National Library of Energy BETA

Sample records for dioxide total 1973-2012

  1. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  2. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  4. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  10. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  12. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  14. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  15. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  16. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  18. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  19. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect (OSTI)

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  20. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  1. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  2. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  3. plutonium dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plutonium dioxide - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  5. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  6. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  7. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  8. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  9. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  10. Table 4. 2011 State energy-related carbon dioxide emission shares...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation"...

  11. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  12. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  13. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  14. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  15. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  16. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  17. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  18. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  19. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  20. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  1. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  2. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOE Patents [OSTI]

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  3. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  4. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  5. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  6. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  7. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  8. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  9. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  10. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  11. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless...

  12. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  13. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  14. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  16. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  17. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  18. Method of Making Uranium Dioxide Bodies

    DOE Patents [OSTI]

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  19. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  20. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Receiver Development National Renewable Energy Laboratory logo The National Renewable ... a single concept for detailed prototype design and construction for on-sun testing. ...

  1. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon ...

  2. NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Citation Details In-Document Search Title: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE ...

  3. Nuclear Hydrogen and Captured Carbon Dioxide for Alternative...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Citation Details In-Document Search Title: Nuclear Hydrogen and Captured Carbon Dioxide for ...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  12. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  13. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  14. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  15. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  16. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect (OSTI)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  17. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  18. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  20. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Thomas Washington, July-August, 1991 • Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 15/3 in the South Atlantic Ocean (WOCE Section A9, February March 1991) • Carbon Dioxide Concentrations in Surface Water and the Atmosphere During 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 11/5 in the South Atlantic and Northern Weddell Sea Areas (WOCE sections A-12 and A-21) • Surface Water and Atmospheric Carbon Dioxide and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 • Indian Ocean Radiocarbon: Data from the INDIGO 1, 2, and 3 Cruises • Carbonate Chemistry of the North Pacific Ocean • Carbonate Chemistry of the Weddell Sea • GEOSECS Atlantic, Pacific, Indian, and Mediterranean Radiocarbon Data •\tTransient Tracers in the Oceans (TTO) - Hydrographic Data and Carbon Dioxide Systems with Revised Carbon Chemistry Data.

  2. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Commercial sector emissions declined by 6.5 percent in 2009. Lighting accounts for a ... The transportation sector has led all U.S. end-use sectors in emissions of carbon dioxide ...

  3. Recycling Carbon Dioxide to Make Plastics

    Broader source: Energy.gov [DOE]

    The world’s first successful large-scale production of a polypropylene carbonate polymer using waste carbon dioxide as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy.

  4. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  5. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  6. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  7. Copper mercaptides as sulfur dioxide indicators

    DOE Patents [OSTI]

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  8. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during

  9. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  10. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect (OSTI)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  11. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  12. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  13. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

  14. Polymers for metal extractions in carbon dioxide

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  15. Crystal structure and compressibility of lead dioxide up to 140...

    Office of Scientific and Technical Information (OSTI)

    Crystal structure and compressibility of lead dioxide up to 140 GPa Citation Details In-Document Search Title: Crystal structure and compressibility of lead dioxide up to 140 GPa ...

  16. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  17. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  18. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect SciTech Connect Search Results Technical Report: Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined

  19. Geothermal Startup Will Put Carbon Dioxide to Good Use

    Broader source: Energy.gov [DOE]

    Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2).

  20. Nitrogen dioxide and respiratory illness in children. Part I: Health outcomes

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-06-01

    We have carried out a prospective cohort study to test the hypothesis that exposure to nitrogen dioxide increases the incidence and severity of respiratory infections during the first 18 months of life. Between January 1988 and June 1990, 1,315 infants were enrolled into the study at birth and followed with prospective surveillance for the occurrence of respiratory infections and monitoring of nitrogen dioxide concentrations in their homes. The subjects were healthy infants from homes without smokers; they were selected with stratification by type of cooking stove at a ratio of four to one for gas and electric stoves. Illness experience was monitored by a daily diary of symptoms completed by the mother and a telephone interview conducted every two weeks. Illnesses with wheezing or wet cough were classified as involving the lower respiratory tract; all other respiratory illnesses were designated as involving the upper respiratory tract. Exposure to nitrogen dioxide was estimated by two-week average concentrations measured in the subjects' bedrooms with passive samplers. This analysis is limited to the 1,205 subjects completing at least one month of observation; of these, 823 completed the full protocol, contributing 82.8% of the total number of days during which the subjects were under observation. Incidence rates for all respiratory illnesses, all upper respiratory illness, all lower respiratory illnesses, and lower respiratory illness further divided into those with any wheezing, or wet cough without wheezing, were examined within strata of nitrogen dioxide exposure at the time of the illness, nitrogen dioxide exposure during the prior month, and type of cooking stove. Consistent trends of increasing illness incidence rates with increasing exposure to nitrogen dioxide were not evident for either the lagged or unlagged exposure variables.

  1. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux...

  2. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  3. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  4. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  5. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOE Patents [OSTI]

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  6. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 081103) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) Global Ocean Data Analysis Project GLODAP: Results and Data Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 120596) and A24, A20, and A22 (053097 090397) Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 012296) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 102192) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 111093) The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 Jan, 1996) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th

  7. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  8. Extraction of furfural with carbon dioxide

    SciTech Connect (OSTI)

    Gamse, T.; Marr, R.; Froeschl, F.; Siebenhofer, M.

