Sample records for direct heating equipment

  1. EA-1774: Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the adoption of amended energy conservation standards as required by The Energy Policy and Conservation Act, as amended) for direct heating equipment,...

  2. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  3. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  4. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  5. Reduce Radiation Losses from Heating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  6. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01T23:59:59.000Z

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  7. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  8. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  9. EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type

    E-Print Network [OSTI]

    EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

  10. Right-Size Heating and Cooling Equipment

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment size for heating and cooling to improve comfort and reduce costs, maintenance, and energy use.

  11. DOE Publishes Notice of Proposed Rulemaking for Direct Heating...

    Broader source: Energy.gov (indexed) [DOE]

    Register version of the notice. Find product information about current standards and test procedures for direct heating equipment and pool heaters; recent product updates;...

  12. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentBIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLINGESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

  13. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentFuel and Technology Choice in Home Heating and Cooling," LBLTHE MARKET FOR HOME HEATING AND COOLING EQUIPMENT* David

  14. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  15. Heat exchanger for power generation equipment

    DOE Patents [OSTI]

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14T23:59:59.000Z

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  16. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  17. Recovering the Heat Dissipated by the Digital Switching Equipment

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01T23:59:59.000Z

    irrespective of its usage capa city. For example, a digital switcher dissipa tes heat at a rate of 25 to 35 watts per sq. ft. as compared to 3 or 4 watts per sq. ft. for the electro mechanical switching equipment. This type of equipment is being installed... to the atrrosphere by the cool ing plant servicing the digital switcher, to heat other parts of the building. Energy prices have not, in the past, diffe red considerably from the average inflation rate of the economy as a whole. This situation crea ted little...

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  19. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  20. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  1. Workshop on Condensing Heating and Water Heating Equipment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong,Women @Join the ChallengeSharingDepartment

  2. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect (OSTI)

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01T23:59:59.000Z

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

  3. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPump Systems Heat Pump Systemsof

  4. Geothermal direct heat applications program summary

    SciTech Connect (OSTI)

    None

    1982-08-01T23:59:59.000Z

    In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of geothermal direct use applications.

  5. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  6. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  7. Progress in direct heat applications projects

    SciTech Connect (OSTI)

    Childs, F.W.; Jones, K.W.; Nelson, L.B.; Strawn, J.A.; Tucker, M.K.

    1980-09-09T23:59:59.000Z

    The development of hydrothermal energy for direct heat applications is being aided by twenty-two demonstration projects that are funded on a cost-sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of geothermal heat in the United States. Twelve of these projects are administered by the DOE-Idaho Operations Office with technical support from EG and G Idaho, Inc. Engineering and economic data for these projects are summarized in this paper. The data and experience being generated by these projects will be an important basis for future geothermal direct use projects.

  8. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Energy Savers [EERE]

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under...

  9. Geothermal direct heat applications program summary

    SciTech Connect (OSTI)

    None

    1980-04-01T23:59:59.000Z

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  11. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  12. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01T23:59:59.000Z

    American Society of Heating, Refrigeration, and AirFOR PASSIVE DIRECT GAIN HEATING SYSTEMS Paul W. Sullivan,FOR PASSIVE DIRECT GAIN HEATING SYSTEMS* Paul W. Sullivan,t

  13. HPBA Comments NOPR on Energy Conservation Standards for Direct...

    Office of Environmental Management (EM)

    HPBA Comments NOPR on Energy Conservation Standards for Direct Heating Equipment HPBA Comments NOPR on Energy Conservation Standards for Direct Heating Equipment The Hearth, Patio...

  14. Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use-acceptable refrigerants. Whether involving design of specific new products or refriger- ants to which the entire industry

  15. Directional drilling and equipment for hot granite wells

    SciTech Connect (OSTI)

    Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

    1981-01-01T23:59:59.000Z

    The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

  16. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  17. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  18. Direct-Contact Process Water Heating

    E-Print Network [OSTI]

    Hamann, M. R.

    2006-01-01T23:59:59.000Z

    to the manufacturing processes utilizing direct steam injection from process boilers to a hot water storage tank. Although the boiler plant was in fair operating condition, the boilers were over 30 years old and had measured seasonal heating efficiencies of 60... water heater. Since the new system was better matched to the plant load, energy savings occurred as a result of the new systems reduced input capacity and higher efficiency. This project, which can be duplicated in other industries with facility...

  19. Droplet structure interactions in direct containment heating

    SciTech Connect (OSTI)

    Baker, L. Jr.; Pilch, M.; Tarbell, W.W.

    1988-01-01T23:59:59.000Z

    Direct containment heating (DCH) in light water reactors can occur during severe accidents that involve the meltout of the bottom of the reactor vessel while the vessel is at high pressure. The ejected core debris can heat and pressurize the atmosphere and challenge the integrity of containment. The results of recent large-scale direct containment heating tests in the Surtsey facility at the Sandia National Laboratories have demonstrated the importance of the interactions of core debris with structure. In the DCH-2, -3, and -4 tests, > 50% of the simulated core debris injected into the large vessel was found frozen to the ceiling or sidewalls. This finding led to questions concerning the detailed physics of debris/structure interactions. It was expected that vigorous splashing assisted by gravity would have limited the quantity of frozen debris to much smaller amounts. Accordingly, a search of the technical literature was undertaken in the areas of liquid drop interactions with surfaces and with other liquid drops to provide the bases for modeling. The available information was reviewed for applicability to the DCH process. The results of the search and review led to a correlation for the splashing process and a preliminary explanation of the DCH test results in the form of illustrative models.

  20. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation Losses from Heating

  1. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEastHomesHeatSite |of

  2. Corium droplet size in direct containment heating

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1986-01-01T23:59:59.000Z

    For those light water reactor severe accident sequences in which molten corium is postulated to melt through the reactor pressure vessel (RPV) lower head at elevated primary system pressure and enter the cavity region beneath the vessel, the flow of corium from the RPV will be followed by a sustained high-pressure blowdown of steam and hydrogen through the breach remaining in the vessel. The gases flowing from the breached vessel constitute a source of driving forces capable of dispersing corium from the cavity as droplets into other parts of the containment. An important issue is the fraction of the dispersed corium thermal and chemical energy which may be transferred directly to the containment atmosphere. An important determinant of the extent of direct containment heating is the size of the corium droplets which are dispersed into the containment atmosphere. An analysis is presented here of the mass median droplet sizes in the Argonne National Laboratory CWTI-13 and CWTI-14 reactor material-direct containment heating experiments as well as the Sandia National Laboratory SPIT-19 thermite test. The observed median droplet diameters are shown to be in good agreement with a correlation for the drop size in ordinary annular flow, and a droplet size prediction is carried out for the reactor system.

  3. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)| Departmentof EnergyLampsforand

  4. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect (OSTI)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30T23:59:59.000Z

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  5. Directional drilling equipment and techniques for deep hot granite wells

    SciTech Connect (OSTI)

    Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

    1980-01-01T23:59:59.000Z

    Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

  6. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-31T23:59:59.000Z

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  7. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    the indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  8. Geothermal Direct Heat Applications Program Summary

    SciTech Connect (OSTI)

    None

    1981-09-25T23:59:59.000Z

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district heating, space heating, grain drying and aquaculture.

  9. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  11. Results from the DCH-1 (Direct Containment Heating) experiment. [Pressurized melt ejection and direct containment heating

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.; Ross, J.E.; Oliver, M.S.; Lucero, D.A.; Kerley, T.E.; Arellano, F.E.; Gomez, R.D.

    1987-05-01T23:59:59.000Z

    The DCH-1 (Direct Containment Heating) test was the first experiment performed in the Surtsey Direct Heating Test Facility. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale model of the Zion reactor cavity. The melt was produced by a metallothermic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris propagated directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the molten material was ejected from the caviity as a cloud of particles and aerosol. The dispersed debris caused a rapid pressurization of the 103-m/sup 3/ chamber atmosphere. Peak pressure from the six transducers ranged from 0.09 to 0.13 MPa (13.4 to 19.4 psig) above the initial value in the chamber. Posttest debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a lognormal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a subsantial portion (2 to 16%) of the ejected mass was in the size range less than 10 m aerodynamic equivalent diameter.

  12. Variation of direct-heat geothermal economics with project size

    SciTech Connect (OSTI)

    Struhsacker, D.W.

    1981-10-01T23:59:59.000Z

    A comparision of the economics of large, intermediate, and small direct-heat goethermal projects is presented. An attempt is made to define which types of direct-heat geothermal projects are most cost-efficient and produce the most energy for the least amount of money. The potential energy contribution of fourteen different sizes of direct heat projects is used to determine the number of projects of a given size required to produce 1 Quad of energy. The cost of developing 1 Quad of direct-heat geothermal energy from large, intermediate, and small projects is compared to the cost of 1 Quad of energy from conventional sources. The engineering and resource parameters controlling project size are defined. The development of large-scale projects is stressed as the way in which direct-heat geothermal energy can make the most significant contribution to the nation's energy requirements. (MJF)

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect (OSTI)

    Lienau, P.

    1996-11-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  14. Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems

    SciTech Connect (OSTI)

    DeVault, Robert C [ORNL; Hudson II, Carl Randy [ORNL

    2006-01-01T23:59:59.000Z

    Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

  15. 2014-10-10 Issuance: Energy Conservation Standards for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding energy conservation standards for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  16. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    SciTech Connect (OSTI)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25T23:59:59.000Z

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  17. Direct numerical simulations of convective heat transfer

    SciTech Connect (OSTI)

    Pointel, G.; Acharya, S.; Sharma, C. [Louisiana State Univ., Baton Rouge, LA (United States). Mechanical Engineering Dept.

    1996-11-01T23:59:59.000Z

    This paper deals with the development of a direct numerical simulation (DNS) code for solving the incompressible Navier-Stokes equation using higher order finite difference schemes. The time dependent Navier Stokes equation has been discretized using semi-implicit second order time splitting scheme, which requires the solution of pressure Poisson equation. For this purpose a Galerkin Fourier transform in the spanwise direction and a matrix diagonalization technique is used. The convection terms are formulated in non-conservative form on a collocated grid. A fifth order upwind biased scheme is used for this purpose. Diffusion terms are differenced using a sixth order central difference scheme. The algorithm is implemented on the MasPar MP-1, a Single Instruction Multiple Data computer where efficient data parallelization is used to get DNS results. The code has been used to get results for smooth channel flow at Re{sub {tau}} = 180. Results are now being obtained for the energy equation and for flow in a periodic ribbed channel.

  18. Energy Recovery By Direct Contact Gas-Liquid Heat Exchange

    E-Print Network [OSTI]

    Fair, J. R.; Bravo, J. L.

    ENERGY RECOVERY BY DIRECf CONTACf GAS-LIQUID HEAT EXCHANGE James R. Fair and Jose L. Bravo Separations Research Program The University o/Texas at Austin Austin, Texas ABSIRACf Energy from hot gas discharge streams can be recovered... by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer...

  19. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling

    SciTech Connect (OSTI)

    Martinho, Graca [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pires, Ana, E-mail: ana.lourenco.pires@gmail.com [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Saraiva, Luanha; Ribeiro, Rita [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2012-06-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The article shows WEEE plastics characterization from a recycling unit in Portugal. Black-Right-Pointing-Pointer The recycling unit has low machinery, with hand sorting of plastics elements. Black-Right-Pointing-Pointer Most common polymers are PS, ABS, PC/ABS, HIPS and PP. Black-Right-Pointing-Pointer Most plastics found have no identification of plastic type or flame retardants. Black-Right-Pointing-Pointer Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  20. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30T23:59:59.000Z

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

  1. Direct containment heating: Surtsey test results and models

    SciTech Connect (OSTI)

    Tarbell, W.W.; Nichols, R.T.; Pilch, M.; Brockmann, J.E.; Powers, D.A.

    1988-08-01T23:59:59.000Z

    Direct containment heating is one of the processes that can lead to containment rupture early in a severe reactor accident. The origins and the current understanding of this process are surveyed. Three issues arise in connection with direct containment heating -- threats to containment integrity posed by transfer of energy to the containment atmosphere from dispersed core debris or the generation of hydrogen by reactions of core debris with steam, and the formation of radioactive aerosols available for release from the plant should containment integrity be lost. The two threats to containment integrity have different characteristics. Energy exchange between core debris and the atmosphere depends on the long range dispersal of the debris and the atmosphere depends on the long range dispersal of the debris and can be affected by interactions of the debris with structures and co-dispersed water. Hydrogen generation is dependent on the detailed flows of debris and steam within and near the reactor cavity. Results of four experiments in the Surtsey test facility to explore energy exchange with the atmosphere are presented. These experiments suggest ''single particle'' models of direct heating over-predict the threat to containment integrity and that debris/structure interactions can enhance heating of the containment atmosphere. Results of test to establish the low pressure cut-off to direct heating are reported. 23 refs., 2 figs., 1 tab.

  2. Adjudication of a contract for the Heating and Ventilation Equipment for the North Experimental Area of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1975-01-01T23:59:59.000Z

    Adjudication of a contract for the Heating and Ventilation Equipment for the North Experimental Area of the 300 GeV Accelerator

  3. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    air choice elec forced air choice heat pump choice elecwith ac elecforced air, with ac heat pump elec baseboard,central air conditioning (including heat pumps), and eight

  4. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    SciTech Connect (OSTI)

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01T23:59:59.000Z

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

  5. Thermal analysis of directly buried conduit heat-distribution systems

    SciTech Connect (OSTI)

    Fang, J.B.

    1990-08-01T23:59:59.000Z

    The calculations of heat losses and temperature field for directly buried conduit heat distribution systems were performed using the finite element computer programs. The finite element analysis solved two-dimensional, steady-state heat transfer problems involving two insulated parallel pipes encased in the same conduit casing and in separate casings, and the surrounding earth. Descriptions of the theoretical basis, computational scheme, and the data input and outputs of the developed computer programs are presented. Numerical calculations were carried out for predicting the temperature distributions within the existing high temperature hot water distribution system and two insulated pipes covered in the same metallic conduit and the surrounding soil. The predicted results generally agree with the experimental data obtained at the test site.

