Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

2

Reductive Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reductive Sequestration of Carbon Dioxide Reductive Sequestration of Carbon Dioxide T. Mill (ted.mill@sri.com; 650-859-3605) SRI, PS273 333 Ravenswood Menlo Park, CA 94025 D. Ross (dsross3@yahoo.com; 650-327-3842) U.S. Geological Survey, Bldg 15 MS 999 345 Middlefield Rd. Menlo Park, CA 94025 Introduction The United States currently meets 80% of its energy needs by burning fossil fuels to form CO 2 . The combustion-based production of CO 2 has evolved into a major environmental challenge that extends beyond national borders and the issue has become as politically charged as it is technologically demanding. Whereas CO 2 levels in the atmosphere had remained stable over the 10,000 years preceeding the industrial revolution, that event initiated rapid growth in CO 2 levels over the past 150 years (Stevens, 2000). The resulting accelerating accumulation of

3

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network (OSTI)

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

4

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network (OSTI)

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

5

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

6

The urgent need for carbon dioxide sequestration  

SciTech Connect

The danger of global warming has put in question the use of fossil fuels which constitute the most abundant and most reliable energy resource. Meeting the ever growing world demand for cheap energy, while simultaneously achieving the required drastic reduction in CO{sub 2} emissions can only be accomplished by actively preventing carbon dioxide generated in the combustion of fuels from accumulating in the atmosphere, i.e. by sequestration. Sequestration is possible and economically viable and is currently the only realistic solution to the dilemma of CO{sub 2} emissions. The authors have developed a very promising approach that disposes of carbon dioxide by chemically combining it in an exothermic reaction with readily available minerals to form carbonates. The resulting carbonates are stable solids that are known to be environmentally benign and to be stable on geological time scales. This stands in contrast to most other methods that do not appear to fully solve the long term problem.

Lackner, K.S.; Butt, D.P.; Jensen, R.; Ziock, H.

1998-09-01T23:59:59.000Z

7

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

8

Carbon dioxide sequestration in concrete in different curing environments  

E-Print Network (OSTI)

Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

Wisconsin-Milwaukee, University of

9

Carbon Dioxide Sequestration (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dioxide Sequestration (West Virginia) Dioxide Sequestration (West Virginia) Carbon Dioxide Sequestration (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Environmental Regulations Fees Safety and Operational Guidelines Siting and Permitting The purpose of this law is to: Establish a legal and regulatory framework for the permitting of carbon dioxide sequestration operations; Designate a state agency responsible for establishing standards and

10

Microbial Sequestration of Carbon Dioxide and Subsequent Conversion to Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration of Carbon Dioxide and Subsequent Sequestration of Carbon Dioxide and Subsequent conversion to Methane By Nirupam Pal Associate Professor California Polytechnic State University San Luis Obispo, CA 93401 Email : npal@calpoly.edu Phone : (805) 756-1355 INTRODUCTION The rising level of carbon dioxide in the atmosphere has been of growing concern in recent years. The increasing levels of carbon dioxide, the most dominant component of greenhouse gases, contribute to global warming and changing global weather patterns which could potentially lead to catastrophic events that could threaten life in every form on this planet. The level of carbon dioxide in the worlds atmosphere has increased from about 280 ppm in 1850 to the current level of approximately 350 ppm. There are several natural sources and sinks of

11

A Finite Element Model for Simulation of Carbon Dioxide Sequestration  

SciTech Connect

We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

Bao, Jie; Xu, Zhijie; Fang, Yilin

2013-11-02T23:59:59.000Z

12

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

13

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford  

E-Print Network (OSTI)

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

Keller, Klaus

14

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

15

CO2 displacement mechanisms: phase equilibria effects and carbon dioxide sequestration studies.  

E-Print Network (OSTI)

??Supercritical carbon dioxide is injected into underground formations to enhance oil recovery and for subsurface sequestration to minimize the impact of CO2 emissions due to… (more)

Pasala, Sangeetha M.

2010-01-01T23:59:59.000Z

16

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network (OSTI)

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore… (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

17

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao  

E-Print Network (OSTI)

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

Barthelat, Francois

18

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration 46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas Overview DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use . Based on the analyses in the EA DOE determined that its proposed action - awarding a grant to Air Products and Chemicals, Inc. to design and demonstrate a state-of-the-art system to concentrate carbon dioxide (CO,) from two steam

19

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review  

Science Journals Connector (OSTI)

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review† ... Other geologic formations, such as depleted petroleum reservoirs, deep saline aquifers and others have received considerable attention as sites for sequestering CO2. ...

Curt M. White; Duane H. Smith; Kenneth L. Jones; Angela L. Goodman; Sinisha A. Jikich; Robert B. LaCount; Stephen B. DuBose; Ekrem Ozdemir; Badie I. Morsi; Karl T. Schroeder

2005-03-22T23:59:59.000Z

20

Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions  

Science Journals Connector (OSTI)

The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest...2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and...2..., is one...

Maryam Takht Ravanchi; Saeed Sahebdelfar…

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Finite-Element Model for Simulation of Carbon Dioxide Sequestration  

SciTech Connect

Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

Bao, Jie; Xu, Zhijie; Fang, Yilin

2014-09-01T23:59:59.000Z

22

Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Carbon Dioxide Sequestration Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization Background The United States Department of Energy (DOE) is leading an effort to find novel approaches to reduce carbon dioxide (CO 2 ) emissions from industrial sources. The Industrial Carbon Capture and Sequestration (ICCS) program is funded by the American Recovery and Reinvestment Act (ARRA) to encourage development of processes that

23

Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

24

CARBON DIOXIDE SEQUESTRATION IN COAL: CHARACTERIZATION OF MATRIX DEFORMATION, SORPTION CAPACITY AND DYNAMIC PERMEABILITY AT IN-SITU STRESS CONDITIONS.  

E-Print Network (OSTI)

??Sequestration of anthropogenic carbon dioxide in geological formation is one of the climate change mitigation options. The successful application of this technology is dependent on… (more)

Pone, Jean Denis

2009-01-01T23:59:59.000Z

25

The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock  

E-Print Network (OSTI)

1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

26

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

27

Carbon dioxide sequestration underground laser based detection system.  

E-Print Network (OSTI)

??Carbon dioxide (CO 2) is a known greenhouse gas. Due to the burning of fossil fuels by industrial and power plants the atmospheric concentration of… (more)

Barr, Jamie Lynn.

2009-01-01T23:59:59.000Z

28

Geologic sequestration of carbon dioxide - an energy resource perspective  

SciTech Connect

Most energy used to meet human needs is derived from the combustion of fossil fuels (natural gas, oil, and coal), which releases carbon to the atmosphere, primarily as carbon dioxide (CO{sub 2}). The atmospheric concentration of CO{sub 2}, a greenhouse gas, is increasing, raising concerns that solar heat will be trapped and the average surficial temperature of the Earth will rise in response. Global warming studies predict that climate changes resulting from increases in atmospheric CO{sub 2} will adversely affect life on Earth. In the 200 years since the industrial revolution, the world's population has grown from about 800 million to over 6 billion people and the CO{sub 2} content of the atmosphere has risen from about 280 to about 360 parts per million by volume, a 30 percent increase. International concern about potential global climate change has spurred discussions about limiting the amount of CO{sub 2} and other greenhouse gases released to the atmosphere. 1 ref., 3 figs.

Robert C. Burruss; Sean T. Brennan

2003-03-15T23:59:59.000Z

29

Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies Robin L. Newmark (newmark@llnl.gov, 925-423-3644) Abelardo L. Ramirez (ramirez3@llnl.gov; 925-422-6909) William D. Daily (daily1@llnl.gov; 925-422-8623) Lawrence Livermore National Laboratory P.O. Box 808 Livermore, Ca. 94550 Abstract If geologic formations are used to sequester carbon dioxide (CO 2 ), monitoring the CO 2 injection will be required to confirm the performance of the reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO 2 and the geologic minerals and fluids. Electrical methods are well suited for monitoring processes involving fluids, as electrical properties are sensitive to the

30

Predicting Future Atmospheric Carbon Dioxide Levels  

Science Journals Connector (OSTI)

...Predicting future atmospheric carbon dioxide levels...1978012175 air atmosphere biosphere carbon...Predicting future atmospheric carbon dioxide levels...re-quired 5-Mhz bandwidth, which...synchronization rate of 16 khz and the picture...the interstellar plasma. For UHF frequencies...

U. Siegenthaler; H. Oeschger

1978-01-27T23:59:59.000Z

31

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

32

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields M. Ferer, (mferer@wvu.edu) Department of Physics, West Virginia University, Morgantown, WV 26506-6315, Grant S. Bromhal, (bromhal@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; and Duane H. Smith, (dsmith@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880 & Department of Physics, West Virginia University. Underground injection of gas is a common practice in the oil and gas industry. Injection into deep, brine-saturated formations is a commercially proven method of sequestering CO 2 . However, it has long been known that displacement of a connate fluid by a less viscous fluid produces unstable displacement fronts with significant fingering. This fingering allows only a

33

Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide  

SciTech Connect

The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

Siriwardane, H.J.; Gondle, R.; Smith, D.H.

2007-05-01T23:59:59.000Z

34

Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations  – a novel approach for expanding geothermal energy utilization.  

E-Print Network (OSTI)

??This thesis research presents a new method to harness geothermal energy by combining it with geologic carbon dioxide (CO2) sequestration. CO2 is injected into deep,… (more)

Randolph, Jimmy Bryan

2011-01-01T23:59:59.000Z

35

Carbon Dioxide Capture and Sequestration by Adsorption on Activated Carbon  

Science Journals Connector (OSTI)

Abstract Activated Carbon (AC) materials was selected as suitable adsorbent for the carbon dioxide (CO2) capture and a numerical analysis was carried out to study the rate of adsorption of the gas on ACs. A one dimensional mathematical model was proposed based on the Dubinin's Theory of Volume Filling of Micropores, and analyzed along with the unsteady heat transfer. A parametric analysis was carried out to study the effect of various crucial parameters like radius of bed, cooling fluid temperature, initial bed temperature and heat transfer coefficient on the adsorption amount. The results show that lower bed radius was ideal for obtaining high amount of CO2 adsorbed assuming constant packing density. Also, a high heat transfer coefficient up to 100 Wm-2K-1 and low cooling fluid temperature of 283 K was necessary for speeding up the process. High initial bed temperature also supports greater adsorption amount under the same conditions.

Reema Saxena; Vinod Kumar Singh; E. Anil Kumar

2014-01-01T23:59:59.000Z

36

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

SciTech Connect

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& amp; G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

37

Flue gas carbon dioxide sequestration during water softening with ion-exchange fibers  

SciTech Connect

This study examines the use of ion-exchange fibers (IX fibers) to permanently sequester carbon dioxide present in flue gas into an aqueous phase as calcium or magnesium alkalinity while concurrently softening hard water. The only process inputs besides carbon dioxide (or flue gas) are snowmelt (or rainwater); no other chemicals are required for the regeneration of the IX fibers. Importantly, the process is not energy intensive and carbon dioxide does not need to be compressed to excessive pressures (>150 psi) for efficient use. Sources of carbon dioxide do not require concentration and, therefore, the use of raw flue gas (similar to 17% CO{sub 2}) is feasible with the rate of sequestration governed only by the partial pressure of carbon dioxide. While valid for flue gas obtained from any combustion process (e.g., coal, oil, natural gas, etc.), emissions from oil or gas combustion may be more appropriate for use in the described process due to the absence of mercury and particulates. It should also be noted that the presence of sulfur dioxide in flue gas would not adversely affect the process and may even enhance regeneration efficiency. The only product of the proposed process is an environmentally benign regenerant stream containing calcium and/or magnesium alkalinity. The unique property of IX fibers that makes the proposed process both environmentally sustainable and economically feasible is amenability to efficient regeneration with carbon dioxide and harvested snowmelt. Low intraparticle diffusional resistance is the underlying reason why IX fibers are amenable to efficient regeneration using snowmelt sparged with carbon dioxide; 95% calcium recovery was attained at a CO{sub 2} partial pressure of 6.8 atm. The energy balance for a typical electric utility shows that up to 1% of carbon dioxide emitted during combustion would be sequestered in the softening process.

