Powered by Deep Web Technologies
Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

2

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak...

3

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This report estimates fuel cell system cost for systems produced in the...

4

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

07 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

5

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

6

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost...

7

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications number of vehicles it represents, DOE has established detailed cost targets for automotive fuel cell and track the cost of automotive fuel cell systems as progress is made in fuel cell technology. The purpose

8

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update it represents, the DOE has established detailed cost targets for automotive fuel cell systems and components of automotive fuel cell systems as progress is made in fuel cell technology. The purpose of these cost analyses

9

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

1 Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation (2012), annually updated costs analyses will be conducted for PEM fuel cell passenger buses as well established detailed cost targets for automotive fuel cell systems and components. To help achieve

10

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications for transportation. Fuel cell systems will have to be cost-competitive with conventional and advanced vehicle it represents, the DOE has established detailed cost targets for automotive fuel cell systems and components

11

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update This report is the third annual update of a...

12

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

10 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update This report is the fourth annual update of a comprehensive...

13

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

14

Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

15

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review  

Broader source: Energy.gov [DOE]

This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

16

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technology * 2015 projected technology 2 Determine costs for these 3 tech level Fuel Cell System Battery System Storage 2. Determine costs for these 3 tech level systems at 5...

17

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturingMarginalMarket|

18

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

19

Direct/Indirect Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

1997-03-28T23:59:59.000Z

20

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

22

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Broader source: Energy.gov [DOE]

Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

23

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:Market

24

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:MarketAutomotive Applications:

25

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:MarketAutomotive

26

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:MarketAutomotiveTransportationfor

27

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:Market Transformation2

28

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:Market Transformation2Automotive

29

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel, fuel cell vehicles offer an environmentally clean and energysecure transportation pathway for transportation. Fuel cell systems will have to be costcompetitive with conventional and advanced vehicle

30

mMass Production Cost Estimation for Direct H2 PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

of energy sources can be used to produce hydrogen, including nuclear, coal, natural gas, geothermal, wind, hydroelectric, solar, and biomass. Thus, fuel cell vehicles offer an...

31

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

of energy sources can be used to produce hydrogen, including nuclear, coal, natural gas, geothermal, wind, hydroelectric, solar, and biomass. Thus, fuel cell vehicles offer an...

32

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

portfolio of energy sources can be used to produce it, including nuclear, coal, natural gas, geothermal, wind, hydroelectric, solar, and biomass. Thus fuel cell vehicles offer an...

33

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Mass Production Cost Estimation for Direct H2 PEM Fuel CellCost Analysis of Fuel Cell Systems for Transportation - Compressed Hydrogen and PEM

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

34

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

35

Direct hydrocarbon fuel cells  

DOE Patents [OSTI]

The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

Barnett, Scott A.; Lai, Tammy; Liu, Jiang

2010-05-04T23:59:59.000Z

36

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2008-03-01T23:59:59.000Z

37

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

2007-04-01T23:59:59.000Z

38

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

39

DFMA Cost Estimates of Fuel-Cell/Reformer Systems  

E-Print Network [OSTI]

Page 1 DFMA Cost Estimates of Fuel-Cell/Reformer Systems at Low/Medium/High Production Rates Brian system · Direct hydrogen fuel cell system (with 5kpsi H2 storage) 2. Determine costs for system ·Fuel cell stacks ·Air supply and humidification ·Thermal management ·Water management ·Fuel Supply

40

Micro Fuel Cells Direct Methanol Fuel Cells  

E-Print Network [OSTI]

energy density of 1.5 Wh/cc; 1.5Wh/g = X5; x10 energy density of Li ion battery * Direct & complete Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Micro Fuel Cells TM State of MTI Micro Fuel Cells Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

42

Breaking the Fuel Cell Cost Barrier  

Broader source: Energy.gov (indexed) [DOE]

the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with...

43

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

44

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Societal lifetime cost of hydrogen fuel cell vehiclesthe societal cost of hydrogen fuel-cell vehicles with modelsand running costs) than hydrogen fuel-cell vehicles in 2030.

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

45

Cost of Fuel to General Electricity  

Broader source: Energy.gov [DOE]

Presentation covers the topic of the cost of fuel to general electricity for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

46

LowerLower--Cost Fuel CellsCost Fuel Cells Allen J. Bard, Arumugam Manthiram,Allen J. Bard, Arumugam Manthiram,  

E-Print Network [OSTI]

density 4 Hydrogen polymer electrolyteHydrogen polymer electrolyte membrane fuel cell (PEMFC)membrane fuel1 LowerLower--Cost Fuel CellsCost Fuel Cells Allen J. Bard, Arumugam Manthiram,Allen J. BardMaterials Science and Engineering Program 2 CONVENTIONAL POWER PLANT DIRECT FUEL CELL POWER PLANT Heat

Lightsey, Glenn

47

Sustainable Alternative Fuels Cost Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect and Counterfeit ItemsLaboratory

48

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

49

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Fuel-cell system cost estimate Fuel cell performance andsignificantly affect the cost of fuel cell stack. In aTo estimate how the costs of fuel-cell system components

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

50

Air Breathing Direct Methanol Fuel Cell  

DOE Patents [OSTI]

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

51

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

upon fuel cell stack performance, catalyst cost, stackin 2025, the fuel cell system cost (stack and BOP) is aboutaffect the cost of fuel cell stack. In a recent report by

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

52

Hybrid direct methanol fuel cells.  

E-Print Network [OSTI]

??A new type of fuel cell that combines the advantages of a proton exchange membrane fuel cells and anion exchange membrane fuel cells operated with… (more)

Joseph, Krishna Sathyamurthy

2012-01-01T23:59:59.000Z

53

Direct/Indirect Costs - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(CCMD) and describes various estimating techniques for direct and indirect costs. g4301-1chp7.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 7...

54

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network [OSTI]

1990. "l’he Economicsof Alternative Fuel Use: Subsfitt~/ingMcOartland. 1990. "Alternative Fuels for Pollution Control:Policy Levers for Alternative Fuels: Costs, Energy Security,

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

55

Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW...

56

New fuel injector design lowers cost  

SciTech Connect (OSTI)

This article describes the Bendix Deka injector series. Bendix engineers have been striving to lessen costs of all portions of the injection equipment, especially single and multipoint injectors. Results of these efforts are advanced, thin-edged orifice and floating unitized armature designs. External configurations of both multipoint and single point Bendix Deka injectors are such that they can directly replace existing products. Both injector types are designed to be able to deliver any calibration within the currently-known requirements. Flow tolerances for Deka injectors match all known requirements, representing a good economic balance between performance and cost. Materials were carefully chosen for wear and corrosion resistance.

De Grace, L.G.; Bata, G.T.

1985-03-01T23:59:59.000Z

57

Direct FuelCell/Turbine Power Plant  

SciTech Connect (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

58

Future Directions in Engines and Fuels  

Broader source: Energy.gov (indexed) [DOE]

in Engines and Fuels Department of Energy DEER Conference Presented by Stuart Johnson, Engineering and Environmental Office September 28, 2010 Future Direction in Engines...

59

Low contaminant formic acid fuel for direct liquid fuel cell  

DOE Patents [OSTI]

A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

2009-11-17T23:59:59.000Z

60

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems  

SciTech Connect (OSTI)

Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

Mahadevan, Kathyayani

2011-10-04T23:59:59.000Z

62

Cost Analyses of Fuel Cell Stacks/Systems  

E-Print Network [OSTI]

Cost Analyses of Fuel Cell Stacks/Systems DE-FC02-99EE50587 TIAX LLC Acorn Park Cambridge in the development of fuel cell system technologies by providing cost and manufacturing analysis. · To develop ­ Presented results to the fuel cell industry for feedback and incorporated this into a revised baseline cost

63

Direct Methanol Fuel Cells - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of Shewanella Oneidensis OuterDirectDirect

64

Future Directions in Engines and Fuels  

Broader source: Energy.gov (indexed) [DOE]

Future Directions in Engines and Fuels 7 Specification HECS I (current) 1.6l 4-Cyl. Diesel Engine 60 kWl spec. Power (limited PFP) Euro 6 wo DeNOx (<1700 kg) ...

65

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

66

Estimating Specialty Costs - DOE Directives, Delegations, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project specialty costs and methods of estimating costs for specialty projects. g4301-1chp20.pdf -- PDF Document, 56 KB Writer: John Makepeace Subjects: Administration Management...

67

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

fuel-cell vehicles in 2030. This comparative analysis, based on costfuel cell or hydrogen ICE) and all-electric vehicles. According to the analysis, the societal cost

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

68

Sustainable Alternative Fuels Cost Workshop Roster of Participants...  

Energy Savers [EERE]

Workshop Roster of Participants Sustainable Alternative Fuels Cost Workshop Roster of Participants This is the list of attendees from the November 27, 2012, Sustainable Alternative...

69

Webinar: Automotive and MHE Fuel Cell System Cost Analysis  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

70

Fuel Cell System Cost for Transportation-2008 Cost Estimate (Book)  

SciTech Connect (OSTI)

Independent review prepared for the U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager.

Not Available

2009-05-01T23:59:59.000Z

71

Fuel costs and the retirement of capital goods  

E-Print Network [OSTI]

This paper explores the effect that energy prices and market conditions have on the retirement rates of capital goods using new micro data on aircraft lifetimes and fuel costs. The oil shocks of the 1970s made fuel intensive ...

Goolsbee, Austan Dean

1993-01-01T23:59:59.000Z

72

Cost Model and Cost Estimating Software - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is basically a cost model, which forms the basis for estimating software. g4301-1chp22.pdf -- PDF Document, 190 KB Writer: John Makepeace Subjects: Administration...

73

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

liu. A parametric study of PEM fuel cell performances.economic design of PEM fuel cell systems by multi-objectiveEstimation for Direct H2 PEM Fuel Cell System for Automotive

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

74

Cost Analysis of Fuel Cell Systems for Transportation  

E-Print Network [OSTI]

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge Presentation 3 A fuel cell vehicle would contain the PEMFC system modeled in this project along with additional

75

LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

common hydrocarbon fuels (e.g., natural gas, propane, and bio-derived fuel) as well as hydrogenLOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS Dr. Christopher E. Milliken, Materials Group Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE

76

Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill SafetyVehicle FuelEVs

77

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

78

Costs Associated With Propane Vehicle Fueling Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNatural Gas UsageCosmic

79

Alternative Fuels Data Center: Vehicle Cost Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools Printable Version Share this resource

80

Startup Costs - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and environmental projects, and estimating guidance for startup costs. g4301-1chp8.pdf -- PDF Document, 8 KB Writer: John Makepeace Subjects: Administration Management...