    1997-01-01

    A new approach to separate furfural from aqueous waste has been investigated. Recovery of furfural and acetic acid from aqueous effluents of a paper mill has successfully been applied on an industrial scale since 1981. The process is based on the extraction of furfural and acetic acid by the solvent trooctylphosphineoxide (TOPO). Common extraction of both substances may cause the formation of resin residues. Improvement was expected by selective extraction of furfural with chlorinated hydrocarbons, but ecological reasons stopped further development of this project. The current investigation is centered in the evaluation of extraction of furfural by supercritical carbon dioxide. The influence of temperature and pressure on the extraction properties has been worked out. The investigation has considered the multi-component system furfural-acetic acid-water-carbon dioxide. Solubility of furfural in liquid and supercritical carbon dioxide has been measured, and equilibrium data for the ternary system furfural-water-CO{sub 2} as well as for the quaternary system furfural-acetic acid-water-CO{sub 2} have been determined. A high-pressure extraction column has been used for evaluation of mass transfer rates.

  9. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  10. Method of immobilizing carbon dioxide from gas streams

    DOE Patents [OSTI]

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  11. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  13. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  14. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  15. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  16. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  17. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  18. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  19. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  20. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  1. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  2. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  3. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  4. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  5. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  6. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  7. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  8. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  9. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  10. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  11. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  12. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  13. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  14. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  15. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  16. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  17. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  18. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  19. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  20. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  1. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  2. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  3. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  4. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  5. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  6. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  7. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  8. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  9. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  10. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  11. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  12. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  13. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  15. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  16. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  17. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  18. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  19. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  20. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  1. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  2. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  13. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation Citation Details In-Document Search Title: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric

  14. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical

    Office of Scientific and Technical Information (OSTI)

    Membrane Technology (Journal Article) | SciTech Connect Journal Article: A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology Citation Details In-Document Search Title: A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS)

  15. Haverford College Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon

  16. Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide using Solar Energy ... the hercynite cycle allows faster, more efficient cycling and less wear on the equipment ...

  17. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  18. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  19. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  20. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Sulfur Dioxide Analyzer Instrument Handbook Citation Details In-Document Search Title: Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the

  1. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Energy Savers [EERE]

    Energy Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase

  2. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of ...

  3. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  4. Carbon dioxide absorbent and method of using the same

    SciTech Connect (OSTI)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  5. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of ...

  6. U.S. Energy-Related Carbon Dioxide Emissions, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy-Related Carbon Dioxide Emissions, 2014 November 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 1 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 2 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 3 November 2015 U.S.

  7. High Performance Composite Membranes for Separation of Carbon Dioxide from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High Performance Composite Membranes for Separation of Carbon Dioxide from Methane

  8. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  9. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  10. Haverford College Researchers Create Carbon Dioxide-Separating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon...

  11. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  12. Carbon Dioxide Capture at a Reduced Cost - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology would allow power plants and the chemical and cement...

  13. CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting...

    Open Energy Info (EERE)

    Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov...

  14. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  15. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  16. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  17. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  18. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  19. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect (OSTI)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  20. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  1. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  2. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  3. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  4. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  5. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  6. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  7. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  8. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  9. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  10. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  11. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  12. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  13. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  14. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  15. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  16. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

  17. High-rate reactive sputter deposition of zirconium dioxide (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: High-rate reactive sputter deposition of zirconium dioxide Citation Details In-Document Search Title: High-rate reactive sputter deposition of zirconium dioxide Using an improved reactive sputter deposition technique, zirconium dioxide is deposited on cooled and uncooled substrates at low, medium, and high rates of 51.7, 95.4, and 152.4 nm/min, respectively. The films are deposited by sputtering a Zr target in an oxygen--argon plasma. The Zr target

  18. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  19. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  20. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  1. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention � Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term �globule� refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 μm range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 μm or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 μm (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.

  2. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  3. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  4. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  5. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  7. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  8. Carbon dioxide capture-related gas adsorption and separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

  9. U.S. Energy-Related Carbon Dioxide Emissions, 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-Related Carbon Dioxide Emissions, 2013 October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2014 U.S. Energy...

  10. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  11. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  12. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

  13. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus; Yanagihara, Naohisa; Dyke, James T.; Vemulapalli, Krishna

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  14. Copper clusters capture and convert carbon dioxide to make fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The benefit of enhanced binding is that the new catalyst requires lower pressure and less energy to produce the same amount of methanol. Carbon dioxide emissions are an ongoing...

  15. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  16. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using supercritical carbon dioxide as a fracturing fluid Using supercritical carbon dioxide as a fracturing fluid The Laboratory team used a combination of experiments and modeling for the investigation. June 25, 2015 Simulation of a selection of the particle trajectories toward the well. Simulation of a selection of the particle trajectories toward the well. Communications Office (505) 667-7000 The Laboratory research is part of an ongoing project to make the necessary measurements and develop

  17. Alkaline solution absorption of carbon dioxide method and apparatus

    Office of Scientific and Technical Information (OSTI)

    (Patent) | DOEPatents Alkaline solution absorption of carbon dioxide method and apparatus Title: Alkaline solution absorption of carbon dioxide method and apparatus × You are accessing a document from the Department of Energy's (DOE) DOE Patents. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. Disclosed is a method for measuring

  18. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic

    Office of Scientific and Technical Information (OSTI)

    Leakage into an Unconfined, Oxidizing Limestone Aquifer (Journal Article) | SciTech Connect Journal Article: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer An important risk at CO2 storage sites is the potential for groundwater quality impacts. As