Greenleaf, J.E.; SenGupta, A.K. [Lafayette College, Easton, PA (United States). Dept. of Civil & Environmental Engineering

2009-06-15T23:59:59.000Z

38

Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals  

SciTech Connect

The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.

2003-01-01T23:59:59.000Z

39

Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

and Economic Assessment of and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations Lawrence A. Smith (smithla@battelle.org; 614-424-3169) Neeraj Gupta (gupta@battelle.org; 614-424-3820)* Bruce M. Sass and Thomas A. Bubenik Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 *Corresponding Author Charles Byrer (a) and Perry Bergman (b) National Energy Technology Laboratory (a) P.O. Box 880, Morgantown, WV, 26507-0880 (b) P.O. Box 10940, Pittsburgh, PA, 15236-0940 ABSTRACT Concern over the potential effects of greenhouse gases such as carbon dioxide (CO 2 ) on global climate has triggered research about ways to mitigate the release of these gases to the atmosphere. A project to study the engineering feasibility and costs of sequestering CO

40

Pore-Level Modeling of Carbon Dioxide Sequestration in Oil Fields: A study of viscous and buoyancy forces  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration in Oil Fields: A Sequestration in Oil Fields: A study of viscous and buoyancy forces Grant S. Bromhal, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880, gbromhal@netl.doe.gov, M. Ferer, Department of Physics, West Virginia University, and Duane H. Smith, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Underground injection of carbon dioxide for enhanced oil recovery (EOR) is a common practice in the oil and gas industry and has often been cited as a proven method of sequestering CO 2 (US DOE, 1999). Of all sequestration methods, this is probably the best understood, as carbon dioxide has been used in the oil industry for many years. Additionally, most oil fields have been relatively well characterized geologically, and

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Relevance of underground natural gas storage to geologic sequestration of carbon dioxide  

SciTech Connect

The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

Lippmann, Marcelo J.; Benson, Sally M.

2002-07-01T23:59:59.000Z

42

Laboratory Investigations in Support of Dioxide-Limestone Sequestration in the Ocean  

SciTech Connect

Research under this Project has proven that liquid carbon dioxide can be emulsified in water by using very fine particles as emulsion stabilizers. Hydrophilic particles stabilize a CO{sub 2}-in-H{sub 2}O (C/W) emulsion; hydrophobic particles stabilize a H{sub 2}O-in-CO{sub 2} (W/C) emulsion. The C/W emulsion consists of tiny CO{sub 2} droplets coated with hydrophilic particles dispersed in water. The W/C emulsion consists of tiny H{sub 2}O droplets coated with hydrophobic particles dispersed in liquid carbon dioxide. The coated droplets are called globules. The emulsions could be used for deep ocean sequestration of CO{sub 2}. Liquid CO{sub 2} is sparsely soluble in water, and is less dense than seawater. If neat, liquid CO{sub 2} were injected in the deep ocean, it is likely that the dispersed CO{sub 2} droplets would buoy upward and flash into vapor before the droplets dissolve in seawater. The resulting vapor bubbles would re-emerge into the atmosphere. On the other hand, the emulsion is denser than seawater, hence the emulsion plume would sink toward greater depth from the injection point. For ocean sequestration a C/W emulsion appears to be most practical using limestone (CaCO{sub 3}) particles of a few to ten ?m diameter as stabilizing agents. A mix of one volume of liquid CO{sub 2} with two volumes of H{sub 2}O, plus 0.5 weight of pulverized limestone per weight of liquid CO{sub 2} forms a stable emulsion with density 1087 kg m{sup -3}. Ambient seawater at 500 m depth has a density of approximately 1026 kg m{sup -3}, so the emulsion plume would sink by gravity while entraining ambient seawater till density equilibrium is reached. Limestone is abundant world-wide, and is relatively cheap. Furthermore, upon disintegration of the emulsion the CaCO{sub 3} particles would partially buffer the carbonic acid that forms when CO{sub 2} dissolves in seawater, alleviating some of the concerns of discharging CO{sub 2} in the deep ocean. Laboratory experiments showed that the CaCO{sub 3} emulsion is slightly alkaline, not acidic. We tested the release of the CO{sub 2}-in-H{sub 2}O emulsion stabilized by pulverized limestone in the DOE National Energy Technology Laboratory High Pressure Water Tunnel Facility (HPWTF). Digital photographs showed the sinking globules in the HPWTF, confirming the concept of releasing the emulsion in the deep ocean. We modeled the release of an emulsion from the CO{sub 2} output of a 1000 MW coal-fired power plant at 500 m depth. The emulsion would typically sink several hundred meters before density equilibration with ambient seawater. The CO{sub 2} globules would rain out from the equilibrated plume toward the ocean bottom where they would disintegrate due to wave action and bottom friction. Conceptual release systems are described both for an open ocean release and a sloping seabed release of the emulsion.

Dan Golomb; Eugene Barry; David Ryan; Stephen Pennell; Carl Lawton; Peter Swett; Devinder Arora; John Hannon; Michael Woods; Huishan Duan; Tom Lawlor

2008-09-30T23:59:59.000Z

43

Carbon dioxide transport and sorption behavior in confined coal cores for carbon sequestration  

SciTech Connect

Measurements of sorption isotherms and transport properties of carbon dioxide (CO{sub 2}) in coal cores are important for designing enhanced coalbed-methane/CO{sub 2}-sequestration field projects. Many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh no. 8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO{sub 2}. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core and that diffusion and sorption progressed slowly. The amounts of CO{sub 2} sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh no. 8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO{sub 2} source. Also, the calculated isotherms showed that less CO{sub 2} was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure because of CO{sub 2} sorption.

Jikich, S.A.; McLendon, R.; Seshadri, K.; Irdi, G.; Smith, D.H. [Parsons Corporation, New York, NY (USA)

2009-02-15T23:59:59.000Z

44

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

SciTech Connect

In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

Nils Johnson; Joan Ogden

2010-12-31T23:59:59.000Z

45

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

46

Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio  

E-Print Network (OSTI)

ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/energy systems with carbon capture and sequestration. Insources. Fossil H 2 with carbon capture and sequestration (

2005-01-01T23:59:59.000Z

47

New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.  

SciTech Connect

Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

48

EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS  

SciTech Connect

This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.

Rogers, John

2014-08-31T23:59:59.000Z

49

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

of Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And SequestrationW H SAMMIS WILLOW ISLAND TOTAL Carbon capture In the plant

Ogden, Joan

2004-01-01T23:59:59.000Z

50

Development and Deployment of a Compact Eye-safe Scanning Differential Absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment of a Deployment of a Compact Eye-safe Scanning Differential Absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Description Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation, of possible carbon dioxide (CO 2 ) leakage at CO 2

51

Predicting Future Atmospheric Carbon Dioxide Levels  

Science Journals Connector (OSTI)

...re-quired 5-Mhz bandwidth...interstellar plasma. For UHF frequencies of 500 Mhz, this amounts...chang-ing the atmospheric carbon dioxide...in the polar areas. Although...The shaded area indicates the...per-missible atmospheric CO2 level might...emission rates are largest between 2000...

U. Siegenthaler; H. Oeschger

1978-01-27T23:59:59.000Z

52

CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE  

SciTech Connect

In this semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2002 through March 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

Joan M. Ogden

2003-06-26T23:59:59.000Z

53

Economic Analysis of Carbon Dioxide Sequestration in Powder River Basin Coal  

SciTech Connect

Unminable coalbeds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this paper is to study the economic feasibility of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 tonne) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin they cannot achieve the necessary cost reductions for breakeven economics without incentives.

Eric P. Robertson

2009-01-01T23:59:59.000Z

54

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

SciTech Connect

In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

Joan M. Ogden

2005-11-29T23:59:59.000Z

55

DOE/EA-1482: Environmental Assessment for Pilot Experiment for Geological Sequestration of Carbon Dioxide in Saline Aquifer Brine Formations (October 2003)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82 82 ENVIRONMENTAL ASSESSMENT PILOT EXPERIMENT FOR GEOLOGICAL SEQUESTRATION OF CARBON DIOXIDE IN SALINE AQUIFER BRINE FORMATIONS FRIO FORMATION, LIBERTY COUNTY, TEXAS OCTOBER 2003 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY ii iii National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes to provide funds for a field test of the geological sequestration of carbon dioxide (CO 2 ). The Bureau of Economic Geology (BEG) at The University of Texas at Austin, under contract with DOE, has studied the potential for sequestration of CO 2 in geologic formations of the United States as part of a broader series of DOE-sponsored research projects to

56

Relative Permeability Experiments of Carbon Dioxide Displacing Brine and Their Implications for Carbon Sequestration.  

E-Print Network (OSTI)

??To continue running our civilization on fossil fuels while avoiding global warming and ocean acidification, anthropogenic carbon dioxide must be diverted from atmospheric release. For… (more)

Levine, Jonathan

2011-01-01T23:59:59.000Z

57

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Storage Rate and Capacity and Insuring the Environmental Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon dioxide Sequestration in Geological Reservoirs L. A. Davis Lorne.Davis@coe.ttu.edu Department of Petroleum Engineering A. L. Graham Alan.Graham@coe.ttu.edu H. W. Parker** Harry.Parker@coe.ttu.edu Department of Chemical Engineering Texas Tech University Lubbock, Texas 79409 M. S. Ingber ingber@me.unm.edu A. A. Mammoli mammoli@me.unm.edu Department of Mechanical Engineering University of New Mexico Albuquerque, New Mexico 87131 L. A. Mondy lamondy@engsci.sandia.gov Energetic and Multiphase Processes Department Sandia National Laboratories Albuquerque, New Mexico 87185-0834 Quanxin Guo quan@advantekinternational.com Ahmed Abou-Sayed a.abou-sayed@att.net

58

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-01-01T23:59:59.000Z

59

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

60

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-04-01T23:59:59.000Z

62

Enhanced Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Recovery Through Sequestration of Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama Jack C. Pashin (jpashin@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Richard H. Groshong, Jr. (rgroshon@wgs.geo.ua.edu; 205-348-1882) Deparment of Geology University of Alabama Tuscaloosa, AL 35487 Richard E. Carroll (rcarroll@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Abstract Sequestration of CO 2 in coal is a market-based environmental solution with potential to reduce greenhouse gas emissions while increasing coalbed methane recovery. Producing coalbed methane through injection of CO 2 is also more efficient than current techniques requiring

63

Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration  

SciTech Connect

Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201 structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.

Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

2006-04-21T23:59:59.000Z

64

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

SciTech Connect

In the past 48 months of the project, we have accomplished all objectives outlined in the proposal. In the first year, we demonstrated the technology for remote sensing on a bench top scale. The core electronics are designed and fabricated. We achieved results that will safely deliver the specifications outlined in the proposal. In the 2nd year, 2 major technical tasks outlined in the Statement of Objectives, i.e. Build a field test ready prototype of a long-range CO2 monitor, and characterize its performance in the short term and demonstrate that the monitor characteristics meet the goals set in the initial proposal, have been accomplished. We also conducted simulation work that defines the different deployment strategies for our sensors at sequestration sites. In the 3rd year, Specifications and Testing protocols have been developed for the CO2 monitor. 1% accuracy had been demonstrated in short period tests ({approx}1 hour). Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). The sensitivity of the instrument to CO2 leaks has been demonstrated. In the 4th no-cost extension year, we further field tested the system and the experience we accumulated give us a clear picture of what else are needed for final field deployment. These results have shown all the objectives of the project have been fulfilled. In July 2008, along with our commercial partner we won the DOE STTR phase I award to commercialize the instrument developed in this project - a testimony to the achievement of this research.

