored by the US Nuclear Regulatory Commission (NRC), is an extension of earlier experiments up to 1600/sup 0/C and is designed to obtain the experimental data needed to reliably assess the consequences of accidents for fuel temperatures up to melting. The objectives of this program are (1) to determine fission product release rates from fully-irradiated commercial LWR fuel in high-temperature steam; (2) to collect and characterize the aerosol released; (3) to identify the chemical forms of the released material; (4) to correlate the results with related experimental data and develop a consistent source term model; and (5) to aid in the interpretation of tests using simulated LWR fuel.

  13. Issues for Bringing Electron Beam Irradiators On-Line

    SciTech Connect (OSTI)

    Kaye, R.J.; Turman, B.N.

    1999-04-20T23:59:59.000Z

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  14. Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    defects in a Cr target irradiated by a short, 200 fs, laser pulse is investigated in computer simulations to the irradiated surface. The stacking faults are unstable and disappear shortly after the laser-induced tensile produced by the short pulse laser irradiation, can result in the confinement of the laser- induced

  15. High swelling rates observed in neutron-irradiated V-Cr and V-Si binary alloys

    SciTech Connect (OSTI)

    Garner, F.A.; Gelles, D.S. (Pacific Northwest Lab., Richland, WA (United States)); Takahashi, H.; Ohnuki, S.; Kinoshita, H. (Hokkaido Univ., Sapporo (Japan)); Loomis, B.A. (Argonne National Lab., IL (United States))

    1991-11-01T23:59:59.000Z

    Additions of 5 to 14 wt% chromium to vanadium lead to very large swelling rates during neutron irradiation of the binary alloys, with swelling increasing strongly at higher irradiation temperatures. Addition of 2 wt% silicon to vanadium also leads to very large swelling rates but swelling decreases with increasing irradiation temperature. Addition of 1 wt% zirconium does not yield high swelling rates, however.

  16. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28T23:59:59.000Z

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600°C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288°C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500°C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75°C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360°C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288°C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

  17. DIRECT LIQUEFACTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The eighth bench scale test of POC program, Run PB-08, was successfully completed from August 8 to August 26, 1997. A total of five operating conditions were tested aiming at evaluating the reactivity of different pyrolysis oils in liquefaction of a Wyoming sub-bituminous coal (Black Thunder coal). For the first time, water soluble promoters were incorporated into the iron-based GelCat to improve the dispersion of the promoter metals in the feed blend. The concentration of the active metals, Mo and Fe, was 100 and 1000 ppm of moisture-free coal, respectively. Black Thunder coal used in this run was the same batch as tested in HTI?s Run POC-02. Similar to Runs PB-01 through 7, this run employed two back mixed slurry reactors, an interstage gas/slurry separator and a direct-coupled hydrotreater. In addition to the hot vapor from the second stage separator, the first stage separator overhead liquid was also fed to the hydrotreater, which was packed with Criterion C-411 hydrotreating catalyst. Pyrolysis oil was produced off-line from a pyrolysis unit acquired from University of Wyoming. Solids rejection was achieved by purging out pressure filter solid. The recycle solvents consisted of O-6 separator bottoms and pressure filter liquid (PFL). The Run PB-08 proceeded very smoothly without any interruptions. Coal conversion consistently above 90W% was achieved. High resid conversion and distillate yield have been obtained from co-processing of coal and 343°C+ (650°F+) pyrolysis oil. Light gas (C1-C3 ) yield was minimized and hydrogen consumption was reduced due to the introduction of pyrolysis oil, compared with conventional coal-derived solvent. Catalytic activity was improved by incorporating a promoter metal into the iron-based GelCat. It seemed that lowering the first stage temperature to 435°C might increase the hydrogenation function of the promoter metal. In comparison with previous coal-waste coprocessing run (PB-06), significant improvements in the process performance were achieved due to catalyst modification and integration of pyrolysis technique into liquefaction.

  18. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01T23:59:59.000Z

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  19. Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment

    SciTech Connect (OSTI)

    Donna Post Guillen

    2009-09-01T23:59:59.000Z

    This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.

  20. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    SciTech Connect (OSTI)

    G. Borges

    2006-01-31T23:59:59.000Z

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

  1. Cross-sectional TEM Observations of Si Wafers Irradiated With Gas Cluster Ion Beams

    SciTech Connect (OSTI)

    Isogai, Hiromichi; Toyoda, Eiji; Senda, Takeshi; Izunome, Koji [Processing Technology, Silicon Business Group, TOSHIBA CERAMICS CO., LTD. 6-861-5 Higashikou, Seiroumachi Kitakanbaragun, Niigata (Japan); Kashima, Kazuhiko [New Buisness Creation, TOSHIBA CERAMICS CO., LTD. 30 Soya, Hadano City, Kanagawa (Japan); Toyoda, Noriaki; Yamada, Isao [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo (Japan)

    2006-11-13T23:59:59.000Z

    Irradiation by a Gas Cluster Ion Beam (GCIB) is a promising technique for precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. In this study, the near surface structure of a Si (100) wafer was analyzed after GCIB irradiation, using a cross-sectional transmission electron microscope (XTEM). Ar-GCIB, that physically sputters Si atoms, and SF6-GCIB, that chemically etches the Si surface, were both used. After GCIB irradiation, high temperature annealing was performed in a hydrogen atmosphere. From XTEM observations, the surface of a virgin Si wafer exhibited completely crystalline structures, but the existence of an amorphous Si and a transition layer was confirmed after GCIB irradiation. The thickness of amorphous layer was about 30 nm after Ar-GCIB irradiation at 30 keV. However, a very thin (< 5 nm) layer was observed when 30 keV SF6-GCIB was used. The thickness of the transition layer was the same both Ar and SF6-GCIB irradiation. After annealing, the amorphous Si and transition layers had disappeared, and a complete crystalline structure with an atomically smooth surface was observed.