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Presentation...

82

Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

83

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

84

Low Cost, High Efficiency Reversible Fuel Cell Systems  

E-Print Network [OSTI]

Low Cost, High Efficiency Reversible Fuel Cell Systems DE-FC36-99GO-10455 POC: Doug Hooker Dr Approach: System Concept Fuel Cell Subsystem Battery Subsystem Converter Electrolyzer Subsystem Inverter, -- (216) 541(216) 541--10001000 Slide 5 Approach: Challenges ·Electrolyzer Subsystem Efficiency ·Fuel Cell

85

Low-cost and durable catalyst support for fuel cells: graphite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

86

Low Cost Reversible fuel cell systems  

SciTech Connect (OSTI)

This final report summarizes a 3-phase program performed from March 2000 through September 2003 with a particular focus on Phase III. The overall program studied TMI's reversible solid oxide stack, system concepts, and potential applications. The TMI reversible (fuel cell-electrolyzer) system employs a stack of high temperature solid-oxide electrochemical cells to produce either electricity (from a fuel and air or oxygen) or hydrogen (from water and supplied electricity). An atmospheric pressure fuel cell system operates on natural gas (or other carbon-containing fuel) and air. A high-pressure reversible electrolyzer system is used to make high-pressure hydrogen and oxygen from water and when desired, operates in reverse to generate electricity from these gases.

Technology Management Inc.

2003-12-30T23:59:59.000Z

87

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the1 S u mCosts

88

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

89

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

90

Low Cost PEM Fuel Cell Metal Bipolar Plates  

E-Print Network [OSTI]

Low Cost PEM Fuel Cell Metal Bipolar Plates CH Wang TreadStone Technologies, Inc. Fuel Cell Project, stationary and automobile fuel cell systems. $0.00 $0.05 $0.10 $0.15 $0.20 $0.25 $0.30 $0.35 $0.40 $0.45 $0. · The technology has been evaluated by various clients and used in portable fuel cell power systems. Corporate

91

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsatin the

92

Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...  

Broader source: Energy.gov (indexed) [DOE]

graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the...

93

Automotive and MHE Fuel Cell System Cost Analysis (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

on previous fuel cell cost analysis studies that we've done for the Department of Energy, beginning with a market analysis, and then completing a system design. The system...

94

Cost and quality of fuels for electric plants 1993  

SciTech Connect (OSTI)

The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1994-07-01T23:59:59.000Z

95

Fuel Cell System for Transportation -- 2005 Cost Estimate  

SciTech Connect (OSTI)

Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of this independent review will permit NREL and DOE to better understand the credibility of the TIAX cost estimation process and to implement changes in future cost analyses, if necessary. The Team found the methodology used by TIAX to estimate the cost of producing PEM fuel cells to be reasonable and, using 2005 cell stack technology and assuming production of 500,000 units per year, to have calculated a credible cost of $108/kW.

Wheeler, D.

2006-10-01T23:59:59.000Z

96

PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques  

SciTech Connect (OSTI)

Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

1997-12-31T23:59:59.000Z

97

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

98

Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving InnovationDurable, Low Cost,

99

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

s pilot-scale PEM fuel cell manufactunng cost, and theproductaon, PEM fuel cell systems could cost $35 - 90/kW,is how PEM fuel cell system manufactunng costs might evolve

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

100

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

Costs of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems Forecasting the

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

the manufactunng costs of fuel cells systems from presentlevel and manufactunng cost of PEM fuel cell systems, for amthe present cost cf PEM fuel cell systems by consldenng a

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

102

Low Cost PEM Fuel Cell Metal Bipolar Plates  

SciTech Connect (OSTI)

Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

Wang, Conghua [TreadStone Technologies, Inc.

2013-05-30T23:59:59.000Z

103

Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels  

SciTech Connect (OSTI)

This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

Turgut Gur

2010-04-30T23:59:59.000Z

104

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct Bonded

105

Cost Transfers Involving Sponsored Projects Directives and Procedures  

E-Print Network [OSTI]

Cost Transfers Involving Sponsored Projects Directives and Procedures Responsible Office: Office.................................................................................................................2 2. Project Management to a project when an award arrived after the budget period which would have allowed the transactions

Jawitz, James W.

106

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

107

Direct Conversion of Biomass to Fuel | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

108

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

SciTech Connect (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

109

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

1] D.J. Friedman etc. , PEM Fuel Cell System Optimization,Pressure Operation of PEM Fuel Cell Systems, SAE 2001, 2001-Maximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

110

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

111

SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

Murph, S.

2012-09-12T23:59:59.000Z

112

Cost Estimating Guide - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title: CorrelationCostCURRENT

113

Aggressive fuel designs minimize fuel costs for the ANO-1 PWR  

SciTech Connect (OSTI)

Fuel cycle design objectives are influenced by the desire of utilities to attain top performer status in the industry and to become more cost competitive. At Energy, we are seeking aggressive fuel designs and core management schemes that reduce costs without compromising operating margins. Recent efforts at the Arkansas Nuclear One (ANO-1) plant demonstrated the effectiveness of this approach and led to important benefits for both the utility and the fuel vendor, Babcock Wilcox. With our acquisition of the CASMO-3/SIMULATE-3 advanced physics code, we initiated a proactive approach to the design of cycle 12 of ANO-1. The primary goal was to explore the use of advanced designs to reduce front-end fuel cycle costs for cycle 12. A secondary goal was to incorporate those features into cycle 12 that could lead to further cost or margin improvements in later cycles.

Ober, T.G.; Megehee, K.B.; Bencheikh, A.; Thompson, R.A. (Entergy Operations, Jackson, MS (United States))

1993-01-01T23:59:59.000Z

114

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

115

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

116

Cost and quality of fuels for electric utility plants, 1992  

SciTech Connect (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

117

Cost and quality of fuels for electric utility plants, 1994  

SciTech Connect (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

118

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

119

Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells  

DOE Patents [OSTI]

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2008-10-21T23:59:59.000Z

120

Carbon fuel particles used in direct carbon conversion fuel cells  

DOE Patents [OSTI]

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2011-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon fuel particles used in direct carbon conversion fuel cells  

DOE Patents [OSTI]

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2012-01-24T23:59:59.000Z

122

Carbon fuel particles used in direct carbon conversion fuel cells  

DOE Patents [OSTI]

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F.; Cherepy, Nerine

2012-10-09T23:59:59.000Z

123

Cost and quality of fuels for electric utility plants, 1984  

SciTech Connect (OSTI)

Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

Not Available

1985-07-01T23:59:59.000Z

124

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

125

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

126

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect (OSTI)

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

127

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

128

Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Commercialization of IH 2 Biomass Direct-to-Hydrocarbon Fuel Technology Alan Del Paggio, Vice President CRI Catalyst Company 910 Louisiana, Houston, TX 77002 Disclaimer This...

129

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel  

E-Print Network [OSTI]

This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses on the impacts of hedging for companies that are directly impacted through the ...

Shehadi, Charles A., III (Charles Anthony)

2010-01-01T23:59:59.000Z

130

Facts and issues of direct disposal of spent fuel; Revision 1  

SciTech Connect (OSTI)

This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

Parks, P.B.

1993-10-01T23:59:59.000Z

131

Evaluation of Novel and Low-Cost Materials for Bipolar Plates in PEM Fuel Cells.  

E-Print Network [OSTI]

??Bipolar plate material and fabrication costs make up a significant fraction of the total cost in a polymer electrolyte membrane fuel cell stack. In an… (more)

Desrosiers, Kevin Campbell

2002-01-01T23:59:59.000Z

132

Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations  

SciTech Connect (OSTI)

Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

Cornish, John

2011-03-05T23:59:59.000Z

133

Report on the Savannah River Site aluminum-based spent nuclear fuel alternatives cost study  

SciTech Connect (OSTI)

Initial estimates of costs for the interim management and disposal of aluminum-based spent nuclear fuel (SNF) were developed during preparation of the Environmental Impact Statement (EIS) on the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The Task Team evaluated multiple alternatives, assessing programmatic, technical, and schedule risks, and generated life-cycle cost projections for each alternative. The eight technology alternatives evaluated were: direct co-disposal; melt and dilute; reprocessing; press and dilute; glass material oxidation dissolution system (GMODS); electrometallurgical treatment; dissolve and vitrify; and plasma arc. In followup to the Business Plan that was developed to look at SNF dry storage, WSRC prepared an addendum to the cost study. This addendum estimated the costs for the modification and use of an existing (105L) reactor facility versus a greenfield approach for new facilities (for the Direct Co-Disposal and Melt and Dilute alternatives). WSRC assessed the impacts of a delay in reprocessing due to the potential reservation of H-Canyon for other missions (i.e., down blending HEU for commercial use or the conversion of plutonium to either MOX fuel or an immobilized repository disposal form). This report presents the relevant results from these WSRC cost studies, consistent with the most recent project policy, technology implementation, canyon utilization, and inventory assumptions. As this is a summary report, detailed information on the technical alternatives or the cost assumptions raised in each of the above-mentioned cost studies is not provided. A comparison table that briefly describes the bases used for the WSRC analyses is included as Appendix A.

NONE

1998-12-01T23:59:59.000Z

134

Direct Methanol Fuel Cell Experimental and Model Validation Study  

E-Print Network [OSTI]

Direct Methanol Fuel Cell Experimental and Model Validation Study M. Mench, J. Scott, S. Thynell boundary Fuel cell performance Current density distribution measurements Conclusions #12;3 Method, flow rate, species inlet and fuel cell temperature, and humidity. Transparent polycarbonate windows

Wang, Chao-Yang

135

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect (OSTI)

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

136

Direct Ethanol Fuel Cells: Platinum/Rhodium Anode  

E-Print Network [OSTI]

Direct Ethanol Fuel Cells: Platinum/Rhodium Anode Catalysis Ken Ellis-Guardiola PCCM REU 2010 #12 EtOH+3H2O 12H+ +2CO2+ 12e- Pt C 4H+ + 4e- + O2 2H2O O2 Anode Cathode The Direct Ethanol Fuel Cell #12;The addition of other metals to Platinum improves its fuel cell performance Pt alone is easily

Petta, Jason

137

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

138

Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)...

139

Direct methanol fuel cell and system  

DOE Patents [OSTI]

A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

Wilson, Mahlon S. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

140

1366 Direct Wafer: Demolishing the Cost Barrier for Silicon Photovoltaics  

SciTech Connect (OSTI)

The goal of 1366 Direct Wafer™ is to drastically reduce the cost of silicon-based PV by eliminating the cost barrier imposed by sawn wafers. The key characteristics of Direct Wafer are 1) kerf-free, 156-mm standard silicon wafers 2) high throughput for very low CAPEX and rapid scale up. Together, these characteristics will allow Direct Wafer™ to become the new standard for silicon PV wafers and will enable terawatt-scale PV – a prospect that may not be possible with sawn wafers. Our single, high-throughput step will replace the expensive and rate-limiting process steps of ingot casting and sawing, thereby enabling drastically lower wafer cost. This High-Impact PV Supply Chain project addressed the challenges of scaling Direct Wafer technology for cost-effective, high-throughput production of commercially viable 156 mm wafers. The Direct Wafer process is inherently simple and offers the potential for very low production cost, but to realize this, it is necessary to demonstrate production of wafers at high-throughput that meet customer specifications. At the start of the program, 1366 had demonstrated (with ARPA-E funding) increases in solar cell efficiency from 10% to 15.9% on small area (20cm2), scaling wafer size up to the industry standard 156mm, and demonstrated initial cell efficiency on larger wafers of 13.5%. During this program, the throughput of the Direct Wafer furnace was increased by more than 10X, simultaneous with quality improvements to meet early customer specifications. Dedicated equipment for laser trimming of wafers and measurement methods were developed to feedback key quality metrics to improve the process and equipment. Subsequent operations served both to determine key operating metrics affecting cost, as well as generating sample product that was used for developing downstream processing including texture and interaction with standard cell processing. Dramatic price drops for silicon wafers raised the bar significantly, but the developments made under this program have increased 1366 confidence that Direct Wafers can be produced for ~$0.10/W, still nearly 50% lower than current industry best practice. Wafer quality also steadily improved throughout the program, both in electrical performance and geometry. The improvements to electrical performance were achieved through a combination of optimized heat transfer during growth, reduction of metallic impurities to below 10 ppbw total metals, and lowering oxygen content to below 2e17 atoms/cc. Wafer average thickness has been reduced below 200µm with standard deviation less than 20µm. Measurement of spatially varying thickness shortly after wafer growth is being used to continually improve uniformity by adjusting thermal conditions. At the conclusion of the program, 1366 has developed strong relationships with four leading Tier1 cell manufactures and several have demonstrated 17% cell efficiency on Direct Wafer. Sample volumes were limited, with the largest trial consisting of 300 Direct Wafers, and there remains strong pull for larger quantities necessary for qualification before sales contracts can be signed. This will be the focus of our pilot manufacturing scale up in 2014.

Lorenz, Adam [1366 Technologies] [1366 Technologies

2013-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A self-regulated passive fuel-feed system for passive direct methanol fuel cells.  

E-Print Network [OSTI]

??Unlike active direct methanol fuel cells (DMFCs) that require liquid pumps and gas compressors to supply reactants, the design of passive DMFCs eliminates these ancillary… (more)

Chan, Yeuk Him

2007-01-01T23:59:59.000Z

142

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

143

Durable, Low-cost, Improved Fuel Cell Membranes  

SciTech Connect (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

144

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

fuel cell stacks (Savote (1998)) Estimating manufactunng costfuel cell stacks, $20/kWfor fuel processors, and $20/kWfor "balance of plant" auxlhary components These costCosts of Automotive PEM Fuel Cell Systems (PEM)fuel cell stack

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

145

High specific power, direct methanol fuel cell stack  

DOE Patents [OSTI]

The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

Ramsey, John C. (Los Alamos, NM); Wilson, Mahlon S. (Los Alamos, NM)

2007-05-08T23:59:59.000Z

146

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

147

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

148

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

The Alternative Fuels Trade Model, ORNL-6771, SeptemberAssessing the Market Benefits of Alternative Motor Fuels –Comparison of Cars with Alternative Fuels/Engines, Energy

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

149

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

150

Enhanced methanol utilization in direct methanol fuel cell  

DOE Patents [OSTI]

The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2001-10-02T23:59:59.000Z

151

Direct Conversion of Biomass to Fuel | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac ChargeDirect Conversion of

152

THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

2003-07-01T23:59:59.000Z

153

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY  

E-Print Network [OSTI]

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY AND MOTOR VEHICLE PEM FUEL CELL SYSTEMS UCD-ITS-RP-04-21 April 2004 by Timothy Lipman University of California: itspublications@ucdavis.edu #12;Energy Policy 32 (2004) 101­125 Fuel cell system economics: comparing the costs

Kammen, Daniel M.

154

New Formic Acid Fuel Cell Orientations to Reduce the Cost of Cell Components.  

E-Print Network [OSTI]

??Formic acid fuel cells show the potential of outperforming or replacing direct methanol fuel cells. A number of issues need to be overcome in order… (more)

Holtkamp, John Calvin

2009-01-01T23:59:59.000Z

155

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Broader source: Energy.gov (indexed) [DOE]

vehicles by 5% using advanced low cost TE technology: - Low cost materials, modules, heat exchangers, power conditioning, and vehicle integration for exhaust gas waste heat...

156

The External Damage Cost of Direct Noise From Motor Vehicles  

E-Print Network [OSTI]

is not an external or unaccounted-for cost of highways ifland, then there is an unaccounted- for cost of highway use;

Delucchi, Mark A.; Hsu, Shi-Ling

1996-01-01T23:59:59.000Z

157

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

158

A Total Cost of Ownership Model for Low Temperature PEM Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications A Total Cost of Ownership Model for Low Temperature PEM...

159

Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel  

SciTech Connect (OSTI)

Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

Pivovaroff, Dr. Michael J. [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ziock, Klaus-Peter [ORNL] [ORNL; Harrison, Mark J [ORNL] [ORNL; Soufli, Regina [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL)

2014-01-01T23:59:59.000Z

160

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

10,000-psi tank cost $2,458, or $11.1/kWh. Carbon fiber wastank cost is in the range of $10-$17/kWh and carbon fiber

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances  

E-Print Network [OSTI]

was that "the costs of maintaining the existing gasoline infrastructure per vehicle supported are up to two vehicles (FCV's) and the cost of hydrogen produced by these HFA's. In previous studies we evaluated experience to develop a system of tools and methods for cost estimation of engineering designs. The DFMA

162

Mandating green: On the design of renewable fuel policies and cost containment mechanisms  

E-Print Network [OSTI]

Mandating green: On the design of renewable fuel policies and cost containment mechanisms Gabriel E Workshop and at the Stanford University Precourt Energy Efficiency Center Sustainable Transportation

Lin, C.-Y. Cynthia

163

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

164

Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MANUFACTURING COST ANALYSIS OF 1 KW AND 5 KW SOLID OXIDE FUEL CELL (SOFC) FOR AUXILLIARY POWER APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue...

165

DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost...  

Office of Environmental Management (EM)

current, and projected costs for delivering and dispensing hydrogen. DOE Hydrogen and Fuel Cells Program Record 13013 More Documents & Publications Hydrogen Delivery Roadmap US...

166

Benchmark the Fuel Cost of Steam Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | Department

167

Durable Low Cost Improved Fuel Cell Membranes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving Innovation

168

Sustainable Alternative Fuels Cost Workshop Roster of Participants  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect and Counterfeit

169

Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power...

170

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

171

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20,

172

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for'Cell Stacks |

173

Breaking the Fuel Cell Cost Barrier | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, DOE/SC-0095 Breakng theBreaking the Fuel

174

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Electricity H2 Gasoline, bio-fuel, H2, electricity Gasoline,bio-diesel, DME, CH2/LH2 Gasoline, electricity, H2 Powertrains ICE, hybrid, plug-in hybrid, battery, fuel

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

175

Electrocatalysis: A direct alcohol fuel cell and surface science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. e l s e v i e r . c o m l o c a t e c a t t o d Electrocatalysis: A direct alcohol fuel cell and surface science perspective B. Braunchweig a , D. Hibbitts b , M. Neurock b...

176

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

vehicle -$1,612 No engine Vehicle retail cost to consumercosts, for hydrogen FCVs and conventional gasoline internal combustion engine vehicles (

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

177

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

system cost model, and oil security metrics model (OSMM).the Energy Security Benefits of Reduced U.S. Oil Imports,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

178

Energy Department Announces New Investment to Reduce Fuel Cell Costs |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ ContractEndstatesEnergyWeatherized Three Months AheadtoBiofuels

179

Production Costs of Alternative Transportation Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPriorOpenis a town

180

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 YearsFlat RidgeFlexible

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Automotive and MHE Fuel Cell System Cost Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE0

182

Breaking the Fuel Cell Cost Barrier AMFC Workshop  

E-Print Network [OSTI]

(PFM-FC) 5 Light metal hardware Non-acidic membrane Non- platinum catalysts 70% cost savings and above batteries and diesel generators #12;PFM vs. PEM stack- Cost Analysis per kW at 10^3 unit volumes 6 PFM upgraded for stack level fabrication and testing 7 #12;Cellera's AMFC : Hydrogen/Air, 2/2 bar, 80 deg C

183

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network [OSTI]

model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviationMarket Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester

184

Improved Flow-Field Structures for Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

Gurau, Bogdan

2013-05-31T23:59:59.000Z

185

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

186

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

biogas, LPG, ethanol, bio-diesel, DME, CH2/LH2 Gasoline,Gasoline, bio-fuel, H2, electricity Gasoline, diesel, CNG,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

187

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

analysis shows that hybrid and electric cars perform bettercar (4-5 passengers) Fuels Gasoline, CNG, diesel, FT50, methanol, H2 Powertrains ICE, hybrid,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

188

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department ofDepartment ofUsing

189

Cost and Quality of Fuels for Electric Plants - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany LevelPhysicalAdministration

190

Sustainable Alternative Fuels Cost Workshop Roster of Participants |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-0140, 2014ADepartmentDepartment of Energy

191

Sustainable Alternative Fuels Cost Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-0140, 2014ADepartmentDepartment of

192

Cost and Quality of Fuels for Electric Utility Plants  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)

193

Cost and Quality of Fuels for Electric Utility Plants 1997  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)7

194

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share AlternativeRight Now Ten

195

Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share AlternativeRight Now Tenand Methodology

196

Starship Sails Propelled by Cost-Optimized Directed Energy  

E-Print Network [OSTI]

Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability ('beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail di...

Benford, James

2011-01-01T23:59:59.000Z

197

Check Estimates and Independent Costs - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

estimates and their procedures and various types of independent cost estimates. g4301-1chp13.pdf -- PDF Document, 33 KB Writer: John Makepeace Subjects: Administration Management...

198

Types of Cost Estimates - DOE Directives, Delegations, and Requirement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CURRENT DOE G 430.1-1 Chp 4, Types of Cost Estimates by John Makepeace Functional areas: Procurement, Project Management The chapter describes the estimates required on...

199

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

SciTech Connect (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

200

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem forTextileManaged

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) |and DPFDirectApplications:

202

Direct fuel cell for the production of electricity from lignin  

SciTech Connect (OSTI)

This report describes the use of an anthraquinone mediated fuel cell for the direct production of electrical energy from sulfonated lignin and Kraft Black Liquor. The cell produces the equivalent of one kWh for each 2-3 lb sulfonated lignin and 5-8 lb black liquor combustibles. In the case of the sulfonated lignin, chain session occurs during the oxidation process, reducing the molecular weight from ca. 2 x 10/sup 4/ to less than 1000 D.

Weetall, H.H.; Forsyth, B.D.; Hertl, W.

1985-07-01T23:59:59.000Z

203

Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell  

E-Print Network [OSTI]

Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell S 2010 Keywords: Fuel cell Ethanol oxidation reaction (EOR) Alkaline direct ethanol fuel cell Pt reserved. 1. Introduction In terms of fuel, a direct ethanol fuel cell (DEFC) is more attractive than

Zhao, Tianshou

204

Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab  

E-Print Network [OSTI]

Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

Cui, Yi

205

Fuel Cells for Transportation FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION1  

E-Print Network [OSTI]

Fuel Cells for Transportation FY 2001 Progress Report 113 V. PEM STACK COMPONENT COST REDUCTION1 A. High-Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes Mark K polymer electrolyte membrane (PEM) fuel cell components and pilot manufacturing processes to facilitate

206

Examining the Costs and Benefits of Technology Pathways for Reducing Fuel  

E-Print Network [OSTI]

Examining the Costs and Benefits of Technology Pathways for Reducing Fuel Use and Emissions from On policy harmonized Tax credits Anti-idling Low Carbon Fuel Standard #12;Lifecycle Emissions Modeled in TOP-HDV 5 Fuel production, refining, and distribution Material acquisition, processing, and vehicle assembly

California at Davis, University of

207

Low-cost, non-precious metal/polymer composite catalysts for fuel cells  

E-Print Network [OSTI]

will fuel cells take their place as a centerpiece of a hydrogen economy and position hydrogen as a major) activity in known-to-date non- precious metal. Fuel cell testing of the composite Figure 2 shows a hydrogenLow-cost, non-precious metal/polymer composite catalysts for fuel cells R. Bashyam and P. Zelenay 1

208

Investigation of low-cost LNG vehicle fuel tank concepts. Final report  

SciTech Connect (OSTI)

The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-02-01T23:59:59.000Z

209

DIRECT COSTS OF DISABLING WORKPLACE INJURIES GROW 2.5 PERCENT  

Broader source: Energy.gov [DOE]

April 7, 2003 Annual Liberty Mutual Workplace Safety Index Shows Direct Costs of the Three Leading Causes of Workplace Incidents Grew Significantly Faster...

210

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

hydrogen fuel by electrolysis meeting equal consumer costhydrogen fuel production by water electrolysis to provide lower fuel costFig. 2: Cost hydrogen bywater of (Coil) electrolysis as

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

211

Example Cost Codes for Construction Projects - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and their corresponding cost codes that may be used for construction projects. g4301-1chp16.pdf -- PDF Document, 93 KB Writer: John Makepeace Subjects: Administration Management...

212

Cost Estimation Package - DOE Directives, Delegations, and Requirement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

components (or elements) of the cost estimation package and their documentation. g4301-1chp2.pdf -- PDF Document, 10 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 2...

213

Cost Codes and the Work Breakdown Structure - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WBS and the cost code system, and explains the interface between the two systems. g4301-1chp5.pdf -- PDF Document, 44 KB Writer: John Makepeace Subjects: Administration Management...

214

Examples of Cost Estimation Packages - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1997 CRD: No DNFSB: No Related History Exemptions Standards Related to: DOE G 430.1-1 Chp 9, Operating Costs DOE G 430.1-1 Chp 19, Data Collection and Normalization for the...

215

Life Cycle Cost Estimate - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chapter discusses life cycle costs and the role they play in planning. g4301-1chp23.pdf -- PDF Document, 52 KB Writer: John Makepeace Subjects: Administration Management...

216

Activity Based Costing - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outlines the Activity Based Costing method and discusses applicable uses of ABC. g4301-1chp24.pdf -- PDF Document, 11 KB Writer: John Makepeace Subjects: Administration Management...

217

Cost Estimating Guide, Table of Contents - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1997 CRD: No DNFSB: No Related History Exemptions Standards Related to: DOE G 430.1-1 Chp 9, Operating Costs DOE G 430.1-1 Chp 19, Data Collection and Normalization for the...

218

Use of Cost Estimating Relationships - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

must be aware so the Cost Estimating Relationships can be properly used. g4301-1chp18.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: Administration Management...

219

Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing  

SciTech Connect (OSTI)

ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

2013-09-03T23:59:59.000Z

220

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications  

SciTech Connect (OSTI)

This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

Carlstrom, Charles, M., Jr.

2009-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Flex Fuel Polygeneration: Optimizing Cost, Sustainability, and Resiliency  

E-Print Network [OSTI]

a system to perform high level techno-economic analysis (TEA) · Determine economic feasibility of each · Energy sources · Energy carriers 2 #12;Initial Analysis of FFPG Systems · Design power plants;Conventional Approaches to Energy Conversion (Coal, Biomass, Wind, Natural Gas, Photons) ( Fuel, Chemicals

Daniels, Thomas E.

222

Low Cost PEM Fuel Cell Metal Bipolar Plates  

Broader source: Energy.gov (indexed) [DOE]

manufacture. - Demonstrate our metal plate application in portable, stationary and automobile fuel cell systems. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50...

223

Life-Cycle Costs of Alternative Fuels: Is Biodiesel Cost Competitve for Urban Buses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLife in the

224

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect (OSTI)

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

Not Available

1981-06-25T23:59:59.000Z

225

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost -  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3Aof Energy

226

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3Aof

227

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

SciTech Connect (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

228

A Total Cost of Ownership Model for Low Temperature PEM Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications Max Wei, Timothy Lipman 1 , Ahmad Mayyas 1 ,...

229

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

SciTech Connect (OSTI)

The results of sensitivity and Monte Carlo analyses on PEM fuel cell components and the overall system are presented including the most important cost factors and the effects of selected scenarios.

Carlson, E. J.; Kopf, P.; Sinha, J.; Sriramulu, S.; Yang, Y.

2005-12-01T23:59:59.000Z

230

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network [OSTI]

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

231

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter Kopf Fuel Cell Tech Team Review September 24, 2008 TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390...

232

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation COST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

233

Direct conversion of light hydrocarbon gases to liquid fuel  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

234

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

2013-12-31T23:59:59.000Z

235

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

236

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment  

E-Print Network [OSTI]

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government. This paper examines the cost effectiveness and environmental impact of the conversion of a 180 plus vehicle of Civil and Materials Engineering, and Institute for Environmental Science and Policy, University

Illinois at Chicago, University of

237

Journal of Power Sources 160 (2006) 10581064 Passive direct formic acid microfabricated fuel cells  

E-Print Network [OSTI]

Journal of Power Sources 160 (2006) 1058­1064 Passive direct formic acid microfabricated fuel cells on microscale silicon-based direct formic acid fuel cells (Si-DFAFCs) in which the fuel and the oxidant. Keywords: Micro fuel cell; Membrane electrode assembly; Formic acid; Passive fuel cell 1. Introduction Many

Kenis, Paul J. A.

2006-01-01T23:59:59.000Z

238

Hydrogen milestone could help lower fossil fuel refining costs  

ScienceCinema (OSTI)

Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

McGraw, Jennifer

2013-05-28T23:59:59.000Z

239

Hydrogen milestone could help lower fossil fuel refining costs  

SciTech Connect (OSTI)

Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

McGraw, Jennifer

2009-01-01T23:59:59.000Z

240

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE EFFECT OF INCREASING TRANSPORTATION COST ON FOREIGN DIRECT INVESTMENT.  

E-Print Network [OSTI]

broader dataset which has already been developed will be expanded to include the dramatic changes in oil prices pre Y2K and post Y2K. It was hypothesized that results will reflect that the cost of transportation will drive investment closer, rather... on regional country choice of investment. Previous research has confirmed this. Specifically, research conducted in Mileski (2000) has proven that key events that have affected the international oil supply has shown shift in locations chosen for investment...

Gressler, Kimberly

2009-06-09T23:59:59.000Z

242

Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity  

E-Print Network [OSTI]

We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

Parsons, John E.

243

A PRODUCTIVITY AND COST COMPARISON OF TWO NON-COMMERCIAL FOREST FUEL REDUCTION MACHINES  

E-Print Network [OSTI]

A PRODUCTIVITY AND COST COMPARISON OF TWO NON-COMMERCIAL FOREST FUEL REDUCTION MACHINES M. Chad-commercial equipment designs in a fuel reduction treatment. The machines were: 1) a swing-boom excavator (SBE) equipped with a rotary disc mulching head, and 2) a drive-to- tree flexible tracked machine (FTM) with a rotating drum

Bolding, M. Chad

244

Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3:DepartmentVehicle

245

Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content  

SciTech Connect (OSTI)

The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existing facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)

Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N. [Westinghouse Electric Co. LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

2012-07-01T23:59:59.000Z

246

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect (OSTI)

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

247

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

248

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

SciTech Connect (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

249

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013 | Department of

250

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleet Blue Ridge ParkwayYork

251

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

SciTech Connect (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

252

Selecting the proper fuel gas for cost-effective oxyfuel cutting  

SciTech Connect (OSTI)

The motivating factor behind recent research and development efforts in metal cutting has been the growing need for companies everywhere to embrace emerging technologies if they are to complete in the global economy. To quickly implement these productivity improvements and gain lower bottom line costs for welding and cutting operations, rapid commercialization of these process advancements is needed. Although initially more expensive, additive-enhanced fuel gases may be the most cost-effective choice for certain cutting applications. The cost of additive-enhanced fuel gases can be justified where oxygen pricing is low (such as with bulk oxygen). Propylene exhibited equal cutting speeds to acetylene and improved cutting economy under specific conditions, which involved longer cuts on thicker base materials. With a longer cut distance, the extra time required to reach the kindling temperature (when compared to acetylene) becomes less critical. It is important to note that kindling temperature was reached more rapidly with propylene than it was with propane, but both fuel gases were slower than acetylene. When factors such as these are considered, many applications are found to be more cost effectively performed with the more expensive acetylene or propylene fuel gases. Each individual application must be studied on a singular basis to determine the most cost-effective choice when selecting the fuel gas.

Lyttle, K.A.; Stapon, W.F.G. [Praxair, Inc., Danbury, CT (United States); Guimaraes, A.

1997-07-01T23:59:59.000Z

253

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

Broader source: Energy.gov (indexed) [DOE]

Partners Budget Colorado School of Mines (CSM) Jet Propulsion Laboratory (JPL) BASF Fuel Cells (BASF) MTI MicroFuel Cells (MTI) Timeline 2009 - 2011 2009 (Aug) 2011 2010...

254

Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems  

SciTech Connect (OSTI)

Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

2013-09-30T23:59:59.000Z

255

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

256

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect (OSTI)

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

257

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3

258

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

259

Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of different sizes of direct-hydrogen PEM fuel cell

2001-01-01T23:59:59.000Z

260

New Directions in Fuels Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy Emissions Control-- TheFuels

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A new principle for low-cost hydrogen sensors for fuel cell technology safety  

SciTech Connect (OSTI)

Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

2014-03-24T23:59:59.000Z

262

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnology

263

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnologyThe

264

Direct Methanol Fuel Cell Corporation DMFCC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,

265

Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7DepartmentEnergy TurbineTurboThe US |

266

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's ImpactAppendix3Energy Political Activity atPolymer

267

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department ofDepartment of Energy

268

New Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy Emissions Control-- The

269

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57

270

Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57Department1| Departmentof

271

Premixed direct injection nozzle for highly reactive fuels  

DOE Patents [OSTI]

A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

2013-09-24T23:59:59.000Z

272

APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*  

E-Print Network [OSTI]

APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

Paris-Sud XI, Université de

273

Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell  

E-Print Network [OSTI]

Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell L. An, T.S. Zhao ethanol fuel cell Alkaline-acid Species concentrations Membrane thickness Power density a b s t r a c t This paper reports on the performance of an alkaline-acid direct ethanol fuel cell (AA-DEFC) that is composed

Zhao, Tianshou

274

SciTech Connect: Crude Glycerol as Cost-Effective Fuel for Combined Heat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatron RadiationDirect Liquefactionand

275

The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements  

SciTech Connect (OSTI)

Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

1996-03-20T23:59:59.000Z

276

US Spent (Used) Fuel Status, Management and Likely Directions- 12522  

SciTech Connect (OSTI)

As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of accumulated spent fuel from the utilities. There are technical solutions for continuing the safe storage of spent fuel for 100 years or more and these solutions will be implemented by the US utilities that need to keep their nuclear power plants operating while the unknown political events are played out to establish future US policy decisions that can remain in place long enough regarding accumulated spent fuel inventories to implement any new US spent fuel centralized storage or disposition policy by the US government. (author)

Jardine, Leslie J. [L. J. Jardine Services, Consultant, Dublin CA, 94568 (United States)

2012-07-01T23:59:59.000Z

277

Direct costing  

E-Print Network [OSTI]

on? See aooounting profess ion is LLvilel upon whether the yrinoiy3Les oontainel in the oonoeyt are aoeeptab1 e f ox the above purposes . Xt is genemXXg oonoslel that ths 1RQ 8 of lirsot sos'C ing oan be he 1 pfs1 to ~on eat in oontro31ing oosts... withdrew' This emphasis on profit moment has continued& aud it is still of great importanoe. Xt has increased in oomyleaL~ during the time of the decreasing value ef the doKLar~ awk account- ants are 'still striviug i'ox' a more useful and a mors...

Browning, Donald Bullock

1960-01-01T23:59:59.000Z

278

Turbocharged Spark Ignited Direct Injection - A Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers...

279

Direct Conversion of Biomass into Transportation Fuels - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge

280

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program InformationBibliographicAnode Catalysts

282

Methods of Conditioning Direct Methanol Fuel Cells - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portalarticles of manufacture thereof

283

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network [OSTI]

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

284

Design of high-ionic conductivity electrodes for direct methanol fuel cells  

E-Print Network [OSTI]

Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

Schrauth, Anthony J

2011-01-01T23:59:59.000Z

285

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect (OSTI)

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

286

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

287

Preliminary study on direct recycling of spent PWR fuel in PWR system  

SciTech Connect (OSTI)

Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 (Indonesia)

2012-06-06T23:59:59.000Z

288

Optimizing membrane electrode assembly of direct methanol fuel cells for portable power.  

E-Print Network [OSTI]

??Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of… (more)

Liu, Fuqiang

2006-01-01T23:59:59.000Z

289

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents [OSTI]

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

290

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

291

Low-cost and durable catalyst support for fuel cells: graphite submicronparticles  

SciTech Connect (OSTI)

Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (~ 3.5 nm) are uniformly dispersed on GSP support. Pt/GSP exhibits the highest activity towards oxygen reduction reactions. The durability study indicates that Pt/GSP is 2 ~ 3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

2010-01-01T23:59:59.000Z

292

Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020—from $0.15 per kilowatt hour to less than $0.07. 1366’s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today’s state-of-the-art technologies. 1366’s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366’s technology, the cost of silicon wafers could be reduced by 80%.

None

2010-01-15T23:59:59.000Z

293

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

DOE Patents [OSTI]

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

294

Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells  

E-Print Network [OSTI]

Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells of a direct methanol fuel cell DMFC was observed to undergo an overshoot before it stabilized during at the catalyst layer, resulting in a transient reference hydrogen electrode, which allows quantifying

Zhao, Tianshou

295

A sandwich structured membrane for direct methanol fuel cells operating with neat methanol  

E-Print Network [OSTI]

A sandwich structured membrane for direct methanol fuel cells operating with neat methanol Q.X. Wu membrane enables improvements in cell performance. a r t i c l e i n f o Article history: Received 31 October 2012 Received in revised form 4 December 2012 Accepted 3 January 2013 Keywords: Fuel cell Direct

Zhao, Tianshou

296

Turbocharged Spark Ignited Direct Injection ? A Fuel Economy...  

Broader source: Energy.gov (indexed) [DOE]

8 DEER Conference, August 5 th 2009 Showing The Potential Of Turbocharged SIDI AVL- Turbo SIDI Demonstrator GDI-Turbo Concept Car for low Fuel Consumption 5.0 5.5 6.0 6.5 7.0...

297

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network [OSTI]

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

298

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect (OSTI)

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

299

Direct production of fractionated and upgraded hydrocarbon fuels from biomass  

SciTech Connect (OSTI)

Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

2014-08-26T23:59:59.000Z

300

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013  

SciTech Connect (OSTI)

High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

2013-12-01T23:59:59.000Z

302

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect (OSTI)

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

303

Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas Fueled Power Plants: August 2012 - December 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title:CostCost-Benefit Analysis

304

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

SciTech Connect (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

305

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option

306

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect (OSTI)

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

307

Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)  

E-Print Network [OSTI]

ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

Yarlagadda, Venkata Raviteja

2011-09-08T23:59:59.000Z

308

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network [OSTI]

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

309

Electrochimica Acta 52 (2007) 43174324 Porous current collectors for passive direct methanol fuel cells  

E-Print Network [OSTI]

Electrochimica Acta 52 (2007) 4317­4324 Porous current collectors for passive direct methanol fuel methanol fuel cell (DMFC) with its cathode current collector made of porous metal foam was investigated that the passive DMFC having the porous current collector yielded much higher and much more stable performance than

Zhao, Tianshou

2007-01-01T23:59:59.000Z

310

Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing  

SciTech Connect (OSTI)

Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

2013-12-16T23:59:59.000Z

311

Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes  

SciTech Connect (OSTI)

A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

Perry, M.L.; McLarnon, F.R.; Newman, J.S.; Cairns, E.J.

1996-12-01T23:59:59.000Z

312

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network [OSTI]

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

313

Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells  

SciTech Connect (OSTI)

PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

Edlund, D.J. [Northwest Power Systems, LLC, Bend, OR (United States)

1996-12-31T23:59:59.000Z

314

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide space and water heating systems to gas systems.1 That study showed there were many cost- effective fuel. The Council has not promoted conversion of electric space and water heat equipment to natural gas equipment

315

Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells  

E-Print Network [OSTI]

Available online 3 August 2010 Keywords: Fuel cell Alkaline direct ethanol fuel cell Oxygen reduction Carbon in large quantities from agricultural products or biomass. Hence, direct ethanol fuel cells (DEFCs) haveSynthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol

Zhao, Tianshou

316

An alkaline direct ethanol fuel cell with a cation exchange membrane Liang An and T. S. Zhao*  

E-Print Network [OSTI]

An alkaline direct ethanol fuel cell with a cation exchange membrane Liang An and T. S. Zhao the performance of anion exchange membrane (AEM) direct ethanol fuel cells (DEFCs) is that state-of-the-art AEMs exchange membrane direct ethanol fuel cells (AEM- DEFCs) have received ever-increasing attention, mainly

Zhao, Tianshou

317

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

SciTech Connect (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

318

Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements  

SciTech Connect (OSTI)

There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

1986-10-01T23:59:59.000Z

319

Capturing the Impact of Fuel Price on Jet Aircraft Operating Costs with Engineering and Econometric Models  

E-Print Network [OSTI]

with Engineering and Econometric Models Megan Smirti RyersonCosts with Engineering and Econometric Models Megan Smirtiforces. To this end, an econometric operating cost model (

Smirti Ryerson, Megan; Hansen, Mark

2009-01-01T23:59:59.000Z

320

Direct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge Dynamcs inDirect

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

SciTech Connect (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

322

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

323

In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.  

E-Print Network [OSTI]

In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

Wang, Chao-Yang

324

Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3  

SciTech Connect (OSTI)

The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

325

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel Cells

326

Development of Novel Nanomaterials for High-Performance and Low-Cost Fuel Cell Applications.  

E-Print Network [OSTI]

??Proton exchange membrane fuel cells (PEMFCs) are promising energy converting technologies to generate electricity by mainly using hydrogen as a fuel, producing water as the… (more)

Sun, Shuhui

2011-01-01T23:59:59.000Z

327

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network [OSTI]

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

328

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

SciTech Connect (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

329

Journal of Power Sources 165 (2007) 509516 Direct NaBH4/H2O2 fuel cells  

E-Print Network [OSTI]

Published by Elsevier B.V. Keywords: Fuel cell; Hydrogen peroxide; Regenerative fuel cell; Sodium) /hydrogen per- oxide (H2O2) fuel cell (FC) is under development jointly by the University of IllinoisJournal of Power Sources 165 (2007) 509­516 Direct NaBH4/H2O2 fuel cells George H. Mileya,e,, Nie

Carroll, David L.

330

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

331

A Report on the Economics of California's Low Carbon Fuel Standard & Cost Containment Mechanisms  

E-Print Network [OSTI]

Warming Solutions Act of 2006. The program calls for large reductions in the carbon intensity of fuel sold traditional fossil fuels and alternative, low carbon intensity fuels; or if there are capacity or technological constraints to deploying alternative fuels, particularly those with low carbon intensity

Lin, C.-Y. Cynthia

332

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials|

333

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Battery PlantDetermineDetroitMicrochannel

334

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

335

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of di?erent sizes of direct-hydrogen PEM fuel cell

2002-01-01T23:59:59.000Z

336

An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data  

SciTech Connect (OSTI)

This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

Greene, D.L.; Kahn, J.; Gibson, R.

1999-03-01T23:59:59.000Z

337

COMPLETELY DC-FREE DIRECT SEQUENCE SPECTRUM SPREADING SCHEME FOR LOW POWER, LOW COST, DIRECT CONVERSION TRANSCEIVER  

E-Print Network [OSTI]

call the offset code spreading scheme. By employing the scheme, we can implement a direct- conversion- level design. The direct conversion receiver architecture combined with D-BPSK (differential, there are some design problems. In a direct conversion receiver, DC offset due to carrier leakage and 1/f mixer

Lee, Thomas H.

338

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells  

DOE Patents [OSTI]

A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

2006-03-21T23:59:59.000Z

339

Methanol-tolerant cathode catalyst composite for direct methanol fuel cells  

DOE Patents [OSTI]

A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

2006-09-05T23:59:59.000Z

340

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

SciTech Connect (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office Merit Review 2014: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies  

Broader source: Energy.gov [DOE]

Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

342

adopt our eco-driving top tips to reduce fuel costs  

E-Print Network [OSTI]

air conditioning sparingly · All ancillary loads, particularly air conditioning, add to fuel air resistance and fuel consumption at higher speeds. · Keep windows shut at high speed. Lose weight

Harman, Neal.A.

343

A network approach for identifying minimum-cost aircraft routing and fuel-allocating decisions  

E-Print Network [OSTI]

. Fueling Policy for Aircraft 1 IX. Fueling Policy for Aircraft 2 X. Optimum Fueling Policy for Both Aircrai'ts XI. Output Results for the Proposed Aviation Example . XII. Solution of the MFAP Example Problem Page 20 30 34 37 40 41 41 42 85... 103 LIST OF FIGURES Figure 1. Flowchart of the Proposed Methodology . 2. Network Representation of the ARP Model 3. Sample Network for Fuel Allocation Problem . 4. Netvvork Representation of the Aviation Example . 5. First TSP-Based Routing...

Kabbani, Nader Mahmoud

1988-01-01T23:59:59.000Z

344

Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies OfficeAccounting for Scale

345

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

none,

1993-01-01T23:59:59.000Z

346

Direct electrochemical conversion of carbon anode fuels in molton salt media  

SciTech Connect (OSTI)

We are conducting research into the direct electrochemical conversion of reactive carbons into electricity--with experimental evidence of total efficiencies exceeding 80% of the heat of combustion of carbon. Together with technologies for extraction of reactive carbons from broad based fossil fuels, direct carbon conversion addresses the objectives of DOE's ''21st Century Fuel Cell'' with exceptionally high efficiency (>70% based on standard heat of reaction, {Delta}H{sub std}), as well as broader objectives of managing CO{sub 2} emissions. We are exploring the reactivity of a wide range of carbons derived from diverse sources, including pyrolyzed hydrocarbons, petroleum cokes, purified coals and biochars, and relating their electrochemical reactivity to nano/microstructural characteristics.

Cherepy, N; Krueger, R; Cooper, J F

2001-01-17T23:59:59.000Z

347

Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

2013-07-01T23:59:59.000Z

348

Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014EnergyNEAC

349

Automotive and MHE Fuel Cell System Cost Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 AuditInsulated Claddingofof

350

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National Security Oil'sFunds for

351

Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart of a $100

352

Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart of a

353

Low Cost PEM Fuel Cell Metal Bipolar Plates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium1940sofof10Management

354

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean Air

355

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a MoreA RisingA1

356

Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOEProtocol forSite Leads

357

Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMA EnergyMagna E-Car1-16Department

358

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023Department ofSmartMethodEnergy 2SCR

359

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of EnhancedHandling

360

Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light-weight, Low Cost PEM Fuel Cell Stacks Case Western Reserve University  

E-Print Network [OSTI]

adiabatic conditions · Develop direct humidification scheme based on printed 2D microfluidics · Develop

362

The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report  

SciTech Connect (OSTI)

Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

George A. Marchetti

1999-12-15T23:59:59.000Z

363

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than conventional internal combustion engine (ICE), advanced ICE, hybrid...

364

2005 DOE Hydrogen Program Review PresentationCOST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objectives of the program during the past year was to complete Technical Objectives 2 and 3 and initiate Technical Objective 4 are described. To assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2005-04-01T23:59:59.000Z

365

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed Rate  

E-Print Network [OSTI]

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed and Technology, Clear Water Bay, Kowloon, Hong Kong, China The open-circuit voltage OCV of a direct methanol fuel cell DMFC was measured by varying the cathode oxygen flow rate OFR while keeping the methanol

Zhao, Tianshou

366

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

367

DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department ofDepartment

368

HEFA and Fischer-Tropsch Jet Fuel Cost Analyses | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is a summary of- -

369

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese areDepartment ofPrivacyCell

370

Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219Improvements to theSurface of Stainless

371

Low-cost and durable catalyst support for fuel cells: graphite  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - RockyTemperature

372

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data

373

Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYou are hereNotice

374

Membrane-Electrode Structures for Low Cost Molecular Catalysts in Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy Storage Energy Storage MembersNanoelectrosprayCells and

375

Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies OfficeAccounting for Scale inInnovation

376

Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...  

Office of Environmental Management (EM)

and institutional barriers to the widespread commercialization of hydrogen and fuel cells. Addthis Related Articles Nebraska: Company More than Doubles Annual Sales and...

377

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

378

A direct thin-film path towards low-cost large-area III-V photovoltaics  

E-Print Network [OSTI]

A direct thin-film path towards low-cost large-area III-V photovoltaics Rehan Kapadia1,2 *, Zhibin-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi times, and large equipment investments restrict applications to concentrated and space photovoltaics

California at Irvine, University of

379

An Electro-osmotic Fuel Pump for Direct Methanol Fuel Cells C. R. Buie, D. Kim, S. Litster, and J. G. Santiagoz  

E-Print Network [OSTI]

An Electro-osmotic Fuel Pump for Direct Methanol Fuel Cells C. R. Buie, D. Kim, S. Litster, and J cell DMFC integrated with an electro-osmotic EO pump for methanol delivery. Electro-osmotic pumps, an electro-osmotic pump is realized from a commercially available porous glass frit. We characterize a custom

Santiago, Juan G.

380

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC Order No. EA-178-A1ORAU South0/120 FUNGIBLE AND251|

382

Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids  

SciTech Connect (OSTI)

Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

None

2010-07-12T23:59:59.000Z

383

Direct oxidation of hydrocarbons in a solid oxide fuel cell. I. Methane oxidation  

SciTech Connect (OSTI)

The performance of Cu cermets as anodes for the direct oxidation of CH{sub 4} in solid oxide fuel cells was examined. Mixtures of Cu and yttria-stabilized zirconia (YAZ) were found to give similar performance to Ni-YSZ cermets when H{sub 2} was used as the fuel, but did not deactivate in dry CH{sub 4}. While Cu-YSZ was essentially inert to methane, the addition of ceria to the anode gave rise to reasonable power densities and stable operation over a period of at least 3 days. Proof of direct oxidation of CH{sub 4} came from chemical analysis of the products leaving the cell. The major carbon-containing product was CO{sub 2}, with only traces of CO observed, and there was excellent agreement between the actual cell current and that predicted by the methane conversion. These results demonstrate that direct, electrocatalytic oxidation of dry methane is possible, with reasonable performance.

Park, S.; Craciun, R.; Vohs, J.M.; Gorte, R.J.

1999-10-01T23:59:59.000Z

384

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

385

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network [OSTI]

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

386

Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.  

SciTech Connect (OSTI)

The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

2009-01-01T23:59:59.000Z

387

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

$ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$° Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

Delucchi, Mark

1992-01-01T23:59:59.000Z

388

Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

389

Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of Shewanella OneidensistheSynthesis ofInnovation

390

Fuel Cost Savings Through Computer Control of a Boiler Complex - - Two Case Histories  

E-Print Network [OSTI]

large pulp and paper mill complex in which multiple power boilers and turbine generators are controlled so as to meet the total energy demand of the mill at minimum cost. Also discussed are results from a second installation involving control of a...

Worthley, C. M.

1979-01-01T23:59:59.000Z

391

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

392

Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology  

DOE Patents [OSTI]

A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

Cornelius, Christopher J. (Albuquerque, NM)

2006-04-04T23:59:59.000Z

393

Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems  

SciTech Connect (OSTI)

Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

S. D. Vora

2008-02-01T23:59:59.000Z

394

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

SciTech Connect (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

395

SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS  

SciTech Connect (OSTI)

A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

Murph, S.

2010-06-16T23:59:59.000Z

396

Modeling of the anode side of a direct methanol fuel cell with analytical solutions  

E-Print Network [OSTI]

In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

Mosquera, Martín A

2010-01-01T23:59:59.000Z

397

Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways  

SciTech Connect (OSTI)

PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

None

2012-02-15T23:59:59.000Z

398

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network [OSTI]

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

399

Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

400

High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells  

E-Print Network [OSTI]

-oxidation in anion-exchange membrane direct ethanol fuel cells Shuiyun Shen, T. S. Zhao,* Jianbo Xu and Yinshi Li-exchange membrane direct ethanol fuel cells (AEM DEFCs). We demonstrate that the use of the ternary PdIrNi catalyst for the ethanol oxidation reaction (EOR) in anion-exchange membrane direct ethanol fuel cells (AEM DEFCs) offers

Zhao, Tianshou

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

and Control for PEM Fuel Cell Stack System, Proceedings ofmodel for an automotive PEM fuel cell system with imbedded 1Friedman and R.M. Moore, PEM Fuel Cell System Optimization,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

402

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

403

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

404

Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications  

SciTech Connect (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60şC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which – in principle – could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80şC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120şC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council protocols. M41 MEAs shown sizeable advantages over PFSA MEAs in the Open Circuit Voltage Hold test, Relative Humidity Cycling test and the Voltage Cycling test. The main known limitation of the M41 family is its ability to function well at low RH.

Michel Foure, Scott Gaboury, Jim Goldbach, David Mountz and Jung Yi (no longer with company)

2008-01-31T23:59:59.000Z

405

Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2

406

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

407

SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS  

SciTech Connect (OSTI)

This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be controlled completely via pressure balance. Experimental investigations in a rectangular spouted vessel hydrodynamics apparatus (SVHA) showed that hydrodynamics can be used to control the circulation, residence time, and distribution of carbon within the spouted bed, as well as provide good particle contact with anode surfaces. This was shown to be a function of viscosity, carbon loading, and particle size, as well as relative densities. Higher viscosities and smaller particle sizes favor more efficient particle entrainment in the draft duct, and particle recirculation. Both the computational and experimental results are consistent with each another and exhibit the same general qualitative behavior. Based upon this work, a design of a prototype SBE/DCFC cell was developed and is presented.

J.M. Calo

2004-12-01T23:59:59.000Z

408

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

409

TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS  

SciTech Connect (OSTI)

In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

Murph, S.

2011-04-20T23:59:59.000Z

410

Study of multi-component fuel premixed combustion using direct numerical simulation  

E-Print Network [OSTI]

Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet...

Nikolaou, Zacharias M.

2014-04-29T23:59:59.000Z

411

Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide Geothermal Heat Pump Deployment and The Potential Employment, Energy, and Environmental Impacts of Direct Use Applications  

Broader source: Energy.gov [DOE]

Project objectives: To measure the costs and economic; social; and environmental benefits of nationwide geothermal heat pump (GHP) deployment; and To survey selected states as to their potential employment; energy use and savings; and environmental impact for direct use applications.

412

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

413

Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells  

E-Print Network [OSTI]

Cells Yun Wang* and Xuhui Feng Renewable Energy Resources Lab (RERL) and National Fuel Cell Research the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell

Schmidt, Volker

414

Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About Us Ian Kalin - Director of theresponse |Cell

415

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | Department ofProceedings | Department2

416

Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2This report is a work

417

U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American IndianSeptemberEarth DayMay 20,

418

EXPERIMENTAL STUDY OF A DIRECT METHANOL FUEL CELL M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C.Y. Wang  

E-Print Network [OSTI]

EXPERIMENTAL STUDY OF A DIRECT METHANOL FUEL CELL M. M. Mench, S. Boslet, S. Thynell, J. Scott in this area. INTRODUCTION The liquid-fed direct methanol fuel cell (DMFC) has received enormous interest compared to H2 polymer electrolyte membrane fuel cells (H2 PEMFC). Several studies have examined

Wang, Chao-Yang

419

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

420

Direct conversion of methane to C sub 2 's and liquid fuels  

SciTech Connect (OSTI)

The objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. The behavior of alkaline earth/metal oxide/halide catalysts containing strontium was found to be different from the behavior of catalysts containing barium. Two approaches were pursued to avoid the heterogeneous/homogeneous mechanism in order to achieve higher C{sub 2} selectivity/methane conversion combinations. One approach was to eliminate or minimize the typical gas phase combustion chemistry and make more of the reaction occur on the surface of the catalyst by using silver. Another approach was to change the gas phase chemistry to depart from the typical combustion reaction network by using vapor-phase catalysts. The layered perovskite K{sub 2}La{sub 2}Ti{sub 3}O{sub 10} was further studied. Modifications of process and catalyst variables for LaCaMnCoO{sub 6} catalysts resulted in catalysts with superior performance. Results obtained with a literature catalyst Na{sub 2}CO{sub 3}/Pr{sub 6}O{sub 11} were better than those obtained with NaCO{sub 3}/Pr-Ce oxide or Na{sub 2}CO{sub 3}/Ag-Pr-Ce oxide. 52 refs., 15 figs., 9 tabs.

Warren, B.K.; Campbell, K.D.; Matherne, J.L.; Kinkade, N.E.

1990-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat  

E-Print Network [OSTI]

to achieve the neat-methanol operation is to passively transport the water produced at the cathode throughEnhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang Department of Mechanical Engineering

Zhao, Tianshou

422

Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating  

E-Print Network [OSTI]

significantly increase the methanol-crossover rate, producing an unfavorable * Corresponding author. DepartmentEffect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a

Zhao, Tianshou

423

Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel  

SciTech Connect (OSTI)

Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

2004-12-27T23:59:59.000Z

424

Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications  

SciTech Connect (OSTI)

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

2006-02-09T23:59:59.000Z

425

GENERAL TECHNICAL REPORT PSW-GTR-245 Forest Fuel Characterization Using Direct  

E-Print Network [OSTI]

for the plantation was 53.65 ton/ha; wood fuels accounted for 70% of this accumulation with 39.62 tons

Standiford, Richard B.

426

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATE RELEASEEmissionsiFiberProject

427

Methanol-tolerant cathode catalyst composite for direct methanol fuel cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Researchsc- Energy

428

Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets  

Fuel Cell Technologies Publication and Product Library (EERE)

This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

429

Comparison of management, overhead, and direct costs of six projects managed by the Department of Energy and Government-Owned, Contractor-Operated Laboratories  

SciTech Connect (OSTI)

The report covers management, overhead, and direct cost data on six DOE projects - three managed directly by DOE, and three managed for DOE by government-owned, contractor-operated (GOCO) laboratories. These data provide comparison for decisions on contracting out for project management services. (GHT)

Not Available

1981-09-30T23:59:59.000Z

430

Evaluation of Oxydiesel as a Fuel for Direct-Injection Compression-Ignition Engines  

E-Print Network [OSTI]

speed and maximum power for 500 hours on a blend of ethanol, No. 2 diesel, and an additive as compared and diesel with a special additive, has been shown to be a promising new alternative fuel for existing diesel the mixing of diesel fuel with ethanol. The Illinois DCCA has embarked on a widespread research program

Illinois at Urbana-Champaign, University of

431

Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid  

DOE Patents [OSTI]

A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

Geisbrecht, Rodney A. (New Alexandria, PA); Holcombe, Norman T. (McMurray, PA)

2006-02-07T23:59:59.000Z

432

A novel electrode architecture for passive direct methanol fuel cells R. Chen, T.S. Zhao *  

E-Print Network [OSTI]

* Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell

Zhao, Tianshou

433

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite  

E-Print Network [OSTI]

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

Li, Mo

434

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect (OSTI)

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

435

The economics of alternative fuel cycles on sodium-cooled fast reactors and uncertainty and sensitivity analysis of cost estimates  

E-Print Network [OSTI]

Previous work was done to create a baseline capital cost model for the SFR in which case studies were performed to identify ways to decrease the capital costs while maintaining safety and performance. This thesis expands ...

Russo, Genevieve V. (Genevieve Virgina)

2010-01-01T23:59:59.000Z

436

DOE Fuel Cell Technologies Office Record Record #: 13012 Date: September 18, 2013  

E-Print Network [OSTI]

membrane (PEM) fuel cell system based on 2013 technology1 and operating on direct hydrogen is projected to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2013, Strategic Analysis, Inc. (SA) updated their 2012 cost analysis of an 80-kWnet direct hydrogen PEM automotive fuel

437

DOE Fuel Cell Technologies Program Record Record #: 12020 Date: August 21, 2012  

E-Print Network [OSTI]

their 2011 cost analysis of an 80-kWnet direct hydrogen PEM automotive fuel cell system, based on 2012 to higher pressures. Figure 1. Modeled cost of an 80-kWnet PEM fuel cell system based on projection to high membrane (PEM) fuel cell system based on 2012 technology1 and operating on direct hydrogen is projected

438

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

Delucchi, Mark

1992-01-01T23:59:59.000Z

439

Directions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

440

Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing  

SciTech Connect (OSTI)

PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

Brian Wells

2008-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Before Senate Committee...

442

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

443

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

444

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet provides framework for gas station owners to access what a reasonable cost would be to install E85 infrastructure.