William Goddard

2008-09-30T23:59:59.000Z

65

Geologic CO2 sequestration inhibits microbial growth | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

66

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

67

Carbon Sequestration: A Comparative Analysis  

Science Journals Connector (OSTI)

Carbon sequestration refers to the provision and safe storage of carbon dioxide that otherwise would be emitted to ... isolation, and final storage of the produced carbon dioxide, utilizing biological, chemical, ...

Christopher J. Koroneos; Dimitrios C. Rovas

2010-01-01T23:59:59.000Z

68

LABORATORY INVESTIGATIONS IN SUPPORT OF CARBON DIOXIDE-LIMESTONE SEQUESTRATION IN THE OCEAN  

SciTech Connect

This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous reports we described C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, and a pulverized magnesium silicate mineral, lizardite, Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}, which has a similar composition as the more abundant mineral, serpentine. All these materials formed stable emulsions consisting of droplets of liquid or supercritical CO{sub 2} coated with a sheath of particles dispersed in water. During this semi-annual period we experimented with pulverized beach sand (10-20 {micro}m particle diameter). Pulverized sand produced an emulsion similar to the previously used materials. The globules are heavier than water, thus they accumulate at the bottom of the water column. Energy Dispersive X-ray (EDX) analysis revealed that the sand particles consisted mainly of SiO{sub 2}. Sand is one of the most abundant materials on earth, so the economic and energy penalties of using it for ocean sequestration consist mainly of the cost of transporting the sand to the user, the capital and operating costs of the pulverizer, and the energy expenditure for mining, shipping and grinding the sand. Most likely, sand powder would be innocuous to marine organisms if released together with CO{sub 2} in the deep ocean. We examined the effects of methanol (MeOH) and monoethanolamine (MEA) on emulsion formation. These solvents are currently used for pre- and post-combustion capture of CO{sub 2}. A fraction of the solvents may be captured together with CO{sub 2}. A volume fraction of 5% of these solvents in a mix of CO{sub 2}/CaCO{sub 3}/H{sub 2}O had no apparent effect on emulsion formation. Previously we have shown that a 3.5% by weight of common salt (NaCl) in water, simulating seawater, also had no appreciable effect on emulsion formation. We investigated the formation of inverted emulsions, where water droplets coated with pulverized materials are dispersed in liquid or supercritical CO{sub 2}. This is a Water-in-CO{sub 2} emulsion (W/C) stabilized by particles. For a W/C emulsion it is necessary to employ hydrophobic particles, where the particles are primarily wetted by CO{sub 2}. We used the following hydrophobic particles: carbon black, coal dust, and Teflon. All materials were either obtained as fine particles or ground to 10-20 {micro}m size. All these hydrophobic particles produced a stable W/C emulsion.

Dan Golomb; Eugene Barry; David Ryan; Carl Lawton; Peter Swett; Huishan Duan; Matthew Woodcock

2005-04-01T23:59:59.000Z

69

LABORATORY INVESTIGATIONS IN SUPPORT OF CARBON DIOXIDE-LIMESTONE SEQUESTRATION IN THE OCEAN  

SciTech Connect

In the second half of the second contractual year the construction of the High Pressure Flow Reactor (HPFR) was completed, tested, and satisfactory results have been obtained. The major component of the HPFR is a Kenics-type static mixer in which two fluids are thoroughly mixed. In our case the two fluids are liquid or supercritical CO{sub 2} and a slurry of pulverized limestone (CaCO{sub 3}) in pure or artificial seawater. The outflow from the static mixer is an emulsion consisting of CO{sub 2} droplets coated with a sheath of CaCO{sub 3} particles dispersed in water. The coated CO{sub 2} droplets are called globules, and the emulsion is called globulsion. By adjusting the proportions of the two fluids, carbon dioxide and water, the length and pressure drop across the static mixer, globules with a fairly uniform distribution of diameters can be obtained. By using different particle sizes of CaCO{sub 3}, globules can be obtained that are lighter or heavier than water, thus floating or sinking in a water column. The globulsion ensuing from the static mixer flows into a high pressure cell with windows, where the properties of the globules can be observed, such as their diameter and settling velocity. Using the Stokes' equation, the specific gravity of the globules can be determined. Also, a second generation High Pressure Batch Reactor (HPBR) was constructed. This reactor allows better mixing of the ingredients, more accurate temperature and pressure control, better illumination and video camera observations. In this reactor we established that CO{sub 2}-in-water globulsions can be formed stabilized by other particles than pulverized limestone. So far, we used flyash obtained from a local coal-fired power plant, and a pulverized magnesium silicate mineral, lizardite, Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}, obtained from DOE's Albany Research Laboratory. In the reporting period we conducted joint experiments in NETL's high pressure water tunnel facility. Thanks to the longer travel path of the globules, and the excellent optical instrumentation available at NETL, we were able to more accurately obtain globule diameters and settling velocities.

Dan Golomb; Eugene Barry; David Ryan; Carl Lawton; Peter Swett; John Hannon; Huishan Duan

2004-09-01T23:59:59.000Z

70

Intro to Carbon Sequestration  

ScienceCinema (OSTI)

NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

None

2010-01-08T23:59:59.000Z

71

Convective stability of carbon sequestration in anisotropic porous media  

Science Journals Connector (OSTI)

...Convective stability of carbon sequestration in anisotropic porous media...media|stability theory|carbon sequestration| 1. Introduction The world's...processes occurring during carbon dioxide sequestration in underground saline aquifers...

2014-01-01T23:59:59.000Z

72

Carbon Dioxide Sequestration:  

Science Journals Connector (OSTI)

...60-80% at new coal combustion plants and by about...process concepts such as chemical looping combustion. Although future...plant cost index. Chemical Engineering January...GHG (2005) Oxy-combustion for CO2 Capture...

Edward S. Rubin

73

Carbon Dioxide Sequestration:  

Science Journals Connector (OSTI)

...improved, lower-cost strategies. The key need now...climate-change mitigation strategy (IPCC 2007; Macfarlane...from industrial gas streams, a process...process still under development-CO2 isolation...separated from the flue gas produced when coal...which drives a turbine generator (Fig...

Edward S. Rubin

74

Carbon Dioxide Sequestration:  

Science Journals Connector (OSTI)

...known as integrated gasification combined cycle, or...and petro-chemical industries (Fig. 4). FIGURE...Schematic of an integrated gasification combined cycle (IGCC...CO2/y from a coal gasification plant in North Dakota...proportionally more solid waste and requires more chemicals...

Edward S. Rubin

75

Simulating Carbon Dioxide Sequestration/ECBM Production in Coal Seams: Effects of Permeability Anisotropies and Other Coal Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics for Sequestering CO Economics for Sequestering CO 2 in Coal Seams with Horizontal Wells Grant S. Bromhal, NETL/US DOE W. Neal Sams, NETL/EG&G Sinisha A. Jikich, NETL/Parsons Turgay Ertekin, Penn State Duane H. Smith, NETL/US DOE 3 rd Annual Sequestration Conference May 3-6, 2004 Alexandria, VA Descriptor - include initials, /org#/date Problem: How do economics change the optimal design of coal seam sequestration in Eastern coal seams? * Eastern coal seams tend to be thin with relatively high methane content and sequestration capacity per mass of coal. * Horizontal wells have shown promise for improved methane recovery and CO 2 injectivity. * Many studies have been performed to optimize design for total volume of CO 2 sequestered, but economics have not been included. Descriptor - include initials, /org#/date

76

DE-SC0004118 (Wong & Lindquist). Final Report: Changes of Porosity, Permeability and Mechanical Strength Induced by Carbon Dioxide Sequestration.  

SciTech Connect

In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.

WONG, TENG-FONG; Lindquist, Brent

2014-09-22T23:59:59.000Z

77

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

and Co. (2008) Carbon capture and storage: Assessing theof Carbon Dioxide, in Carbon Capture and SequestrationWilson and Gerard, editors, Carbon Capture and Sequestration

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

78

Performance Comparison of Two Fuzzy Based Models in Predicting Carbon Dioxide Emissions  

Science Journals Connector (OSTI)

Many studies have been carried out worldwide to predict carbon dioxide (CO2) emissions using various methods. Most of the methods...2 emissions are not immediately known. This paper offers...2 emissions in Malays...

Herrini Mohd Pauzi; Lazim Abdullah

2014-01-01T23:59:59.000Z

79

Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation  

Science Journals Connector (OSTI)

...new particle production and consumption. Under steady state...of plankton production and consumption in the upper ocean . Prog Oceanogr...and crews of the research vessel (R/V) Moana...wintertime particle fluxes and fuels more efficient carbon sequestration...

David M. Karl; Matthew J. Church; John E. Dore; Ricardo M. Letelier; Claire Mahaffey

2012-01-01T23:59:59.000Z

80

Co-optimization of CO? sequestration and enhanced oil recovery and co-optimization of CO? sequestration and methane recovery in geopressured aquifers.  

E-Print Network (OSTI)

??In this study, the co-optimization of carbon dioxide sequestration and enhanced oil recovery and the co-optimization of carbon dioxide sequestration and methane recovery studies were… (more)

Bender, Serdar

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

82

DOE Manual Studies Terrestrial Carbon Sequestration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manual Studies Terrestrial Carbon Sequestration Manual Studies Terrestrial Carbon Sequestration DOE Manual Studies Terrestrial Carbon Sequestration January 18, 2011 - 12:00pm Addthis Washington, DC - There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage (CCS) "best practices" manual issued by the U.S. Department of Energy. Best Practices for Terrestrial Sequestration of Carbon Dioxide details the most suitable operational approaches and techniques for terrestrial sequestration, a carbon dioxide (CO2) mitigation strategy capable of removing CO2 already in the air. Consequently, terrestrial sequestration, which uses photosynthesis - part of the natural carbon cycle - to create

83

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-10T23:59:59.000Z

84

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-04-28T23:59:59.000Z

85

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-11T23:59:59.000Z

86

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

87

LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration  

E-Print Network (OSTI)

Wilson, Gerard, editors. Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, Metzof cement. In: Carbon Dioxide Capture for Storage in Deep

Peters, C. A.

2011-01-01T23:59:59.000Z

88

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

89

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-01T23:59:59.000Z

90

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

91

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

92

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

93

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-08-01T23:59:59.000Z

94

Carbon Sequestration  

Science Journals Connector (OSTI)

“Carbon sequestration” refers to a portfolio of activities for ... capture, separation and storage or reuse of carbon or CO2. Carbon sequestration technologies encompass both the prevention of CO2 emissions into ...

Robert L. Kane MS; Daniel E. Klein MBA

2005-01-01T23:59:59.000Z

95

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

96

CO₂ Sequestration Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Carbon Sequestration Carbon Sequestration 2011-01-31-Sequestration1.jpg Why it Matters: Underground carbon sequestration is a technique in which one of the primary greenhouse gases, carbon dioxide (CO2), is removed from the atmosphere by injecting it into subsurface salt acquifers. This is a key potential global warming mitigation strategy. Key Challenges: A variety of geochemical processes can affect the mechanism of CO2 dissolution and the volume of CO2 that can be stored - the key result determining whether the strategy is effective or not. Simulation is the only way to study the detailed effects of geological flow, gravitational instability, rock heterogeneity, and brine salinity. These multicomponent, multiphase simulations must be carried out at high

97

Midwest Geological Sequestration Consortium--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

98

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-Print Network (OSTI)

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

99

Putting the pressure on carbon dioxide | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Putting the pressure on carbon dioxide Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

100

Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data  

E-Print Network (OSTI)

1 2 3 4 5 6 7 8 9 Predicting residential indoor concentrations of nitrogen dioxide, fine collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2

Paciorek, Chris

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CHARTER FOR THE CARBON SEQUESTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER FOR THE CARBON SEQUESTRATION CHARTER FOR THE CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF): A CARBON CAPTURE AND STORAGE TECHNOLOGY INITIATIVE The undersigned national governmental entities (collectively the "Members") set forth the following Terms of Reference for the Carbon Sequestration Leadership Forum (CSLF), a framework for international cooperation in research and development for the separation, capture, transportation and storage of carbon dioxide. The CSLF will seek to realize the promise of carbon capture and storage over the coming decades, making it commercially competitive and environmentally safe. 1. Purpose of the CSLF To facilitate the development of improved cost-effective technologies for the separation and capture of carbon dioxide for its transport and long-term safe storage; to make these

102

Terrestrial Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

TerresTrial sequesTraTion Program TerresTrial sequesTraTion Program Capture and Storage of Carbon in Terrestrial Ecosystems Background Clean, affordable energy is essential for U.S. prosperity and security in the 21st century. More than half of the electricity currently generated in the United States comes from coal-fired boilers, and there is little indication that this percentage will diminish through 2020 and beyond. In addition, the use of coal for electricity generation is projected to more than double in developing nations by 2020. This ever growing demand for fossil-fuel-based power and the consequential rise in atmospheric carbon dioxide (CO 2 ) concentrations requires innovative methods to capture and store CO 2 . Terrestrial ecosystems, which include both soil and vegetation, are widely recognized

103

Carbon sequestration research and development  

SciTech Connect

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31T23:59:59.000Z

104

An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions  

SciTech Connect

A predictive model was developed for uniform carbon dioxide corrosion, based on modeling of individual electrochemical reactions in a water-CO{sub 2} system. The model takes into account the electrochemical reactions of hydrogen ion reduction, carbonic acid reduction, direct water reduction, oxygen reduction, and anodic dissolution of iron. The required electrochemical parameters (e.g., exchange current densities and Tafel slopes) for different reactions were determined from experiments conducted in glass cells. The corrosion process was monitored using polarization resistance, potentiodynamic sweep, electrochemical impedance, and weight-loss measurements. The model was calibrated for two mild steels over a range of parameters: temperature (t) = 20 C to 80 C, pH = 3 to 6, partial pressure of CO{sub 2} (P{sub CO{sub 2}}) = 0 bar to 1 bar (0 kPa to 100 kPa), and {omega} = 0 rpm to 5,000 rpm (v{sub p} = 0 m/s to 2.5 m/s). The model was applicable for uniform corrosion with no protective films present. Performance of the model was validated by comparing predictions to results from independent loop experiments. Predictions also were compared to those of other CO{sub 2} corrosion prediction models. Compared to the previous largely empirical models, the model gave a clearer picture of the corrosion mechanisms by considering the effects of pH, temperature, and solution flow rate on the participating anodic and cathodic reactions.

Nesic, S. [Inst. for Energiteknikk, Kjeller (Norway); Postlethwaite, J. [Univ. of Saskatchewan, Saskatoon (Canada); Olsen, S. [Statoil, Trondheim (Norway)

1996-04-01T23:59:59.000Z

105

Microbially induced magnesium carbonation reactions as a strategy for carbon sequestration in ultramafic mine tailings.  

E-Print Network (OSTI)

??The atmospheric carbon dioxide (CO2) concentration has increased due to anthropogenic fossil fuel combustion, causing higher global temperatures and other negative environmental effects. CO2 sequestration… (more)

McCutcheon, Jenine

2013-01-01T23:59:59.000Z

106

The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report  

SciTech Connect

Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim away from an advancing front of carbon dioxide-rich sea water (Thistle et al. 2007). This result demonstrates a second way that deep-sea meiofauna react negatively to carbon dioxide-rich sea water. In summary, we used in situ experiments to show that carbon dioxide-rich sea water triggers an escape response in some harpacticoid species. It kills most individuals of most harpacticoid species that do not flee, but a few species seem to be unaffected. Proposals to reduce global warming by sequestering industrial carbon dioxide in the deep ocean should take note of these environmental consequences when pros and cons are weighed.

Thistle, D

2008-09-30T23:59:59.000Z

107

Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's NETL's Carbon Capture and Sequestration Program Advances of Multi-pollutant and CO 2 Control Technologies Chicago, IL April 30, 2007 Timothy Fout Project Manager National Energy Technology Laboratory T. Fout, Apr. 2007 Outline for Presentation * NETL Overview * The Issue * The Solutions * What is Carbon Capture and Storage (CCS) * DOE's Sequestration Program Structure * CO 2 Capture Research Projects T. Fout, Apr. 2007 National Energy Technology Laboratory * Only DOE national lab dedicated to fossil energy - Fossil fuels provide 85% of U.S. energy supply * One lab, five locations, one management structure * 1,100 Federal and support-contractor employees * Research spans fundamental science to technology demonstrations West Virginia

108

Capture and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and Sequestration of CO Capture and Sequestration of CO 2 From Stationary Combustion Systems by Photosynthesis of Microalgae Takashi Nakamura (nakamura@psicorp.com; 925-743-1110) Constance Senior (senior@psicorp.com; 978-689-0003) Physical Sciences Inc Andover, MA 01810 Miguel Olaizola (molaizola@aquasearch.com; 808-326-9301 Michael Cushman (mcushman@aquasearch.com; 808-326-9301) Aquasearch Inc. Kailua-Kona, HI 96740 Stephen Masutani (masutan@wiliki.eng.hawaii.edu; 808-956-7388) University of Hawaii Honolulu, HI 96822 Introduction Emissions of carbon dioxide are predicted to increase this century 1 leading to increases in the concentrations of carbon dioxide in the atmosphere. While there is still much debate on the effects of increased CO 2 levels on global climate, many scientists agree that the projected increases could have a

109

NETL: News Release - DOE Announces Release of Second Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

November 17, 2008 November 17, 2008 DOE Announces Release of Second Carbon Sequestration Atlas New Version Provides Additional Information on Carbon Dioxide Storage 2008 Carbon Sequestration Atlas II WASHINGTON, D. C.- The U.S. Department of Energy (DOE) today announced the release of its second Carbon Sequestration Atlas of the United States and Canada, which documents more than 3,500 billion metric tons of carbon dioxide (CO2) storage potential in oil and gas reservoirs, coal seams, and saline formations. Preliminary estimates suggest the availability of more than 1,100 years of CO2 storage for the United States and Canada in these geologic formations. "In the year since it was first published, the carbon sequestration atlas has proven to be an invaluable tool to the entire sequestration community," said Acting Assistant Secretary for Fossil Energy James Slutz. "The second edition will bolster our efforts to find environmentally sound, cost-effective methods to sequester carbon dioxide."

110

Big Sky Carbon Sequestration Partnership--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Sky Carbon Sequestration Big Sky Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

111

West Coast Regional Carbon Sequestration Partnership--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

West Coast Regional Carbon Sequestration West Coast Regional Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies,

112

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network (OSTI)

2958.2001.tb00775.x. (55) DOE/NETL carbon dioxide capturein the United States; in DOE/NETL-2010/1420; National Energyhttp:// www.nrdc.org.asp (129) NETL: Carbon Sequestration;

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

113

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network (OSTI)

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

114

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition  

E-Print Network (OSTI)

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

Fierer, Noah

115

Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils  

E-Print Network (OSTI)

Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

Vallino, Joseph J.

116

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams  

E-Print Network (OSTI)

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams and sequestration. Carbon sequestration is often associated with the planting of trees. As they mature, the trees INTRODUCTION The build-up of carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere has

117

Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2  

E-Print Network (OSTI)

1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

Paris-Sud XI, Université de

118

Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites  

SciTech Connect

A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

Repasky, Kevin

2014-03-31T23:59:59.000Z

119

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

120

RECS student sequestration program  

SciTech Connect

The 2007 Research Experiment in Carbon Sequestration (RECS) met at the Montana State University (MSU) and a variety of field sites over the 10-day period of July 29 - Aug 10. This year's group consisted of 17 students from graduate and doctoral programs in the United States and Canada, as well as early career professionals in fields related to carbon mitigation. Appropriately, because greenhouse gas reduction and storage is a global problem, the group included seven international students, from France, Iran, Paraguay, Turkey, Russia and India. Classroom talks featured experts from academia, government, national laboratories, and the private sector, who discussed carbon capture and storage technologies and related policy issues. Then, students traveled to Colstrip, Montana to visit PPL Montana's coal-fired power plant and view the local geology along the Montana/Wyoming border. Finally, students spent several days in the hands-on work at ZERT, using carbon dioxide detection and monitoring equipment. 1 photo.

NONE

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CO2 sequestration | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

122

Peer Reviewed: What Future for Carbon Capture and Sequestration?  

Science Journals Connector (OSTI)

Peer Reviewed: What Future for Carbon Capture and Sequestration? ... A New Porous Material to Enhance the Kinetics of Clathrate Process: Application to Precombustion Carbon Dioxide Capture ... A New Porous Material to Enhance the Kinetics of Clathrate Process: Application to Precombustion Carbon Dioxide Capture ...

Howard J. Herzog

2001-04-01T23:59:59.000Z

123

carbon sequestration via direct injection  

NLE Websites -- All DOE Office Websites (Extended Search)

SEQUESTRATION VIA DIRECT INJECTION SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams INTRODUCTION The build-up of carbon dioxide (CO 2 ) and other greenhouse gases in the Earth's atmosphere has caused concern about possible global climate change. As a result, international negotiations have produced the Framework Convention on Climate Change (FCCC), completed during the 1992 Earth Summit in Rio de Janeiro. The treaty, which the United States has ratified, calls for the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." The primary greenhouse gas is CO 2 , which is estimated to contribute to over two-thirds of any climate change. The primary source of CO

124

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

125

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

126

Federal Control of Geological Carbon Sequestration  

SciTech Connect

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

127

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

128

Southwest Regional Partnership for Carbon Sequestration--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwest Regional Partnership for Southwest Regional Partnership for Carbon Sequestration-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

129

An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete  

SciTech Connect

The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

Haselbach, Liv M.; Thomle, Jonathan N.

2014-07-01T23:59:59.000Z

130

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

131

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

132

DOE Awards First Three Large-Scale Carbon Sequestration Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Three Large-Scale Carbon Sequestration Projects First Three Large-Scale Carbon Sequestration Projects DOE Awards First Three Large-Scale Carbon Sequestration Projects October 9, 2007 - 3:14pm Addthis U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change WASHINGTON, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon

133

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

134

CO2-H2O mixtures in the geological sequestration of CO2. II ...  

E-Print Network (OSTI)

sequestration (e.g., Garcia, 2003; Pruess et al., 2004; Xu et al.,. 2004) deal with ...... Cramer S. D. (1982) The solubility of methane, carbon dioxide and oxygen in

2005-07-01T23:59:59.000Z

135

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-Print Network (OSTI)

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

136

Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestering Carbon Dioxide and Sulfur Dioxide Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,922,792 entitled "Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams." Disclosed in this patent is the invention of a neutralization/sequestration method that concomitantly treats bauxite residues from aluminum production processes, as well as brine wastewater from oil and gas production processes. The method uses an integrated approach that coincidentally treats multiple industrial waste by-product streams. The end results include neutralizing caustic

137

Investigation of geothermal power plant performance using sequestered carbon dioxide as a heat transfer or working fluid.  

E-Print Network (OSTI)

??This study investigates the potential for combining carbon dioxide (CO2) sequestration with geothermal power production in areas with low geothermal resource temperatures. Using sequestered CO2… (more)

Janke, Brian D.

2011-01-01T23:59:59.000Z

138

EMSL - CO2 sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

139

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

140

CO2 Sequestration short course  

SciTech Connect

Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network (OSTI)

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

142

Carbon dioxide dissolution in structural and stratigraphic traps  

E-Print Network (OSTI)

The geologic sequestration of carbon dioxide (CO[subscript 2]) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO[subscript 2] stored in these traps ...

Hesse, M. A.

143

Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration  

E-Print Network (OSTI)

explores the feasibility of catalysis-based carbon sequestration by efficiently and accurately modeling that this method can be scaled to accurately predict the efficacy of such systems for carbon sequestration to help find the most cost effective methods possible. Most carbon sequestration methods are capture

Spiteri, Raymond J.

144

ECONOMIC MODELING OF CO2 CAPTURE AND SEQUESTRATION Sean Biggs, Howard Herzog, John Reilly, Henry Jacoby  

E-Print Network (OSTI)

of carbon capture and sequestration technologies using the MIT Emissions Prediction and Policy Analysis (EPPA) model. We model two of the most promising carbon capture and sequestration technologies, one, technological, and social issues of carbon capture and sequestration technologies. In 1997, the President

145

NETL: News Release - Critical Carbon Sequestration Assessment Begins:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 12, 2006 September 12, 2006 Critical Carbon Sequestration Assessment Begins: Midwest Partnership Looks at Appalachian Basin for Safe Storage Sites Seismic Surveys to Determine Viability of Rock Formations for CO2 Storage WASHINGTON, DC - Tapping into rock formations at sites thousands of feet deep, a government-industry team is using seismic testing to help determine whether those sites can serve as reservoirs to safely store carbon dioxide (CO2), a major greenhouse gas. MORE INFO WATCH: NETL Project Manager Charlie Byrer discuss this important project Learn more about DOE's Carbon Sequestration Regional Partnerships Midwest Regional Carbon Sequestration Partnership web site The U.S. Department of Energy's National Energy Technology Laboratory is sponsoring the tests in a program to develop carbon sequestration

146

Microsoft PowerPoint - Sequestration Briefing - October-07.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration R&D Overview Carbon Sequestration R&D Overview Office of Fossil Energy Carbon Sequestration Briefing October 2007 Sean Plasynski, PhD Sequestration Technology Manager Office of Fossil Energy R&D Focus is on Coal & Electricity Oil 43% Oil 43% Coal 36% Coal 36% Natural Gas 21% Electricity 39% Electricity 39% Other 30% Other 30% Transportation 32% Transportation 32% United States CO2 Emissions 36% Emissions From Coal 39% Emissions From Electricity Office of Fossil Energy R&D Focus is on CO 2 Methane 9% Nitrous Oxide 5% HFCs, PFCs, SF 6 2% CO 2 from Energy 81% Other CO 2 3% "EIA Emissions of Greenhouse Gases in the U.S.: 2000" United States Greenhouse Gas Emissions (Equivalent Global Warming Basis) Office of Fossil Energy Annual CO 2 Emissions Extremely Large 6,300,000,000 Carbon Dioxide (CO

147

Geological Sequestration of CO2: The GEO-SEQ Project  

NLE Websites -- All DOE Office Websites (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

148

CO2 Sequestration Potential of Texas Low-Rank Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

149

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01T23:59:59.000Z

150

CO2 Mineral Sequestration Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Studies Sequestration Studies Introduction, Issues and Plans Philip Goldberg National Energy Technology Laboratory Workshop on CO 2 Sequestration with Minerals August 8, 2001 Mineral Sequestration Program Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Goals: * Understand the fundamental mechanisms involved in mineral carbonation * Generate data to support process development * Operate continuous, integrated small-scale process unit to support design Current Partnerships In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include: * Albany Research Center * Arizona State University * Los Alamos National Laboratory

151

CO2 Sequestration in Basalt Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

152

Henry's Law Constants of Methane, Nitrogen, Oxygen and Carbon Dioxide in Ethanol from 273 to 498 K: Prediction from Molecular Simulation  

E-Print Network (OSTI)

noindent Henry's law constants of the solutes methane, nitrogen, oxygen and carbon dioxide in the solvent ethanol are predicted by molecular simulation. The molecular models for the solutes are taken from previous work. For the solvent ethanol, a new rigid anisotropic united atom molecular model based on Lennard-Jones and Coulombic interactions is developed. It is adjusted to experimental pure component saturated liquid density and vapor pressure data. Henry's law constants are calculated by evaluating the infinite dilution residual chemical potentials of the solutes from 273 to 498K with Widom's test particle insertion. The prediction of Henry's Law constants without the use of binary experimental data on the basis of the Lorentz-Berthelot combining rule agree well with experimental data, deviations are 20%, except for carbon dioxide for which deviations of 70% are reached. Quantitative agreement is achieved by using the modified Lorentz-Berthelot combining rule which is adjusted to one experimental mixture ...

Schnabel, T; Hasse, H

2009-01-01T23:59:59.000Z

153

Open Ocean Iron Fertilization for Scientific Study and Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Iron Fertilization for Scientific Study and Carbon Sequestration Ocean Iron Fertilization for Scientific Study and Carbon Sequestration K. Coale coale@mlml.calstate.edu (831) 632-4400 Moss Landing Marine Laboratories 8272 Moss Landing Road Moss Landing, California 95039 USA Abstract The trace element iron has been recently shown to play a critical role in nutrient utilization, phytoplankton growth and therefore the uptake of carbon dioxide from the surface waters of the global ocean. Carbon fixation in the surface waters, via phytoplankton growth, shifts the ocean/atmosphere exchange equilibrium for carbon dioxide. As a result, levels of atmospheric carbon dioxide (a greenhouse gas) and iron flux to the oceans have been linked to climate change (glacial to interglacial transitions). These recent findings have led some to suggest that large scale

154

2010 Carbon Sequestration Atlas of the United States and Canada: Third  

Open Energy Info (EERE)

2010 Carbon Sequestration Atlas of the United States and Canada: Third 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasIII/2010atlasII Equivalent URI: cleanenergysolutions.org/content/2010-carbon-sequestration-atlas-unite Language: English Policies: Deployment Programs DeploymentPrograms: Public-Private Partnerships This atlas updates the carbon dioxide (CO2) sequestration potential for the United States and Canada, and it provides updated information on field activities of the regional carbon sequestration partnerships (RCSPs). In

155

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

156

Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers  

E-Print Network (OSTI)

of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon... interests. References 1. Marini, L. Geochemical Sequestration of Carbon Dioxide. (Elsevier 2007). 2. IPCC Special Report on Carbon Dioxide Capture and Storage, edited by Metz B. et al. (Cambridge University Press, UK and New York, USA, 2005). 3. Falkowski...

Cardoso, S. S. S.; Andres, J. T. H.

2014-12-11T23:59:59.000Z

157

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

158

Sequestration of technetium | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

strategy involving the sequestration of technetium as sulfide by sulfide-transformed nano zero-valent iron. The Impact The findings suggest nano zero-valent iron can be used to...

159

Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data  

E-Print Network (OSTI)

Geological carbon sequestration involves large-scale injection of carbon dioxide into underground geologic formations and is considered as a potential approach for mitigating global warming. Changes in reservoir properties ...

Yang, Di

2011-01-01T23:59:59.000Z

160

Training Students to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO{sub 2} Sequestration Prediction, Simulation, and Monitoring  

SciTech Connect

The objective of this project was to expose and train multiple students in geological tools that are essential to reservoir characterization and geologic sequestration including but not limited to advanced petrological methods, mineralogical methods, and geochemical methods; core analysis, and geophysical well-log interpretation. These efforts have included training of multiple students through geologically based curriculum and research using advanced petrological, mineralogical, and geochemical methods. In whole, over the last 3+ years, this award has supported 5,828 hours of student research, supporting the work of several graduate and undergraduate students. They have all received training directly related to ongoing CO{sub 2} sequestration demonstrations. The students have all conducted original scientific research on topics related to understanding the importance of lithological, textural, and compositional variability in formations that are being targeted as CO{sub 2} sequestration reservoirs and seals. This research was linked to the Mount Simon Sandstone reservoir and overlying Eau Claire Formation seal in the Illinois Basin- a system where over one million tons of CO{sub 2} are actively being injected with the first large-scale demonstration of anthropogenic CO{sub 2} storage in the U.S. Student projects focused specifically on 1) reservoir porosity characterization and evaluation, 2) petrographic, mineralogical, and geochemical evidence of fluid-related diagenesis in the caprock, 3) textural changes in reservoir samples exposed to experimental CO{sub 2} + brine conditions, 4) controls on spatial heterogeneity in composition and texture in both the reservoir and seal, 5) the implications of small-scale fractures within the reservoir, and 6) petrographic and stable isotope analyses of carbonates in the seal to understand the burial history of the system. The student-led research associated with this project provided real-time and hands-on experience with a relevant CO{sub 2} system, provided relevant information to the regional partnerships who are working within these formations, and provides more broadly applicable understanding and method development for other carbon capture and storage systems.

Bowen, Brenda

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

162

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

163

Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study  

E-Print Network (OSTI)

1 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Students #12;2 #12;3 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha with electricity generation accounting for 40% of the total1 . Carbon capture and sequestration (CCS) is one

164

Carbon Sequestration in Agroforestry Systems  

Science Journals Connector (OSTI)

Agroforestry systems have great potential as carbon (C) sinks, through C sequestration both above- and belowground. The C-sequestration potentials of tropical agroforestry systems are highly ... caused by (i) the...

Alain Atangana; Damase Khasa; Scott Chang; Ann Degrande

2014-01-01T23:59:59.000Z

165

NETL: News Release - Carbon Sequestration Partner Initiates Drilling of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 7, 2009 Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Large-Scale Test to Inject One Million Metric Tonnes of Carbon Dioxide into Saline Formation Washington, DC-The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change.

166

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon  Renewables  Nuclear  Fuel Switching  Demand Side  Supply Side  Capture & Store  Enhance Natural Sinks Reduce Carbon Intensity All options needed to:  Affordably meet energy demand  Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

167

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Sequestration and Enhanced Oil Recovery Project Could Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be

168

NETL: News Release - Terrestial Carbon Sequestration Test Underway at  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestial Carbon Sequestration Test Underway at Reclaimed Mine Site Terrestial Carbon Sequestration Test Underway at Reclaimed Mine Site DOE, TVA, EPRI Team to Use Coal Products to Enhance Nature's "Biological CO2 Scrubber" at Test Site in Kentucky DRAKESBORO, KY - The U.S. Department of Energy has joined forces with the Tennessee Valley Authority and the Electric Power Research Institute to demonstrate what might be termed a "grassroots" approach to sequestering carbon dioxide. The new project will use coal combustion byproducts to enhance the storage of carbon in vegetation and soils. - Photo - TVA's Paradise Power Plant - The new terrestrial carbon sequestration project will be sited on reclaimed mine land next to the Paradise Fossil Plant, TVA's second largest power plant. A surface mine reclamation project at the 2,558-megawatt TVA-owned Paradise

169

WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

Larry Myer; Terry Surles; Kelly Birkinshaw

2004-01-01T23:59:59.000Z

170

Carbon Sequestration Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science July 2001 Focus Area Overview Presentation Mission and Scope Program Relationships Scientific Challenges Research Plans Facility Plans Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area New Projects Contribute to Sequestration Science Systems Integration Virtual Simulation of CO 2 Capture Technologies Cleanup Stream Gas Gasification Gasification MEA CO 2 Capture Facility Oxygen Membrane 3 km 2 inch tube 800m - 20 °C, 20 atm Liquid CO 2 , 100 tons ~1 kg CO 2 / s = 5 MW ^ CO 2 Coal Other Fuels Coal Other Fuels CO 2 Sequestration Aquifer H 2 O Flue gas H 2 O CH 4 CH 4 CO 2 Oil field Oil well Power plant CH 4 Coal - bed Aquiclude H 2 O CO 2 /N 2 CO 2 N 2 CO 2 CO 2 CO 2 CO 2 CO 2 Water Rock , 2 Coal Other Fuels Coal Other Fuels Combustor Oxygen Membrane Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area

171

Storage of Pressuirzed Carbon Dioxide in Coal Observed Using X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

OF PRESSURIZED CARBON DIOXIDE IN COAL OBSERVED USING X-RAY OF PRESSURIZED CARBON DIOXIDE IN COAL OBSERVED USING X-RAY TOMOGRAPHY Jonathan P. Mathews (jpm10@psu.edu; 814 863 6213) Ozgen Karacan, (karacan@pnge.psu.edu; 814 865 9570) Phillip Halleck (phil@pnge.psu.edu; 814 863 1701) Gareth D. Mitchell (n8h@psu.edu; 814 863 6543) Abraham Grader (grader@pnge.psu.edu; 814 863 5813) The Energy Institute & Department of Energy & GeoEnvironmental Engineering 151 Holser Building, The Pennsylvania State University University Park, PA 16802 Introduction The sequestration of CO 2 in coal seams has been proposed as a mitigation strategy for climate change. To maximize sorption potential it is essential that the heterogeneity of the coal seam be represented in the computational models used to predict the complex flow and sorption within

172

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2003-10-01T23:59:59.000Z

173

Public resource allocation for programs aimed at managing woody plants on the Edwards Plateau: water yield, wildlife habitat, and carbon sequestration  

E-Print Network (OSTI)

The Edwards Plateau is the drainage area for the Edwards Aquifer, which provides water to over 2.2 million people. The plateau also provides other ecosystem services, such as wildlife habitat and the sequestration of atmospheric carbon dioxide...

Davis, Amber Marie

2006-08-16T23:59:59.000Z

174

Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers  

SciTech Connect

As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

Mallick, Subhashis; Alvarado, Vladimir

2013-09-30T23:59:59.000Z

175

Bisphosphine dioxides  

DOE Patents (OSTI)

A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, K.G.

1990-02-20T23:59:59.000Z

176

Pacific Northwest rangeland carbon sequestration.  

E-Print Network (OSTI)

??This paper models the supply curve of carbon sequestration on Pacific Northwest rangelands. Rangeland managers have the ability to sequester carbon in agricultural soils by… (more)

Wiggins, Seth T.

2012-01-01T23:59:59.000Z

177

Carbon Sequestration Atlas IV Video  

SciTech Connect

The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

Rodosta, Traci

2013-04-19T23:59:59.000Z

178

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to injection rate. The main difference is in timing, with longer breakthrough times resulting as injection rate decreases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 670 days (1.8 years) to 7,240 days (19.8 years) for the reservoir parameters and well operating conditions investigated. The dewatering sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to dewatering prior to CO{sub 2} injection. As time to start CO{sub 2} injection increases, the time to reach breakthrough also increases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 850 days (2.3 years) to 5,380 days (14.7 years) for the reservoir parameters and well injection/production schedules investigated. Preliminary economic modeling results using a gas price of $7-$8 per Mscf and CO{sub 2} credits of $1.33 per ton CO{sub 2} indicate that injection of flue gas (87% N{sub 2}-13% CO{sub 2}) and 50% N{sub 2}-50% CO{sub 2} are more economically viable than injecting 100% CO{sub 2}. Results also indicate that injection rate and duration and timing of dewatering prior to CO{sub 2} injection have no significant effect on the economic viability of the project(s).

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2005-10-01T23:59:59.000Z

179

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

180

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Prospects for Enhancing Carbon Sequestration and Reclamation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products. Prospects for Enhancing Carbon Sequestration and Reclamation...

182

NETL: News Release - Critical Carbon Sequestration Assessment Begins:  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2006 2, 2006 DOE Project Injects 700 Tons of Carbon Dioxide Into Texas Sandstone Formation Researchers to Determine the Ability of Brine Formations to Sequester Greenhouse Gas WASHINGTON, DC - When scientists recently pumped 700 metric tons of the greenhouse gas carbon dioxide (CO2) a mile underground as a follow-up to a 2004 effort, they initiated a series of tests to determine the feasibility of storing the CO2 in brine formations, a major step forward in the U.S. Department of Energy's carbon sequestration program. MORE INFO Read the University of Texas at Austin press release 11.19.04 Techline : Frio Formation Test Well Injected with Carbon Dioxide The Frio Brine project, funded by the U.S. Department of Energy and managed by DOE's National Energy Technology Laboratory, is designed to

183

NETL: Gasifipedia - Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

184

Sequestration Options for the West Coast States  

SciTech Connect

The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost of $31/tonne (t), $35/t, or $50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.

Larry Myer

2006-04-30T23:59:59.000Z

185

State and Regional Control of Geological Carbon Sequestration  

SciTech Connect

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­?three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­?and-­?trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

Reitze, Arnold; Durrant, Marie

2011-03-31T23:59:59.000Z

186

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-02-01T23:59:59.000Z

187

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-03-01T23:59:59.000Z

188

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

2006-05-01T23:59:59.000Z

189

Carbon sequestration in peatland: patterns and mechanisms of response to climate change  

E-Print Network (OSTI)

Carbon sequestration in peatland: patterns and mechanisms of response to climate change L I S A R., 2000; Turunen et al., 2002; Kremenetski et al., 2003). Rates of carbon (C) sequestration (i.e., uptake in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain

190

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation in the  

E-Print Network (OSTI)

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation traditional deep water formation via entrainment of carbon dioxide and other greenhouse-active species collected for oxygen, total carbon, alkalinity, nutrients, and CFCs. The alkalinity and total carbon data

Talley, Lynne D.

191

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-04-01T23:59:59.000Z

192

HigHligHts NETL News Release, "Carbon Sequestration Partner Initiates CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partner Initiates CO Carbon Sequestration Partner Initiates CO 2 Injection into Michigan Basin." The Midwest Regional Carbon Sequestration Partnership (MRCSP), one of the US Department of Energy's (DOE) Regional Carbon Sequestration Partnerships (RCSP), has commenced a two-month field test that will inject up to 10,000 metric tons of carbon dioxide (CO 2 ) into a saline formation some 3,200 to 3,500 feet below the Earth's surface. The Core Energy-owned, Antrim gas field location advantageously provides the project with a DTE Energy-owned gas processing plant that supplies the CO 2 ; an eight-mile CO 2 pipeline previously used for enhanced oil

193

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73: W.A. Parish Post-Combustion CO2 Capture and Sequestration 73: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

194

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

195

First-of-a-Kind Sequestration Field Test Begins in West Virginia |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia September 8, 2009 - 1:00pm Addthis Washington, DC - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its

196

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to work on Tasks 1 and 2, which consisted of the following subtasks: review literature on CO{sub 2} sequestration and the effect of CO{sub 2} injection on methane production from coalbeds; acquire information on power plant flue gas emissions; acquire data on Texas coal occurrences and properties and formation water quality; construct a digital base map; and select geographic areas and geologic formations for study. Flue gas information, including volumes and compositions, were obtained for major Texas power plants and other industrial sources, such as cement plants. We evaluated and obtained computer mapping software and began building a digital base map that will be used to depict industrial emissions, coal occurrence, and water quality information. Digital data sets allow us to superpose data for visualization and for assessment of CO{sub 2}sequestration issues.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2003-02-01T23:59:59.000Z

197

Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal  

SciTech Connect

For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a point on the isotherm, the process is repeated until the sample weight reaches a constant value (i.e., typically equilibration times of several weeks). The slope of a plot of sample weight vs. square root of elapsed desorption time gives a measurement for the rate of diffusion. In order to advance all three experimental methods, results from this “ambient-pressure gravimetry” method were compared with data obtained by conventional manometry and by computer tomography. The isotherm and “diffusion” rate measured for the core can be directly used in simulators for reservoir engineering studies of coalseam sequestration and enhanced coalbed methane production.

Smith, D.H.; Jikich, S.; Seshadri, K.

2007-05-01T23:59:59.000Z

198

Environmental Enterprise: Carbon Sequestration using Texaco Power Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration using Texaco Gasification Process Jeff Seabright Arthur Lee Richard Weissman, PhD. Texaco Inc. White Plains, New York Presented at: First National Conference on Carbon Sequestration May 14-17, 2001 Washington D.C. ABSTRACT Coal Integrated Gasification Combined Cycle (IGCC) is a commercially proven clean coal technology that offers significant environmental and economic benefits today, including decreased air and solids emissions. It also offers the potential to capture and sequester carbon dioxide. Coal IGCC provides electric utilities strategic options in meeting today's growing demand for energy products (electricity, fuel, chemicals) while protecting public health and the environment and providing a pathway to zero emissions coal-based power generation.

199

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

200

Highly efficient separation of carbon dioxide by a metal-organic framework replete with  

E-Print Network (OSTI)

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 from

Yaghi, Omar M.

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year  

E-Print Network (OSTI)

, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have beenLETTERS Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year , Yiqi Luo5 & David S. Schimel6 Terrestrial ecosystems control carbon dioxide fluxes to and from

Cai, Long

202

January 2, 2008 Numerical modeling of the effect of carbon dioxide  

E-Print Network (OSTI)

January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

Boyer, Edmond

203

NETL Sequestration Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Initial Set of Working Hypotheses Concerning Some Chemical and Initial Set of Working Hypotheses Concerning Some Chemical and Physical Phenomena That Occur When CO2 Is Injected Into a Coal Bed Curt M. White, National Energy Technology Laboratory The presentation will describe some of the technological impediments to performing sequestration of CO2 in deep unmineable coalbeds with concomitant enhanced coalbed methane recovery on a wide scale. The impediments include: 1) developing techniques to handle millions of gallons of produced water; 2) a lack of knowledge concerning the methane content of deep unmineable coal seams; and 3) a lack of understanding of some of the chemical and physical phenomena that occur when CO2 is injected into a coalbed. This includes a lack of knowledge concerning the flow of CO2 in coal, the uncertain

204

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network (OSTI)

10 th Annual Conference on Carbon Capture and Sequestration,2 saturated brines. In 10th Carbon Capture and SequestrationIn: 9 th Annual Carbon Capture & Sequestration Meeting,

Varadharajan, C.

2013-01-01T23:59:59.000Z

205

Shallow Carbon Sequestration Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Carbon SequeStration Shallow Carbon SequeStration DemonStration ProjeCt Background The Shallow Carbon Sequestration Pilot Demonstration Project is a cooperative effort involving City Utilities of Springfield (CU); Missouri Department of Natural Resources (MDNR); Missouri State University (MSU); Missouri University of Science & Technology (MS&T); AmerenUE; Aquila, Inc.; Associated Electric Cooperative, Inc.; Empire District Electric Company; and Kansas City Power & Light. The purpose of this project is to assess the feasibility of carbon sequestration at Missouri power plant sites. The six electric utilities involved in the project account for approximately 90 percent of the electric generating capacity in Missouri. Description The pilot demonstration will evaluate the feasibility of utilizing the Lamotte and

206

WithCarbonSequestration Biological-  

E-Print Network (OSTI)

WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological BARRIERS · Cost · Feedstock availability · Fermentative micro-organisms #12;Targets and Status 322726Net

207

Optimal Geological Enviornments for Carbon Dioxide Storage in Saline Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

susan D. Hovorka susan D. Hovorka Principal Investigator University of Texas at Austin Bureau of Economic Geology 10100 Burnet Road, Bldg. 130 P.O. Box X Austin, TX 78713 512-471-4863 susan.hovorka@beg.utexas.edu Optimal GeOlOGical envirOnments fOr carbOn DiOxiDe stOraGe in saline fOrmatiOns Background For carbon dioxide (CO 2 ) sequestration to be a successful component of the United States emissions reduction strategy, there will have to be a favorable intersection of a number of factors, such as the electricity market, fuel source, power plant design and operation, capture technology, a suitable geologic sequestration site, and a pipeline right-of-way from the plant to the injection site. The concept of CO 2 sequestration in saline water-bearing formations (saline reservoirs), isolated at

208

Carbon dioxide sequestration in deep-sea basalt  

Science Journals Connector (OSTI)

...lavas, commonly having large voids between lobes and...across the area, forming large interpillow voids. Image scale...sediments (31). From drilling studies, the basalts...because of the enlarged borehole diameter. Core and downhole...the Integrated Ocean Drilling Program database (http...

David S. Goldberg; Taro Takahashi; Angela L. Slagle

2008-01-01T23:59:59.000Z

209

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

pp. 67. Murray D. 1993. Coalbed methane reservoir evaluation1 to 3-31. Bland D. 1992. Coalbed methane from the Fruitlandregulations specific to coalbed methane operations have been

Myer, Larry R.

2003-01-01T23:59:59.000Z

210

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

211

NETL: News Release - DOE Report Assesses Potential for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2009 4, 2009 DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands Newly Released Document Complements 2008 Carbon Sequestration Atlas Washington, D.C. - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. MORE INFO Read the report The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

212

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network (OSTI)

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

213

Soil Carbon Sequestration and the Greenhouse Effect  

E-Print Network (OSTI)

Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

Archer, Steven R.

214

Delayed carbon sequestration and rising carbon prices  

Science Journals Connector (OSTI)

We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dy...

Alejandro Caparrós

2009-10-01T23:59:59.000Z

215

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

216

NETL: News Release - Successful Sequestration Project Could Mean More Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

November 15, 2005 November 15, 2005 Successful Sequestration Project Could Mean More Oil and Less Carbon Dioxide Emissions Weyburn Project Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be recovered. "The success of the Weyburn Project could have incredible implications for reducing CO2 emissions and increasing America's oil production. Just by applying this technique to the oil fields of Western Canada we would see billions of additional barrels of oil and a reduction in CO2 emissions equivalent to pulling more than 200 million cars off the road for a year," Secretary of Energy Bodman said. "The Weyburn Project will provide policymakers, the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery."

217

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration...

He, Ting

2011-02-22T23:59:59.000Z

218

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network (OSTI)

Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition...

Agrawal, Angeni

2007-09-17T23:59:59.000Z

219

Geological carbon sequestration: critical legal issues  

E-Print Network (OSTI)

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

220

Biochar and Carbon Sequestration: A Regional Perspective  

E-Print Network (OSTI)

Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

Everest, Graham R

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-Print Network (OSTI)

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

McCarl, Bruce A.

222

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-Print Network (OSTI)

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sequestration and between 1 and 49 percent for forest based carbon sequestration. Value adjustments 18 19 20 21 22 BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER Abstract Carbon sequestered via

McCarl, Bruce A.

223

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

224

Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams  

SciTech Connect

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

2007-01-01T23:59:59.000Z

225

DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Assesses Potential for Carbon Dioxide Storage Beneath Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands May 14, 2009 - 1:00pm Addthis Washington, DC - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

226

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2003-07-01T23:59:59.000Z

227

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2005-05-01T23:59:59.000Z

228

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) estimate the potential for CO{sub 2} sequestration in, and methane production from, low-rank coals of the Lower Calvert Bluff Formation of the Wilcox Group in the east-central Texas region, (2) quantify uncertainty associated with these estimates, (3) conduct reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells, and (4) compare the results with those obtained from previous studies of vertical wells. To estimate the total volumes of CO{sub 2} that may be sequestered in, and total volumes of methane that can be produced from, the Wilcox Group low-rank coals in east-central Texas, we used data provided by Anadarko Petroleum Corporation, data obtained during this research, and results of probabilistic simulation modeling studies we conducted. For the analysis, we applied our base-case coal seam characteristics to a 2,930-mi{sup 2} (1,875,200-ac) area where Calvert Bluff coal seams range between 4,000 and 6,200 ft deep. Results of the probabilistic analysis indicate that potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources, assuming a 71.3% recovery factor, range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf. As part of the technology transfer for this project, we presented the paper SPE 100584 at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, on May 15-18, 2006. Also, we submitted an abstract to be considered for inclusion in a special volume dedicated to CO{sub 2} sequestration in geologic media, which is planned for publication by the American Association of Petroleum Geologists.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-07-01T23:59:59.000Z

229

NETL: The Carbon Sequestration Newsletter: July 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2001 July 2001 This newsletter is produced by the National Energy Technology Laboratory and presents summaries of significant events related to carbon sequestration that have taken place over the past month. TABLE OF CONTENTS Sequestration in the News Events / Announcements from NETL's Carbon Sequestration Program Publications Legislative Activity Related to Carbon Sequestration Sequestration in the News New York Times The June 17 edition of the New York Times contains an article on carbon sequestration in geologic formations, Strategy has a Greenhouse Gas Bottled Up Under Land and Sea. The article mentions President Bush's support of carbon sequestration technologies, the $15 million Southern Saskatchewan project in Weyburn oil fields, and the reactions from environmental groups. Go to the New York Times to find the article by entering "Weyburn" on the web site's search feature.

230

NETL: First National Conference on Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration Table of Contents Disclaimer Papers and Presentations Plenary Session Industry Focus Panel Discussion Session 1A. Geologic Sequestration I - Overview Session 1B. Capture & Separation I - Industrial Efforts Session 1C. Modeling I - Case Studies & Deployment Session 2A. Geologic Sequestration II - EOR/EGR Session 2B. Capture & Separation II - Improved Processes Session 2C. Modeling II - Economics Poster Presentations International Panel Discussion Session 3A. Geologic Sequestration III - Enhanced Coalbed Methane Session 3B. Capture & Separation III - Adsorption Studies Session 3C. Terrestrial Sequestration I - Ecosystem Behavior Session 4A. Geologic Sequestration IV - Saline Aquifers Session 4B. Capture & Separation IV - Power Systems Concepts

231

Pathways and Mechanisms of OceanTracer Transport: Implications for Carbon Sequestration  

SciTech Connect

This funding enabled the following published manuscripts in which we have developed models of direct relevance to ocean carbon sequestration and of the oceanic iron cycle, its connection to the global carbon cycle, and the sensitivity of atmospheric carbon dioxide to the external source of iron. As part of this process we have developed the adjoint of the MIT ocean biogeochemistry model which has enabled us to perform rigorous and efficient sensitivity studies.

Marshall, John; Follows, MIchael

2006-11-06T23:59:59.000Z

232

Carbon sequestration potential of green roofs using mixed-sewage-sludge substrate in Chengdu World Modern Garden City  

Science Journals Connector (OSTI)

Abstract Green roofs which use sewage sludge to sequestrate urban carbon dioxide may represent a potential opportunity to evaluate carbon sequestration benefits for the urban development under increasing global climate change. In this study, green roofs composed of 6 small green segments with two different substrates, mixed-sewage-sludge substrate (MSSS, volume ratio of sewage sludge and local-natural soil 1:1), and local-natural soil (LNS), three different substrate depths (20 cm, 25 cm and 30 cm), and three types of native plants (Ligustrum vicaryi, Neottia auriculata, and Liriope spicata) in Chengdu City were established to determine carbon sequestration from July 2012 to July 2013 through assessment of the carbon storage and sequestration. Results show that the average carbon storage of MSSS and LNS on green roofs was respectively 13.15 kg C m?2 and 8.58 kg C m?2, and the average carbon sequestration followed the order of LNS (3.89 kg C m?2 yr?1) > MSSS (3.81 kg C m?2 yr?1). Thus MSSS could be considered as a potential material for carbon sequestration. The carbon storage and carbon sequestration by native plants on the green roofs followed the order of L. vicaryi > L. spicata > N. auriculata. The whole green roof had a mean carbon storage of 18.28 kg C m?2 and average carbon sequestration of 6.47 kg C m?2 yr?1 in the combined biomass and substrate organic matter. The best green roof configuration was L. vicaryi together with MSSS substrate, with a middle-high level of carbon sequestration. It will be feasible and worthwhile to scale-up the adaptable green roof configurations in Chengdu World Modern Garden City.

Hongbing Luo; Xiaoling Liu; Bruce C. Anderson; Ke Zhang; Xiaoting Li; Bo Huang; Mei Li; You Mo; Liangqian Fan; Qiong Shen; Fenghui Chen; Mingshu Jiang

2015-01-01T23:59:59.000Z

233

SWP Carbon Sequestration Training Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Center Presentation, Training Center Presentation, October 2010 SWP Carbon Sequestration Training Center Principal Investigators: New Mexico Tech, Andrew Campbell and Peter Mozley University of Utah, Brian McPherson Texas A&M University, Tarla Peterson SWP Training Center Presentation, October 2010 Background  Funded by DOE/NETL.  Purpose is to train more scientists and engineers for work in geological sequestration.  Three year grant.  Designed to be self sustaining. SWP Training Center Presentation, October 2010 Our goal is provide education about CCS at a variety of educational levels in order to promote a pipeline of future CCS scientists and engineers.  High School  K-12 Teachers  Undergraduate  Graduate  Professionals  Outreach SWP Training Center Presentation,

234

Carbon Capture & Sequestration Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

235

Southeast Regional Carbon Sequestration Partnership  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

Kenneth J. Nemeth

2006-08-30T23:59:59.000Z

236

A Vortex Contactor for Carbon Dioxide Separations  

SciTech Connect

Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

2001-05-01T23:59:59.000Z

237

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox freshwater contour, where methane content is high and the freshwater aquifer can be avoided.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-07-01T23:59:59.000Z

238

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Carbon Capture and Storage » Regional Science & Innovation » Carbon Capture and Storage » Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent of industrial CO2 emissions; 96 percent of the total land mass; and essentially all the geologic sequestration sites in the U.S. potentially available for carbon storage.

239

Advanced Technology for the Capture of Carbon Dioxide from Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology for the Capture of Carbon Dioxide Technology for the Capture of Carbon Dioxide from Flue Gases by Shrikar Chakravarti (shrikar_chakravarti@praxair.com; 716-879-4760) Amitabh Gupta (ami_gupta@praxair.com; 716-879-2194) Balazs Hunek (balazs_hunek@praxair.com; 716-879-2250) Praxair, Inc. Process & Systems R&D, CO 2 Technology 175 East Park Drive, P.O. Box 44 Tonawanda, NY 14150 USA key words: flue gas, carbon dioxide, separation, amine absorption, oxygen tolerant process, amine blends First National Conference on Carbon Sequestration Washington, DC, May 15-17, 2001 Copyright 2001, Praxair Technology, Inc. All Rights Reserved. 1 Abstract Cost effective carbon sequestration schemes have been identified as a key need for dealing with carbon dioxide's (CO 2 ) impact on global climate change. Two main

240

Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Mineral Carbonation. Abstract: Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration...

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

geologic-sequestration | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

242

Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems  

E-Print Network (OSTI)

#12;Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems Personnel. Blaine Metting #12;vii Abstract The Center for Research on Enhancing Carbon Sequestration in Terrestrial needed to evaluate the feasibility of environmentally sound strategies for enhancing carbon sequestration

243

CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON: COSTS, and J. Kadyszewski (Winrock International). 2007. Carbon Sequestration Through Changes in Land Use Curves, and Pilot Actions for Terrestrial Carbon Sequestration in Oregon. Report to Winrock

244

Peatland geoengineering: an alternative approach to terrestrial carbon sequestration  

Science Journals Connector (OSTI)

...alternative approach to terrestrial carbon sequestration Christopher Freeman Nathalie...studies suggest that peatland carbon sequestration is due to the inhibitory...peatland geoengineering|carbon sequestration|phenolic compounds|inhibition...