  2. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    SciTech Connect (OSTI)

    Pankov, Alexey S.; Ojovan, Michael I. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Batyukhnova, Olga G. [International Education Training Centre, SUE SIA 'Radon', The 7-th Rostovsky Lane 2/14, Moscow, 119121 (Russian Federation); Lee, William E. [Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ (United Kingdom)

    2007-07-01T23:59:59.000Z

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under {gamma}-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  3. Oxide shell reduction and magnetic property changes in core-shell Fe nanoclusters under ion irradiation

    SciTech Connect (OSTI)

    Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Jiang, Weilin [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); McCloy, John S. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164 (United States)

    2014-05-07T23:59:59.000Z

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe{sub 3}O{sub 4}/Fe{sub 3}N. These NC films were deposited on Si substrates to thickness of ?0.5 ?m using a NC deposition system. The films were irradiated at room temperature with 5.5?MeV Si{sup 2+} ions to ion fluences of 10{sup 15} and 10{sup 16} ions/cm{sup 2}. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization or growth of Fe{sub 3}N. The film retained its Fe-core and its ferromagnetic properties after irradiation. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe{sub 3}O{sub 4} and FeO?+?Fe{sub 3}N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  4. The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection

    SciTech Connect (OSTI)

    Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei, Taiwan 251 (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-06-15T23:59:59.000Z

    The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f{sub c}= 5.0 Multiplication-Sign 10{sup 12} ions/cm{sup 2}) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp{sup 2}-bonded phase ({pi}{sup *}-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

  5. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    SciTech Connect (OSTI)

    Lott, R.G.; Freyer, P.D. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior.

  6. Tensile and Charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect (OSTI)

    Klueh, R.L.; Alexander, D.J.

    1996-10-01T23:59:59.000Z

    Tensile tests were conducted on 8 reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on steels irradiated to 26-29 dpa. Irradiation was in Fast Flux Test Facility at 365 C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15- 17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20,000 h at 365 C. Thermal aging had little effect on tensile properties or ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in upper-shelf energy (USE). After 7 dpa, strength increased (hardened) and then remained relatively unchanged through 26-29 dpa (ie, strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness (increased DBTT, decreased USE) remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels had the most irradiation resistance.

  7. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01T23:59:59.000Z

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  8. Does Three-Dimensional External Beam Partial Breast Irradiation Spare Lung Tissue Compared With Standard Whole Breast Irradiation?

    SciTech Connect (OSTI)

    Jain, Anudh K. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Vallow, Laura A. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States)], E-mail: vallow.laura@mayo.edu; Gale, Ashley A.; Buskirk, Steven J. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States)

    2009-09-01T23:59:59.000Z

    Purpose: To determine whether three-dimensional conformal partial breast irradiation (3D-PBI) spares lung tissue compared with whole breast irradiation (WBI) and to include the biologically equivalent dose (BED) to account for differences in fractionation. Methods and Materials: Radiotherapy treatment plans were devised for WBI and 3D-PBI for 25 consecutive patients randomized on the NSABP B-39/RTOG 0413 protocol at Mayo Clinic in Jacksonville, Florida. WBI plans were for 50 Gy in 25 fractions, and 3D-PBI plans were for 38.5 Gy in 10 fractions. Volume of ipsilateral lung receiving 2.5, 5, 10, and 20 Gy was recorded for each plan. The linear quadratic equation was used to calculate the corresponding dose delivered in 10 fractions and volume of ipsilateral lung receiving these doses was recorded for PBI plans. Ipsilateral mean lung dose was recorded for each plan and converted to BED. Results: There was a significant decrease in volume of lung receiving 20 Gy with PBI (median, 4.4% vs. 7.5%; p < 0.001), which remained after correction for fractionation (median, 5.6% vs. 7.5%; p = 0.02). Mean lung dose was lower for PBI (median, 3.46 Gy vs. 4.57 Gy; p = 0.005), although this difference lost significance after conversion to BED (median, 3.86 Gy{sub 3} vs 4.85 Gy{sub 3}, p = 0.07). PBI plans exposed more lung to 2.5 and 5 Gy. Conclusions: 3D-PBI exposes greater volumes of lung tissue to low doses of radiation and spares the amount of lung receiving higher doses when compared with WBI.

  9. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  10. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    SciTech Connect (OSTI)

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01T23:59:59.000Z

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  11. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect (OSTI)

    Klueh, R.L.; Alexander, D.J.

    1997-06-01T23:59:59.000Z

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab.

  12. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01T23:59:59.000Z

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  13. Estimating Methods - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct costs, and other estimating considerations are discussed in this chapter. g4301-1chp15.pdf -- PDF Document, 28 KB Writer: John Makepeace Subjects: Administration Management...

  14. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  15. Direct Observation of Aggregative Nanoparticle Growth: Kinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  18. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  19. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov (indexed) [DOE]

    300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

  20. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems