Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

2

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. NDP-052 (1995) data Download the Data and ASCII Documentation files of NDP-052 PDF Download a PDF of NDP-052 image Contributed by Marilyn F. Lamb and Richard A. Feely Pacific Marine Environmental Laboratory Seattle, Washington and Lloyd Moore and Donald K. Atwood Atlantic Oceanographic and Meteorological Laboratory Miami, Florida Prepared by Alexander Kozyr* Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee, U.S.A. *Energy, Environment, and Resources Center The University of Tennessee Knoxville, Tennessee Environmental Sciences Division Publication No. 4420 Date Published: September 1995

3

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

4

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

5

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

6

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

7

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

8

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

9

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

10

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

11

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

12

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

13

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

14

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

15

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

16

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

17

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

20

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

22

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

23

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

24

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

25

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

26

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

27

Word Pro - S12  

U.S. Energy Information Administration (EIA) Indexed Site

2 Carbon Dioxide Emissions From Energy Consumption by Sector 2 Carbon Dioxide Emissions From Energy Consumption by Sector (Million Metric Tons of Carbon Dioxide) Total a by End-Use Sector, b 1973-2012 Residential Sector by Major Source, 1973-2012 Commercial Sector by Major Source, 1973-2012 Industrial Sector by Major Source, 1973-2012 Transportation Sector by Major Source, 1973-2012 Electric Power Sector by Major Source, 1973-2012 160 U.S. Energy Information Administration / Monthly Energy Review November 2013 1975 1980 1985 1990 1995 2000 2005 2010 0 500 1,000 1,500 2,000 2,500 1975 1980 1985 1990 1995 2000 2005 2010 0 250 500 750 1,000 Petroleum Natural Gas Retail Electricity b Industrial Transportation Residential Commercial Retail Electricity b 1975 1980 1985 1990 1995 2000 2005 2010 0 250 500 750 1,000 1975 1980 1985 1990 1995 2000 2005 2010 0 250 500 750 1,000 Retail Electricity

28

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Production (Quadrillion Btu) Total, 1973-2012 Total, Monthly By Source, 1973-2012 By Source, Monthly Total, January-April By Source, April 2013 a Natural gas plant...

29

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

30

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

31

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

32

U.S. Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA)

2012 View History; All Countries: 13,468: 12,915: 11,691: 11,793: 11,436: 10,598: 1973-2012: Persian Gulf: 2,163: 2,370: 1,689: 1,711: 1,861: 2,156: ...

33

Reaction products of chlorine dioxide  

E-Print Network (OSTI)

Concern over the presence of trihalomethanes and other chlorinated by-products in chlorinedisinfected drinking water has led to extensive investigations of treatment options for controlling these by-products. Among these treatment options is the use of an alternative disinfectant such as chlorine dioxide. Although chlorine dioxide does not react to produce trihalomethanes, considerable evidence does exist that chlorine dioxide, like chlorine, will produce other organic by-products. The literature describes chlorinated and nonchlorinated derivatives including acids, epoxides, quinones, aldehydes, disulfides, and sulfonic acids that are products of reactions carried out under conditions that are vastly different from those experienced during drinking water treatment. Evidence is beginning to emerge, however, that some by-products in these categories may be produced. Certain specific volatile aldehydes and halogenated derivatives as determined by the total organic halogen parameter are among those by-products that have been measured.

Alan A. Stevens

1982-01-01T23:59:59.000Z

34

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

35

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total All Countries 12,036 11,114 9,667 9,441 8,450 7,393 1973-2012 Persian Gulf 2,159 2,368 1,678 1,705 1,842 2,149 1993-2012 OPEC* 5,946 5,899 4,675 4,787 4,429 4,093 1993-2012 Algeria 663 548 490 510 355 241 1993-2012 Angola 508 513 458 393 346 233 1993-2012 Ecuador 182 202 138 135 147 117 1993-2012 Iran 1993-1995 Iraq 484 627 450 415 459 476 1996-2012 Kuwait 181 210 182 197 191 305 1993-2012 Libya 117 103 79 70 15 60 2004-2012 Nigeria 1,133 982 798 1,006 803 419 1995-2012 Qatar 2 0 10 0 4 4 1993-2012 Saudi Arabia 1,483 1,529 1,003 1,096 1,193 1,364 1993-2012 United Arab Emirates 9 3 31 -2 -4 -1 1993-2012 Venezuela 1,339 1,162 1,037 968 919 875 1993-2012

36

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

37

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

38

Livscykelanalys för koldioxidutsläpp frĺn flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Sweden’s total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks… (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

39

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this table. ... non-combustion use of fossil fuels.

40

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. 2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this ... non-combustion use of fossil ...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Wood 6: Waste 7: Total: ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

42

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

43

Sulfur Dioxide Regulations (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

44

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

45

F.O.B. Costs of Imported Crude Oil by Area  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View History Average 66.36 90.32 57.78 74.19 101.66 99.78 1973-2012 Persian Gulf 69.93 91.44 59.53 75.65 106.47 105.45 1973-2012 Total OPEC 69.58...

46

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

47

Landed Costs of Imported Crude by Area  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Average Landed Cost 67.97 93.33 60.23 76.50 102.92 101.00 1973-2012 Persian Gulf 69.83 93.59 62.15 78.60 108.01 107.74 1973-2012 Total OPEC 71.14 95.49 61.90 78.28 107.84 107.56 1973-2012 Non OPEC 63.96 90.59 58.58 74.68 98.64 95.05 1973-2012 Selected Countries Canada 60.38 90.00 57.60 72.80 89.92 84.24 1973-2012 Colombia 70.91 93.43 58.50 74.25 102.57 107.07 1973-2012 Angola 71.27 98.18 61.32 80.61 114.05 114.95 1973-2012 Mexico 62.31 85.97 57.35 72.86 101.21 102.45 1973-2012 Nigeria 78.01 104.83 68.01 83.14 116.43 116.88 1973-2012 Saudi Arabia 70.78 94.75 62.14 79.29 108.83 108.15 1973-2012 United Kingdom 72.47 96.95 63.87 80.29 118.45 W 1973-2012 Venezuela

48

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

49

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

50

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

51

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

52

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

53

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

54

Word Pro - S12  

U.S. Energy Information Administration (EIA) Indexed Site

1 Carbon Dioxide Emissions From Energy Consumption by Source 1 Carbon Dioxide Emissions From Energy Consumption by Source (Million Metric Tons of Carbon Dioxide) Total, 1973-2012 Total, a Monthly By Major Source, 1973-2012 By Major Source, Monthly Total, January-August By Major Source, August 2013 158 U.S. Energy Information Administration / Monthly Energy Review November 2013 Natural Gas 196 162 102 Petroleum Coal Natural Gas 0 50 100 150 200 250 0 J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 100 200 300 Coal b Petroleum b a a 1975 1980 1985 1990 1995 2000 2005 2010 0 2,000 4,000 6,000 8,000 J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 200 400 600 800 2011 2012 2013 1975 1980 1985 1990 1995 2000 2005 2010 0 1,000 2,000 3,000 Petroleum Coal b Natural Gas 2011 2012 2013

55

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

56

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

57

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

58

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

59

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

60

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the… (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

62

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents (OSTI)

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

63

Word Pro - S12  

U.S. Energy Information Administration (EIA) Indexed Site

. . 12. Environment Figure 12.1 Carbon Dioxide Emissions From Energy Consumption by Source (Million Metric Tons of Carbon Dioxide) Total, 1973-2012 Total, a Monthly By Major Source, 1973-2012 By Major Source, Monthly Total, January-August By Major Source, August 2013 158 U.S. Energy Information Administration / Monthly Energy Review November 2013 Natural Gas 196 162 102 Petroleum Coal Natural Gas 0 50 100 150 200 250 0 J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 100 200 300 Coal b Petroleum b a a 1975 1980 1985 1990 1995 2000 2005 2010 0 2,000 4,000 6,000 8,000 J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 200 400 600 800 2011 2012 2013 1975 1980 1985 1990 1995 2000 2005 2010 0 1,000 2,000 3,000 Petroleum Coal b Natural Gas 2011 2012 2013

64

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

65

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

66

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

67

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

68

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

4 January Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important...

69

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

70

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

71

METHOD OF MAKING PLUTONIUM DIOXIDE  

DOE Patents (OSTI)

A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

Garner, C.S.

1959-01-13T23:59:59.000Z

72

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

Change Special Report on Carbon Dioxide Capture and Storage,Probability of Injected Carbon Dioxide Plumes Encounteringthe probability of injected carbon dioxide encountering and

Jordan, P.D.