  19. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions

    Office of Scientific and Technical Information (OSTI)

    and Determination of Contact Angles. (Journal Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, Randall T. Publication Date: 2013-08-01 OSTI Identifier: 1106710 Report Number(s):

  20. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Authors: Tenney, Craig M ; Cygan, Randall T Publication Date: 2014-02-04 OSTI Identifier: 1161868 DOE Contract Number: SC0001114 Resource Type: Journal Article Resource Relation: Journal Name: Environmental Science & Technology; Journal Volume: 48; Related Information: CFSES

  1. NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS.

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Citation Details In-Document Search Title: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Abstract not provided. Authors: Middleton, Bobby ; Kazimi, Mujid ; Leung, MinWah Publication Date: 2008-03-01 OSTI Identifier: 1145909 Report Number(s): SAND2008-1979J 518805 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article

  2. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  3. Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Citation Details In-Document Search Title: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Abstract not provided. Authors: Middleton, Bobby ; Kazimi, Mujid Publication Date: 2007-06-01 OSTI Identifier: 1147847 Report Number(s): SAND2007-3553C 522735 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: ANS

  4. First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface Researchers Link Rising CO₂ Levels from Fossil Fuels to Radiative Forcing February 25, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 ARM Alaska Caption: The scientists used incredibly precise spectroscopic instruments at two sites operated by the Department of Energy's

  5. New Texas Oil Project Will Help Keep Carbon Dioxide Underground |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities.

  6. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  7. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  8. "(Million Metric Tons Carbon Dioxide)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: International Energy Outlook 2010" "Report #: DOE/EIA-0484(2010)" "application/vnd.ms-excel" "U.S. history values from this report" "U.S. projections from AEO2011, early release" "Table 4. World energy-related carbon dioxide emissions and shares by region, 1990-2035",,,,,,,,,,,,,,"Additional data for analysis" "(Million Metric Tons Carbon Dioxide)"

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  11. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  12. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO{sub 2} retention column height. Also, increasing bulk density is positive-ly correlated with the supercritical CO{sub 2} retention column height. One of the most im-portant factors affecting sealing capacity and consequently the height of supercritical CO{sub 2} column is sorting of the pore throats. We observed a strong positive correlation be-tween pore throat sorting and height of CO{sub 2} retention column, especially in shales. This correlation could not be observed in limestone samples. It suggests that the pore throat sorting is more controlling the sealing capacity in shales and shales with well sorted pore throats are the most reliable lithology as seal. We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO{sub 2} retention column height in limestone samples while BET surface area did not display significant correlation in shales. Pore structure based on SEM mi-crographs exhibits strong correlation with CO{sub 2} retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranu-lar texture has positive correlation in limestone with respect to CO{sub 2} retention column height. Textural effects observed on SEM micrographs did not show statistically signifi-cant correlation with supercritical CO{sub 2} retention column height in shale samples. Finally, we showed that increasing hard/soft mineral index is strongly correlated with the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury satu-ration in shale samples.

  13. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  14. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. Total 7,281 4,217 5,941 6,842 9,010 5,030 1936-2016 PAD District 1 4,571 2,206 2,952 3,174 3,127 2,664 1981-2016 Connecticut 1995-2015 Delaware 678 85 1995-2015 Florida 351 299 932 836 858 649 1995-2016 Georgia 120 295 210 262 1995-2016 Maine 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,575 400 1,131 1,712 1,283 843 1995-2016 New York 1,475 998 350 322 234 824 1995-2016 North Carolina

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  16. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect (OSTI)

    Hale, S.J.

    1991-12-31

    Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

  17. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  18. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  19. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect (OSTI)

    Veirs, Douglas K.; Berg, John M.; Crowder, Mark L.

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  20. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 2. 2013 state energy-related carbon dioxide emissions by fuel million metric tons of carbon dioxide Shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Alabama 53.3 33.2 33.4 119.8 44.5% 27.7% 27.8% Alaska 1.4 17.1 17.7 36.1 3.9% 47.2% 48.9% Arizona 43.0 32.8 18.1 93.8 45.8% 34.9% 19.3% Arkansas 30.9 21.6 15.3 67.8 45.5% 31.9% 22.5% California 3.6 217.7 131.8 353.1 1.0% 61.7% 37.3% Colorado 34.3 30.6 25.6 90.5 37.9% 33.8% 28.2% Connecticut 0.7 20.8 12.7 34.3 2.1%

  1. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  2. Alkaline solution absorption of carbon dioxide method and apparatus

    Office of Scientific and Technical Information (OSTI)

    (Patent) | DOEPatents Alkaline solution absorption of carbon dioxide method and apparatus Title: Alkaline solution absorption of carbon dioxide method and apparatus Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the

  3. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  4. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  5. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  6. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  11. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  12. Understanding the Decline in Carbon Dioxide Emissions in 2009 (Released in the STEO October 2009)

    Reports and Publications (EIA)

    2009-01-01

    The Energy Information Administration forecasts 5.9% decline in U.S. carbon dioxide emissions in 2009.

  13. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  14. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 4. 2013 state energy-related carbon dioxide emission shares by sector percent of total Shares State Commercial Electric Power Residential Industrial Transportation Alabama 1.5% 53.6% 1.8% 17.8% 25.3% Alaska 6.6% 7.3% 4.3% 48.4% 33.3% Arizona 2.5% 58.3% 2.6% 4.8% 31.8% Arkansas 4.2% 52.4% 3.3% 13.6% 26.5% California 4.5% 12.9% 7.9% 20.7% 54.0% Colorado 4.1% 42.6% 9.0% 15.3% 29.0% Connecticut 10.4% 19.8% 21.0% 6.8% 42.1% Delaware 5.7% 30.2% 7.0% 27.8% 29.3% District of Columbia 35.5% 0.0%

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  17. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  18. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow the dynamic simulation of the ABTR. The code modifications have reached the point where a transient simulation can be run in steady state mode; i.e., to determine the steady state initial conditions at full power without an initiating event. The results show that the steady state solution is maintained with minimal variations during at least 4,000 seconds of the transient. More SFR design specific modifications to the ANL Plant Dynamics Code are required to run the code in a full transient mode, including models for the sodium pumps and their control as well as models for reactivity feedback and control of the reactor power.

  19. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  5. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  6. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    SciTech Connect (OSTI)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  7. Actinide Dioxides in Water: Interactions at the Interface

    SciTech Connect (OSTI)

    Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel; Asta, Mark; Navrotsky, Alexandra

    2011-12-15

    A comprehensive understanding of chemical interactions between water and actinide dioxide surfaces is critical for safe operation and storage of nuclear fuels. Despite substantial previous research, understanding the nature of these interactions remains incomplete. In this work, we combine accurate calorimetric measurements with first-principles computational studies to characterize surface energies and adsorption enthalpies of water on two fluorite-structured compounds, ThO? and CeO?, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. We determine coverage-dependent adsorption enthalpies and demonstrate a mixed molecular and dissociative structure for the first hydration layer. The results show a correlation between the magnitude of the anhydrous surface energy and the water adsorption enthalpy. Further, they suggest a structural model featuring one adsorbed water molecule per one surface cation on the most stable facet that is expected to be a common structural signature of water adsorbed on actinide dioxide compounds.

  8. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect (OSTI)

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  9. Application of optical processing for growth of silicon dioxide

    DOE Patents [OSTI]

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  10. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  11. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imidazolate Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks Previous Next List Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O'Keeffe and Omar M. Yaghi, Acc. Chem. Res., 2010, 43 (1), pp 58-67 DOI: 10.1021/ar900116g Abstract Zeolites are one of humanity's most important synthetic products. These

  12. Sandia's Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important MOU with Industry Partners Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs Important MOU with Industry Partners - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  13. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in

    Office of Scientific and Technical Information (OSTI)

    Deep Saline Aquifers. (Conference) | SciTech Connect Surfaces in Deep Saline Aquifers. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: 2013-01-01 OSTI Identifier: 1063603 Report Number(s): SAND2013-0408C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the CFSES Seminar, University of

  14. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  15. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  16. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  17. Titanium dioxide, single-walled carbon nanotube composites

    DOE Patents [OSTI]

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  18. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  19. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  20. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  1. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  2. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  3. Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Using Ionic Liquids to Make Titanium Dioxide Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummarySince self-organized TiO2 nanotube (NT) arrays were first reported in 1999, there has been increasing research interest due to their comparably larger surface area, chemical stability,

  4. Utilizing the market to control sulfur dioxide emissions

    SciTech Connect (OSTI)

    Loeher, C.F. III

    1995-12-01

    Environmental policy in the United States is evolving; command and control approaches are being slowly replaced with market-based incentives. Market-based regulation is favorable because it provides the regulated community with flexibility in choosing between pollution control options. A recent application of a market-based approach is Title IV of the 1990 Clean Air Act Amendments. This paper evaluates the advantages of utilizing market-based incentives to control sulfur dioxide emissions. The evaluation embodies an extensive methodology, which provides an overview of the policy governing air quality, discusses pollution control philosophies and analyzes their associated advantages and limitations. Further, it describes the development and operation of a market for emissions trading, impediments to the market, and recommends strategies to improve the market. The evaluation concludes by analyzing the results of five empirical simulations demonstrating the cost-effectiveness of employing market-based incentives versus command-and-control regulation for controlling sulfur dioxide emissions. The results of the evaluation indicate that regulatory barriers and market impediments have inhibited allowance trading. However, many of these obstacles have been or are being eliminated through Federal and state regulations, and through enhancement of the market. Results also demonstrate that sulfur dioxide allowance trading can obtain identical levels of environmental protection as command-and-control approaches while realizing cost savings to government and industry.

  5. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  6. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  7. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Energy Savers [EERE]

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  8. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    SciTech Connect (OSTI)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  9. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Movements: - Industrial: Dry Production: Vehicle ... due to independent rounding. Prices are in nominal dollars. ... Annual Consumption per Consumer (thousand cubic feet) ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    from Electric Power to Industrial for years 2002 through ... Totals may not add due to independent rounding. Prices are ... Annual Consumption per Consumer (thousand cubic feet) ...

  1. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  2. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  3. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  4. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  5. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,351479...

  6. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  7. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  8. Electron-beam-evaporated thin films of hafnium dioxide for fabricating

    Office of Scientific and Technical Information (OSTI)

    electronic devices (Journal Article) | SciTech Connect Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Citation Details In-Document Search This content will become publicly available on June 17, 2016 Title: Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this

  9. Layered solid sorbents for carbon dioxide capture (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Patent: Layered solid sorbents for carbon dioxide capture Citation Details In-Document Search Title: Layered solid sorbents for carbon dioxide capture A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is

  10. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect (OSTI)

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  11. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  12. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from

    Office of Scientific and Technical Information (OSTI)

    Flue Gas Streams (Journal Article) | SciTech Connect Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams Citation Details In-Document Search Title: Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system

  13. Strong and Reversible Binding of Carbon Dioxide in a Green Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework Previous Next List Jeremiah J. Gassensmith, Hiroyasu Furukawa, Ronald A. Smaldone, Ross S....

  14. Insulator-to-Metal Transition of Vanadium Dioxide | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as smart windows and ultrafast field effect transistors, exhibits an insulator to ... vanadium dioxide driven by large phonon entropy," Nature 515, 535-539, 2014. DOI: ...

  15. Electron-beam-evaporated thin films of hafnium dioxide for fabricating...

    Office of Scientific and Technical Information (OSTI)

    Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices ... The authors analyzed the thin films using high-resolution transmission electron microscopy ...

  16. METHOD OF DISSOLVING PLUTONIUM DIOXIDE IN NITRIC ACID USING CERIUM IONS

    DOE Patents [OSTI]

    Wilson, A.S.

    1961-10-24

    A method is descnibed for catalyzing the dissolution of plutenium dioxide in nitric acid with small amounts of cerium ions. (AEC)

  17. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  20. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  1. Moisture absorption results for vertical calciner plutonium dioxide product

    SciTech Connect (OSTI)

    Compton, J.A., Westinghouse Hanford

    1996-07-03

    A sample of calcined plutonium dioxide was exposed to room air for one week. The sample was weighed daily to determine if the material absorbed moisture from the room air. A random variation of weight was observed after the first day; however, the sample returned to its original weight at the end of the week. The loss on ignition for the material increased from 0.439 to 0.544 weight percent during this time. This change is considered inconsequential as the material will normally be packaged for storage within hours of its production.

  2. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  3. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  4. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide (s-CO2) directly as the heat transfer fluid (HTF). A high-temperature receiver that is compatible with s-CO2 enables a significant increase in power cycle efficiency and reduces solar-field size, thereby decreasing the installed cost of concentrating solar power (CSP) systems.

  5. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Broader source: Energy.gov [DOE]

    This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America’s Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster refrigeration system. We compare refrigeration system performance to that for a supermarket having nearly identical layout and refrigeration loads, in a similar climate and of similar vintage, that uses a conventional hydrofluorocarbon (HFC) refrigerant. Delhaize provided the submetered and utility data used to generate the performance summaries herein.

  6. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers

    Broader source: Energy.gov [DOE]

    This fact sheet describes a supercritical carbon dioxide turbo-expander and heat exchangers project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Southwest Research Institute, is working to develop a megawatt-scale s-CO2 hot-gas turbo-expander optimized for the highly transient solar power plant profile. The team is also working to optimize novel printed circuit heat exchangers for s-CO2 applications to drastically reduce their manufacturing costs.

  7. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  8. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals may not add due to independent rounding. Prices are ... 250,994 253,127 Industrial 9,332 9,088 8,833 8,497 8,156 Average Annual Consumption per Consumer (thousand cubic ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not add due to independent rounding. Prices ... 34,078 34,283 34,339 Industrial 102 94 97 95 92 Average Annual Consumption per Consumer (thousand cubic feet) ...

  11. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  12. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  13. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  14. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004629.1...

  15. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. ... 2,314 764 719 180 4,046 Supplemental Gas Supplies 732 701 660 642 635 Balancing Item ...

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. ... 3,762 7,315 10,303 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 65,897 -19,970 ...

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. ... 473 526 484 626 1,359 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -6,645 3,976 ...

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. ... 35 108 71 124 185 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,393 -3,726 ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. ... 92 87 100 89 138 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -2,885 -12,890 ...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. ... 76 96 66 131 128 Supplemental Gas Supplies 1 0 * * 6 Balancing Item 3,249 7,362 ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. ... 1,844 980 2,403 2,701 Supplemental Gas Supplies 2 1 0 0 1 Balancing Item -1,989 -7,914 ...

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. ... 4,404 3,278 5,208 6,218 Supplemental Gas Supplies 457 392 139 255 530 Balancing Item ...

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. ... 698 436 457 645 879 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,269 1,045 ...

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. ... 0 LNG Storage 0 0 0 0 0 Supplemental Gas Supplies 1 2 3 3 5 Balancing Item -453 -1,711 ...

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. ... 195 154 146 210 211 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 17,590 4,622 ...

  7. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  8. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  9. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  10. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  11. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  12. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  13. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect (OSTI)

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  14. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  15. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  16. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E.

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  17. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

  18. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide

    SciTech Connect (OSTI)

    Qi Ji [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Department of Chemical Engineering, Dalian Life Science College, Dalian Nationalities University, 18 Laohe West Road, Dalian 116600 (China); Ning Guiling [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Lin Yuan [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2008-08-04

    A novel process was developed for synthesizing pure thermochromic vanadium dioxide (VO{sub 2}) by thermal reduction of vanadium pentoxide (V{sub 2}O{sub 5}) in ammonia gas. The process of thermal reduction of V{sub 2}O{sub 5} was optimized by both experiments and modeling of thermodynamic parameters. The product VO{sub 2} was characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The experimental results indicated that pure thermochromic VO{sub 2} crystal particles were successfully synthesized. The phase transition temperature of the VO{sub 2} is approximately 342.6 K and the enthalpy of phase transition is 44.90 J/g.

  19. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions through forestry, agriculture, and use of biomass-based fuels to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  20. Fabric compatibility and cleaning effectiveness of drycleaning with carbon dioxide

    SciTech Connect (OSTI)

    Williams, S.B.; Laintz, K.E.; Spall, W.D.; bustos, L.; Taylor, C.

    1996-04-01

    Liquid carbon dioxide (CO{sub 2}) offers an environmentally sound replacement solvent to the currently used drycleaning solvent, perchloroethylene (PERC). In addition to the health and safety benefits of a CO{sub 2} based cleaning system, large savings in solvent costs provide an incentive for conversion to the new system. Lower operating costs for the new technology provide further incentive. Experimental studies were conducted using CO{sub 2} in both small scale and pilot scale test systems in order to address fabric compatibility with this alternative cleaning method. Results from these tests show that fabric shrinkage using CO{sub 2} is controlled to the same level as current drycleaning methods. In addition, tests to evaluate the cleaning performance of liquid CO{sub 2} drycleaning were also conducted. These results show the prototype liquid CO{sub 2} cleaning system to be better than PERC at soil removal, and worse than PERC at inorganic salt removal.

  1. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

  2. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  3. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  4. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect (OSTI)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  5. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect (OSTI)

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. )

    1991-07-15

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  6. Statistically designed study of the variables and parameters of carbon dioxide equations of state

    SciTech Connect (OSTI)

    Donohue, M.D.; Naiman, D.Q.; Jin, Gang; Loehe, J.R.

    1991-05-01

    Carbon dioxide is used widely in enhanced oil recovery (EOR) processes to maximize the production of crude oil from aging and nearly depleted oil wells. Carbon dioxide also is encountered in many processes related to oil recovery. Accurate representations of the properties of carbon dioxide, and its mixtures with hydrocarbons, play a critical role in a number of enhanced oil recovery operations. One of the first tasks of this project was to select an equation of state to calculate the properties of carbon dioxide and its mixtures. The equations simplicity, accuracy, and reliability in representing phase behavior and thermodynamic properties of mixtures containing carbon dioxide with hydrocarbons at conditions relevant to enhanced oil recovery were taken into account. We also have determined the thermodynamic properties that are important to enhanced oil recovery and the ranges of temperature, pressure and composition that are important. We chose twelve equations of state for preliminary studies to be evaluated against these criteria. All of these equations were tested for pure carbon dioxide and eleven were tested for pure alkanes and their mixtures with carbon dioxide. Two equations, the ALS equation and the ESD equation, were selected for detailed statistical analysis. 54 refs., 41 figs., 36 tabs.

  7. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  8. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  9. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  10. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  11. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  12. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  13. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  14. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  15. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  16. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  17. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  18. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  19. The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal-Organic Framework Previous Next List N. Planas, A. L. Dzubak, R. Poloni, L.-C. Lin, A. McManus, T. M....

  20. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Carbon intensity by state (2000-2013) kilograms of energy-related carbon dioxide per million Btu Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  1. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    20 Table 8. Carbon intensity of the economy by state (2000-2013) metric tons of energy-related carbon dioxide per million chained 2009 dollars of GDP Change (2000-2013) State 2000 ...

  2. Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks Previous Next List Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, and Hong-Cai Zhou, J....

  3. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    ...Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title: Fundamental Understanding of Methane-Carbon Dioxide-Water ...

  4. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title:...

  5. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel

    Broader source: Energy.gov [DOE]

    The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized...

  6. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  7. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  8. DOE Selects Project to Help Advance More Efficient Supercritical Carbon Dioxide-Based Power Cycles

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has selected Thar Energy, LLC to develop new recuperator technologies leading to more cost-effective and efficient supercritical carbon dioxide (SCO2)-based power cycles.

  9. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  10. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Broader source: Energy.gov [DOE]

    Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer...

  11. Enhanced carbon dioxide capture upon incorporation ofN,N'-dimethyleth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri Previous Next List Thomas M. McDonald, Deanna M....

  12. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Yonker, Clement R. (Richland, WA); Hallen, Richard R. (Richland, WA); Baker, Eddie G. (Richland, WA); Bowman, Lawrence E. (Richland, WA); Silva, Laura J. (Richland, WA)

    1999-01-01

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  13. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  14. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic ... conditions relevant to removal of CO2 from air, and 3.14 mmolg (12.1 wt %) at 0.15 bar ...

  15. Hydrogen storage and carbon dioxide capture in an iron-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods Previous Next List Kenji Sumida,...

  16. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O)

    Office of Scientific and Technical Information (OSTI)

    Interactions in Shale Nanopores under Reservoir Conditions. (Conference) | SciTech Connect Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title: Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-12-01 OSTI Identifier: 1242810

  17. Recent advances in carbon dioxide capture with metal-organic frameworks |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Recent advances in carbon dioxide capture with metal-organic frameworks Previous Next List Yangyang Liu, Zhiyong U. Wang, Hong-Cai Zhou, Greenhouse Gas Sci Technol, 2: 239-259, 2012 DOI: 10.1002/ghg.1296 Abstract: Uncontrolled massive release of the primary greenhouse gas carbon dioxide (CO2) into atmosphere from anthropogenic activities poses a big threat and adversely affects our global climate and natural

  18. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing

    Office of Scientific and Technical Information (OSTI)

    Carbonate Aquifer (Journal Article) | SciTech Connect Journal Article: Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer Citation Details In-Document Search Title: Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling

  19. Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures - Energy Innovation Portal Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication S-126827 (Organoclay Sorbent).pdf (292 KB) Technology Marketing Summary By incorporating amines inside clay containing quaternary ammonium salts (organoclay) minerals, this invention has created a way to prepare sorbents that capture carbon dioxide (CO2)

  20. Effect of particle size and doses of olivine addition on carbon dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures | Argonne National Laboratory particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures Title Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures Publication Type Journal Article

  1. Methods and compositions for removing carbon dioxide from a gaseous mixture

    DOE Patents [OSTI]

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  2. Titanium-dioxide nanotube p-n homojunction diode

    SciTech Connect (OSTI)

    Alivov, Yahya E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant E-mail: pnagpal@colorado.edu

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  3. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  4. Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide

    SciTech Connect (OSTI)

    Wang, Xiangyu; Wu, Bin; Gao, Fei; Li, Xin; Sun, Xin; Khaleel, Mohammad A.; Akinlalu, Ademola V.; Liu, L.

    2014-03-01

    In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tamman law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a strong to fragile supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu

  5. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect (OSTI)

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  6. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  7. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect (OSTI)

    Parkhurst, W.J.; Harper, J.P. ); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. ); Cropp, J.W. )

    1988-01-01

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  8. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  9. Carbon dioxide and global climate change: The birth and arrested development of an idea

    SciTech Connect (OSTI)

    Mudge, F.B.

    1996-12-31

    G.S. Callendar (1897--1964) is regarded the originator of the modern theory of carbon dioxide and global climate change. However, this paper shows that the theory was developed and became well accepted during the nineteenth century. Carbon dioxide was discovered by Black in 1752. From 1820 to 1890 a steadily growing number of measurements of its atmospheric concentration were made using steadily improving techniques; the average results fell from around 500 ppm in 1820 to about 300 ppm in 1890. By the end of the following decade the greenhouse theory of global climate change seemed widely accepted. However in 1900 and 1901 Aangstroem appeared to demolish the theory when he reported that changes in the carbon dioxide level can have little effect because of the overlap of the water and carbon dioxide spectral bands. At a stroke, all interest in the measurement of atmospheric carbon dioxide levels seemed to disappear, although during the 1920s and 1930s a few workers resumed the work but for reasons unconnected to climate change. Over the next thirty years the writers of authoritative textbooks dismissed the theory of carbon dioxide and climate change as an example of misguided speculation. Then in 1938 Callendar`s first paper appeared, reviving the theory which had lain forgotten for nearly forty years.

  10. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

  11. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X

    SciTech Connect (OSTI)

    Konduru, N.; Lindner, P.; Assaf-Anad, N.M.

    2007-12-15

    The removal of carbon dioxide (CO{sub 2}) from industrial emissions has become essential in the fight against climate change. In this study, we employed Zeolite 13X for the capture and recovery of CO{sub 2} in a flow through system where the adsorbent was subjected to five adsorption-desorption cycles. The influent stream contained 1.5% CO{sub 2} at standard conditions. The adsorbent bed was 1 in. in length and 1 in.3/8 in dia., and was packed with 10 g of the zeolite. Temperature swing adsorption (TSA) was employed as the regeneration method through heating to approximately 135{sup o}C with helium as the purge gas. The adsorbent capacity at 90% saturation was found to decrease from 78 to 60g CO{sub 2}/kg{sub Zeolite13X} after the fifth cycle. The CO{sub 2} capture ratio or the mass of CO{sub 2} adsorbed to the total mass that entered the system decreased from 63% to only 61% after the fifth cycle. The CO{sub 2} recovery efficiency ranged from 82 to 93% during desorption, and the CO{sub 2} relative recovery, i.e., CO{sub 2} desorbed for the nth cycle to CO{sub 2} adsorbed for the first cycle, ranged from 88 to 68%. The service life of the adsorbent was determined to be equal to eleven cycles at a useful capacity of 40g CO{sub 2}/kg{sub Zeolite13X}.

  12. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect (OSTI)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  13. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  14. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  15. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  16. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  17. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect (OSTI)

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  18. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect (OSTI)

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  19. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  20. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  1. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a “post-mortem” analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases where data availability is limited, running injection/production logs and/or running cased-hole saturation tools to provide an indication of vertical heterogeneity will be important.

  2. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  3. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  4. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  5. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  6. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  7. Letter from Commonwealth to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide

    Broader source: Energy.gov [DOE]

    Docket No. EO-05-01: Letter from Commonwealth of Virginia to Mirant Potomac River concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide.

  8. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  9. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  10. Total Crude Oil and Petroleum Products Imports by Processing...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum ...

  11. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  12. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  13. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  16. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  17. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  18. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  19. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  20. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  1. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect (OSTI)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer coefficients for the CO{sub 2}-water-organic layer system. For the CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system, the enhanced factor is not only dependent on the liquid mass transfer coefficients, but also the chemical reaction rates.

  2. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  3. Transporting carbon dioxide recovered from fossil-energy cycles

    SciTech Connect (OSTI)

    Doctor, R. D.; Molburg, J. C.; Brockmeier, J. F.

    2000-07-24

    Transportation of carbon dioxide (CO{sub 2}) for enhanced oil recovery is a mature technology, with operating experience dating from the mid-1980s. Because of this maturity, recent sequestration studies for the US Department of Energy's National Energy Technology Laboratory have been able to incorporate transportation into overall energy-cycle economics with reasonable certainty. For these studies, two different coal-fueled plants are considered; the first collects CO{sub 2} from a 456-MW integrated coal gasification combined-cycle plant, while the second employs a 353-MW pulverized-coal boiler plant retrofitted for flue-gas recycling (Doctor et al. 1999; MacDonald and Palkes 1999). The pulverized-coal plant fires a mixture of coal in a 33% O{sub 2} atmosphere, the bulk of the inert gas being made up to CO{sub 2} to the greatest extent practical. If one power plant with one pipe feeds one sequestration reservoir, projected costs for a 500-km delivery pipeline are problematic, because when supplying one reservoir both plant availability issues and useful pipeline life heavily influence capital recovery costs. The transportation system proposed here refines the sequestration scheme into a network of three distinctive pipelines: (1) 80-km collection pipelines for a 330-MW pulverized-coal power plant with 100% CO{sub 2} recovery; (2) a main CO{sub 2} transportation trunk of 320 km that aggregates the CO{sub 2} from four such plants; and (3) an 80-km distribution network. A 25-year life is assumed for the first two segments, but only half that for the distribution to the reservoir. Projected costs for a 500-km delivery pipeline, assuming an infrastructure, are $7.82/tonne ($17.22/10{sup 3} Nm{sub 3} CO{sub 2} or $0.49/10{sup 3} scf CO{sub 2}), a savings of nearly 60% with respect to base-case estimates with no infrastructure. These costs are consistent only with conditioned CO{sub 2} having low oxygen and sulfur content; they do not include CO{sub 2} recovery, drying, and compression.

  4. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  5. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  6. Master index for the carbon dioxide research state-of-the-art report series

    SciTech Connect (OSTI)

    Farrell, M P

    1987-03-01

    Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

  7. Table 10 U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,13.19,13.779,13.882,12.707,13.56,14.091,14.108,14.93,14.057,10.664,10.555,20.734,21.724,22.677,26,24.788,26.141,21.23,16.982,16.857 "

  8. Table 6 U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009" " (Million Metric Tons Carbon Dioxide )" ,,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Energy Consumption" " Petroleum",,,,2186.572,2133.958,2179.897,2184.16,2221.028,2207.112,2290.191,2312.879,2357.929,2416.523,2460.593,2473.32,2471.581,2518.36,2608.579,2627.641,2602.51,2603.153,2443.536,2318.839 " Coal

  9. Table 9 U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption,

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,7.919,6.063,5.688,2.095,1.777,1.276,1.873,3.011,2.746,1.998,3.129,2.631,3.172,4.193,3.122,3.185,3.382,4.242,3.106,3.083 "

  10. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 October 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  11. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    SciTech Connect (OSTI)

    Sanchez, R.; Myers, W.; Hayes, D.

    1997-01-01

    The nuclear criticality characteristics of mixtures of plutonium, silicon dioxide, and water (Part A) or plutonium, silicon dioxide, Nevada Yucca Mountain tuff, and water (Part B) have become of interest because of the appearance of recent papers on the subject. These papers postulate that if excess weapons plutonium is vitrified into a silicate log and buried underground, a self-sustaining neutron chain reaction may develop given sufficient time and interaction with the burial medium. Moreover, given specific geologic actions resulting in postulated configurations, the referenced papers state that nuclear explosions could occur with multi-kiloton yields or yields equivalent to hundreds of tons of TNT.

  12. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

  13. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

  14. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  15. DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field

    Broader source: Energy.gov [DOE]

    In a newly awarded project, researchers funded by the U.S. Department of Energy are partnering with European scientists to track injected carbon dioxide in the world's first and longest running carbon storage operation located at the Sleipner gas field in the North Sea.

  16. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Reports and Publications (EIA)

    2015-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  17. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  18. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  19. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  20. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    Reports and Publications (EIA)

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  1. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    Reports and Publications (EIA)

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  2. Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers

    Broader source: Energy.gov [DOE]

    The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing a supercritical carbon dioxide (s-CO2) power cycle that combines high efficiencies and low costs for modular CSP applications.

  3. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  7. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  9. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  10. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  13. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  14. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  15. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by ... PM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Net Receipts by ...

  17. Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal

    SciTech Connect (OSTI)

    Smith, D.H.; Jikich, S.; Seshadri, K.

    2007-05-01

    For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a point on the isotherm, the process is repeated until the sample weight reaches a constant value (i.e., typically equilibration times of several weeks). The slope of a plot of sample weight vs. square root of elapsed desorption time gives a measurement for the rate of diffusion. In order to advance all three experimental methods, results from this ambient-pressure gravimetry method were compared with data obtained by conventional manometry and by computer tomography. The isotherm and diffusion rate measured for the core can be directly used in simulators for reservoir engineering studies of coalseam sequestration and enhanced coalbed methane production.

  18. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  19. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  20. Scaling properties of proton-nucleus total reaction cross sections

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy; Kohama, Akihisa

    2010-05-15

    We study the scaling properties of proton-nucleus total reaction cross sections for stable nuclei and propose an approximate expression in proportion to Z{sup 2/3}sigma{sub pp}{sup total}+N{sup 2/3}sigma{sub pn}{sup total}. Based on this expression, we can derive a relation that enables us to predict a total reaction cross section for any stable nucleus within 10% uncertainty at most, using the empirical value of the total reaction cross section of a given nucleus.