  6. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    the choice of space heating technology is depen- dent on thefor Fuel and Technology Choice in Home Heating and Cooling,"fuel or technology for residential space heating. The

  7. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models: aggregated by SMSA market share central cooling all gas space heat all oilmodels: aggregated by regions market share central cooling all gas space heat all oil

  8. Geothermal Direct-Heat Utilization Assistance - Final Report

    SciTech Connect (OSTI)

    J. W. Lund

    1999-07-14T23:59:59.000Z

    The Geo-Heat Center provided (1) direct-use technical assistance, (2) research, and (3) information dissemination on geothermal energy over an 8 1/2 year period. The center published a quarterly bulletin, developed a web site and maintained a technical library. Staff members made 145 oral presentations, published 170 technical papers, completed 28 applied research projects, and gave 108 tours of local geothermal installations to 500 persons.

  9. Direct containment heating models in the CONTAIN code

    SciTech Connect (OSTI)

    Washington, K.E.; Williams, D.C.

    1995-08-01T23:59:59.000Z

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  10. Hawaiian direct-heat grants encourage geothermal creativity

    SciTech Connect (OSTI)

    Beck, A.G. (Dept. of Business and Economic Development, Hilo, HI (USA))

    1988-12-01T23:59:59.000Z

    The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of using geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.

  11. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  12. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    SciTech Connect (OSTI)

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06T23:59:59.000Z

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  13. additional direct heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suman Kumar Banik 2007-11-02 31 PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP Energy Storage, Conversion and Utilization Websites Summary: General Electric...

  14. Transient fission gas release during direct electrical heating experiments

    SciTech Connect (OSTI)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.

    1983-12-01T23:59:59.000Z

    The gas release behavior of irradiated EBR-II fuel was observed to be dependent on several factors: the presence of cladding, the retained gas content, and the energy absorbed. Fuel that retained in excess of 16 to 17 ..mu..moles/g of fission gas underwent spallation as the cladding melted and released 22 to 45% of its retained gas, while fuel with retained gas levels below approx. 15 to 16 ..mu..moles/g released less than approx. 9% of its gas as the cladding melted. During subsequent direct electrical heating ramps, fuel that did not spall released an additional quantity of gas (up to 4 ..mu..moles/g), depending on the energy absorbed.

  15. Market penetration analysis for direct heat geothermal energy applications

    SciTech Connect (OSTI)

    Thomas, R.J.; Nelson, R.A.

    1981-06-01T23:59:59.000Z

    This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

  16. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  17. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  18. R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment

    SciTech Connect (OSTI)

    Chiu, S.A.; Zaloudek, F.R.

    1987-03-01T23:59:59.000Z

    The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

  19. Direct Refrigeration from Heat Recovery Using 2-Stage Absorption Chillers

    E-Print Network [OSTI]

    Hufford, P. E.

    1983-01-01T23:59:59.000Z

    Although the cost of some fossil fuels has moderated, the importance of energy conservation by heat recovery has not diminished. The application of waste heat generated steam to produce chilled water is not new. However, there is a newly developed...

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  1. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in whichGCHP program was developed by a previous MS student to optimize the design of hybrid systems. The current design changes when actual yearly weather data are used and develop a means to increase the optimization

  2. Environmental Assessment: geothermal direct heat project, Marlin, Texas

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

  3. Preliminary calculations on direct heating of a containment atmosphere by airborne core debris

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.W.

    1986-07-01T23:59:59.000Z

    Direct heating of the containment atmosphere by airborne core debris may be a significant source of containment pressurization in those accident sequences where the primary system is still at high pressure when the RPV fails. Vigorous blowdown of the primary system may result in nearly complete relocation of core debris out of the reactor cavity and possibly into the containment atmosphere where the liberation of thermal and chemical energy can directly heat the atmosphere. Rate independent and rate dependent models are developed and exercised parametrically to quantify the possible magnitude and rate of containment pressurization from direct heating. The possible mitigative effects of airborne water and subcompartment heating are also investigated.

  4. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  5. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19T23:59:59.000Z

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  6. Direct Gas Fired Air Heating For 40 to 50% Fuel Savings

    E-Print Network [OSTI]

    Searcy, J. A.

    1979-01-01T23:59:59.000Z

    between direct and indirect gas fired unit heaters show why there is a minimum of 40% fuel savings. The application of direct gas-fired make-up heaters for industrial space heating as well as the safety of the direct gas fired systems, a simple...

  7. Information technology equipment cooling system

    SciTech Connect (OSTI)

    Schultz, Mark D.

    2014-06-10T23:59:59.000Z

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  8. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  9. Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange

    E-Print Network [OSTI]

    Thorn, W. F.

    is mainly for general interest and to illustrate the analysis methodology. Two key parameters from Table A-I are needed for a heat recovery analysis. First is the weight of water vapor in the flue gas per unit weight of fuel burned and the second... ........_ ...._ ...._ ...._ ...._ ...._ ....--1 200 260 300 360 400 460 600 660 HEAT RECOVERY UNIT INLET FLUE GAS TEMPERATURE, OF FJpre 2. Efficiency Variation With Heat Recovery Unit Inlet Flue Gas Temperature 428 ESL-IE-86-06-69 Proceedings from the Eighth Annual Industrial Energy...

  10. Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange 

    E-Print Network [OSTI]

    Thorn, W. F.

    1986-01-01T23:59:59.000Z

    Similarly, the recuperator can be interfaced with the auxiliary tank, heat exchanger and boiler controls in a In considering multiple boiler installations, the CON variety of ways. Several recuperators, individually installed X recuperator may...

  11. Energy Recovery By Direct Contact Gas-Liquid Heat Exchange 

    E-Print Network [OSTI]

    Fair, J. R.; Bravo, J. L.

    1988-01-01T23:59:59.000Z

    by Fair (1912a, I972b). An empirical relationship, based on published data as well as on the use of the analogy is: 0.015 CO. 82 L 0.47 hfl= (15) Z 0.38 sp where Zsp is the height of a single zone of spray contac . While data on the liquid phase... liquid s sensible T total LITERATURE CITED Bharathan, D., Parsons, B. K., Althof, J. A., "Direct-Contac Condensers for Open-Cycle OTEC Applications", Solar Energy Research Institute Report SERlfTR-252 3108, Golden, Colorado, May 1988. 268 ESL...

  12. Stability analysis of direct contact heat exchangers subject to system perturbations. Final report, Task 2

    SciTech Connect (OSTI)

    Jacobs, H.R.

    1985-01-01T23:59:59.000Z

    This report includes a project summary, copies of two papers resulting from the work and the Ph.D. Dissertation of Dr. Mehdi Golafshani entitled, ''Stability of a Direct Contact Heat Exchanger''. Specifically, the work deals with the operational stability of a spray column type heat exchanger subject to disturbances typical of those which can occur for geothermal applications. A computer program was developed to solve the one-dimensional transient two-phase flow problem and it was applied to the design of a spray column. The operation and design of the East Mesa 500kW/sub e/ direct contactor was assessed. It is shown that the heat transfer is governed by the internal resistance of the dispersed phase. In fact, the performance is well-represented by diffusion of heat within the drops. 5 refs.

  13. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22T23:59:59.000Z

    MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

  14. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect (OSTI)

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01T23:59:59.000Z

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  15. A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver

    SciTech Connect (OSTI)

    Andreano, Anita; Brace, Christopher L., E-mail: clbrace@wisc.edu [University of Wisconsin, Department of Radiology (United States)

    2013-04-15T23:59:59.000Z

    This study was designed to determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. A total of 60 heating cycles (20 s at 90 W) were performed in normal, RF-ablated, and microwave-ablated liver tissues (n = 10 RF and n = 10 microwave in each tissue type). Heating cycles were performed using a 480-kHz generator and 3-cm cooled-tip electrode (RF) or a 2.45-GHz generator and 14-gauge monopole (microwave) and were designed to isolate direct heating from each energy type. Tissue temperatures were measured by using fiberoptic thermosensors 5, 10, and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates, and maximal temperatures were compared using mixed effects regression models. No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P > 0.05). Microwaves produced significantly more rapid heating than RF at 5, 10, and 15 mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21, and 0.17 vs. 0.09 Degree-Sign C/s; P < 0.05); and at 5 and 10 mm in ablated tissues (2.3 {+-} 1.4 vs. 0.7 {+-} 0.3, 0.5 {+-} 0.3 vs. 0.2 {+-} 0 Degree-Sign C/s, P < 0.05). The radial depth of heating was {approx}5 mm greater for microwaves than RF. Direct heating obtained with 2.45-GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480-kHz RF energy.

  16. Materials Selection Considerations for Thermal Process Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

  17. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment

    SciTech Connect (OSTI)

    Kuntysh, V.B.; Fedotova, L.M.

    1983-01-01T23:59:59.000Z

    Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

  19. Direct nuclear heating measurements and analyses for structural materials induced by deuterium-tritium neutrons

    SciTech Connect (OSTI)

    Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1995-08-01T23:59:59.000Z

    Nuclear heat deposition rates in the structural components of a fusion reactor have been measured directly with a microcalorimeter incorporated with an intense deuterium-tritium (D- T) neutron source, the Fusion Neutronics Source (FNS) at the Japan Atomic Energy Research Institute (JAERI), under the framework of the JAERI/U.S. Department of Energy (U.S. DOE) collaborative program on fusion neutronics. Heat deposition rates at positions up to 200 mm of depth in a Type 304 stainless steel assembly bombarded with D-T neutrons were measured along with single probe experiments. The measured heating rates were compared with comprehensive calculations in order to verify the adequacy of the currently available database relevant to the nuclear heating. In general, calculations with data of JENDL-3 and ENDL-85 libraries gave good agreement with experiments for all single probe materials, whereas RMCCS, based on ENDF/B-V, suffered from unreasonable overestimation in the heating number. It was demonstrated that the nuclear/thermal coupled calculation is a powerful tool to analyze the time-dependent temperature change due to the heat transfer in the probe materials. The analysis for the Type 304 stainless steel assembly, based on JENDL-3, demonstrated that the calculation, in general, was in good agreement with the measurement up to 200 mm of depth along the central axis of the assembly. 31 refs., 16 figs., 4 tabs.

  20. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  1. Directed motion generated by heat bath nonlinearly driven by external noise

    E-Print Network [OSTI]

    Jyotipratim Ray Chaudhuri; Debashis Barik; Suman Kumar Banik

    2007-11-02T23:59:59.000Z

    Based on the system heat bath approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation we construct a Langevin equation with multiplicative noise and space dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase induced current as a consequence of state dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  2. Diurnal heat storage in direct-gain passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Neeper, D.A.

    1983-01-01T23:59:59.000Z

    This paper presents a simplified method for predicting temperature swings in direct-gain buildings. It is called the DHC method due to the use of a diurnal heat capacity (DHC). Diurnal heat capacity is a measure of the effective amount of heat stored during a sunny day and then released at night - the typical 24-hour diurnal cycle. This enables prediction of the maximum temperature swings experienced in the building and can be calculated using a single 24-hour harmonic. The advantage is that closed-form analytic solutions can be obtained for a variety of simple and layered-wall configurations. Higher harmonic components are accounted for by a correction factor. The method is suitable for us by hand or on a programmable calculator.

  3. Preliminary direct heat geothermal resource assessment of the Tennessee Valley region

    SciTech Connect (OSTI)

    Staub, W.P.

    1980-01-01T23:59:59.000Z

    A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

  4. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1990-05-01T23:59:59.000Z

    The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing fireside'' surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

  5. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1988-01-01T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  6. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  7. Direct containment heating and aerosol generation during high-pressure-melt expulsion experiments

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Washington, K.E.; Pilch, M.; Marx, K.D.

    1988-01-01T23:59:59.000Z

    Severe nuclear plant accidents can involve the degradation of the reactor core while the primary coolant system remains pressurized. Molten fuel reaching the lower head of the reactor pressure vessel (RPV) may attack and fail the instrument guide tube penetrations, allowing the tube to be expelled from the vessel. The resulting aperture allows the molten fuel to be ejected into the cavity, followed by the blowdown of the contents of the primary system (high-pressure-melt ejection). Entrainment of the core debris in the cavity by the blowdown gases may cause high-temperature fuel particles to be carried into the containment building. Energy exchange between the particles and the atmosphere may cause heating and pressurizing of the containment (direct containment heating (DCH)). The complex phenomena associated with direct containment heating accident sequences are not well understood. This work describes a series of four experiments that have been performed to study and quantify the processes involved. The data from the experiments are used to guide the development of computer models to describe the response of containments under accident conditions.

  8. Directly connected heat exchanger tube section and coolant-cooled structure

    DOE Patents [OSTI]

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01T23:59:59.000Z

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  9. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-06-01T23:59:59.000Z

    During this third quarter of Grant DE-FG22-86 PC 90756, we have obtained preliminary experimental results on the deposition behavior of submicron and supermicron solid particles (MgO, Al[sub 2]O[sub 3]) on a two-dimensional surface exposed to a high temperature/velocity particle laden'' atmospheric pressure jet. The uniform velocity ( plug flow'') jet, with temperatures up to about 1520 K, derives from a pressurized gaseous fuel microcombustion chamber (110 cc) equipped with a platinum guiding (exit) channel. Particles were generated by several methods (Berglund-Liu type aerosol generator, ultrasonic nebulizer, or syringe feeder with aerodynamic particle off-take) and were introduced into the combustion chamber with a carrier stream of nitrogen or air. Laser light scattering and reflectivity techniques were used for the study of particle deposition, supplemented by post-mortem microscopy on the exposed surface. We observed a linear deposition rate of submicron particles due to the thermophoretic mechanism (until the first layer was developed) under both high and low velocity conditions. On the contrary, supermicron particle deposits reach a steady-state, evidently due to a dynamic equilibrium between particle deposition and dislodging caused by the impacting particles. At several temperatures particle-free subsonic gas jets (up to 120 m/sec) were unable to remove the submicron particle layer.

  10. Research on thermophoretic and inertial aspects of the ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1986-12-01T23:59:59.000Z

    In support of the above mentioned objectives, we have initiated theoretical studies in the following three interrelated areas : (a) Interaction of inertial- and thermophoretic effects in well-defined laminar dusty-gas'' flows. (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron glue'' (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions.During the first three months of Grant DE-FG22-86 PC 90756, we have: (1) Designed and initiated construction of the microcombustor particle-laden jet facility described in Section 3.1. (2) Initiated theoretical studies of the interaction of inertial and thermophoretic effects, the role of simultaneous vapor arrival in determining particle sticking and erosion probabilities, and mass transport phenomena in deep tube banks.

  11. DCH-1: The first direct containment heating experiment in the SURTSEY Test Facility

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1986-01-01T23:59:59.000Z

    The DCH-1 test was the first experiment performed in the SURTSEY Direct Heating Test Facility. It was designed to provide the experimental data required to understand the phenomena associated with pressurized melt ejection and direct containment heating. The results will be to develop phenomenological models for large containment response codes. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale mockup of the Zion reactor cavity. The melt was produced by a metallothermitic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris would propagate directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the dispersed debris caused a rapid pressurization of the chamber atmosphere. Peak pressure from the six transducers ranged from 0.9 to 0.13 MPa (13.4 to 19.4 psig). The time interval from the start of debris ejection to pressure peak was two to three seconds. Post-test debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a log-normal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a substantial portion (approx. 5 to 29%) of the displaced mass was in the size range less than 10 ..mu..m.

  12. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01T23:59:59.000Z

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  13. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01T23:59:59.000Z

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  14. Effects of fiber direction on heat conduction in unidirectionally aligned fiber composites

    E-Print Network [OSTI]

    Havis, Clark Reagan

    1987-01-01T23:59:59.000Z

    Composites, " Journal of Applied Mechanics, Vol. 46, pp. 563-567. 44 APPENDIX A NOMENCI ATURE 2G A A d If k k?k, Iy kf km k?k, k? k?, y, k? kgs~ k~v~ kss i, m) B qs 9cai~ q~s S T W s&p~s /f 'y lF V Vf im r fiber spacing... of MASTER OF SCIENCE December 1987 Major Subject: Mechanical Engineering EFFECTS OF FIBER DIRECTION ON HEAT CONDUCTION IN UNIDIRECTIONALLY ALIGNED FIBER COMPOSITES A Thesis CLARK REAGAN HAVIS Approved as to style and content by: G. P. Peterson...

  15. Hydrothermal research and development assessment. Task Force report: projections for direct-heat applications

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Low and moderate temperature hydrothermal resources suitable for direct-heat applications have been identified in 37 states. The extent to which three resources might be used over the next 20 years were evaluated and the probable impact of Federal programs on hydrothermal resource utilization was assessed. The use types that comprise the bulk of the market were determined. Representative firms and municipalities were interviewed to determine their willingness to use hydrothermal energy, and to determine the investment decision criteria that would influence their actions. (MHR)

  16. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

  17. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-03-01T23:59:59.000Z

    In support of the above mentioned objectives, we are carrying out theoretical studies in the following three interrelated areas: (a) Interaction of inertial- and thermophoretic effects in well-defined laminar dusty-gas'' flows; (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron glue''; (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions. During this second quarter of Grant DE-FG22-86 PC 90756. we have: (1) done preliminary gas velocity and temperature calibrations of the micro-combustor exit gas flow jet and initiated the development of both a monodispersed droplet feed system and powder feed system to provide monodispersed particle laden jets covering a broad spectrum of particle sizes (ca. 0.5--50 m diameter); and, (2) demonstrated the ability of impacting supermicron particles to remove predeposited submicron particles on a platinum target, using real-time optical reflectivity methods. These preliminary experiments will be extended and discussed in our next Quarterly Technical Report.

  18. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1989-03-01T23:59:59.000Z

    Little is yet known (theoretically or experimentally) about the simultaneous effects of particle inertia, particle thermophoresis and high mass loading on the important engineering problem of predicting deposition rates from flowing dusty'' gases. For this reason, we investigate the motion of particles present at nonnegligible mass loading in a flowing nonisothermal gaseous medium and their deposition on strongly cooled or heated solid objects by examining the instructive case of steady axisymmetric dusty gas'' flow between two infinite disks: an inlet (porous) disk and the impermeable target'' disk -- a flow not unlike that encountered in recent seeded-flame experiments. Since this stagnation flow/geometry admits interesting self-similar solutions at all Reynolds numbers, we are able to predict laminar flow mass-, momentum- and energy-transfer rate coefficients over a wide range of particle mass loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic diffusivities, and gas Reynolds numbers. As a by-product, we illustrate the accuracy and possible improvement of our previous diffusion model'' for tightly coupled dusty gas systems. Moreover, we report new results illustrating the dependence of the important critical'' Stokes number (for incipient particle impaction) on particle mass loading and wall/gas temperature ratio for dust-laden gas motion towards overheated'' solid surfaces. The present formulation and insulating transport coefficients should not only be useful in explaining/predicting recent deposition rate trends in seeded'' flame experiments, but also highly mass-loaded systems of technological interest.

  19. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-03-01T23:59:59.000Z

    During the present reporting period, we have initiated work on (a) the interpretation of our recent data (see QTR5) on deposition rates under the simultaneous influence of inertia and thermophoresis, (b) the possible rate of particle photophoresis in environments characterized by high radiative heat loads. and (c) the influence of particle size distributions on total mass deposition rates. The fruits of these initiatives will be reported in subsequent quarterly technical reports. Here, we focus on our recent theoretical results in the important but previously uncharted area of the relations between particulate deposition mechanisms, deposit microstructure and deposit properties. Experimental verification of some of the most interesting predictions will be the subject of future HTCRE-Lab studies. Recent discussions with fouling engineers have convinced us that despite recent advances in our ability to predict particle deposition rates in convective-diffusion environments, the important connection between resulting deposit properties (effective thermal conductivity permeability, [hor ellipsis]) and deposition mechanism remain poorly understood and only scarcely studied. Accordingly, as part of this DOE-PETC program we have developed a discrete stochastic model to simulate particulate deposition processes resulting from a combination of deposition mechanisms.

  20. CONTAIN code analyses of direct containment heating (DCH) experiments: Model assessment and phenomenological interpretation

    SciTech Connect (OSTI)

    Williams, D.C.; Griffith, R.O.; Tadios, E.L.; Washington, K.E.

    1995-05-12T23:59:59.000Z

    Models for direct containment heating (DCH) in the CONTAIN code for severe accident analysis have been reviewed and a standard input prescription for their use has been defined. The code has been exercised against a large subset of the available DCH data base. Generally good agreement with the experimental results for containment pressurization ({Delta}P) and hydrogen generation has been obtained. Extensive sensitivity studies have been performed which permit assessment of many of the strengths and weaknesses of specific model features. These include models for debris transport and trapping, DCH heat transfer and chemistry, atmosphere-structure heat transfer, interactions between nonairborne debris and blowdown steam, potential effects of debris-water interactions, and hydrogen combustion under DCH conditions. Containment compartmentalization is an important DCH mitigator in the calculations, in agreement with experimental results. The CONTAIN model includes partially parametric treatments for some processes that are not well understood. The importance of the associated uncertainties depends upon the details of the DCH scenario being analyzed. Recommended sensitivity studies are summarized that allow the user to obtain a reasonable estimate of the uncertainties in the calculated results.

  1. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    SciTech Connect (OSTI)

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

  2. Conceptual design study for the HCRF direct contact heat exchanger modification

    SciTech Connect (OSTI)

    Wahl, E. F.

    1984-06-01T23:59:59.000Z

    The conceptual design of sieve trays for modifying the HCRF direct contact heat exchanger was developed as follows. The models of the prior work, EG&G subcontract No. K-7752, were extended and modified so the predicted heat transfer coincided with the experimental data of the 60 KW Raft River tests conducted by EG&G. Using these models, a hole diameter of 0.25 inches and a hole velocity of 1.3 ft/sec or greater was selected to accomplish the required heat transfer while minimizing mass transferred to the geothermal fluid. Using the above information, a conceptual design for a sieve tray column was developed. It was determined that the column should operate as a working fluid filled, working fluid dispersed column. This is accomplished by level control of the geothermal fluid below the bottom tray. The dimensions and configuration of the trays and downcomers, and the number of holes and their diameters is summarized in Wahl Company drawings 84144001 and 84144003 submitted with this report. The performance of this design is expected to be 12,000 lbs/hr of geothermal fluid for single component fluids and 11,800 to 12,000 lbs/hr for mixed fluids at a working fluid flow rate of 71% of the geothermal fluid flow rate. The flow rate limit of the geothermal fluid will vary from 9800 to 13,000 lbs/hr as the ratio varies from 83% to 62%.

  3. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect (OSTI)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01T23:59:59.000Z

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  4. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28T23:59:59.000Z

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The objectives associated with this goal were to (a) generate a solid base of technical, marketing, economic, and policy data, (b) develop energy, environmental, and economic targets, (c) more definitively assess opportunities and barriers, (d) accumulate knowledge and experience for defining direction for the next phase of development, and (e) promote learning and training of students.

  5. Research on direct containment heating and pressurized melt expulsion from the reactor coolant system

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Powers, D.A.

    1988-01-01T23:59:59.000Z

    The expulsion of high temperature core debris from the reactor cavity into the containment atmosphere has recently been identified as an important potential contributor to containment failure in the event of a severe accident. Experiments and analyses have shown that failure of the reactor vessel while the primary system is pressurized can result in the rapid discharge of molten core debris into the cavity. Gas from the blowdown of the coolant system may then entrain the debris as fine particulate that may be carried out of the cavity region. Containment loading can result from the combustion of hydrogen produced by the interaction of the debris with steam from the primary system and from thermal and chemical energy transferred from the debris to the atmosphere is directed towards identifying and quantifying the phenomena associated with the pressurized discharge of the core debris and the direct containment heating processes. Experiments are being performed to provide the information needed to develop phenomenological models for use in system level code predictions. Emphasis has been primarily on the use of scaled cavities (ranging from 1:10 to 1:50 linear scale) and the quantification of the extent of the material dispersed. Information has been obtained on the physics of the jet behavior, the entrainment of the debris, debris characteristics (e.g., size and number distributions), debris-gas heat transfer and chemistry, aerosol generation, and the influence of water. Models and codes are reviewed and discussed and representative calculations are presented.

  6. High pressure melt ejection and direct containment heating in ice condenser containments

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.W.; Carroll, D.E.; Tills, J.L.

    1986-01-01T23:59:59.000Z

    A response of a typical ice condenser containment to a high pressure melt dispersal accident has been studied. While ice beds may be effective in reducing the potential loading caused by direct heating of the containment atmosphere, analyses suggest two other modes of containment failure that have not been previously identified. Calculations with the CONTAIN code indicate that ejected core debris may interact with steam from the primary system, generating sufficient hydrogen to threaten containment integrity. Further, if the debris ejected into the cavity promptly fails the seal table, the dispersed material could enter the in-core instrument room and attack the containment liner. The timing of the failure of the seal table is highly dependent on the characteristics of the debris-to-steel energy transfer.

  7. Direct observation of resistive heating at graphene wrinkles and grain boundaries

    SciTech Connect (OSTI)

    Grosse, Kyle L. [University of Illinois Urbana-Champaign; Dorgan, Vincent E. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Estrada, David [University of Illinois at Urbana-Champaign, Urbana-Champaign; Wood, Joshua D. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Vlassiouk, Ivan V [ORNL; Eres, Gyula [ORNL; Lyding, Joseph W [University of Illinois at Urbana-Champaign, Urbana-Champaign; King, William P. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Pop, Eric [Stanford University

    2014-01-01T23:59:59.000Z

    We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8 150 X lm) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability of graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene.

  8. Progress in understanding of direct containment heating phenomena in pressurized light water reactors

    SciTech Connect (OSTI)

    Ginsberg, T.; Tutu, N.K.

    1988-01-01T23:59:59.000Z

    Progress is described in development of a mechanistic understanding of direct containment heating phemonena arising during high-pressure melt ejection accidents in pressurized water reactor systems. The experimental data base is discussed which forms the basis for current assessments of containment pressure response using current lumped-parameter containment analysis methods. The deficiencies in available methods and supporting data base required to describe major phenomena occurring in the reactor cavity, intermediate subcompartments and containment dome are highlighted. Code calculation results presented in the literature are cited which demonstrate that the progress in understanding of DCH phenomena has also resulted in current predictions of containment pressure loadings which are significantly lower than are predicted by idealized, thermodynamic equilibrium calculations. Current methods are, nonetheless, still predicting containment-threatening loadings for large participating melt masses under high-pressure ejection conditions. Recommendations for future research are discussed. 36 refs., 5 figs., 1 tab.

  9. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gordon, Keith C. (Berkeley, CA); Kippenham, Dean O. (Castro Valley, CA); Purgalis, Peter (San Francisco, CA); Moussa, David (San Francisco, CA); Williams, Malcom D. (Danville, CA); Wilde, Stephen B. (Pleasant Hill, CA); West, Mark W. (Albany, CA)

    1989-01-01T23:59:59.000Z

    A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

  10. The probability of containment failure by direct containment heating in surry

    SciTech Connect (OSTI)

    Pilch, M.M.; Allen, M.D.; Bergeron, K.D.; Tadios, E.L.; Stamps, D.W. [Sandia National Labs., Albuquerque, NM (United States); Spencer, B.W. [Argonne National Lab., IL (United States); Quick, K.S.; Knudson, D.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1995-05-01T23:59:59.000Z

    In a light-water reactor core melt accident, if the reactor pressure vessel (RPV) fails while the reactor coolant system (RCS) at high pressure, the expulsion of molten core debris may pressurize the reactor containment building (RCB) beyond its failure pressure. A failure in the bottom head of the RPV, followed by melt expulsion and blowdown of the RCS, will entrain molten core debris in the high-velocity steam blowdown gas. This chain of events is called a high-pressure melt ejection (HPME). Four mechanisms may cause a rapid increase in pressure and temperature in the reactor containment: (1) blowdown of the RCS, (2) efficient debris-to-gas heat transfer, (3) exothermic metal-steam and metal-oxygen reactions, and (4) hydrogen combustion. These processes, which lead to increased loads on the containment building, are collectively referred to as direct containment heating (DCH). It is necessary to understand factors that enhance or mitigate DCH because the pressure load imposed on the RCB may lead to early failure of the containment.

  11. DCH-2: Results from the second experiment performed in the Surtsey Direct Heating Test Facility

    SciTech Connect (OSTI)

    Tarbell, W.W.; Nichols, R.T.; Brockmann, J.E.; Ross, J.W.; Oliver, M.S.; Lucero, D.A.

    1988-01-01T23:59:59.000Z

    This test involved 80 kg of molten core debris simulant ejected under pressure into a 1:10 linear scale model of a reactor cavity. The apparatus was placed in the Surtsey Direct Heating Test Facility to allow direct measurement of the temperature and pressure rise of the contained atmosphere. The molten material was ejected from the cavity as a dense cloud of particles and gas. The dispersed debris caused a rapid pressurization of the 103-m/sup 3/ atmosphere. Peak pressures ranged from 0.22 to 0.31 MPa above the ambient level. Peak temperatures were from 759/sup 0/C to 1335/sup 0/C, with the highest values recorded near the top of the chamber. Much of the debris (approx.70%) was found adhered to the top and sides of the steel chamber. The pattern of the retained material suggested that the debris field propagated around the chamber following the contour of the vessel. Aerosol measurements indicated that approx.1% to approx.6.6% of the ejected mass was in the size range less than 10..mu..m aerodynamic diameter. 8 refs., 28 figs., 6 tabs.

  12. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOE Patents [OSTI]

    Tutu, Narinder K. (Manorville, NY); Ginsberg, Theodore (East Setauket, NY); Klages, John R. (Mattituck, NY)

    1991-01-01T23:59:59.000Z

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  13. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  14. Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines

    SciTech Connect (OSTI)

    Jacobs, H.R.

    1985-06-01T23:59:59.000Z

    This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

  15. The probability of containment failure by direct containment heating in Zion

    SciTech Connect (OSTI)

    Pilch, M.M. [Sandia National Labs., Albuquerque, NM (United States); Yan, H.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States)

    1994-12-01T23:59:59.000Z

    This report is the first step in the resolution of the Direct Containment Heating (DCH) issue for the Zion Nuclear Power Plant using the Risk Oriented Accident Analysis Methodology (ROAAM). This report includes the definition of a probabilistic framework that decomposes the DCH problem into three probability density functions that reflect the most uncertain initial conditions (UO{sub 2} mass, zirconium oxidation fraction, and steel mass). Uncertainties in the initial conditions are significant, but our quantification approach is based on establishing reasonable bounds that are not unnecessarily conservative. To this end, we also make use of the ROAAM ideas of enveloping scenarios and ``splintering.`` Two causal relations (CRs) are used in this framework: CR1 is a model that calculates the peak pressure in the containment as a function of the initial conditions, and CR2 is a model that returns the frequency of containment failure as a function of pressure within the containment. Uncertainty in CR1 is accounted for by the use of two independently developed phenomenological models, the Convection Limited Containment Heating (CLCH) model and the Two-Cell Equilibrium (TCE) model, and by probabilistically distributing the key parameter in both, which is the ratio of the melt entrainment time to the system blowdown time constant. The two phenomenological models have been compared with an extensive database including recent integral simulations at two different physical scales. The containment load distributions do not intersect the containment strength (fragility) curve in any significant way, resulting in containment failure probabilities less than 10{sup {minus}3} for all scenarios considered. Sensitivity analyses did not show any areas of large sensitivity.

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  17. MELCOR 1.8.2 Assessment: IET direct containment heating tests

    SciTech Connect (OSTI)

    Kmetyk, L.N.

    1993-10-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze several of the IET direct containment heating experiments done at 1:10 linear scale in the Surtsey test facility at Sandia and at 1:40 linear scale in the corium-water thermal interactions (CWTI) COREXIT test facility at Argonne National Laboratory. These MELCOR calculations were done as an open post-test study, with both the experimental data and CONTAIN results available to guide the selection of code input. Basecase MELCOR results are compared to test data in order to evaluate the new HPME DCH model recently added in MELCOR version 1.8.2. The effect of various user-input parameters in the HPME model, which define both the initial debris source and the subsequent debris interaction, were investigated in sensitivity studies. In addition, several other non-default input modelling changes involving other MELCOR code packages were required in our IET assessment analyses in order to reproduce the observed experiment behavior. Several calculations were done to identify whether any numeric effects exist in our DCH IET assessment analyses.

  18. Direct heat resource assessment: Phase II, year 1. Final report, February 1, 1979-January 31, 1980

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Kauahikaua, J.P.; Mattice, M.D.

    1980-02-01T23:59:59.000Z

    During 1979 reconnaissance field surveys were conducted on the islands of Hawaii, Maui, and Oahu with the objective of confirming groundwater chemical data and geophysical data compiled during the preliminary regional assessment of Phase I of the Direct Heat Resource Assessment Program. The exploration techniques applied include (1) groundwater chemistry, (2) mercury-radon surveys, (3) isotopic composition of groundwaters, (4) time domain electromagnetics, and (5) Schlumberger resistivity surveys. The results of these surveys can be classified as follows: (1) Hawaii: Kailua-Kona, strong geochemical anomalies; Kawaihae, strong geophysical anomalies, moderate to strong geochemical anomalies; Hualalai northwest rift, weak geochemical and moderate geophysical anomalies; South Point, moderate to weak geophysical anomalies; Hualalai southeast rift, weak geophysical anomalies; Keaau, weak geophysical and geochemical anomalies; (2) Maui: Haiku-Paia, strong geochemical anomalies; Olowalu-Ukamehame canyons, moderate to strong geochemical and geophysical anomalies; Lahaina, weak geochemical and geophysical anomalies; (3) Oahu: Lualualei, moderate to strong geochemical and geophysical anomalies; Waimanalo-Maunawili, insufficient data.

  19. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    SciTech Connect (OSTI)

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01T23:59:59.000Z

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  20. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credit

    Broader source: Energy.gov [DOE]

    This is a one-time credit from county property taxes on residential structures that use solar and geothermal energy equipment for heating and cooling and solar energy equipment for water heating...

  1. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    SciTech Connect (OSTI)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01T23:59:59.000Z

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  2. Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

  3. Direct nuclear heating measurements and analyses for plasma-facing materials

    SciTech Connect (OSTI)

    Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States); Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-08-01T23:59:59.000Z

    Experimental measurement of nuclear heating rates was carried out in a simulated D-T fusion neutron environment from 1989 through 1992 under the U.S. DOE/JAERI collaborative program at the Fusion Neutronics Source Facility. Small probes of materials were irradiated in close vicinity of a rotating target. A sophisticated microcalorimetric technique was developed for on-line measurements of local nuclear heating in a mixed neutron plus photon field. Measurements with probes of graphite, titanium, copper, zirconium, niobium, molybdenum, tin, tungsten, and lead are presented. These measurements have been analyzed using the three-dimensional Monte Carlo code MCNP and various heating number/kerma factor libraries. The ratio of calculated to experimental (C/E) heating rates shows a large deviation from 1 for all the materials except tungsten. For example, C/E`s for graphite range from 1.14 ({delta} = 10%) to 1.36 (10%) for various kerma factor libraries. Uncertainty estimates on total nuclear heating using a sensitivity approach are presented. Interestingly, C/E data for all libraries and materials can be consolidated to obtain a probability density distribution of C/E`s that very much resembles a Gaussian distribution centered at 1.04. The concept of `quality factor` is defined and elaborated so as to take cognizance of observed uncertainties on prediction of nuclear heating for all the nine materials. 45 refs., 69 figs., 9 tabs.

  4. Full-scale study of a building equipped with phase change material wallboards and a multi-layer rack latent heat thermal energy store system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -layer rack latent heat thermal energy store system Julien Borderon1 , Joseph Virgone2 , Richard Cantin1 installed as wallboard and as latent heat thermal energy storage system coupled with the ventilation system for the ventilation air is efficient. INTRODUCTION Nowadays, thermal energy storage systems are one way for reducing

  5. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  6. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  7. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  8. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Weather data handbook for HVAC and cooling equipment design

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Data included detailed tabulations of wet bulb temperature frequencies for the summer months, tabulations in multiple frequency for winter and summer conditions, various weather parameters useful in estimating performance for heat exchange equipment and other applications. Other data provided are: 12-month dry bulb temperatures and 12-month wet bulb temperatures vs relative humidity; combination of wet bulb temperatures, wind speed, and relative humidity; wind direction with high relative humidities; hourly observations for relative humidity 93% or greater; coincident high wet bulb and dry bulb temperature, seasonal cloud cover, and heat islands. (MHR)

  10. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

  11. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect (OSTI)

    Lienau, P.

    1993-06-01T23:59:59.000Z

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  12. michael smith ornlradioactive beams: equipment & techniques recoil separators

    E-Print Network [OSTI]

    michael smith ornlradioactive beams: equipment & techniques recoil separators approach! · directly Smith, Rolfs, Barnes NIMA306 (1991) 233 #12;michael smith ornlradioactive beams: equipment & techniques;michael smith ornlradioactive beams: equipment & techniques recoil separators proof of concept with 12C

  13. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01T23:59:59.000Z

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  14. CenterPoint Energy- Residential Gas Heating Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  15. Development of Direct-Use Projects: Preprint

    SciTech Connect (OSTI)

    Lund, J.

    2011-01-01T23:59:59.000Z

    A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid at elevated temperatures, which is capable of providing heat and/or cooling to buildings, greenhouses, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs of the user and characteristics of the resource in order to development a successful project. Each application is unique; guidelines are provided for the logical steps required to implement a project. Recommended temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture pond heating, and industrial applications. Guidelines are provided for selecting the necessary equipment for successfully implementing a direct-use project, including downhole pumps, piping, heat exchangers, and heat convectors. Additionally, the relationship between temperature, flow rate, and the use of heat exchangers to provide heat to a space with hot water or hot air is provided for a number of applications, with suggested 'rules of thumb'.

  16. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    SciTech Connect (OSTI)

    Farmer, J C

    2007-11-26T23:59:59.000Z

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  17. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Final technical report, September 1, 1986--April 30, 1990

    SciTech Connect (OSTI)

    Rosner, D.E.

    1990-05-01T23:59:59.000Z

    The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing ``fireside`` surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

  18. The PARSEC computer code for analysis of direct containment heating by dispersed debris

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1987-01-01T23:59:59.000Z

    A multiphase flow and heat transfer, coupled Lagrangian and Eulerian computer program, PARSEC, has been developed to predict the heatup of a gas atmosphere resulting from the gas-driven dispersal of high temperature debris droplets/particles as well as the associated formation of aerosol by the oxidation enhanced vaporization of metal from the surfaces of the droplets, oxidation of reactive debris constituents, and generation of hydrogen. Predictions of the code and the fundamental modeling incorporated therein are in good agreement with available data on the essentially unimpeded dispersal of high temperature melts involving reactor materials in the Argonne CWTI-13 and CWTI-14 experiments as well as iron-alumina thermite in the Sandia DCH-1 test.

  19. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  20. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency; Industrial Technologies Program (ITP) Process Heating Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact Sheet UraniumThrough the Use4heating

  1. Experiments to investigate the effect of flight path on direct containment heating (DCH) in the Surtsey test facility

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.; Griffith, R.O. (Sandia National Labs., Albuquerque, NM (United States)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (United States))

    1991-10-01T23:59:59.000Z

    The goal of the Limited Flight Path (LFP) test series was to investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH). The test series consisted of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulated the corium melt of a severe reactor accident. After thermite ignition, superheated steam forcibly ejected the molten debris into a 1:10 linear scale the model of a dry reactor cavity. The blowdown steam entrained the molten debris and dispersed it into the Surtsey vessel. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size were measured for each experiment. The measured peak pressure for each experiment was normalized by the total amount of energy introduced into the Surtsey vessel; the normalized pressures increased with lengthened flight path. The debris temperature at the cavity exit was about 2320 K. Gas grab samples indicated that steam in the cavity reacted rapidly to form hydrogen, so the driving gas was a mixture of steam and hydrogen. These experiments indicate that debris may be trapped in reactor subcompartments and thus will not efficiently transfer heat to gas in the upper dome of a containment building. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident. 8 refs., 49 figs., 6 tabs.

  2. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  3. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    SciTech Connect (OSTI)

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03T23:59:59.000Z

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  4. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, September 1, 1987-November 30, 1987

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-12-01T23:59:59.000Z

    DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to dramatically improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions (i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode)), often in the presence of simultaneous alkali salt vapor condensation. 9 refs., 1 fig.

  5. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptember 2009July 200816, 2008ofUSDepartment

  6. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDirac ChargeDiracDirect

  7. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly techical report, December 1, 1986--February 28, 1987

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-03-01T23:59:59.000Z

    In support of the above mentioned objectives, we are carrying out theoretical studies in the following three interrelated areas: (a) Interaction of inertial- and thermophoretic effects in well-defined laminar ``dusty-gas`` flows; (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron ``glue``; (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions. During this second quarter of Grant DE-FG22-86 PC 90756. we have: (1) done preliminary gas velocity and temperature calibrations of the micro-combustor exit gas flow jet and initiated the development of both a monodispersed droplet feed system and powder feed system to provide monodispersed particle laden jets covering a broad spectrum of particle sizes (ca. 0.5--50 m diameter); and, (2) demonstrated the ability of impacting supermicron particles to remove predeposited submicron particles on a platinum target, using real-time optical reflectivity methods. These preliminary experiments will be extended and discussed in our next Quarterly Technical Report.

  8. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    E-Print Network [OSTI]

    McMahon, James E.; Wiel, Stephen

    2001-01-01T23:59:59.000Z

    commercial-package air-conditioning and heating equipment, packaged terminal air condi- tioners and heat pumps, warm-air furnaces, packaged boilers, storage water heaters,

  9. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01T23:59:59.000Z

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  10. Research on thermophoretic and inertial aspects of ash particle: Deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, June 1, 1988--August 31, 1988

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-09-01T23:59:59.000Z

    DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode), often in the presence of simultaneous alkali salt vapor condensation. After a brief statement of objectives (Section 2) we outline our experimental and theoretical progress during this quarterly reporting period (Section 3), with our results summarized in the references documented in Section 5. Section 4 gives relevant administrative information (personnel, research plans). 15 refs., 3 figs.

  11. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  12. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    SciTech Connect (OSTI)

    Bragg-Sitton, S.M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Godfroy, T.J. [Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2004-02-04T23:59:59.000Z

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

  13. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    SciTech Connect (OSTI)

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01T23:59:59.000Z

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

  14. Resolution of the direct containment heating issue for all Westinghouse plants with large dry containments or subatmospheric containments

    SciTech Connect (OSTI)

    Pilch, M.M.; Allen, M.D.; Klamerus, E.W. [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    This report uses the scenarios described in NUREG/CR-6075 and NUREG/CR-6075, Supplement 1, to address the direct containment heating (DCH) issue for all Westinghouse plants with large dry or subatmospheric containments. DCH is considered resolved if the conditional containment failure probability (CCFP) is less than 0.1. Loads versus strength evaluations of the CCFP were performed for each plant using plant-specific information. The DCH issue is considered resolved for a plant if a screening phase results in a CCFP less than 0.01, which is more stringent than the overall success criterion. If the screening phase CCFP for a plant is greater than 0.01, then refined containment loads evaluations must be performed and/or the probability of high pressure at vessel breach must be analyzed. These analyses could be used separately or could be integrated together to recalculate the CCFP for an individual plant to reduce the CCFP to meet the overall success criterion of less than 0.1. The CCFPs for all of the Westinghouse plants with dry containments were less than 0.01 at the screening phase, and thus, the DCH issue is resolved for these plants based on containment loads alone. No additional analyses are required.

  15. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    SciTech Connect (OSTI)

    Goldman, Charles

    2007-03-01T23:59:59.000Z

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  16. Changing nature of equipment and parts qualification

    SciTech Connect (OSTI)

    Bucci, R.M.

    1988-01-01T23:59:59.000Z

    Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace.

  17. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  18. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  19. Energy Audit Equipment

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01T23:59:59.000Z

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  20. Solar and Wind Energy Equipment Exemption

    Broader source: Energy.gov [DOE]

    In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then...

  1. (Solar clothes dryer and wastewater heat exchanger). Final report

    SciTech Connect (OSTI)

    Baer, B.F.

    1984-12-04T23:59:59.000Z

    The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

  2. Direct containment heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U2 test

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-05-01T23:59:59.000Z

    A third Direct Containment Heating (DCH) experiments has been completed which utilizes prototypic core materials. The reactor material tests are a follow on to the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiment by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be in the range of 2600 - 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  3. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  4. Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid wave in ionospheric heating experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid emissions (SEE). A direct conversion process is proposed as an excitation mech- anism of the upper hybrid, 1996) The electrostatic waves at the UH resonance were assumed to be excited via ``direct conversion

  5. Sector 1 - Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS detector pool has a number of additional detectors Furnaces Powder diffraction furnace Infrared furnace Plate furnace Mechanical Testing Equipment The following mechanical...

  6. Optimum Design of Micro Bare-Tube Heat Exchanger Tomohisa OKU, Nobuhide KASAGI and Yuji SUZUKI

    E-Print Network [OSTI]

    Tokyo, University of

    for automobiles, electronic equipement cooling system, and recuperator for micro gas turbine. Key words : Heat

  7. Plancher solaire direct mixte \\`a double r\\'eseau en habitat bioclimatique - Conception et bilan thermique r\\'eel. Double direct solar floor heating in boclimatic habitation - Design and real energetical balance

    E-Print Network [OSTI]

    De Larochelambert, Thierry

    2009-01-01T23:59:59.000Z

    This study presents a new direct solar floor heating technique with double heating network wich allows simultaneous use of solar and supply energy. Its main purpose is to store and to diffuse the whole available solar energy while regulating supply energy by physical means without using computer controlled technology. This solar system has been tested in real user conditions inside a bioclimatic house to study the interaction of non-inertial and passive walls on the solar productivity. Daily, monthly and annual energy balances were drawn up over three years and completed by real-time measurements of several physical on-site parameters. As a result the expected properties of this technique were improved. The use of per-hour solar productivity, saved primary energy and corrected solar covering ratio is recommended to analyze the performances of this plant and to allow more refined comparisons with other solar systems

  8. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  9. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W. (Sandia National Labs., Albuquerque, NM (United States)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (United States)); Sweet, D.W. (AEA Technology, Winfrith (United Kingdom))

    1991-08-01T23:59:59.000Z

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

  10. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  11. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  12. Attachment 2 UC Berkeley EI-LOTO "Equipment Specific" Procedure Equip. Name: _______________________________ Building: __________________________________ Location/Room Number: _____________________

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Attachment 2 ­ UC Berkeley ­ EI-LOTO "Equipment Specific" Procedure Equip. Name BARRICADES CHAINS PRESSURE: BLEEDERS LOCKED OPEN & TAGGED SHIELDS: ARC CURTAIN HEAT BLANKET STEAM: LINES piping or tanks must be bled, drained, and/or brought to atmospheric pressure and locked "open" to assure

  13. field_equipment.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIELD EQUIPMENT INVENTORY Trucks * Five vacpressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Waterfi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump...

  14. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01T23:59:59.000Z

    There are basically three categories of equipment used to manage heat energy flows in an industrial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat...

  15. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17T23:59:59.000Z

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  16. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11T23:59:59.000Z

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  17. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  18. Solar energy for wood drying using direct or indirect collection with supplemental heating: a computer analysis. Forest Service research paper

    SciTech Connect (OSTI)

    Tschernitz, J.L.

    1986-01-01T23:59:59.000Z

    In order to judge solar drying on a more quantitative basis, the Forest Products Laboratory has developed a computer analysis for calculating the energy demands in the restricted cases of direct and indirect solar wood dryers using supplemental energy. Calculated energy balances are reported including percent fuel savings compared to the net energy used in conventional dryer operation. Six dryer sizes are considered. Seasonal variation of performance is noted for each of 12 months, in 96 locations throughout the United States. Also discussed is variation of cover thermal properties as these influence the effectiveness of operation. The report attempts to organize these economic elements so that the reader can make reasonable choices for any wood-drying requirements.

  19. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  20. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  1. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18T23:59:59.000Z

    the quality, flexibility, reliability, safety, and life-time cost of equipment. This paper will give an introduction to the basics of TPM, discuss the major parts of EEM, and evaluate the lessons learned from the team’s first effort to execute the structured...

  2. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  3. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01T23:59:59.000Z

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  4. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling 

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed... to unpredictable daily habits; for example opening or closing window blinds which have a direct impact on solar gains, or the inconsistent use of lights and office equipment. Tenant influence was also observed in Kaplan et al. (1990a) as reported in Section 2...

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22T23:59:59.000Z

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  6. Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x2329) for disposal or reuse.

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x.stanford.edu/main/propertyforms.asp) Some items may require a Radiation Survey or handling by Waste Management. Follow the directions with collecting empty moving boxes, and taking materials to trash or recycling containers. Submit a Service

  7. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation EquipmentHydrogen

  8. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation EquipmentHydrogenPhilips

  9. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 - 194Equipment

  10. Maersk Line Equipment guide

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk Line Equipment

  11. Logging Equipment and Loren Kellogg

    E-Print Network [OSTI]

    and the control is passed on Automatic inhaul starts and the control is transferred again Photo Credit: KollerLogging Equipment and Systems Loren Kellogg Forest Engineering Resources and Management Oregon Equipment and Systems Presentation Outline · Overview of equipment and systems for thinning · Costs

  12. Direct contact heat exchanger performance

    SciTech Connect (OSTI)

    Wahl, E. F.

    1981-03-12T23:59:59.000Z

    Although the final performance result of a DCHE is the cost of the net electricity produced, the best performance cannot be achieved without optimizing the components of the system as well as the whole system. Thus collection and analysis of data on the internal performance of the column assists in optimizing the operation of the particular column as well as in suggesting ways for improving the operation and design of future columns.

  13. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01T23:59:59.000Z

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  14. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 3, March 1, 1987--May 31, 1987

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-06-01T23:59:59.000Z

    During this third quarter of Grant DE-FG22-86 PC 90756, we have obtained preliminary experimental results on the deposition behavior of submicron and supermicron solid particles (MgO, Al{sub 2}O{sub 3}) on a two-dimensional surface exposed to a high temperature/velocity particle ``laden`` atmospheric pressure jet. The uniform velocity (``plug flow``) jet, with temperatures up to about 1520 K, derives from a pressurized gaseous fuel microcombustion chamber (110 cc) equipped with a platinum guiding (exit) channel. Particles were generated by several methods (Berglund-Liu type aerosol generator, ultrasonic nebulizer, or syringe feeder with aerodynamic particle off-take) and were introduced into the combustion chamber with a carrier stream of nitrogen or air. Laser light scattering and reflectivity techniques were used for the study of particle deposition, supplemented by post-mortem microscopy on the exposed surface. We observed a linear deposition rate of submicron particles due to the thermophoretic mechanism (until the first layer was developed) under both high and low velocity conditions. On the contrary, supermicron particle deposits reach a steady-state, evidently due to a dynamic equilibrium between particle deposition and dislodging caused by the impacting particles. At several temperatures particle-free subsonic gas jets (up to 120 m/sec) were unable to remove the submicron particle layer.

  15. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26T23:59:59.000Z

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  16. Research on thermophoretic and inertial aspects of the ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report, September 1, 1986--November 30, 1986

    SciTech Connect (OSTI)

    Rosner, D.E.

    1986-12-01T23:59:59.000Z

    In support of the above mentioned objectives, we have initiated theoretical studies in the following three interrelated areas : (a) Interaction of inertial- and thermophoretic effects in well-defined laminar ``dusty-gas`` flows. (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron ``glue`` (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions.During the first three months of Grant DE-FG22-86 PC 90756, we have: (1) Designed and initiated construction of the microcombustor particle-laden jet facility described in Section 3.1. (2) Initiated theoretical studies of the interaction of inertial and thermophoretic effects, the role of simultaneous vapor arrival in determining particle sticking and erosion probabilities, and mass transport phenomena in deep tube banks.

  17. Electrical Equipment Inventory and Inspection Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

  18. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  19. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 10, December 1, 1988--February 28, 1989

    SciTech Connect (OSTI)

    Rosner, D.E.

    1989-03-01T23:59:59.000Z

    Little is yet known (theoretically or experimentally) about the simultaneous effects of particle inertia, particle thermophoresis and high mass loading on the important engineering problem of predicting deposition rates from flowing ``dusty`` gases. For this reason, we investigate the motion of particles present at nonnegligible mass loading in a flowing nonisothermal gaseous medium and their deposition on strongly cooled or heated solid objects by examining the instructive case of steady axisymmetric ``dusty gas`` flow between two infinite disks: an inlet (porous) disk and the impermeable ``target`` disk -- a flow not unlike that encountered in recent seeded-flame experiments. Since this stagnation flow/geometry admits interesting self-similar solutions at all Reynolds numbers, we are able to predict laminar flow mass-, momentum- and energy-transfer rate coefficients over a wide range of particle mass loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic diffusivities, and gas Reynolds numbers. As a by-product, we illustrate the accuracy and possible improvement of our previous ``diffusion model`` for tightly coupled dusty gas systems. Moreover, we report new results illustrating the dependence of the important ``critical`` Stokes number (for incipient particle impaction) on particle mass loading and wall/gas temperature ratio for dust-laden gas motion towards ``overheated`` solid surfaces. The present formulation and insulating transport coefficients should not only be useful in explaining/predicting recent deposition rate trends in ``seeded`` flame experiments, but also highly mass-loaded systems of technological interest.

  20. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 6, December 1, 1987--February 28, 1988

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-03-01T23:59:59.000Z

    During the present reporting period, we have initiated work on (a) the interpretation of our recent data (see QTR5) on deposition rates under the simultaneous influence of inertia and thermophoresis, (b) the possible rate of particle photophoresis in environments characterized by high radiative heat loads. and (c) the influence of particle size distributions on total mass deposition rates. The fruits of these initiatives will be reported in subsequent quarterly technical reports. Here, we focus on our recent theoretical results in the important but previously uncharted area of the relations between particulate deposition mechanisms, deposit microstructure and deposit properties. Experimental verification of some of the most interesting predictions will be the subject of future HTCRE-Lab studies. Recent discussions with fouling engineers have convinced us that despite recent advances in our ability to predict particle deposition rates in convective-diffusion environments, the important connection between resulting deposit properties (effective thermal conductivity permeability, {hor_ellipsis}) and deposition mechanism remain poorly understood and only scarcely studied. Accordingly, as part of this DOE-PETC program we have developed a discrete stochastic model to simulate particulate deposition processes resulting from a combination of deposition mechanisms.

  1. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  3. Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)

    SciTech Connect (OSTI)

    Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

    1990-07-01T23:59:59.000Z

    The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

  4. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  5. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  6. 16th International Heat Pipe Conference (16th IHPC) Lyon, France, May 20-24, 2012

    E-Print Network [OSTI]

    Khandekar, Sameer

    , conventional heat sinks and copper-water wicked mini-heat pipes. Microelectronic equipment inside the enclosure enclosure volume. Keywords: Microelectronic thermal management, numerical modeling, heat pipes and heat heat transfer mechanisms. Efficient heat transfer by passive heat pipe technology is much superior

  7. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  8. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  9. Direct containing heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U1A and U1B tests

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-04-01T23:59:59.000Z

    Direct Containment Heating (DCH) experiments have been performed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiments by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be approximately 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  10. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf05 IdentifiedPathways to SustainedIndustrial AssessmentIndustrial

  11. UCDHS GUIDELINES FOR ALLOCATING SHARED (MULTI-INVESTIGATOR) EQUIPMENT GRANT MATCHES

    E-Print Network [OSTI]

    Carmichael, Owen

    , 2007) MATCHING FUNDS FOR SHARED EQUIPMENT GRANTS Premise: NIH, through the S10 grant mechanism, water, and heating/cooling/ ventilation utilities, ongoing maintenance costs, or the training /hiring

  12. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01T23:59:59.000Z

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  13. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  14. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  15. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  16. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16T23:59:59.000Z

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  17. Free-piston Stirling engine-driven heat pump program plan

    SciTech Connect (OSTI)

    Ross, B.A.; Hutchinson, R.A.; Chen, F.C.

    1988-07-01T23:59:59.000Z

    Stirling engine driven heat pumps are one of the most attractive potential products based on Stirling engines. Their many advantages in efficiency, fuel adaptability, quietness, compactness, controllability and potential for high reliability are well known. This paper briefly reviews these advantages, then turns to key technical concerns in Sterling engine driven heat pump development. These have been organized into an effective development program that will require about $4 million per year for 8 years to complete basic research, component development, and an estimated 3 generations of system hardware. The planning effort was directed by the Building Equipment Division of the DOE Office of Buildings and Communities Systems. 7 refs., 2 figs.

  18. Commonwealth's Master Equipment Leasing Program

    Broader source: Energy.gov [DOE]

    The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

  19. Wind Measurement Equipment: Registration (Nebraska)

    Broader source: Energy.gov [DOE]

    All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

  20. Zhongneng Windpower Equipments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang SwisselectronicXianEquipments Jump to: navigation,

  1. Commercial Cooking Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking Equipment Incentives

  2. Commercial Refrigeration Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking Equipment

  3. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation Incentives Retrieved fromEquips

  4. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  5. VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

  6. Industrial Heat Pumps: Appropriate Placement and Sizing Using the Grand Composite 

    E-Print Network [OSTI]

    Ranade, S. M.; Hindmarsh, E.; Boland, D.

    1986-01-01T23:59:59.000Z

    Correct thermodynamic placement of heat pumps is a necessary condition for optimality. The most sophisticated equipment designs can do very little to improve the cost-effectiveness of inappropriately placed heat pumps. The practice of designing heat...

  7. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  8. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  9. Heating and Cooling System Support Equipment Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of

  10. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment Hazle Spindle, LLCHeat PumpHeatherHomes

  11. Thermodynamic Efficiency of Heat Exchange Devices

    E-Print Network [OSTI]

    Witte, L. C.; Shamsundar, N.

    1982-01-01T23:59:59.000Z

    irreversibilities. The reclamation of what was formerly 'waste heat' by using additional, or more efficient, equipment has become not only economically feasible, but sometimes essential. A thermodynamic efficiency based on the second law of thermodynamics...

  12. An Introduction to Waste Heat Recovery

    E-Print Network [OSTI]

    Darby, D. F.

    our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

  13. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  14. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Equipment Tests and Activities Bruce Glagola - Sept 2013 Construction Equipment Tests A series of tests were conducted by the APS Construction Vibration...

  15. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  16. Correctly specify insulation for process equipment and piping

    SciTech Connect (OSTI)

    Allen, C. [Raytheon Engineers and Constructors, Birmingham, AL (United States)

    1997-05-01T23:59:59.000Z

    Insulation serves as a thermal barrier to resist the flow of heat. When insulation is installed over piping or equipment to minimize heat losses, the insulation is categorized as heat conservation. Software programs for determining heat losses are based on ASTM C 680. If heat conservation insulation is calculated to determine the most cost-effective thickness for piping or equipment, then the insulation is categorized as economic insulation. Methods for manually determining economic thicknesses using various graphs and precalculated charts are given in Turner and Malloy. However, modern software programs available from industrial associations calculate economic thicknesses based on after-tax annual costs. Costs associated with owning insulation are expressed on an equivalent uniform annual cost basis. The thickness with the lowest annual cost is reported as the economic thickness. Some of the economic data needed to calculate economic thicknesses are fuel cost, depreciation period, annual fuel inflation rate, annual hours of operation, return on investment, effective income tax rate, annual insulation maintenance costs, and installed costs. To obtain accurate economical thicknesses, it is best to solicit installed costs from a local contractor likely to bid on the work. This paper covers the most suitable insulation materials for certain applications, the most economic material and thickness to use, and how the total insulation system should be designed.

  17. Corrosion indicating equipment UK-1

    SciTech Connect (OSTI)

    Gerasimenko, Y.S.; Abrosimov, V.S.; Rudenko, A.K.; Sorokin, V.I.

    1986-11-01T23:59:59.000Z

    UK-1, developed and introduced into oil industry corrosion-indicating equipment, has been developed on the basis of the principle of measurements of polarization resistance. It is designed for determining the corrosion activity of effluents of oil fields. The technical data and design of the equipment is discussed. The investigations were carried out on 08kp steel in simulation effluents of oil fields in the presence of corrosion inhibitors used in the oil industry at various temperatures (25-50 C) and liquid flow rate.

  18. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    2007): “Market Barriers Affecting Water Heating in Norway. ”heating and cooling energy consumed by centrally installed equipment in order to verify whether a marketheating and cooling. The non-existence of the equipment efficiency-related market

  19. Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility: Building 382 Rev. 1, 021100 Training: (1) ESH114 LockoutTagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707...

  20. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  2. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  3. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  4. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    High-e?ciency direct conversion of heat to electrical energyJ. Yu and M. Ikura, “Direct conversion of low-grade heat tois concerned with direct conversion of thermal energy into

  5. Energy Equipment Property Tax Exemption

    Broader source: Energy.gov [DOE]

    A "solar energy device" for the purpose of this incentive is defined as "a system or series of mechanisms designed primarily to provide heating, to provide cooling, to produce electrical power, to...

  6. Solar and Wind Equipment Certification

    Broader source: Energy.gov [DOE]

    Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The...

  7. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11T23:59:59.000Z

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  8. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  9. Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction

    E-Print Network [OSTI]

    Pilon, Laurent

    Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction Felix Y. Lee heat harvesting Olsen cycle a b s t r a c t Waste heat can be directly converted into electrical energy Ltd. All rights reserved. 1. Introduction Large amounts of waste heat are released as a by

  10. Assessment of HYGAS mechanical equipment

    SciTech Connect (OSTI)

    Albrecht, P.R.; Kramberger, F.E.; Recupero, R.M.; Verden, M.L.; Rees, K.

    1980-10-01T23:59:59.000Z

    The HYGAS process, which converts coal to substitute natural gas, is being developed by the Institute of Gas Technology (IGT) using an 80 ton per day pilot plant located in Chicago, Illinois. Plant design started in 1967 and testing began in October 1971. Since then, 18,000 tons of both Eastern and Western coal have been gasified. Assessment of the mechanical equipment was made by Mechanical Technology Incorporated (MTI) in collaboration with a DOE on-site representative and a representative from IGT, the operating contractor. Data for the assessment were obtained by reviewing all available maintenance records, by interviewing key personnel from maintenance and operations, and by observing repairs and maintenance procedures where possible. While operating the plant, a variety of equipment problems were addressed, many of which are generic to HYGAS as well as other coal conversion processes. Some problems were solved completely while others were solved to suit the limited needs of the pilot plant. Accordingly, the emphasis of this study is on the degree of success in dealing with equipment failures, the unresolved problems and the implication to future coal conversion plants.

  11. Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects

    E-Print Network [OSTI]

    Armijo, Kenneth Miguel

    2011-01-01T23:59:59.000Z

    schematic, comprised of heat input at the evaporator sectionwas used to control the heat input during the experiment.exposed to direct heat input and output, were considered

  12. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)CriterionCrossroadsCruising

  13. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  14. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Shezel-Ayagh

    2005-05-01T23:59:59.000Z

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  15. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01T23:59:59.000Z

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  16. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  17. adiabatic compression heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    non-adiabatic heat-recirculating combustors Paul D. Ronney Engineering Websites Summary: loss to ambient and heat conduction in the streamwise direction through the dividing wall...

  18. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  19. Thermal response of process equipment to hydrocarbon fires

    SciTech Connect (OSTI)

    Solberg, D.M.; Borgnes, O.

    1983-01-01T23:59:59.000Z

    Requirements for active fire-fighting equipment such as fixed and portable powder extinguishers, foam generators, water guns, and deluge systems, are given in various codes and standards. However, very little is to be found about fire design conditions and passive fire protection. For safety verification of process plants and for designing adequate passive fire protection it is necessary to know the total incident heat fluxes which can occur under realistic conditions and the effects that such heat fluxes may have on process equipment and structures. During the last few years, Det Norske Veritas has been invloved in investigations aimed at estimating realistic fire loads from different types of hydrocarbon fires and the thermal response of process equipment and structures exposed to such fires. These investigations are still in progress and are especially focused on the conditions on off-shore oil and gas production platforms. However, many fire problems will be the same in the land-based process industry. The present paper concentrates on the thermal response of pipes and vessels exposed to a severe hydrocarbon fire with a defined thermal load. (JMT)

  20. Machinery and Equipment Expensing Deduction (Kansas)

    Broader source: Energy.gov [DOE]

    Machinery and Equipment Expensing Deduction allows Kansas taxpayers to claim an expense deduction for business machinery and equipment, placed in service in Kansas during the tax year. The one-time...

  1. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    Asset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have the refrigerant recovered in accordance with EPA's requirements for servicing. However, equipment that typically

  2. Operations and Maintenance for Major Equipment Types

    Broader source: Energy.gov [DOE]

    Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

  3. Electrical assembly having heat sink protrusions

    DOE Patents [OSTI]

    Rinehart, Lawrence E. (Lake Oswego, OR); Romero, Guillermo L. (Phoenix, AZ)

    2009-04-21T23:59:59.000Z

    An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.

  4. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment Listing

  5. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment ListingLoans

  6. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment

  7. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMissionEquipment

  8. MPC Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love YouTokamak |MPC Equipment The MPC

  9. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  10. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  11. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect (OSTI)

    None

    2002-06-01T23:59:59.000Z

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  12. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect (OSTI)

    None

    2001-09-01T23:59:59.000Z

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  13. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  14. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  15. Application and Technology Requirements for Heat Pumps at the Process Industries

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

  16. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    SciTech Connect (OSTI)

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Jacob, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-11-15T23:59:59.000Z

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  17. Stirling cycle engine and heat pump

    SciTech Connect (OSTI)

    Mitchell, M.P.

    1986-11-18T23:59:59.000Z

    A method is described of operating a hot gas engine comprising a cylinder having one end thereof connected to the other end thereof through at least two separate closed heat exchanger assemblies. Each comprises heated heat exchanger means and cooled heat exchanger means serially arranged, the hot end of each such closed heat exchanger assembly is attached to the same end of the cylinder. Each closed heat exchanger assembly is equipped with valve means at each end thereof, the cylinder accommodating a double-acting reciprocating piston means. The piston means cyclically displaces and is displaced by a volume of gas for each such closed heat exchanger assembly. The volumes of gas are alternately confined in and released from the closed heat exchanger assemblies by the valves.

  18. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    which, in the case of home heating appliances, could resultHeaters, Direct Heating Equipment, Mobile Home Furnaces,Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  19. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel 

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer ...

  20. The Cost of Heat Exchanger Fouling in the U. S. Industries 

    E-Print Network [OSTI]

    Rebello, W. J.; Richlen, S. L.; Childs, F.

    1988-01-01T23:59:59.000Z

    Fouling of heat exchangers costs the U.S. industries hundreds of millions of dollars every year in increased equipment costs, maintenance costs, energy losses and losses in production. The designer of heat exchangers usually allows for fouling...

  1. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  2. adsorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensator 12;12 Low-temperature heat sources Geothermal source Ambient air Solar adsorption heat pump, but the use of the source for hot water or direct heating can be...

  3. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  4. Sandia National Laboratories: Earth Science: Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementEarth ScienceEarth Science: Facilities and Equipment Earth Science: Facilities and Equipment Geoscience Facilities and Equipment High-pressure thermalmechanical...

  5. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  10. Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals

    E-Print Network [OSTI]

    McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

    2012-01-01T23:59:59.000Z

    High-ef?ciency direct conversion of heat to electricalreports on direct thermal to electrical energy conversion by

  11. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space DataEnergyCompressedOil, and Gas Sectors

  12. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-01-29T23:59:59.000Z

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  13. Walk, Haydel Approach to Process Heat Recovery

    E-Print Network [OSTI]

    Waldsmith, R. W.; Hendrickson, M. J.

    1983-01-01T23:59:59.000Z

    velocities. In a grass roots design, equipment is designed for specific needs, but in a revamp there are usually several alter nate ways existing equipment can be utilized. A11 of the important alternates must be eva1 uated before selecting... bundles are encountered, methods balance costs against incremental heat recovery. Other logic re duces multiple parallel streams and adjusts arrangements considering both temperature level and overall coefficient. The log ic and eva1uat ion...

  14. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  15. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  17. Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers

    E-Print Network [OSTI]

    Thole, Karen A.

    Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A transfer along the tube wall of the compact heat exchanger through the use of winglets placed of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation

  18. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12T23:59:59.000Z

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  19. Protecting the Investment in Heat Recovery with Boiler Economizers 

    E-Print Network [OSTI]

    Roethe, L. A.

    1985-01-01T23:59:59.000Z

    Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability...

  20. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  1. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  2. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  3. Electrical Equipment Inspection Program Electrical Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    recognized hazards and meets code requirements Labeled. A nationally recognized testing laboratory (NRTL equipment as listed unless it is also labeled. Nationally recognized testing laboratory (NRTL

  4. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01T23:59:59.000Z

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  5. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  7. assemblies equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capital equipment manufacturing plant : component level and assembly level inventory management MIT - DSpace Summary: Semiconductor capital equipment is manufactured in...

  8. Covered Product Category: Light Commercial Heating and Cooling

    Broader source: Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STAR®–qualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  9. Thermal analysis of the failed equipment storage vault system

    SciTech Connect (OSTI)

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01T23:59:59.000Z

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV`s) in S area. The FESV`s are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request.

  10. Tribal Renewable Energy Foundational Course: Direct Use for Building...

    Office of Environmental Management (EM)

    Direct Use for Building Heat and Hot Water Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water Watch the U.S. Department of Energy Office of...

  11. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  12. University of California Policy Personal Protective Equipment

    E-Print Network [OSTI]

    Aluwihare, Lihini

    /technical area is a location where the use or storage of hazardous materials occurs or where equipment may hazardous materials, adjacent to or in proximity to a hazard or in areas where there is a reasonable risk performs work functions with hazardous materials or equipment in a laboratory/technical area. A "worker

  13. Standardization of Chemical Protective Equipment for Protective Forces and Special Agents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-29T23:59:59.000Z

    This Notice provides requirements for the standardization and procurement of chemical protective equipment for use by Department of Energy (DOE) protective forces and Special Agents of the Transportation Safeguards Division (TSD). DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01. Does not cancel other directives.

  14. Direct Liquid Cooling for Electronic Henry Coles and Steve Greenberg

    E-Print Network [OSTI]

    overall data center energy efficiency in three ways: High-heat-generating electronic Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U equipment. Syska Hennessy Group (San Francisco, California) provided data center engineering

  15. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09T23:59:59.000Z

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  16. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14T23:59:59.000Z

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  17. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect (OSTI)

    Banker, John G. [Dynamic Materials Corp., 5405 Spine Rd., Boulder, CO 80301 (United States); Massarello, Jack [Global Metallix, Consultant to DMC, 5405 Spine Rd., Boulder, CO 80301 (United States); Pauly, Stephane [DMC., Nobelclad Business Unit, 1 Allee Alfred NOBEL, 66600 Rivesaltes (France)

    2011-01-17T23:59:59.000Z

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  18. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  19. Advances in Geothermal Direct Use Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a new technology called Deep Direct Use, which optimizes the value stream of geothermal brines through large-scale lower temperature cascaded use, including direct heating...

  20. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  1. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    parties Future Directions in Engines and Fuels 9 HP-EGR Cooler: Shell and tubes heat exchanger with optimised gas tube design High thermal exchange and resistance to...

  2. Generic seismic ruggedness of power plant equipment

    SciTech Connect (OSTI)

    Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))

    1991-08-01T23:59:59.000Z

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  3. Equipment Insulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation Incentives Retrieved from

  4. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31T23:59:59.000Z

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  5. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  6. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  7. Verification of a VRF Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Nigusse, Bereket; Raustad, Richard

    2013-06-01T23:59:59.000Z

    This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-load performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.

  8. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  9. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  10. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  11. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  12. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19T23:59:59.000Z

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  13. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01T23:59:59.000Z

    technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton...

  14. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  15. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  16. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01T23:59:59.000Z

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  17. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    The position is a Heavy Mobile Equipment Mechanic (One Mechanic Shop) located in Kent, Washington, and will be responsible for the safe and efficient operation of a field garage performing...

  18. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  19. Clark Public Utilities- Solar Energy Equipment Loan

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and...

  20. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  1. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  2. Biomass Equipment and Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

  3. Tax Credit for Renewable Energy Equipment Manufacturers

    Broader source: Energy.gov [DOE]

    The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of HB 3201. The ...

  4. Property Tax Assessment for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    HB 2403 of 2014 clarified that depreciation should be determined using straight-line depreciation over the useful life of the equipment. The taxable original cost equals the original cost of the...

  5. Equipment Energy Models Using Spreadsheet Programs

    E-Print Network [OSTI]

    Gilbert, J. S.

    EQUIPMENT ENERGY MODELS USING SPREADSHEET PROGRAMS Joel S. Gilbert, Dames & Moore, Bethesda, Maryland Engineering calculations on PC's are undergoing a revolution with the advent of spreadsheet programs. The author has found that virtually all...

  6. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  7. Dairy Manure Handling Systems and Equipment.

    E-Print Network [OSTI]

    Sweeten, John M.

    1983-01-01T23:59:59.000Z

    The Texas A&M University System ? Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station 8?1446 DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT John M. Sweeten, Ph....D., P.E.* A manure management system for a modern dairy should be capable of controlling solid or liquid manure and wastewater from the open corrals (manure and rainfall runoff), free stall barn , feeding barn , holding lot or holding shed , milking...

  8. Experience gained from equipment qualification inspections

    SciTech Connect (OSTI)

    Jacobus, M.J.

    1986-01-01T23:59:59.000Z

    This paper describes issues which have been identified during equipment qualification inspections. Generic qualification information is discussed first, such as qualification bases, utility/supplier interfaces, file auditability, and generic environmental qualification. Next, technical strategies with specific examples are discussed. Issues covered include functional performance requirements, post accident qualification, similarity, installation and interfaces, maintenance, aging, and testing. Finally, additions and deletions to equipment qualification master lists and environmental enveloping are discussed.

  9. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  10. Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices

    E-Print Network [OSTI]

    LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

  11. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  12. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen; Jalal Zia

    2013-09-01T23:59:59.000Z

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

  13. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  14. DEVELOPMENT OF PERSONAL PROTECTIVE EQUIPMENT FOR DECONTAMINATION AND DECOMMISSIONING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    The purpose of this one-year investigation is to perform a technology integration/search, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the deactivation and decommissioning (D&D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Issues of worker health and safety are the main concern, followed by cost. Two lines of action were explored: innovative Personal Cooling Systems (PCS) and Personal Monitoring Equipment (PME). PME refers to sensors affixed to the worker that warn of an approaching heat stress condition, thereby preventing it. Three types of cooling systems were investigated: Pre-Chilled or Forced-Air System (PCFA), Umbilical Fluid-Chilled System (UFCS), and Passive Vest System (PVS). Of these, the UFCS leads the way. The PVS or Gel pack vest lagged due to a limited cooling duration. And the PCFA or chilled liquid air supply was cumbersome and required an expensive and complex recharge system. The UFCS in the form of the Personal Ice Cooling System (PICS) performed exceptionally. The technology uses a chilled liquid circulating undergarment and a Personal Protective Equipment (PPE) external pump and ice reservoir. The system is moderately expensive, but the recharge is low-tech and inexpensive enough to offset the cost. There are commercially available PME that can be augmented to meet the DOE's heat stress alleviation need. The technology is costly, in excess of $4,000 per unit. Workers easily ignore the alarm. The benefit to health & safety is indirect so can be overlooked. A PCS is a more justifiable expenditure.

  15. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    None

    1980-02-01T23:59:59.000Z

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  16. Study of plasma heating in ohmically and auxiliary heated regimes in spherical tokamak Globus-M.

    E-Print Network [OSTI]

    Boyer, Edmond

    Study of plasma heating in ohmically and auxiliary heated regimes in spherical tokamak Globus-M. N, Russia INTRODUCTION This paper describes the basic features of the plasma heating in spherical tokamak direction in the tokamak midplane. The beam axis was aimed into the inner plasma region at the radius R = 0

  17. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  18. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  19. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown,...

  20. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  1. advanced electronic equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common equipment through predetermined global ... Chouinard, Natalie, 1979- 2009-01-01 85 Logging Equipment and Loren Kellogg Renewable Energy Websites Summary: and the control is...

  2. Southwest Gas Corporation- Commercial Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water...

  3. Southwest Gas Corporation- Commercial High-Efficiency Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Arizona who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless...

  4. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  5. Master equipment list -- Phase 1. Revision 1

    SciTech Connect (OSTI)

    Jech, J.B.

    1995-04-28T23:59:59.000Z

    The purpose of this document is to define the system requirements for the Master Equipment List (MEL) Phase 1 project. The intended audience for this document includes Data Automation Engineering (DAE), Configuration Management Improvement and Control Engineering (CMI and CE), Data Administration Council (DAC), and Tank Waste Remedial System (TWRS) personnel. The intent of Phase 1 is to develop a user-friendly system to support the immediate needs of the TWRS labeling program. Phase 1 will provide CMI and CE the ability to administrate, distribute, and maintain key information generated by the labeling program. CMI and CE is assigning new Equipment Identification Numbers (EINs) to selected equipment in Tank Farms per the TWRS Data Standard ``Tank Farm Equipment Identification Number``. The MEL Phase 1 system will be a multi-user system available through the HLAN network. It will provide basic functions such as view, query, and report, edit, data entry, password access control, administration and change control. The scope of Phase 1 data will encompass all Tank Farm Equipment identified by the labeling program. The data will consist of fields from the labeling program`s working database, relational key references and pointers, safety class information, and field verification data.

  6. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    on New FVIR Water Heaters." Retrieved 04/17/2009, 2009, fromAir Conditioners, Water Heaters, Direct Heating Equipment,Air Conditioners, Water Heaters, Direct Heating Equipment,

  7. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    blankets to electric hot water heaters in South Africa,” J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

  8. Control and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

  9. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  10. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  11. Security Equipment and Systems Certification Program (SESCP)

    SciTech Connect (OSTI)

    Steele, B.J. [Sandia National Labs., Albuquerque, NM (United States); Papier, I.I. [Underwriters Labs., Inc., Northbrook, IL (United States)

    1996-06-20T23:59:59.000Z

    Sandia National Laboratories (SNL) and Underwriters Laboratories, Inc., (UL) have jointly established the Security Equipment and Systems Certification Program (SESCP). The goal of this program is to enhance industrial and national security by providing a nationally recognized method for making informed selection and use decisions when buying security equipment and systems. The SESCP will provide a coordinated structure for private and governmental security standardization review. Members will participate in meetings to identify security problems, develop ad-hoc subcommittees (as needed) to address these identified problems, and to maintain a communications network that encourages a meaningful exchange of ideas. This program will enhance national security by providing improved security equipment and security systems based on consistent, reliable standards and certification programs.

  12. dieSel/heAvy equipMent College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    907-455-2809 www.ctc.uaf.edu/programs/diesel/ certificate Minimum Requirements for Certificate: 36 credits The diesel and heavy equipment mechanics program offers the student training in the maintenance and equipment overhauls. Students work on large truck fuel, electrical and air systems, diesel engines

  13. Multiple-Zone Variable Refrigerant Flow System Modeling and Equipment Performance Mapping

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We developed a variable refrigerant flow (VRF) vapor compression system model, which has five indoor units, one outdoor unit and one water heater. The VRF system can run simultaneous space conditioning (cooling or heating) and water heating. The indoor units and outdoor unit use fin-&-tube coil heat exchangers, and the water heater uses a tube-in-tube heat exchanger. The fin-&-tube coil heat exchangers are modeled using a segment-by-segment approach and the tube-in-tube water heater is modeled using a phase-by-phase approach. The compressor used is a variable-speed rotary design. We calibrated our model against a manufacturer s product literature. Based on the vapor compression system model, we investigated the methodology for generating VRF equipment performance maps, which can be used for energy simulations in TRNSYS and EnergyPlus, etc. In the study, the major independent variables for mapping are identified and the deviations between the simplified performance map and the actual equipment system simulation are quantified.

  14. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    NONE

    1990-04-13T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  15. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  16. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    E-Print Network [OSTI]

    Shehabi, Arman

    2009-01-01T23:59:59.000Z

    by potential equipment reliability concerns associated withblack carbon; equipment reliability; energy efficiency 1.potential equipment reliability concerns associated with

  17. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    by potential equipment reliability concerns associated withblack carbon; equipment reliability; energy efficiency 1.potential equipment reliability concerns associated with

  18. Carbothermic reduction with parallel heat sources

    DOE Patents [OSTI]

    Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

    1984-12-04T23:59:59.000Z

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  19. acoustic heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and directly heat the surrounding corona by dissipation of their wave energy. Outward propagation of the N-waves is treated based on the weak shock theory, so that the heating...

  20. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  1. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  2. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  3. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29T23:59:59.000Z

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  4. An Approach to Evaluating Equipment Efficiency Policies 

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01T23:59:59.000Z

    of several types of industr~al equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy effic~ency standards. An approach to the evaluation of these and related policy options is under development. Th~ approach...

  5. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 3 JUNE 1974 NOTE: Discussions of closed problems COMPOSITION EXPERIMENT ZERO OFFSET . . . . . . . . . . . . . 3.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA. 3.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA

  6. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 18 SEPTEMBER 1973 NOTE: Discussions of closed-14 4-18 4-19 ZERO OFFSET. . . · . . . . . . . · . . . . . . . 4-20 4. 6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA 4. ? APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT

  7. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 DECEMBER 1973 NOTE: Discussions of closed problems. · · · . · · . · · . · . . · . . CLOSED 4.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . · CLOSED 4.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA AND INTERMITTENT AUTOMATIC ZERO

  8. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 MARCH 1974 NOTE: Discussions of closed problems. . . . . . . . . . · . . . APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . APOLLO 15 ALSEP COLD . . . . 0 . . . . . APOLLO 15 LUNAR SURFACE MAGNETOMETER LOSS OF SCIENTIFIC AND ENGINEERING DATA. APOLLO 14

  9. Equipment Policy for Federal Sponsored Effective Date

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Property Manager I. Background Division of Research Florida Atlantic University is required to comply. Equipment shall be defined as an article of nonexpendable tangible personal property. Florida Atlantic and a useful life of more than one year. III. General Statement Research Accounting and Property Management

  10. Electrical Equipment Replacement: Energy Efficiency versus System Compatibility

    E-Print Network [OSTI]

    Massey, G. W.

    2005-01-01T23:59:59.000Z

    upgrading electrical equipment to energy efficient models, including conductor sizing, overcurrent protective devices, grounding, and harmonics. The pages that follow provide guidance in the decision-making process when replacing electrical equipment... equipment. Several areas of compatibility must be addressed for equipment to work properly. Critical areas of concern are conductor sizing, overcurrent protection devices, grounding, and harmonics. Conductor Sizing Conductors are sized...

  11. THE GAME, FIELD, PLAYERS AND EQUIPMENT General Rules

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    metal cleats are permitted. (See illegal player equipment) Game and Player Equipment (Illegal) 1. A player wearing illegal equipment shall not be permitted to play. This applies to any equipment, which be declared illegal include: A. Headgear containing any hard, unyielding, or stiff material, including billed

  12. INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

  13. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  14. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  15. Importance of energy efficiency in office equipment

    SciTech Connect (OSTI)

    Blatt, M.H.

    1995-12-01T23:59:59.000Z

    Energy-Efficient Office Technology 1994: An International Seminar has been organized and funded by the Office Technology Efficiency Consortium, a group of utilities, government agencies, and other energy efficiency advocates that has been aggressively championing the need for more efficient computers, displays, printers, faxes, and copiers. The Consortium, organized in late 1992, currently consists of 10 cofunders and numerous other participants. The cofunders are: The Electric Power Research Institute, New York State Energy Research and Development Authority, Consolidated Edison Company of New York, the Swedish National Board for Industrial and Technical Development (NUTEK), Ontario Hydro, Pacific Gas and Electric Company, U.S. Department of Energy, U.S. Environmental Protection Agency, and the Wisconsin Center for Demand-Side Research. The Consortium has been striving to achieve multiple objectives. These objectives are to: (1) Improve office technology user energy efficiency end operating cost (2) Improve end-use equipment`s power quality characteristics (3) Increase equipment immunity to power line disturbances (4) Avoid the need for wiring overloads and upgrades (5) Reduce utility`s peak demand (6) Improve utility load factor. The growth in electricity use in the United States and the need for additional utility capacity has been driven to a great extent by the U.S. shift to a service economy and the coincident increase in the use of office equipment in these service establishments. The initial efforts of the Consortium, which consisted of the cofunders, included holding a workshop in June 1992 to heighten awareness of the importance of the need for more efficient office equipment. The workshop was documented in {open_quotes}Proceedings: Energy-Efficient Office Technologies,{close_quotes} TR-101945, in December 1992.

  16. Indoor Pollutants Emitted by Electronic Office Equipment

    SciTech Connect (OSTI)

    Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

    2008-07-01T23:59:59.000Z

    The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating exposure concentrations.

  17. All milking equipment, lines, and utensil surfaces that come into contact with milk or dirt or manure must be

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    , decrease rinsability, create films on equipment, and cause problems with water heaters. The compatible calcium, magnesium, or iron) in milk or water, are precipitated by alkaline conditions or heat. Cleaning agents can actually enhance precipitation of these salts if they are not compatible with water hardness

  18. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

  19. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  20. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  1. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  3. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08T23:59:59.000Z

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  4. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  5. Tipmont REMC- Energy Efficiency Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Tipmont REMC customers are eligible for rebates for the installation of efficient water heaters and air-source and geothermal heat pumps. A rebate is also available for the recycling of older, less...

  6. Equipment Energy Models Using Spreadsheet Programs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    of the problems of documentation, modification, verification, and validation that plague conventional programming approaches. Specific examples of heat pump and cogeneration power system analysis, steam properties interpolation, boiler and combustion efficiency...

  7. Heat exchanger with transpired, highly porous fins

    DOE Patents [OSTI]

    Kutscher, Charles F. (Golden, CO); Gawlik, Keith (Boulder, CO)

    2002-01-01T23:59:59.000Z

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  8. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect (OSTI)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30T23:59:59.000Z

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  9. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01T23:59:59.000Z

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

  10. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  11. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    heating, cooling, and power (CCHP) system in addition toIn all cases the CHP/CCHP system have a small fraction of1 Diesel generators and CHP/CCHP equipment as installed in

  12. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01T23:59:59.000Z

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  13. Viewing device for electron-beam equipment

    SciTech Connect (OSTI)

    Nasyrov, R.S.

    1985-06-01T23:59:59.000Z

    Viewing devices are used to observe melting, welding, and so on in vacuum systems, an it is necessary to protect the windows from droplets and vapor. A viewing device for electron-beam equipment is described in which the viewing tube and mounting flange are made as a tubular ball joint enclosed in a steel bellows, which render the viewing device flexible. Bending the viewing tube in the intervals between observations protects the viewing window from sputtering and from drops of molten metal.

  14. A lessee's guide to leasing industrial equipment

    E-Print Network [OSTI]

    Johnson, Jones Eugene

    1959-01-01T23:59:59.000Z

    is included in the agree- ment, the lessee is treading on dangerous ground, The Internal Reve- nue Service will examine such agreements closely and may decide the original transaction was a sale and not a lease. Regardless, whether the lessee actually...A LESSEE'S GUIDE TO LEASING INDUSTRIAL EQUIPMENT A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements for the degree of Master of Business Administration...

  15. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  16. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  17. Confirmation of the seismic resistance of nuclear power plant equipment after assembly

    SciTech Connect (OSTI)

    Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I. [JSC 'Atomtehenergo' (Russian Federation)

    2013-05-15T23:59:59.000Z

    It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

  18. Design optimization of residential-sized air-source heat pumps

    E-Print Network [OSTI]

    Boecker, Curtis Layne

    1987-01-01T23:59:59.000Z

    larger heat exchangers and increased fan motor efficiency. Variable-speed heat pumps offer the greatest potential for efficiency increases as improvements in the variable-speed compressors progress. ACKNOWLEDGEMENTS I would like to thank Dr. Dennis O... for your support throughout. vi TABLE OF CONTENTS CHAPTER INTRODUCTION THE HEAT PUMP THERMODYNAMIC CYCLE Page Compressor Heat Exchanger Expansion Device Additional Equipment COMPUTER MODEL SELECTION AND VALIDATION . . 13 General Model...

  19. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15T23:59:59.000Z

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  20. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  1. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  2. The Evolution of the U.S. Heat Pump Market

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL] [ORNL; Khowailed, Gannate [Sentech, Inc.] [Sentech, Inc.

    2011-01-01T23:59:59.000Z

    The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

  3. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1982-12-28T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  4. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1981-10-13T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  5. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  6. Guide to good practices for control of equipment and system status

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control of Equipment and System Status, Chapter VIII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing equipment and system status control programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control of Equipment and System Status is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the need for a formal status control program to promote safe and efficient operations.

  7. 2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment The solution: hybrid heat pumps Selection and installation Installer benefits Consumer benefits Summary Agenda

  8. Energy Department Explores Deep Direct Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and...

  9. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  10. Property Tax Exemption for Machinery, Equipment, Materials, and Supplies (Kansas)

    Broader source: Energy.gov [DOE]

    The Property Tax Exemption for Machinery, Equipment, Materials, and Supplies exists for low-dollar items of machinery, equipment, materials and supplies used for business purposes, or in activities...

  11. New web page lists excess equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New web page lists excess equipment If you need a piece of equipment or office furniture, you can now go online to see if there's something at the Ames Laboratory warehouse that...

  12. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  13. Reducing variability in equipment availability at Intel using systems optimization

    E-Print Network [OSTI]

    Kwong, William W. M

    2004-01-01T23:59:59.000Z

    Equipment management is an important driver behind operational efficiency, since capital equipment makes up about 40% of the average semiconductor manufacturer's total assets. The main goal of this project is to reduce ...

  14. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  15. Home and Farm Security Machinery and Equipment Identification. 

    E-Print Network [OSTI]

    Nelson, Gary S.

    1982-01-01T23:59:59.000Z

    73 Fibme and Farm Security -m Machinery and Equipment identification Home and Farm Security chinery and Equipment Identification *Gary S. Nelson is no longer just an urban problem. d burglaries in rural communities have to an alarming...

  16. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01T23:59:59.000Z

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  17. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01T23:59:59.000Z

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  18. An Approach to Evaluating Equipment Efficiency Policies

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01T23:59:59.000Z

    AN APPROACH TO EVALUATING EQUIPMENT EFFICIENCY POLICIES Donald E. Newsom, Ph.D. and Allan R. Evans, Ph.D., P.E. Argonne National Laboratory, Argonne, Illinois ABSTRACT The National Energy Conservation Policy Act of 1978 authorized studies... odology to be used in performing the studies. i In response to the requirements of NECPA, 4r gonne National Laboratory has been engaged in t~e development of an approach to the evaluation of!pos i sible governmental policy options that would en~our- I...

  19. Transportation Equipment (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003ToolsearchTransportation Equipment (2010 MECS)

  20. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set,Buildings Equipment Initiative Smart

  1. Appliances and Commercial Equipment Standards: Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance and Equipment Standards Fact

  2. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation100 tonEquipment

  3. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669 RF and^Equipment

  4. Equipment Certification Requirements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMissionEquipment Certification

  5. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in HallLeo282INL Equipment to

  6. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  7. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  8. Effectiveness of cabs for dust and silica control on mobile mining equipment

    SciTech Connect (OSTI)

    Garcia, J.J.; Gresh, R.E.; Gareis, M.B.; Haney, R.A.

    1999-07-01T23:59:59.000Z

    The Mine Safety and Health Administration (MSHA) has conducted a study to evaluate the effectiveness of cabs for controlling silica dust exposure during operation of mobile mining equipment. This study focused on bulldozers, front-end loaders and haul trucks, was conducted at surface coal mining operations and underground metal and nonmetal mining operations. Each piece of equipment tested was equipped with a cab. The vehicles sampled were from a range of manufacturers having different types of filter media and air intake configurations. The purpose of this study was to determine the reduction of dust and silica exposure that could be achieved through the use of a well-maintained cab. For each piece of equipment, dust and silica concentrations inside and outside the cab were determined and compared. In some cases, filtration efficiencies could be calculated. A properly designed environmental cab is sealed, has an intake air filtration system, and a heating and cooling system. Cabs should have good seals around the doors and windows. Factors such as cab pressurization filtration systems, filter media, and maintenance practices were also examined. In some cases, dust and silica reduction of 90 to 95% were observed.

  9. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  10. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 2, Fluorescent lamp ballasts, television sets, room air conditioners, and kitchen ranges and ovens

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document is divided into ``volumes`` B through E, dealing with individual classes of consumer products. Chapters in each present engineering analysis, base case forecasts, projected national impacts of standards, life-cycle costs and payback periods, impacts on manufacturers, impacts of standards on electric utilities, and environmental effects. Supporting appendices are included.

  11. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Farritor, Shane

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: SPECIAL CIRCUMSTANCES://ehs.unl.edu/) Introduction This SOP is intended to work in tandem with other EHS SOPs related to Lockout/Tagout (LO/TO): · Lockout/Tagout for Machines & Equipment: Program Overview · Lockout/Tagout for Machines & Equipment

  12. Thermophoretic interaction of heat releasing particles Yu. Dolinskya)

    E-Print Network [OSTI]

    Elperin, Tov

    Thermophoretic interaction of heat releasing particles Yu. Dolinskya) and T. Elperinb) Department investigates thermophoretic force acting at heat releasing absorbing particles near the interface between two of the thermophoretic force is proportional to the rate of heat release absorption by the particle, and its direction

  13. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29T23:59:59.000Z

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  14. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01T23:59:59.000Z

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  15. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  16. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  17. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  18. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  19. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  20. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  1. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  2. Space and Movable Equipment Inventory Revision: July 31, 2014 CERTIFICATION OF SPACE AND MOVABLE EQUIPMENT INVENTORY -FISCAL YEAR 2014

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Space and Movable Equipment Inventory Revision: July 31, 2014 CERTIFICATION OF SPACE AND MOVABLE EQUIPMENT INVENTORY - FISCAL YEAR 2014 TO BE USED FOR IBB PLANNING FOR FISCAL YEAR 2016 I acknowledge that the space and movable equipment inventory results conducted for this fiscal year will be used for IBB

  3. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect (OSTI)

    Palmer, T A; Elmer, J W

    2005-03-16T23:59:59.000Z

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  4. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    Peak Saver Program: Home heating/cooling system purchase/heaters Direct heating equipment Mobile home furnaces Medium

  5. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01T23:59:59.000Z

    input capacity and the home heating load. For water heatersHeaters, Direct Heating Equipment, Mobile Home Furnaces,

  6. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  7. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  8. STORAGE OPERATORS DIRECTED LAMBDA-CALCULUS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STORAGE OPERATORS AND DIRECTED LAMBDA-CALCULUS René DAVID & Karim NOUR LAMA - Equipe de Logique) p 1054-1086" #12;Abstract Storage operators have been introduced by J.L. Krivine in [5 of the ordinary l-calculus. With this calculus we get an equivalent - and simple - definition of the storage

  9. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  10. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  11. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  12. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  13. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  14. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30T23:59:59.000Z

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  15. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27T23:59:59.000Z

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 ���°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination id

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.

    2012-02-27T23:59:59.000Z

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for

  17. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  18. Thermodynamic Analysis of Combined Cycle District Heating System 

    E-Print Network [OSTI]

    Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

    2011-01-01T23:59:59.000Z

    generation systems that include a 10 MW Solar combustion gas turbine, a 4-MW steam turbine, a 100,000 pph heat recovery steam generator (HRSG), three 125,000 pph package boilers, and auxiliary equipment. In the analysis, actual system data is used to assess...

  19. Reduce Radiation Losses from Heating Equipment; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #7 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbird Red HabitatReduce9 *7 *

  20. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...