Not Available

2008-03-01T23:59:59.000Z

445

Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station  

SciTech Connect (OSTI)

For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro [Japan Atomic Energy Agency 4-33 Muramatsu, Tokaimura, Nakagun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

446

SDSU RESEARCH FOUNDATION COST SHARING POLICY AND PROCEDURES The purpose of these guidelines is to provide direction in accumulating and reporting cost  

E-Print Network [OSTI]

SDSU RESEARCH FOUNDATION COST SHARING POLICY AND PROCEDURES PURPOSE The purpose of these guidelines represent the recipient's (that is, SDSU, the Campanile Foundation, or SDSU Research Foundation) cash outlay and/or non-Federal third parties. POLICY: It is the policy of the Foundation and the University

Ponce, V. Miguel

447

Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReviewFlowfor

448

Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

449

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearch

450

Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates  

SciTech Connect (OSTI)

This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event (<10{sup 20} fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10{sup 20} fissions, the number of fissions equals about 10{sup 28}, which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada.

Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

1996-05-01T23:59:59.000Z

451

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network [OSTI]

and Renewable Fuel and Vehicle Technology Program Questions and Answers 4/27/09 to 5/1/09 Two questions (How far's solicitation "seek and obtain an award" through a federal ARRA solicitation. 3) May a project producing bio and Renewable Fuel and Vehicle Technology Program. The Energy Commission recommends that you submit a pre

452

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

453

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

454

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract is to investigate the removal of So{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for So{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% So{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

Quimby, J.M.

1992-02-01T23:59:59.000Z

455

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

Quimby, J.M.; Kumar, K.S.

1992-01-01T23:59:59.000Z

456

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract is to investigate the removal of SO[sub x] and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO[sub x] removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO[sub x] removal efficiency. This research project is now in the second of a 3 phase (phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: design, procurement, and installation, shakedown and startup, and reporting.

Quimby, J.M.

1992-05-01T23:59:59.000Z

457

Fuel Cell Financing for Tax-Exempt Entitities  

E-Print Network [OSTI]

of directly purchasing a 300 kW fuel cell for a combined heat and power (CHP) system with (2) the cost of pur service contracts to include the Energy Investment Tax Credit. Introduction The Energy Investment Tax Credit (ITC)1 can help reduce the cost of installing a fuel cell system. While Department of Treasury

458

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion  

SciTech Connect (OSTI)

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

2012-08-14T23:59:59.000Z

459

Market penetration scenarios for fuel cell vehicles  

SciTech Connect (OSTI)

Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

460

American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.  

E-Print Network [OSTI]

and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

462

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network [OSTI]

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

463

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

464

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

465

A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells  

SciTech Connect (OSTI)

A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

Jason Lai

2009-03-03T23:59:59.000Z

466

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

security, renewable energy, bio- fuel, carbon tax, mandate,and taxpayer cost of bio- fuel excise tax credits dwarf the

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

467

Fuel Cell Systems Air Management  

E-Print Network [OSTI]

Targets Compressor/Expander for Transportation Fuel Cell System 400--$Cost 10-1510-155Turndown Ratio 15 compressor/expander units for direct hydrogen systems. · Need exists for compressor/ expander motor unit hydrogen 500020001000HoursDurability 45125325$/kWCost 325250140W/LPower density Operating on Tier 2

468

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: • Fuel cell system cost: % of DOE 2015 Target

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

469

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

analysis Costs of storing and transporting hydrogen A comprehensive comparison of fuel options for fuel cell vehicles

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

470

Journal of Power Sources 190 (2009) 223229 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

substantially reduce the cost of the fuel cell system. Another feature that makes the alkaline DEFC more catalyst layer on performance of alkaline direct ethanol fuel cells Y.S. Li, T.S. Zhao , Z.X. Liang direct ethanol fuel cell Anion-conducting ionomer Polymer binder Non-platinum catalyst a b s t r a c

Zhao, Tianshou

471

Fuel Cell Pre-Solicitation Workshop 1 March 2010 BREAKOUT GROUP 5: LONG TERM INNOVATIVE TECHNOLOGIES  

E-Print Network [OSTI]

initiatives · The effects of contaminants in direct carbon fuel cells need to be addressed · Stack costs pressure (compressors should be eliminated in PEM systems) · Robotic assembly for fuel cell systems would) BALANCE OF PLANT (BOP) WATER MANAGEMENT · High temperature PEM fuel cells with on- board fuel processor

472

Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison  

SciTech Connect (OSTI)

All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

1997-12-31T23:59:59.000Z

473

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

474

Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA C. K. Li, F. H. Seguin, J. A. Frenje, S. Kurebayashi, and R. D. Petrasso*  

E-Print Network [OSTI]

Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA C. K. Li, F. H. Se September 2002) Fuel-shell mix and implosion performance are studied for many capsule types in direct shortfalls are likely to be caused by fuel-shell mix. DOI: 10.1103/PhysRevLett.89.165002 PACS numbers: 52

475

Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used to drive heterogeneous electrochemical reactions at the  

E-Print Network [OSTI]

Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used and an efficient means for solar radiation delivery and trapping, poses a major challenge to the commercialization material with superior intrinsic properties, but a synergetic and intimately coupled combination of solar

Li, Mo

476

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

477

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

478

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to

479

Costing of Joining Methods -Arc Welding Costs  

E-Print Network [OSTI]

Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems.S. Colton © GIT 2009 5 #12;LaborLabor Di t ti f ldi· Direct time of welding ­ time to produce a length of weld ­ labor rate ­ multiplication gives labor cost per length · Set-up time, etc. · Personal time

Colton, Jonathan S.

480

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

SciTech Connect (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct fuel costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications  

E-Print Network [OSTI]

term) due to high fuel cell stack costs, but it would alsoto refuel; cost reductions in fuel cell stacks, auxiliaries,

Lipman, Todd; Sperling, Daniel

2003-01-01T23:59:59.000Z

482

Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers  

SciTech Connect (OSTI)

In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

Krish Krishnamurthy; Divy Acharya; Frank Fitch

2008-09-30T23:59:59.000Z

483

High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions T. C. Sangster, V. N. Goncharov, P. B. Radha, V. A. Smalyuk, R. Betti, R. S. Craxton,* J. A. Delettrez, D. H. Edgell,  

E-Print Network [OSTI]

High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions T. C. Sangster, V. N-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition 7 mg=cm2 (corresponding to estimated peak fuel densities in excess of 100 g=cm3 ) were inferred

484

Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Plan - Section 3.5 Manufacturing R&D Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications...

485

Journal of Power Sources 196 (2011) 18021807 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

An anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that uses a low-cost AEM, rather than a proton-exchange membrane (PEM), for direct methanol fuel cells (DMFCs), makes it possible to achieve on performance of anion-exchange membrane direct ethanol fuel cells Y.S. Li, T.S. Zhao , J.B. Xu, S.Y. Shen, W

Zhao, Tianshou

486

Fuel cell system technologies and application issues  

SciTech Connect (OSTI)

Energy usage has been the target of various conservation and cost control strategies for many years. Technologies have ranged from turing equipment off, to mystical black boxes that lower costs. Utilities have been instrumental in the support of customer energy conservation and development and implementation of efficiency improvements. Natural gas fuel cells are a direct energy conversion technology that has reached stages of development that will begin to supply electrical energy (and associated thermal energy) at comparable life cycle cost to those available from more conventional combustion based electrical generation systems. This article will briefly describe the basics of fuel cells and types of fuel cells. Recent advances in fuel cell technology and installations will be discussed. Finally an analysis will be presented to determine their future within grid, industrial, commercial, and/or residential applications.

Christenson, C.D. [Oklahoma State Univ., Stillwater, OK (United States). Oklahoma Industrial Assessment Center

1997-06-01T23:59:59.000Z

487

Fuel cell-fuel cell hybrid system  

DOE Patents [OSTI]

A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

Geisbrecht, Rodney A.; Williams, Mark C.

2003-09-23T23:59:59.000Z

488

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

489

A comparison of direct and indirect liquefaction technologies for making fluid  

E-Print Network [OSTI]

direct liquefaction conversion processes might be more energy- efficient, overall system efficiencies fuels derived from crude oil with regard to both air-pollutant and greenhouse-gas emissions, but direct at costs competitive with crude oil-derived liquid fuels. An important finding is the potential

490

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

SciTech Connect (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

491

Transport Studies Enabling Efficiency Optimization of Cost-Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Presented at...

492

Benchmark the Fuel Cost of Steam Generation, Energy Tips: STEAM, Steam Tip Sheet #15 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy Victorof Energy

493

FUEL CELLS FOR TRANSPORTATION  

E-Print Network [OSTI]

................................................................................................... 34 E. Cost Analyses of Fuel Cell Stacks/Systems ­ Arthur D. Little, Inc. ......................................... 40 F. DFMA Cost Estimates of Fuel-Cell/Reformer Systems at Low/Medium/High Production Rates&D of a Novel Breadboard Device Suitable for Carbon Monoxide Remediation in an Automotive PEM Fuel Cell Power

494

Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

495

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

achieving low CoE for hydrogen production. Although other WEfor competitive hydrogen production, such advanced targetsElectricity and Hydrogen Fuel Production from Multi-Unit

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

496

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

497

Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)  

SciTech Connect (OSTI)

The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

498

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

Fuel Cell_PAFC Fuel Cell_PEM Cost ($/kW) Primary Author YearForecasting the Costs of Automotive PEM Fuel Cells UsingThe operating cost for the PEM Fuel Cell/Reformer energy

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

499

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Draft final technical report  

SciTech Connect (OSTI)

The objective of this contract was to investigate the removal of SO{sub x} and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO{sub x} removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800{degrees} and 2500{degrees}F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

Quimby, J.M.; Kumar, K.S.

1992-12-31T23:59:59.000Z

500

Pore Formation by In Situ Etching of Nanorod PEM Fuel Cell M. D. Gasda, G. A. Eisman,* and D. Gallz  

E-Print Network [OSTI]

Pore Formation by In Situ Etching of Nanorod PEM Fuel Cell Electrodes M. D. Gasda, G. A. Eisman a significant fraction of the overall cost of the fuel cell system, and much effort has therefore been directed electrolyte membranes for testing as cathode electrodes in fuel cells. The rods were etched within fully

Gall, Daniel