2013-01-01T23:59:59.000Z

73

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

74

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

75

Total atmospheric emissivities for a tropical climate  

SciTech Connect

The total atmospheric flux emissivities as a function of water vapor optical depth are reported for meteorological condtions in Thailand. The water vapor optical depth was first calculated as a function of height up to 12 km from the annual average upper air pressures, temperature, and dew points at Bangkok. The flux emissivity was then computed using tabulated data for the flux emissivities of water vapor, carbon dioxide, and ozone at 20/sup 0/C. (SPH)

Exell, R.H.B.

1978-01-01T23:59:59.000Z

76

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

77

SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE  

DOE Patents (OSTI)

The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1958-04-22T23:59:59.000Z

78

Erbium diffusion in silicon dioxide  

SciTech Connect

Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

Lu Yingwei; Julsgaard, B.; Petersen, M. Christian [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, R. V. Skougaard [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Pedersen, T. Garm; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark); Larsen, A. Nylandsted [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark)

2010-10-04T23:59:59.000Z

79

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

80

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flame Inhibition by Ferrocene, Carbon Dioxide, and ...  

Science Conference Proceedings (OSTI)

Flame Inhibition by Ferrocene, Carbon Dioxide, and Trifluoromethane Blends: Synergistic ... a straight sided schlieren image which is captured by a ...

2012-10-23T23:59:59.000Z

82

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

Tallent, Othar K. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

83

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

84

Reductive Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reductive Sequestration of Carbon Dioxide Reductive Sequestration of Carbon Dioxide T. Mill (ted.mill@sri.com; 650-859-3605) SRI, PS273 333 Ravenswood Menlo Park, CA 94025 D. Ross (dsross3@yahoo.com; 650-327-3842) U.S. Geological Survey, Bldg 15 MS 999 345 Middlefield Rd. Menlo Park, CA 94025 Introduction The United States currently meets 80% of its energy needs by burning fossil fuels to form CO 2 . The combustion-based production of CO 2 has evolved into a major environmental challenge that extends beyond national borders and the issue has become as politically charged as it is technologically demanding. Whereas CO 2 levels in the atmosphere had remained stable over the 10,000 years preceeding the industrial revolution, that event initiated rapid growth in CO 2 levels over the past 150 years (Stevens, 2000). The resulting accelerating accumulation of

85

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

86

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

87

Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestering Carbon Dioxide and Sulfur Dioxide Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,922,792 entitled "Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams." Disclosed in this patent is the invention of a neutralization/sequestration method that concomitantly treats bauxite residues from aluminum production processes, as well as brine wastewater from oil and gas production processes. The method uses an integrated approach that coincidentally treats multiple industrial waste by-product streams. The end results include neutralizing caustic

88

Carbon Dioxide Compression and Transportation  

Science Conference Proceedings (OSTI)

This report summarizes the state of the art regarding carbon dioxide CO2 compression and transportation in the United States and Canada. The primary focus of the report was on CO2 compression because it is a significant cost and energy penalty in carbon capture and storage CCS. The secondary focus of the report was to document the state of the art of CO2 pipeline transportation in the United States and Canada.

2008-12-23T23:59:59.000Z

89

Carbon Dioxide: Threat or Opportunity?  

E-Print Network (OSTI)

Over the past century, fossil fuel consumption has added carbon dioxide to the atmosphere at rapidly increasing rates. The prospect of further acceleration of this rate by turning from petroleum to coal has alarmed climatologists because of possible catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar (Photosynthesis) energy, and genetic engineering. Some exciting new developments in genetic engineering will be touched on together with established bio-engineering-aquaculture, hydroponics, yeast, pharmaceutical production, fermentation, single cell protein, etc. A 'bio-factory' will be described, with a feed stream of carbon dioxide, water, nutrients containing sulfur, nitrogen, phosphorus and trace elements, and living culture interacting with light under controlled conditions to yield food and raw materials. Candidate products will be suggested and a few of the problems anticipated. Engineering and logistic requirements will be outlined and the economic impact assessed.

McKinney, A. R.

1982-01-01T23:59:59.000Z

90

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network (OSTI)

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very helpful when time and data resources are limited. The methodology consists of five tasks: 1) select a section of the reservoir with the most detailed geologic, reservoir, and production data, 2) perform material balance analysis for the selected section to determine 001? and the history of total expansion, voidage, and injectage, 3) establish an average 5-spot pattern within the selected section, 4) develop a black oil numerical simulation model for a quarter of the 5-spot pattern and simulate the primary and waterflood recovery processes, and 5) forecast carbon dioxide performance using Shell's Scoping model, Texaco's "PROPHET" model, and VIP miscible simulator. One of the major limitations of the methodology is that details of individual well performance and reservoir pressure and fluid saturation distributions in the project area are not available. Therefore, the forecast is limited to the average pattern and to the reservoir as a whole. Results of the Dollarhide Clearfork simulation study show that 9.7 % to 14.1 % of OOIP may be recovered by C02 flood in the selected section. It would require WAG injection cycles with a total fluid injection of 0.831 HCPV.

Marroquin Cabrera, Juan Carlos

1998-01-01T23:59:59.000Z

91

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

92

TABLE OF CONTENTS Carbon Dioxide Reduction Metallurgy  

Science Conference Proceedings (OSTI)

Chemical Utilization of Sequestered Carbon Dioxide as a. Booster of Hydrogen ... CO2 Capture and Sequestration – Implications for the Metals. Industry.

93

Atmospheric carbon dioxide and the greenhouse effect  

SciTech Connect

This document contains a non-technical review of the problems associated with atmospheric carbon dioxide and the resulting greenhouse effect. (TEM)

Firestine, M.W. (ed.)

1989-05-01T23:59:59.000Z

94

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

95

Carbon Dioxide Transportation and Sequestration Act (Illinois...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

process for the issuance of a certificate of authority by an owner or operator of a pipeline designed, constructed, and operated to transport and to sequester carbon dioxide...

96

Scientists Crack Materials Mystery of Vanadium Dioxide  

Science Conference Proceedings (OSTI)

Dec 1, 2010 ... Using a condensed physics theory to explain the observed phase behaviors of vanadium dioxide, ORNL scientists have discovered that the ...

97

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

98

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

99

Carbon dioxide storage professor Martin Blunt  

E-Print Network (OSTI)

Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

100

ORNL DAAC, Effects of Increased Carbon Dioxide, Dec. 11, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Carbon Dioxide on Vegetation The ORNL DAAC announces the release of a data set entitled "Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition." The...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

102

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

103

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania...

104

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

105

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

106

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

107

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

108

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color...

109

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

110

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

111

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

112

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

113

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

114

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

115

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

116

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

117

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is the greenhouse effect? is the greenhouse effect? Greenhouse Effect Greenhouse Effect The greenhouse effect is used to describe the phenomenon whereby the Earth's atmosphere traps solar radiation, caused by the presence of gases, such as carbon dioxide (CO2), methane (CH4), and water vapor (H2O), in the atmosphere that allow incoming sunlight to pass through but absorb heat radiated back from the Earth's surface, resulting in higher temperatures. The greenhouse effect gets its name from what actually happens in a greenhouse. In a greenhouse, short wavelength visible sunlight shines through the glass panes and warms the air and the plants inside. The radiation emitted from the heated objects is of longer wavelength and is unable to pass through the glass barrier, maintaining a warm temperature

118

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

119

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

120

Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets  

E-Print Network (OSTI)

1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

122

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

123

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

124

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

125

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

126

Canada, carbon dioxide and the greenhouse effect  

SciTech Connect

One of the major contributors to the greenhouse effect is carbon dioxide from the combustion of fossil fuels such as coal, oil, and natural gas. Even with its low population density, Canada, on a per capita basis, has the dubious distinction of being the world's fourth largest producer of carbon from carbon dioxide. This paper considers the impact of Canadian carbon dioxide emissions on the greenhouse effect in light of the 1988 Conference on the Changing Atmosphere's recommendations. A computer model has been developed that, when using anticipated Canadian fossil fuel demands, shows that unless steps are taken immediately, Canada will not be able to meet the conference's proposed carbon dioxide reduction of 20 percent of 1988 levels by the year 2005, let alone meet any more substantial cuts that may be required in the future.

Hughes, L.; Scott, S. (Dept. of Mathematics and Computing Science, Saint Mary' s Univ., Halifax, Nova Scotia B3H 3C3 (CA))

1991-01-01T23:59:59.000Z

127

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

128

Sequestration of Carbon Dioxide in Coal Seams  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide in Coal Seams K. Schroeder (schroede@netl.doe.gov; 412.386.5910) U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236...

129

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

130

Turning unwanted carbon dioxide into electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

and use it as a tool to boost electric power. Turning unwanted carbon dioxide into electricity Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov High Resolution Image The...

131

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

132

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

133

Thorium dioxide: properties and nuclear applications  

SciTech Connect

This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

Belle, J.; Berman, R.M. (eds.)

1984-01-01T23:59:59.000Z

134

Copper mercaptides as sulfur dioxide indicators  

DOE Patents (OSTI)

Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

Eller, Phillip G. (Los Alamos, NM); Kubas, Gregory J. (Los Alamos, NM)

1979-01-01T23:59:59.000Z

135

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

136

AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 26, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions East South Central EIA Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

137

AEO2011: Carbon Dioxide Emissions by Sector and Source - United States |  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 30, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA United States Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - United States- Reference Case (xls, 75.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

138

AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic |  

Open Energy Info (EERE)

Source- Middle Atlantic Source- Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 22, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions middle atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

139

AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic |  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 25, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA South Atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

140

AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 23, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions East North Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AEO2011: Carbon Dioxide Emissions by Sector and Source, New England |  

Open Energy Info (EERE)

Source, New England Source, New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 21, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions New England Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source, New England- Reference Case (xls, 73.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

142

Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent  

Open Energy Info (EERE)

Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the

143

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

144

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

145

AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 24, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA west north central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

146

AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 27, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA West South Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central- Reference Case (xls, 74.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

147

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

148

AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific | OpenEI  

Open Energy Info (EERE)

Pacific Pacific Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 29, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Pacific Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific- Reference Case (xls, 74.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

149

Energy Use and Carbon Dioxide Emissions from Cropland Production in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Carbon Dioxide Emissions from Cropland Production in the Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004 These data represent energy use and fossil-fuel CO2 emissions associated with cropland production in the U.S. Energy use and emissions occurring on the farm are referred to as on-site energy and on-site emissions. Energy use and emissions associated with cropland production that occur off the farm (e.g., use of electricity, energy and emissions associated with fertilizer and pesticide production) are referred to as off-site energy and off-site emissions. The combination of on-site and off-site energy and carbon is referred to as total energy and total carbon, respectively. Data provided here are for on-site and total energy and associated CO2 emissions. Units are Megagram C for CO2 estimates and Gigajoule for energy

150

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

151

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

152

Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 9, 2007 4: April 9, 2007 Carbon Dioxide Emissions to someone by E-mail Share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Facebook Tweet about Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Twitter Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Google Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Delicious Rank Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Digg Find More places to share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on AddThis.com... Fact #464: April 9, 2007 Carbon Dioxide Emissions Carbon dioxide (CO2) emissions from the transportation sector began to

153

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

154

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

155

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

156

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

157

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, have also provided direct synergism with the original goals of our work. Specific accomplishments of this project during the current reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2003-03-10T23:59:59.000Z

158

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

159

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

160

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

162

Polymers for metal extractions in carbon dioxide  

DOE Patents (OSTI)

A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

DeSimone, Joseph M. (7315 Crescent Ridge Dr., Chapel Hill, NC 27516); Tumas, William (1130 Big Rock Loop, Los Alamos, NM 87544); Powell, Kimberly R. (103 Timber Hollow Ct. Apartment 323, Chapel Hill, NC 27514); McCleskey, T. Mark (1930 Camino Mora, Los Alamos, NM 87544); Romack, Timothy J. (5810 Forest Ridge Dr., Durham, NC 27713); McClain, James B. (8530 Sommersweet La., Raleigh, NC 27612); Birnbaum, Eva R. (1930 Camino Mora, Los Alamos, NM 87544)

2001-01-01T23:59:59.000Z

163

CHLORINE DIOXIDE AND CHLORITE Chlorine Dioxide CAS # 10049-04-4  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about chlorine dioxide and chlorite. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Chlorine dioxide is a gas that does not occur naturally in the environment. It is used to disinfect drinking water and make it safe to drink. Chlorite is formed when chlorine dioxide reacts with water. High levels of chlorine dioxide can be irritating to the nose, eyes, throat, and lungs. Chlorine dioxide and chlorite have not been found in any of the 1,647 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are chlorine dioxide and chlorite? Chlorine dioxide is a yellow to reddish-yellow manufactured gas. It does not occur naturally in the environment. When

Chlorite Cas

2004-01-01T23:59:59.000Z

164

U.S. Natural Gas Imports by Country  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Import Volumes Total 4,607,582 3,984,101 3,751,360 3,740,757 3,468,693 3,137,789 1973-2012 Pipeline 3,836,770 3,632,403 3,299,402 3,309,747 3,119,753 2,963,140 1985-2012 Canada 3,782,708 3,589,089 3,271,107 3,279,752 3,117,081 2,962,827 1973-2012 Mexico 54,062 43,314 28,296 29,995 2,672 314 1973-2012 LNG 770,812 351,698 451,957 431,010 348,939 174,649 1985-2012 Algeria 77,299 0 0 0 0 0 1973-2012 Australia 0 0 0 0 0 0 1973-2012 Brunei 0 0 0 0 0 0 1997-2012 Egypt 114,580 54,839 160,435 72,990 35,120 2,811 2005-2012 Equatorial Guinea 17,795 0 0 0 0 0 2007-2012 Indonesia 0 0 0 0 0 0 1986-2012 Malaysia 0 0 0 0 0 0 1997-2012 Nigeria 95,028 12,049 13,306 41,733 2,362 0 1997-2012

165

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

166

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

167

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

168

Impact of Recycled Fiber on Total Carbon Dioxide Output During Linerboard Production.  

E-Print Network (OSTI)

??Papermaking is a highly energy intensive process. A paper mill utilizes biomass and fossil fuel energy to provide steam and electricity for plant operations. Biomass… (more)

Kuzma, Daniel J.

2008-01-01T23:59:59.000Z

169

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

170

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

171

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

172

Dry process fluorination of uranium dioxide using ammonium bifluoride  

E-Print Network (OSTI)

An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

Yeamans, Charles Burnett, 1978-

2003-01-01T23:59:59.000Z

173

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

174

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

175

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

176

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

177

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

E-Print Network (OSTI)

carbon dioxide can be less than the viscosity of the aqueous phase by a factorcarbon dioxide can be less than the viscosity of the aqueous phase by a factor

Garcia, Julio Enrique

2003-01-01T23:59:59.000Z

178

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

179

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

180

Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy - 2011.

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

182

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

183

Cation Adsorption on Manganese Dioxide Impregnated Fibers  

Science Conference Proceedings (OSTI)

The complete removal of radioactive cations by standard mixed-bed ion-exchange resins is sometimes not achieved in liquid radwaste systems. This report documents an alternative ion adsorption process for the purification of liquid wastes, specifically, the use of manganese dioxide (MnO2) impregnated fibers to remove selected cations from PWR liquid waste streams.

1993-02-26T23:59:59.000Z

184

Carbon Dioxide Capture from Coal-Fired  

E-Print Network (OSTI)

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

185

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

186

Acid sorption regeneration process using carbon dioxide  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

2001-01-01T23:59:59.000Z

187

Synthetic fuels, carbon dioxide and climate  

Science Conference Proceedings (OSTI)

The observed increase in atmospheric carbon dioxide (CO2) has been attributed to the use of fossil fuels. There is concern that the generation and use of synthetic fuels derived from oil shale and coal will accelerate the increase of CO2.

Alex R. Sapre; John R. Hummel; Ruth A. Reck

1982-01-01T23:59:59.000Z

188

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

189

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

190

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

191

EIA - 2010 International Energy Outlook - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2010 Energy-Related Carbon Dioxide Emissions In 2007, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 17 percent. In the IEO2010 Reference case, energy-related carbon dioxide emissions from non-OECD countries in 2035 are about double those from OECD countries. Overview Because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels, world energy use continues to be at the center of the climate change debate. In the IEO2010 Reference case, world energy-related carbon dioxide emissions29 grow from 29.7 billion metric tons in 2007 to 33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 (Table 18).30

192

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

193

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

194

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

195

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

196

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

197

Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R

198

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

199

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

200

Atmospheric Carbon Dioxide Record from Mauna Loa  

NLE Websites -- All DOE Office Websites (Extended Search)

SIO Air Sampling Network » Mauna Loa SIO Air Sampling Network » Mauna Loa Atmospheric Carbon Dioxide Record from Mauna Loa DOI: 10.3334/CDIAC/atg.035 graphics Graphics data Data Investigators R.F. Keeling, S.C. Piper, A.F. Bollenbacher and J.S. Walker Carbon Dioxide Research Group Scripps Institution of Oceanography University of California La Jolla, California 92093-0444, U.S.A. Period of Record 1958-2008 Methods Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carbon dioxide utilization and seaweed production  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide utilization and seaweed production dioxide utilization and seaweed production V.R.P.Sinha World Bank Project Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh e-mails; vrpsinha@ mymensingh.net, vidyut_s@hotmail.com Lowell Fraley L.D. Fraley & Associates, LLC, P.O. Box 1525, Sugarland, TX 77487, USA, e-mail idf@hia.net BS Chowdhry ISS Consultants, Inc. 13111 Westheimer, Suite 303, Houston, Texas 77077, USA, e-mail bsc@issci.com Abstract: Stronger growth in many plants stimulated by increased CO 2 concentration should lead to greater biological productivity with an expected increase in the photosynthetic storage of carbon. Thus, the biosphere will serve as a sink for CO 2 , though it will also act as a source too, because of respiration. Normally net photosynthesis dominates in summer and

202

Carbon Dioxide Emissions from Industrialized Countries  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

203

Solubilities of phenols in supercritical carbon dioxide  

SciTech Connect

Equilibrium solubilities of pure anthracene at 50 C, 1-naphthol at 35, 45, and 55 C, and hydroquinone at 35 and 45 C in supercritical carbon dioxide over a pressure range of about 85--300 bar have been measured using a supercritical fluid extractor coupled with an external high-pressure liquid chromatographer. The solubility results, along with those for other phenols reported in the literature, are correlated with the translated-modified Peng Robinson equation of state.

Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)

1995-07-01T23:59:59.000Z

204

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

205

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

206

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

207

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

208

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

209

Improving Repository Performance by Using DU Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Dioxide Fill DU Dioxide Fill Improving Repository Performance by Using DU Dioxide Fill Fills may improve repository performance by acting as sacrificial materials, which delay the degradation of SNF uranium dioxide. Because fill and SNF have the same chemical form of uranium (uranium dioxide), the DU dioxide in a repository is the only fill which has the same behavior as that of the SNF. In the natural environment, some uranium ore deposits have remained intact for very long periods of time. The outer parts of the ore deposit degrade while the inner parts of the deposit are protected. The same approach is proposed herein for protecting SNF. The application could use half or more of the DU inventory in the United States. Behavior of Uranium and Potential Behavior of a Waste Package with SNF and Fill

210

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

211

Method of immobilizing carbon dioxide from gas streams  

DOE Patents (OSTI)

This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

Holladay, David W. (Knoxville, TN); Haag, Gary L. (Oliver Springs, TN)

1979-01-01T23:59:59.000Z

212

Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Nano-Enabled Titanium Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project to someone by E-mail Share Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Facebook Tweet about Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Twitter Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Google Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Delicious Rank Building Technologies Office: Nano-Enabled Titanium Dioxide

213

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

Ozawa Meida. 2001. “Carbon Dioxide Emissions from the Globalpost-combustion capture of carbon dioxide. ” InternationalIPCC Special Report on Carbon Dioxide Capture and Storage:

Zhou, Nan

2013-01-01T23:59:59.000Z

214

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

215

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ...  

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ... required for sequestration, an area of research identified as a high priority

216

Segregation of Ru to Edge Dislocations in Uranium Dioxide  

Science Conference Proceedings (OSTI)

Presentation Title, Segregation of Ru to Edge Dislocations in Uranium Dioxide. Author(s), Anuj Goyal, Bowen Deng, Minki Hong, Aleksandr Chernatynskiy, ...

217

Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation ...  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

218

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

SAF. 1958. The strength of coal in triaxial compression.Geomechanical Risks in Coal Bed Carbon Dioxide Sequestrationof leakage of CO 2 from coal bed sequestration projects. The

Myer, Larry R.

2003-01-01T23:59:59.000Z

219

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

220

Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanographic Institution Woods Hole, Massachusetts, U.S.A. Prepared by Alexander Kozyr Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of… (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

222

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole Oceanographic Institution Woods Hole, Massachusetts Prepared by Alexander Kozyr Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

223

Benchmark Results for TraPPE Carbon Dioxide  

Science Conference Proceedings (OSTI)

Benchmark results for TraPPE Carbon Dioxide. The purpose of these pages is to provide some explicit results from Monte ...

2013-09-20T23:59:59.000Z

224

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

**Scripps Institution of Oceanography La Jolla, California Prepared by Alexander Kozyr*** Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

225

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the...

226

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

227

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

228

The Structure of Uranium Dioxide Grain Boundaries and its ...  

Science Conference Proceedings (OSTI)

The atomic structures of symmetric ?5 tilt, ?5 twist, and amorphous grain boundaries in uranium dioxide are explored in this work using empirical potentials and ...

229

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

230

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846:...

231

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington, U.S.A. Prepared by Alexander Kozyr1 Carbon Dioxide Information Analysis...

232

Bulk separation of carbon dioxide from natural gas  

SciTech Connect

In the bulk separation of carbon dioxide from feedstocks containing same in admixture with relatively nonsorbable gases using a zeolitic molecular sieve to adsorb selectively the carbon dioxide, higher product purity is attained by terminating the adsorption stroke using the feedstock while the bed still has capacity to adsorb more carbon dioxide at the same conditions, then purging the void space hydrocarbons from the bed using product carbon dioxide at a high partial pressure, and finally desorbing the bed by pressure reduction. (3 claims)

Collins, J.J.

1973-08-14T23:59:59.000Z

233

Historical Carbon Dioxide Record from the Vostok Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Vostok Ice Core Historical Carbon Dioxide Record from the Vostok Ice Core graphics Graphics data Data Investigators J.-M. Barnola, D. Raynaud, C. Lorius Laboratoire de Glaciologie...

234

Historical Carbon Dioxide Record from the Siple Station Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Siple Station Ice Core Historical Carbon Dioxide Record from the Siple Station Ice Core graphics Graphics data Data Investigators A. Neftel, H. Friedli, E. Moor, H. Ltscher, H....

235

Atmospheric Carbon Dioxide Record from Flask Measurements at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Atmospheric Carbon Dioxide Record from Flask Measurements at Lampedusa Island graphics Graphics data Data Investigators Paolo Chamard, Luigi Ciattaglia, Alcide di Sarra,...

236

Polyaniline-Based Membranes for Separating Carbon Dioxide and Methane  

Berkeley Lab researchers have optimized polymer membrane technology to more efficiently remove carbon dioxide (CO2) from natural gas. The invention ...

237

Available Technologies: Carbon Dioxide Capture at a Reduced Cost  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

238

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation ...  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

239

Amine Enriched Solid Sorbents for Carbon Dioxide Capture Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,547,854 entitled "Amine Enriched Solid Sorbents for Carbon Dioxide Capture."...

240

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide Injection and Geologic Sequestration Mark de Figueiredo U.S. Environmental Protection Agency RCSP Annual Review...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

industrial, or other uses, including the use of carbon dioxide for enhanced recovery of oil and gas. The mandates a coordinated statewide program related to the storage...

242

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network (OSTI)

-intensive and would lower the thermal efficiency of coal gasification power plants. Selective separation membrane from the post- combustion flue gas of a steam-electric power plant or from the synthesis gas fuel of a coal gasification power plant. The separated carbon dioxide can be compressed and transported

243

Method for Extracting and Sequestering Carbon Dioxide  

DOE Patents (OSTI)

A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

Rau, Gregory H.; Caldeira, Kenneth G.

2005-05-10T23:59:59.000Z

244

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

245

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. ” AugustChina’s Industrial Carbon Dioxide Emissions in ManufacturingChina’s Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

246

Structural and electronic studies of complexes relevant to the electrocatalyic reduction of carbon dioxide  

E-Print Network (OSTI)

1981) Facile reduction of carbon dioxide by anionic Group 6bReduction of Carbon Dioxide on Mercury Electrode.in Reduction of Carbon-Dioxide. J. Chem. Soc. -Chem.

Benson, Eric Edward

2012-01-01T23:59:59.000Z

247

Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs  

E-Print Network (OSTI)

interface solution for carbon dioxide injection into porousJ.E. Fluid Dynamics of Carbon Dioxide Disposal into SalineGeologic storage of carbon dioxide as a climate change

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

248

Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores  

E-Print Network (OSTI)

An assessment of ozone and chlorine dioxide for treatment ofAston, R. ; Synan, J. , “Chlorine dioxide as a bactericide62, 80. 14. Keane, T. , “ Chlorine dioxide – why all the

Aydogan, Ahmet

2006-01-01T23:59:59.000Z

249

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

250

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

251

EIA - International Energy Outlook 2009-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2009 Chapter 8 - Energy-Related Carbon Dioxide Emissions In 2006, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 14 percent. In 2030, energy-related carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 77 percent. Figure 80. World Energy-Related Carbon Dioxide Emissions, 2006-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 81. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 82. U.S. Energy-Related Carbon Dioxide Emissions by Fuel in IEO2008 and IEO2009, 2006, 2015, and 2030 (billion metric tons). Need help, contact the National Energy Information Center at 202-586-8800.

252

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

253

A monitoring and diagnostic expert system for carbon dioxide capture  

Science Conference Proceedings (OSTI)

The research objective is to design and construct a knowledge-based decision support system for monitoring, control and diagnosis of the carbon dioxide capture process, which is a complicated task involving manipulation of sixteen components and their ... Keywords: Carbon dioxide capture, Diagnosis, Knowledge-based decision support system, Monitoring

Q. Zhou; C. W. Chan; P. Tontiwachiwuthikul

2009-03-01T23:59:59.000Z

254

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

255

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

256

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

E-Print Network (OSTI)

PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

Hultman, Nathan E.

257

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

258

Pages that link to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Pages that link to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

259

Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal Oxide ...  

Science Conference Proceedings (OSTI)

Presentation Title, Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal ... which can split carbon dioxide as well as water molecules by abstracting ...

260

Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide.  

E-Print Network (OSTI)

??Mechanistic modeling of an underbalanced drilling operation using carbon dioxide has been developed in this research. The use of carbon dioxide in an underbalanced drilling… (more)

ALAdwani, Faisal Abdullah

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase feasibility study that will examine beneficial uses in a variety of ways, including mineralization to carbonates directly through conversion of CO2 in flue gas; the use of CO2 from power plants or industrial applications to grow algae/biomass; and conversion of CO2 to fuels and chemicals. Each project will be subject to

262

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

263

Microbial Sequestration of Carbon Dioxide and Subsequent Conversion to Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration of Carbon Dioxide and Subsequent Sequestration of Carbon Dioxide and Subsequent conversion to Methane By Nirupam Pal Associate Professor California Polytechnic State University San Luis Obispo, CA 93401 Email : npal@calpoly.edu Phone : (805) 756-1355 INTRODUCTION The rising level of carbon dioxide in the atmosphere has been of growing concern in recent years. The increasing levels of carbon dioxide, the most dominant component of greenhouse gases, contribute to global warming and changing global weather patterns which could potentially lead to catastrophic events that could threaten life in every form on this planet. The level of carbon dioxide in the worlds atmosphere has increased from about 280 ppm in 1850 to the current level of approximately 350 ppm. There are several natural sources and sinks of

264

DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Assesses Potential for Carbon Dioxide Storage Beneath Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands May 14, 2009 - 1:00pm Addthis Washington, DC - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

265

Carbon dioxide absorbent and method of using the same  

DOE Patents (OSTI)

In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

Perry, Robert James (Niskayuna, NY); Lewis, Larry Neil (Scotia, NY); O' Brien, Michael Joseph (Clifton Park, NY); Soloveichik, Grigorii Lev (Latham, NY); Kniajanski, Sergei (Clifton Park, NY); Lam, Tunchiao Hubert (Clifton Park, NY); Lee, Julia Lam (Niskayuna, NY); Rubinsztajn, Malgorzata Iwona (Ballston Spa, NY)

2011-10-04T23:59:59.000Z

266

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Hopper Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. Image by Joshua Schrier, Haverford College. Carbon dioxide is the primary greenhouse gas emitted through human activities, such as the combustion of fossil fuels for energy and

267

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

268

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

269

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

270

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

271

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

272

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

273

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

274

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

275

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

276

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

277

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

278

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

279

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

280

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

282

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

283

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

284

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

285

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

286

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

287

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

288

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

289

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

290

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

291

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

292

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

293

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

294

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

295

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

296

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

297

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

298

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

299

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

300

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

302

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

303

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

304

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

305

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

306

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

307

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

308

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

309

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

310

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

311

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

312

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

313

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

314

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

315

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

316

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

317

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

318

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

319

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

320

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

322

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

323

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

324

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

325

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

326

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

327

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

328

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

329

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

330

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

331

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

332

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

333

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

334

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

335

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

336

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

337

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

338

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

339

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

340

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

342

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

343

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

344

Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths  

SciTech Connect

Modeling the global ocean-atmosphere carbon dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing these initial conditions from an extensive global database of ocean carbon dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.

Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.

2000-05-01T23:59:59.000Z

345

Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE  

SciTech Connect

All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

Weiss, R.F.

1998-10-15T23:59:59.000Z

346

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

2001-09-30T23:59:59.000Z

347

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

348

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

349

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

350

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

351

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

352

The Role of Manganese Dioxide (MnO2) Deposition in Microbiologically Influenced Corrosion  

Science Conference Proceedings (OSTI)

This report documents the role of manganese dioxide (MnO2) in microbiologically influenced corrosion.

2004-12-20T23:59:59.000Z

353

Microbial and objective quality of whole muscle beef cuts packaged in film containing chlorine dioxide  

E-Print Network (OSTI)

The microbial and objective quality of top round steak treated with two deferent prototype chlorine dioxide containing films were evaluated deleing 14 days of refrigerated storage. The films were designed to deliver different dose rates of chlorine dioxide when in contact with tissue. A high dose rate film in combination with dip treatments resulted in a 1.0 log?? reduction of total hemophilic aerobes, total coliforms, and total lactic acid bacteria. However, this same film caused undesirable characteristics including the rapid loss of the red color associated with fresh beef and the development of a green colored pigment. This color change corresponded to a decrease in Hunter a* values. Ascorbic acid treatments slightly inhibited the development of green color after 2 days of storage, but the protective effect was not evident after 6 days of storage and the color remained undesirable. Chlorine dioxide released from the high dose rate film penetrated immediately into the surface of the beef to a depth of 1mm into the surface of the beef after 6 days of storage, and did not penetrate more than 2mm deep after 14 days of storage. The concentration of myoglobin in extracts of the treated samples decreased sharply after 2 days storage, suggesting oxidative degradation and possibly the formation of a compound similar to the green pigment cholemyoglobin. The TBA values of beef treated with the high dose rate film increased during storage but remained blow 1.0. A low chlorine dioxide dose rate film did not produce any microbiological or objective changes in the beef. The dose rate for the high dose rate film was 32ppm/h, as determined by neutron activation analysis. It decreased rapidly to 0ppm/h after 10 days storage and was not constant during the test period. Based on the unacceptable attributes produced by the high dose rate film, it may be better suited for low fat cuts of pork, ash, or chicken that are less susceptible to color changes and quality losses associated with undesirable oxidative changes.

Knight, Timothy David

1999-01-01T23:59:59.000Z

354

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

355

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

356

Depleted Uranium Dioxide as SNF Waste Package Fill: A Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865)...

357

Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Startup Will Put Carbon Dioxide To Good Use Geothermal Startup Will Put Carbon Dioxide To Good Use Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use March 17, 2011 - 2:09pm Addthis A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. JoAnn Milliken What does this project do? GreenFire Energy will conduct the first field demonstration of a CO2-based geothermal system. Getting geothermal power with CO2 instead of water would be particularly beneficial in the arid Southwestern U.S., where water is scarce. Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2). That's

358

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

359

Annual Energy Outlook 2006 with Projections to 2030 - Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2006 with Projections to 2030 Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 107. Carbn dioxide emissions by sector and fuel, 2004 and 2030 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at

360

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

362

Carbon Dioxide Sequestration (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dioxide Sequestration (West Virginia) Dioxide Sequestration (West Virginia) Carbon Dioxide Sequestration (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Environmental Regulations Fees Safety and Operational Guidelines Siting and Permitting The purpose of this law is to: Establish a legal and regulatory framework for the permitting of carbon dioxide sequestration operations; Designate a state agency responsible for establishing standards and

363

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

364

NETL: News Release - DOE Study Monitors Carbon Dioxide Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2009 DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field U.S. World-Acclaimed Marine Institutes Partner with Europeans in North Sea Washington,...

365

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

366

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

367

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

2005-01-01T23:59:59.000Z

368

Cardiac Responses to Carbon Dioxide in Developing Zebrafish (Danio rerio) .  

E-Print Network (OSTI)

??The ontogeny of carbon dioxide (CO2) sensing in zebrafish (Danio rerio) has not been studied. In this thesis, CO2-mediated increases in heart rate were used… (more)

Miller, Scott

2013-01-01T23:59:59.000Z

369

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

370

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

371

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

372

Energy-related carbon dioxide emissions down in 2011 - Today ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

373

Synthesis of Amides and Lactams in Supercritical Carbon Dioxide  

E-Print Network (OSTI)

Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

Mak, Xiao Yin

374

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

375

U.S. Energy-Related Carbon Dioxide Emissions, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Energy-Related Carbon Dioxide Emissions, 2012 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2013 U.S. Energy...

376

Carbon Dioxide-Based Heat Pump Water Heater Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to...

377

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Energy-related carbon dioxide (CO 2) emissions in 2012 were the lowest in the United States since 1994, at 5.3 billion metric tons of CO 2 (see figure above).

378

Thermophysical Properties of Carbon Dioxide and CO2-Rich Mixtures...  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon dioxide (CO 2 ) emissions; and will help maintain the nation's leader- ship in the export of gas turbine equipment. In this NETL-managed project, the National Institute of...

379

DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN  

E-Print Network (OSTI)

. Estimation of Greenhouse Gas Emissions....................................... 6 2. Greenhouse Gas Emissions........................................................ 8 C. Carbon Dioxide ­ A Greenhouse Gas................................................ 9 1. Sources............................................................... 3 B. Greenhouse Effect and Climate Change............................................. 4 1

Pike, Ralph W.

380

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov Carbon DioxiDe Capture from flue Gas usinG Dry reGenerable sorbents Background Currently...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Synthesis of Titanium Dioxide by Microwave Solid State Method and ...  

Science Conference Proceedings (OSTI)

In this work, titanium dioxide was synthetized by microwave solid-state ... Properties of Low-Carbon High-strength and Low-yield Ratio Bainitic Steels ... New Methodology of Enhancing Etching Factor of Copper Pattern for Advanced Packages.

382

Carbon Dioxide Capture and Storage Demonstration in Developing Countries:  

Open Energy Info (EERE)

Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: cdn.globalccsinstitute.com/sites/default/files/publications/15536/carb Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-capture-and-storage-de Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance This report discusses the value of carbon capture and storage (CCS)

383

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

384

U.S. Natural Gas Exports by Country  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View 2008 2009 2010 2011 2012 2013 View History Export Volumes Total 963,263 1,072,357 1,136,789 1,505,650 1,618,828 1973-2012 Pipeline 924,046 1,039,002 1,071,997 1,435,649 1,590,531 1985-2012 Canada 558,650 700,596 738,745 936,993 970,729 1973-2012 Mexico 365,396 338,406 333,251 498,657 619,802 1973-2012 LNG 39,217 33,355 64,793 70,001 28,298 1985-2012 Exports - 2013-2013 By Vessel - 2013-2013 China 1,127 0 2011-2012 Japan 39,164 30,536 30,100 15,271 9,342 1973-2012 By Truck - 2013-2013 Canada 0 0 0 0 2 2007-2012 Mexico 53 84 208 236 153 1997-2012 Re-Exports - 2013-2013 Brazil 0 0 3,279 11,049 8,142 2007-2012 Chile 0 0 0 2,910 0 2007-2012 China 0 0 0 6,201 0 2007-2012 India 0 0 2,873 12,542 3,004 2007-2012

385

Catalytic Transformation of Waste Carbon Dioxide into Valuable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Transformation of Waste Catalytic Transformation of Waste Carbon Dioxide into Valuable Products Background Many industrial processes contribute large amounts of carbon dioxide (CO 2 ) to the earth's atmosphere. In an effort to reduce the amount of CO 2 released to the atmosphere, the U.S. Department of Energy (DOE) is funding efforts to develop CO 2 capture and storage technologies. In addition to permanent storage of CO 2 in underground reservoirs, some

386

DOE/NETL CarbON DiOxiDE  

NLE Websites -- All DOE Office Websites (Extended Search)

CarbON DiOxiDE CapTurE aND STOragE rD&D rOaDmap DECEmbEr 2010 ii u.S. DEparTmENT Of ENErgy CarbON DiOxiDE CapTurE aND STOragE rD&D rOaDmap Disclaimer This report was prepared as an...

387

Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide  

E-Print Network (OSTI)

The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon dioxide has recently been paid attention in the field of extraction, separation, and reaction medium, its aptitude for both a reaction solvent and a reactant was examined in zinc glutarate-catalyzed reactions. As a result, it was proved that supercritical carbon dioxide was a suitable substitute for organic solvents in the copolymerization reactions. Great diffusivity of supercritical carbon dioxide into polymer segments was thought to promote carbon dioxide supply to the active sites of the zinc species and to afford alternating polycarbonate production. Low reaction temperature appeared to be advantageous to polycarbonate and cyclic carbonate formation. Apart from zinc glutarate catalyst whose detailed mechanistic studies were hard to perform due to its insolubility, some other zinc compounds were studied. A homogeneous catalyst, bis(ethyl fumarato)zinc, showed similar polycarbonate yield to zinc glutarate, and the method of the catalyst preparation affected its catalytic activity. Only a small amount of the catalyst was considered to be active in the copolymerization process even in the homogeneous systems. In the zinc dicarboxylate complexes, the carbon number between two carboxyl groups and the steric nature in the vicinity of the zinc atom might be important factors for the copolymerization catalysis.

Katsurao, Takumi

1994-01-01T23:59:59.000Z

388

Carbon dioxide sequestration: When and how much  

E-Print Network (OSTI)

We analyze carbon dioxide (CO sequestration as a strategy to manage future climate change in an optimal economic growth framework. We approach the problem in two ways: first, by using a simple analytical model, and second, by using a numerical optimization model which allows us to explore the problem in a more realistic setting. CO sequestration is not a perfect substitute for avoiding CO2 production because CO2 leaks back to the atmosphere and hence imposes future costs. The “efficiency factor ” of CO2 sequestration can be expressed as the ratio of the avoided emissions to the economically equivalent amount of sequestered CO2 emissions. A simple analytical model in terms of a net-present value criterion suggests that short-term sequestration methods such as afforestation can be somewhat ( 60 %) efficient, while long term sequestration (such as deep aquifer or deep ocean sequestration) can be very ( 90%) efficient. A numerical study indicates that CO2 sequestration methods at a cost within the range of present estimates reduce the economically optimal CO2 concentrations and climate related damages. The potential savings associated with CO2 sequestration is equivalent in our utilitarian model to a one-time investment of several percent of present gross world product. 1 1

Klaus Keller; Zili Yang; Matt Hall; David F. Bradford

2003-01-01T23:59:59.000Z

389

Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide  

Science Conference Proceedings (OSTI)

This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

2011-09-30T23:59:59.000Z

390

Ionic Liquid Membranes for Carbon Dioxide Separation  

SciTech Connect

Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

2008-07-12T23:59:59.000Z

391

Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality  

Science Conference Proceedings (OSTI)

Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

Torbert, H.A. [Blackland, Soil and Water Research Lab., Temple, TX (United States); Prior, S.A.; Rogers, H.H. [National Soil Dynamics Lab., Auburn, AL (United States); Schlesinger, W.H. [Duke Univ., Durham, NC (United States); Mullins, G.L.; Runion, G.B. [Auburn Univ., AL (United States)

1996-07-01T23:59:59.000Z

392

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

393

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

394

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

395

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

396

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

397

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

398

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

399

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

400

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

402

NETL: News Release - DOE Report Assesses Potential for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2009 4, 2009 DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands Newly Released Document Complements 2008 Carbon Sequestration Atlas Washington, D.C. - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. MORE INFO Read the report The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

403

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

404

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

405

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-07-01T23:59:59.000Z

406

Means and method for reducing carbon dioxide to a product  

SciTech Connect

A method is described for reducing carbon dioxide to a product comprising the steps of: providing carbon dioxide to a catholyte chamber of a reaction cell; providing water to an anolyte section of the reaction cell, forming a passageway through the reaction cell with a dual porosity cathode between the passageway and catholyte chamber and with a porous anode between the passageway and anolyte chamber; provides an electrolyte in a manner so that it passes through the passageway; and provides a direct current voltage across the dual porosity cathode and anode so as to cause a reduction of the carbon dioxide in cooperation with the electrolyte and hydrogen ions passing through the anode. This passes to a product contained within the electrolyte and causes oxygen to be emitted from the anolyte chamber.

Ang, P.G.P.; Sammels, A.F.

1987-06-16T23:59:59.000Z

407

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions | Open  

Open Energy Info (EERE)

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

408

The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen  

DOE Green Energy (OSTI)

The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

2012-06-20T23:59:59.000Z

409

A method for evaluating bias in global measurements of CO2 total columns from space  

E-Print Network (OSTI)

on North American carbon dioxide exchange: CarbonTracker,over Kitt Peak. I – Carbon dioxide and methane from 1979 toD. , and Daube, B. : Carbon dioxide column abundances at the

Wunch, D.

2013-01-01T23:59:59.000Z

410

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

411

SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercritical Carbon Dioxide Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers to someone by E-mail Share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Facebook Tweet about SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Twitter Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Google Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Delicious Rank SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Digg Find More places to share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on AddThis.com... Concentrating Solar Power Systems Components

412

Global Patterns of Carbon Dioxide Emissions from Soils on a 0...  

NLE Websites -- All DOE Office Websites (Extended Search)

Potter. 1996. Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis. DB-1015. Carbon Dioxide Information Analysis Center, U.S. Department of...

413

THE PATH OF CARBON IN PHOTOSYNTHESIS. X. CARBON DIOXIDE ASSIMILATION IN PLANTS  

E-Print Network (OSTI)

48 The Fath of Carbon i n Photosynthesis X. Carbon Dioxide658 THE PATH O CBRBQM I N PHOTOSYNTHESIS F x CA~ON DIOXIDEr e a c t i o n s of photosynthesis (phosphoglycera t e and

1950-01-01T23:59:59.000Z

414

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

415

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

416

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

417

Nanoporous Materials for Carbon Dioxide Separation and Storage  

E-Print Network (OSTI)

Global climate change is one of the most challenging problems that human beings are facing. The large anthropogenic emission of CO2 in the atmosphere is one of the major causes for the climate change. Coal-fired power plants are the single-largest anthropogenic emission sources globally, accounting for approximately one third of the total CO2 emissions. It is therefore necessary to reduce CO2 emission from coal-fired power plants. Current technologies for the post-combustion CO2 capture from flue gas streams can be broadly classified into the three categories: absorption, adsorption, and membrane processes. Despite challenges, CO2 capture by adsorption using solid sorbents and membranes offers opportunities for energy-efficient capture and storage of CO2. Nanoporous materials have attracted tremendous interest in research and development due to their potential in conventional applications such as catalysis, ion-exchange, and gas separation as well as in advanced applications such as sensors, delivery, and micro-devices. In the first part of this dissertation, we will study the synthesis of membranes using an emerging class of nanoporous materials, metal-organic frameworks (MOFs) for carbon dioxide (CO2) separations. Due to the unique chemistry of MOFs which is very different from that of zeolites, the techniques developed for the synthesis of zeolite membranes cannot be used directly. In order to overcome this challenge, a couple of novel techniques were developed: 1) "thermal seeding" for the secondary growth and 2) "surface modification" for the in situ growth. Membranes of HKUST-1 and ZIF-8, two of the most important MOFs, were prepared on porous ?-alumina supports using thermal seeding and the surface modification techniques, respectively. The second part of this dissertation demonstrates a simple and commercially viable application of nanoporous materials (zeolite 5A and amine-functionalized mesoporus silica), storing CO2 as a micro-fire extinguishers in polymers. Materialist is observed that by dispersing these highly CO2-philic nanoporous materials in polymer matrices, the propagation of flame was greatly retarded and extinguished. This flame retarding behavior is attributed to the fact that CO2 released from the sorbents (zeolite 5A and mesoporous silica), blocks the flow of oxygen, therefore causing the fire to be effectively extinguished. Our results suggest that the binding strength of CO2 on sorbents play an important role. If the binding strength of CO2 is too low, CO2 releases too early, thereby ineffective in retarding the flame.

Varela Guerrero, Victor

2011-05-01T23:59:59.000Z

418

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

419

of carbon dioxide containing 12 but the low concentration of 14  

E-Print Network (OSTI)

of carbon dioxide containing 12 C and 13 C, but the low concentration of 14 C has made its measurement in carbon dioxide extremely difficult. Using an ultrasensitive technique called saturated carbon at values well below radiocarbon's natural abundance in carbon dioxide. In their technique

Zare, Richard N.

420

Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public Utility District  

E-Print Network (OSTI)

Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public paper: Carbon Dioxide Footprint of the Northwest Power System, dated September 13, 2007. The Grant done a very thorough job of assessing the current and future carbon dioxide footprints of the Northwest

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News  

E-Print Network (OSTI)

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

Lovley, Derek

422

EIA - AEO2011 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

1 Early Release Overview 1 Early Release Overview Release Date: December 16, 2011 | Next Release Date: January 2012 | Report Number: DOE/EIA-0383ER(2011) Energy-Related Carbon Dioxide Emissions Figure DataAfter falling by 3 percent in 2008 and nearly 7 percent in 2009, largely driven by the economic downturn, total U.S. energy-related CO2 emissions do not return to 2005 levels (5,980 million metric tons) until 2027, and then rise by an additional 5 percent from 2027 to 2035, reaching 6,315 million metric tons in 2035 (Figure 13). Energy-related CO2 emissions grow by 0.2 percent per year from 2005 to 2035. Emissions per capita fall by an average of 0.8 percent per year from 2005 to 2035, as growth in demand for electricity and transportation fuels is moderated by higher energy prices, effi ciency standards, State RPS requirements, and Federal

423

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

424

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

8 8 Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 Figure 75 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 Figure 76 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 Figure 77 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 78. U.S. Energy-Related Carbon Dioide Emissions in IEO2007 and IEO2008, 2005-2030 Figure 78 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 79. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the Non-OECD Economies, 2005-2030 Figure 79 Data. Need help, contact the National Energy Information Center at 202-586-8800.

425

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

426

EIA - International Energy Outlook 2007-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 Figure 77 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 78. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 Figure 78 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 79. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2004-2030 Figure 79 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 80. Average Annual Growth in Energy-Related Carbon Dioide Emissions in the Non-OECD Economies, 2004-2030 Figure 80 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 81. World Carbon Dioxide Emissions from Liquids Combustion by Region, 1990-2030 Figure 81 Data. Need help, contact the National Energy Information Center at 202-586-8800.

427

Groundwater Chemistry Changes as a Result of Carbon Dioxide Injection  

Science Conference Proceedings (OSTI)

This report provides final results from a combined field, laboratory, and modeling investigation into whether carbon dioxide (CO2) can have an adverse impact on potable groundwater. The investigation was undertaken by the Electric Power Research Institute (EPRI), Lawrence Berkeley National Laboratory, United States Geological Survey (USGS), and Montana State University (MSU).

2009-12-23T23:59:59.000Z

428

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

1993-01-01T23:59:59.000Z

429

II. Greenhouse gas markets, carbon dioxide credits and biofuels17  

E-Print Network (OSTI)

or biodiesel use in Europe. Nevertheless, the EU directive sets a target for the use of biofuels15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed mandatory blends and utilization targets as policy measures that can provide incentives for expanded

430

Phase relation between global temperature and atmospheric carbon dioxide  

E-Print Network (OSTI)

The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

Stallinga, Peter

2013-01-01T23:59:59.000Z

431

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1992-12-31T23:59:59.000Z

432

Corrosion of various engineering alloys in supercritical carbon dioxide  

E-Print Network (OSTI)

The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610°C and 20MPa. The purpose of this work was to evaluate each alloy as a potential ...

Gibbs, Jonathan Paul

2010-01-01T23:59:59.000Z

433

Regulation and Permitting of Carbon Dioxide Geologic Sequestration Wells  

Science Conference Proceedings (OSTI)

This report provides an update of the United States’ regulations and project experiences associated with permitting injection wells used for geologic sequestration of carbon dioxide (CO2). This report is an update of a previous Electric Power Research Institute (EPRI) study on this subject published in December 2008 when the draft regulations governing geologic sequestration were first published.BackgroundSeparating ...

2013-12-18T23:59:59.000Z

434

Carbon dioxide flash-freezing applied to ice cream production  

E-Print Network (OSTI)

(cont.) Carbon dioxide is recompressed from 1.97 x 106 Pa (285 psi) to 3.96 x 106 Pa (575 psi). The process is scaled by increasing the number of nozzles to accommodate the desired flow rate. Only 165 nozzles are required ...

Peters, Teresa Baker, 1981-

2006-01-01T23:59:59.000Z

435

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1993-03-30T23:59:59.000Z

436

Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

Yuan Qi; Saunders, Samuel E. [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States); Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States)

2012-05-15T23:59:59.000Z

437

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

438

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

439

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

440

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

442

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

443

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

444

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

445

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

446

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

447

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

448

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

449

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

450

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Atmospheric Carbon Dioxide Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most datasets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to atmospheric carbon dioxide data includes: Atmospheric Carbon Dioxide and Carbon Isotopes • Atmospheric carbon dioxide records from Mauna Loa, Hawaii • Monthly atmospheric CO2 mixing ratios and other data from the NOAA/CMDL continuous monitoring network • Data from the CSIRO GASLAB Flask Sampling Network • Atmospheric CO2 records from continuous measurements at Jubany Station, Antarctica and from 10 sites in the SIO air sampling network • Historical data from the extended Vostok ice core (2003) and the Siple Station ice core (1997) • Historical records from the Law Dome DE08, DE08-2, and DSS ice cores (1998) • AmeriFlux Carbon Dioxide, Water Vapor, and Energy Balance Measurements • Data from the Canadian Background Air Pollution Monitoring Network • Flask Samples from at U.S.S.R.-Operated Sites (1991) • The CISIRO (Australia) Monitoring Program from Aircraft for 1972-1981 • CO2 Concentrations in Surface Water and the Atmosphere during 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Surface Water and Atmospheric CO2 and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 (1992) • IPCC Working Group 1, 1994: Modeling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995). New datasets are added when available to the category of atmospheric carbon dioxide.

451

Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 16, 2007 8: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector to someone by E-mail Share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Facebook Tweet about Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Twitter Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Google Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Delicious Rank Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Digg Find More places to share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on AddThis.com...

452

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

453

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

454

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

455

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

456

Optimal Geological Enviornments for Carbon Dioxide Storage in Saline Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

susan D. Hovorka susan D. Hovorka Principal Investigator University of Texas at Austin Bureau of Economic Geology 10100 Burnet Road, Bldg. 130 P.O. Box X Austin, TX 78713 512-471-4863 susan.hovorka@beg.utexas.edu Optimal GeOlOGical envirOnments fOr carbOn DiOxiDe stOraGe in saline fOrmatiOns Background For carbon dioxide (CO 2 ) sequestration to be a successful component of the United States emissions reduction strategy, there will have to be a favorable intersection of a number of factors, such as the electricity market, fuel source, power plant design and operation, capture technology, a suitable geologic sequestration site, and a pipeline right-of-way from the plant to the injection site. The concept of CO 2 sequestration in saline water-bearing formations (saline reservoirs), isolated at

457

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilized Aminosilane Sorbents Immobilized Aminosilane Sorbents for Carbon Dioxide Capture Opportunity Research is currently active on the patent-pending technology titled "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which CO 2 is first separated / captured from gas streams followed by permanent storage. Carbon capture represents a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high capacity amine-based sorbents offer many advantages over existing technology including increased CO

458

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

2001-05-01T23:59:59.000Z

459

Modelling interactions of carbon dioxide, forests, and climate  

SciTech Connect

Atmospheric carbon dioxide is rising and forests and climate is changing! This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken.

Luxmoore, R.J. [Oak Ridge National Lab., TN (United States); Baldocchi, D.D. [National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States)

1994-09-01T23:59:59.000Z

460

Application Of Optical Processing For Growth Of Silicon Dioxide  

DOE Patents (OSTI)

A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

Sopori, Bhushan L. (Denver, CO)

1997-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

462

Regulation and Permitting of Carbon Dioxide Transport and Geologic Sequestration  

Science Conference Proceedings (OSTI)

This report provides a comprehensive review and analysis of United States (U.S.) regulations that will have a direct impact on permitting and commercial-scale deployment of carbon dioxide (CO2) transport and sequestration projects. The report focuses on specific regulations associated with CO2 transport and sequestration, including pipeline regulations and the U.S. Environmental Protection Agency's (EPA's) proposed rules for characterizing, operating, monitoring, and closing CO2 geologic sequestration we...

2008-12-16T23:59:59.000Z

463

Carbon Dioxide Separation with Supported Ionic Liquid Membranes  

DOE Green Energy (OSTI)

Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

2007-04-01T23:59:59.000Z

464

A High Pressure Carbon Dioxide Separation Process for IGCC Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Carbon Dioxide Separation Process for IGCC Plants High Pressure Carbon Dioxide Separation Process for IGCC Plants 1 A High Pressure Carbon Dioxide Separation Process for IGCC Plants S.S. Tam 1 , M.E. Stanton 1 , S. Ghose 1 , G. Deppe 1 , D.F. Spencer 2 , R.P. Currier 3 , J.S. Young 3 , G.K. Anderson 3 , L.A. Le 3 , and D.J. Devlin 3 1 Nexant, Inc. (A Bechtel Technology & Consulting Company) 45 Fremont St., 7 th Fl., San Francisco, CA 94506 2 SIMTECHE 13474 Tierra Heights Road, Redding, CA 96003 3 Los Alamos National Laboratory P.O. Box 1663 (MS J567), Los Alamos, NM 87545 1.0 INTRODUCTION Under separate contracts from the U.S. Department of Energy, Office of Fossil Energy (DOE- FE), Los Alamos National Laboratory, and a team of SIMTECHE and Nexant (a Bechtel Technology and Consulting Company) are jointly working to develop the proprietary process for

465

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

2003-08-01T23:59:59.000Z

466

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-10-01T23:59:59.000Z

467

Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers  

SciTech Connect

Iron and calcium were extracted from low rank coal with supercritical carbon dioxide and methanol, ethanol, acetic acid, acetyl acetone, ethanol and acetic acid, or acetyl acetone and water entrainers at 313.2 K and 15.0 MPa. The low rank coal used in this study was Berau coal from Indonesia. The addition of methanol, ethanol, or acetic acid entrainers in supercritical carbon dioxide showed very limited effect on enhancement of the recovery rates of Fe. The recovery rates of Fe from dried coal by supercritical carbon dioxide with acetyl acetone were low however, the addition of acetyl acetone with water in supercritical carbon dioxide remarkably enhanced the recovery rates of Fe. Water seems to play an important role in extracting Fe from coal with supercritical carbon dioxide and acetyl acetone. On the other hand, the extraction rates of Ca with supercritical carbon dioxide and water, methanol, ethanol, and acetyl acetone entrainers were very low. The addition of acetic acid with or without water in supercritical carbon dioxide slightly enhanced the recovery rates of Ca. The addition of acetic acid with ethanol in supercritical carbon dioxide remarkably enhanced the recovery rates of Ca. The effect of carbon dioxide flow rate and coal particle size on the recovery rates of Fe were examined. The recovery rate of Fe increased with increasing carbon dioxide flow rate and with decreasing particle size of the low rank coal.

Iwai, Y.; Okamoto, N.; Ohta, S.; Arai, Y.; Sakanishi, K. [Kyushu University, Fukuoka (Japan). Dept. of Chemical Engineering

2007-03-15T23:59:59.000Z

468

Carbon Dioxide Capture and Transportation Options in the Illinois Basin  

DOE Green Energy (OSTI)

This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

M. Rostam-Abadi; S. S. Chen; Y. Lu

2004-09-30T23:59:59.000Z

469

Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide  

SciTech Connect

Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

2012-07-31T23:59:59.000Z

470

Carbon Dioxide Sequestering Using Microalgal Systems  

SciTech Connect

This project evaluated key design criteria, the technical feasibility, and the preliminary economic viability of a CO{sub 2}-sequestering system integrated with a coal-fired power plant based on microalgae biofixation. A review of relevant literature was conducted, and a bench-scale algal-based sequestration system was constructed and operated to verify algal growth capabilities using a simulated flue gas stream. The bench-scale system was a 20-gallon glass aquarium with a 16-gallon operating volume and was direct-sparged with a simulated flue gas. The flue gas composition was based on flue gas analyses for a 550-MW Coal Creek Power Station boiler in Underwood, North Dakota, which averaged 12.1% CO{sub 2}, 5.5% O{sub 2}, 423 ppm SO{sub 2}, 124 ppm NO{sub x}, and an estimated 50 mg/m{sup 3} fly ash loading. The algae were grown in Bold's basal growth medium. Lighting was provided using a two-tube fluorescent ''grow-light'' bulb fixture mounted directly above the tank. Algal growth appeared to be inhibited in the presence of SO{sub 2} using mixed cultures of green and blue-green cultures of algae. Samples of Monoraphidium strain MONOR02 and Nannochloropsis NANNO02 algal samples were obtained from the University of Hawaii Culture Collection. These samples did not exhibit inhibited growth in the presence of all the simulated flue gas constituents, but growth rates were somewhat lower than those expected, based on the review of literature. Samples of harvested algae were analyzed for protein, lipid, and carbohydrate content. A lipid content of 26% appeared to be fairly normal for algae, and it did not appear that large amounts of nitrogen were being fixed and promoting growth, nor were the algae starved for nitrogen. Proteins made up 41% of the total mass, and carbohydrates were assumed to be 33% (by difference). A preliminary economic analysis showed the costs of an integrated system based on microalgae biofixation to sequester 25% of the CO{sub 2} from a 550-MW coal-fired power plant could be recovered if the value recovered from the harvested algae was approximately $97. The analysis indicated the potential to produce 2427 tpd of algae at 12% moisture (2136 tpd dry weight). Of this, approximately 876 tpd of protein could be recovered and used as an animal feed. Similarly, an estimated 555 tpd of lipids could be recovered for use in the production of liquid fuels and chemicals. Approximately 705 tpd of carbohydrates would also be recovered. These carbohydrates may be suitable as a fermentation feedstock for the production of alcohols or organic acids.

Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn

2002-02-01T23:59:59.000Z

471

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

472

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

473

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

474

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

475

Fractionally total colouring Gn,p  

Science Conference Proceedings (OSTI)

We study the fractional total chromatic number of G"n","p as p varies from 0 to 1. We also present an algorithm that computes the fractional total chromatic number of a random graph in polynomial expected time. Keywords: Fractional total colouring, Graph colouring, Random graphs

Conor Meagher; Bruce Reed

2008-04-01T23:59:59.000Z

476

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

477

Apparatus and method for removing solvent from carbon dioxide in resin recycling system  

SciTech Connect

A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2009-01-06T23:59:59.000Z

478

Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

9: July 23, 2007 9: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 to someone by E-mail Share Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Facebook Tweet about Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Twitter Bookmark Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Google Bookmark Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Delicious Rank Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Digg Find More places to share Vehicle Technologies Office: Fact #479:

479

Method of determining pH by the alkaline absorption of carbon dioxide  

DOE Patents (OSTI)

A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

Hobbs, David T. (1867 Lodgepole Ave., N. Augusta, SC 29841)

1992-01-01T23:59:59.000Z

480

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "dioxide total 1973-2012" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

482

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

483

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

484

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

485

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

486

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

487

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

488

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

489

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

490

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

491

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

492

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

493

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

494

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

495

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

496

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

497

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

498

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

499

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

500

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0