2012-01-01T23:59:59.000Z

245

Promotion of ecosystem carbon sequestration by invasive predators  

Science Journals Connector (OSTI)

...ecology Promotion of ecosystem carbon sequestration by invasive predators David...determinants of ecosystem C sequestration. carbon|island ecology|rats...of nitrogen deposition on carbon sequestration in European forests and forest...

2007-01-01T23:59:59.000Z

246

Interpretation of Coal-Seam Sequestration Data Using a New Swelling and Shrinkage Model  

SciTech Connect

This paper deals with the influence of swelling and shrinkage of coal on the production of methane from, and sequestration of carbon dioxide in, a coalbed reservoir. A three-dimensional swelling and shrinkage model was developed. It is based on constitutive equations that account for coupled fluid pressure-deformation behavior of a porous medium that undergoes swelling and shrinkage. The swelling and shrinkage strains are computed on the basis of the amounts of different gases (e.g., CO2, CH4) sorbed or desorbed. The amounts of sorption and desorption are computed from measured isotherms with the aid of the Ideal Adsorbed Solution model for mixed gases. The permeability of the reservoir is modified according to the swelling-shrinkage model. The paper presents numerical results for the influence of swelling and shrinkage on reservoir performance during injection of carbon dioxide. The paper includes results from a number of examples, and analysis of a field injection into a coal seam at a site in the San Juan basin. Results show that with the incorporation of swelling and shrinkage into the analysis, it is possible to get a better history-match of production data. Results also show that coal swelling can reduce the injection volumes of carbon dioxide significantly. The interpretation of field data with the new swelling-shrinkage model shows that the coal swelling during carbon dioxide sequestration in coal-seams is an important factor that can influence field performance.

Siriwardane, H.J.; Smith, D.H.

2006-10-01T23:59:59.000Z

247

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

248

Utilization of Biomineralization Processes with Fly Ash for Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilization of Biomineralization Processes with Fly Ash Utilization of Biomineralization Processes with Fly Ash for Carbon Sequestration Y. Roh (rohy@ornl.gov; 865-576-9931) T. J. Phelps (phelpstj1@ornl.gov; 865-574-7290) Environmental Sciences Division, Oak Ridge National Laboratory*, Oak Ridge, TN 37831-6036 A. D. McMillan (mcmillanad@ornl.gov; 865-241-4554) R. J. Lauf (laufrj@ornl.gov; 865-574-5176) Metal and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6085 *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725 Introduction The Department of Energy (DOE) Energy Information Administration estimates atmospheric greenhouse gas releases may exceed 8 billion metric tons by the year 2010 heightening its international environmental concern. Carbon dioxide will dominate the

249

Big Sky Carbon Sequestration Partnership  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

250

Regional evaluation of brine management for geologic carbon sequestration  

E-Print Network (OSTI)

of the build decision for carbon capture and sequestrationTenth Annual Conference on Carbon Capture and Sequestration.be managed early on. Carbon capture technology is water-,

Breunig, H.M.

2014-01-01T23:59:59.000Z

251

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

and HB 90:Carbon capture and sequestration, http://legisweb.6th annual conference on carbon capture and sequestration,7th annual conference on carbon capture & seques- tration,

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

252

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

253

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network (OSTI)

CO 2 enhanced oil recovery (EOR) and sequestration in afor a coalbed methane formation. EOR/sequestration petroleumbut shallow compared to either EOR or brine formations. The

Gasperikova, E.

2008-01-01T23:59:59.000Z

254

numerical methodology to model and monitor co2 sequestration  

E-Print Network (OSTI)

CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths ...

santos,,,

255

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

Susan M. Capalbo

2004-10-31T23:59:59.000Z

256

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31T23:59:59.000Z

257

CALMIT Remote-Sensing Research Relating to Carbon Sequestration There is considerable interest in assessing the magnitude of carbon sources and sinks in terrestrial  

E-Print Network (OSTI)

CALMIT Remote-Sensing Research Relating to Carbon Sequestration There is considerable interest in assessing the magnitude of carbon sources and sinks in terrestrial ecosystems using remote sensing techniques. We developed a novel technique to remotely assess carbon dioxide exchange in maize using

Nebraska-Lincoln, University of

258

Carbon Dioxide Hydrate Process for Gas Separation from a Shifted Synthesis Gas Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Sequestration and Gasification Technologies Carbon DioxiDe HyDrate ProCess for Gas seParation from a sHifteD syntHesis Gas stream Background One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO 2 ) and hydrogen. After scrubbing the CO 2 from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO 2 from mixed gas streams. Since viable options for sequestration or reuse of CO

259

Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture  

E-Print Network (OSTI)

Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture Tae anthro- pogenic sources.1 Carbon capture and sequestration (CCS) has been proposed as a means of limiting evaluated for potential application in post-combustion CO2 capture using a new high-throughput gas

260

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic  

E-Print Network (OSTI)

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents requires drastic modifications to the current energy infrastructure. Thus, carbon capture and sequestration for use as carbon capture adsorbents. Ideal adsorbed solution theory (IAST) estimates of CO2 selectivity

Kamat, Vineet R.

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comprehensive study of carbon dioxide adsorption in the metalorganic frameworks M2(dobdc)  

E-Print Network (OSTI)

are historically slow, the need for mitigation of current CO2 emissions using carbon capture and sequestration (CCSComprehensive study of carbon dioxide adsorption in the metal­organic frameworks M2(dobdc) (M ¼ Mg of adsorption in the M2(dobdc)­CO2 adducts. Introduction Currently, 80% of global energy is supplied by carbon

262

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada December 1, 2010 - 12:00pm Addthis Washington, DC - There could be as much as 5,700 years of carbon dioxide (CO2) storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy's (DOE) Carbon Sequestration Atlas (Atlas III). The updated preliminary estimate, based on current emission rates, documents 1,800 billion to more than 20,000 billion metric tons of CO2 storage potential in saline formations, oil and gas reservoirs, and unmineable coal areas. This suggests the availability of approximately

263

On leakage and seepage from geological carbon sequestration sites  

SciTech Connect

Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by means of numerical simulation and derive the trends in seepage flux and near-surface CO{sub 2} concentrations that will arise from variations in fundamental hydrogeological properties.

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-07-18T23:59:59.000Z

264

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Speaker(s): Mitchell Small Date: March 23, 2010 - 12:00pm Location: 90-3122 This seminar will explain a methodology for combining site characterization and soil CO2 monitoring for detecting leaks at geologic CO2 sequestration sites. Near surface CO2 fluxes resulting from a leak are simulated using the TOUGH2 model for different values of soil permeability, leakage rate and vadose zone thickness. Natural background soil CO2 flux rates are characterized by a Bayesian hierarchical model that predicts the background flux as a function of soil temperature. A presumptive leak is assumed if the monitored flux rate exceeds a critical value corresponding to a very high (e.g., 99%) prediction interval for the natural flux conditioned on

265

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

266

Predictions  

Science Journals Connector (OSTI)

...Web jet aircraft, rocketry, space travel fax machines and mobile...London, UK/Bridgeman Art Library. Predictions generated by natural processes in astronomical space, and it is thought to supply...to be used in early 1999 as public transport in that city, is...

2001-01-01T23:59:59.000Z

267

NETL: News Release - First-of-a-Kind Sequestration Field Test Begins in  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2009 8, 2009 First-of-a-Kind Sequestration Field Test Begins in West Virginia DOE-Sponsored Test to Evaluate Carbon Storage in Unmineable Coal Seams Washington, D.C. - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its accessibility, availability, and typical northern Appalachian topography and geology. The project is funded by DOE's Office of Fossil Energy and managed by NETL.

268

Southwest Regional Partnership on Carbon Sequestration Phase II  

SciTech Connect

The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

James Rutledge

2011-02-01T23:59:59.000Z

269

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

270

Soil: Carbon Sequestration in Agricultural Systems  

Science Journals Connector (OSTI)

Abstract Soil carbon sequestration can contribute to greenhouse gas (GHG) mitigation by removing CO2 from the atmosphere and at the same time improving soil health and sustainability. This article outlines the basic principles and controlling mechanisms involved in soil carbon sequestration and reviews how improved agricultural practices impact soil carbon stocks, based on data from long-term field experiments and other sources. It concludes with a section outlining challenges and opportunities for implementation of GHG mitigation strategies involving soil carbon sequestration, summarizing key science and policy-related issues.

K. Paustian

2014-01-01T23:59:59.000Z

271

NETL: News Release - Frio Formation Test Well Injected With Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

19, 2004 19, 2004 Frio Formation Test Well Injected With Carbon Dioxide Researchers Perform Small Scale, Short Term Carbon Sequestration Field Test HOUSTON, TX - In the first U.S. field test to investigate the ability of brine formations to store greenhouse gasses, researchers funded by the U.S. Department of Energy are closely monitoring 1,600 tons of carbon dioxide that were injected into a mile-deep well in Texas in October. The test is providing unique data to help investigators understand the viability of geologic sequestration as a means of reducing greenhouse gas emissions. The Frio Brine Pilot experimental site is 30 miles northeast of Houston, in the South Liberty oilfield. Researchers at the University of Texas at Austin's Bureau of Economic Geology drilled a 5,753 foot injection well earlier this year, and developed a nearby observation well to study the ability of the high-porosity Frio sandstone formation to store carbon dioxide.

272

NETL: News Release - Bees, Balloons, Pollen Used as Novel Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Bees, Balloons, Pollen Used as Novel Carbon Dioxide Monitoring Approach Washington, D.C. - Researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites. These new methods are an excellent way to determine environmental impact without disrupting habitats surrounding sequestration sites and can ensure the effectiveness of carbon storage options used to prevent CO2, a greenhouse gas, from escaping into the atmosphere. The carousel, lifted by Apogee's balloon, carries sorbent tubes aloft to sample for tracer above the carbon dioxide injection area in this NETL research project.

273

West, T.O., and W.M. Post. 2002. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Depa  

E-Print Network (OSTI)

). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak 41 27 32 24 1968 Arg01 Cordoba Argentina -32.42 -62.05 900 17 Marcos Juarez silty loam 10 65 25 17 1975 Arg02 Balcarce Argentina -37.45 -58.18 870 13.7 #10 #65 #25 1984 Arg03 Buenos Aires Argentina -37

274

NETL: 2008 Conference Proceedings - Regional Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

- Monitoring, Verification, and Accounting (MVA) Webinar with the American Waterworks Association - Monitoring, Verification, and Accounting (MVA) Webinar with the American Waterworks Association December 8, 2008 Table of Contents Disclaimer Agenda [PDF-20KB] Presentations PRESENTATIONS Introductions of Webinar Participants Sarah Wade, Moderator, RCSP Public Outreach Working Group/ Midwest Regional Carbon Sequestration Partnership (MRCSP) Brief Overview of AWWA and Their Interest, Roles/Responsibilities, Specific Concerns Cynthia Lane, AWWA Brief Overview of DOE Regional Carbon Sequestration Partnership Program [PDF-1.4MB] Dawn Deel, Project Manager, National Energy Technology Laboratory Ensuring Integrity of Geologic Sequestration: Integrated Application of Simulation, Risk Assessment, and MVA [PDF-1.5MB] Brian McPherson, Principal Investigator, Southwest Regional Partnership on Carbon Sequestration (SWP)

275

Midwest Regional Carbon Sequestration Partnership-Validation...  

NLE Websites -- All DOE Office Websites (Extended Search)

26507 304-285-4133 dawn.deel@netl.doe.gov Darrell Paul Project Manager Midwest Regional Carbon Sequestration Project Battelle 505 King Avenue Columbus, OH 43201 614-424-5890...

276

The Carbon Sequestration Newsletter: September 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

PBS News-Hour with Jim Lehrer On August 6, Spencer Michaels presented a fifteen minute report on carbon sequestration, emphasizing MBARI’s work on ocean sequestration research and the Weyburn geologic sequestration project. For a transcript or video of the report, see CO2: Burial at Sea? PBS News-Hour with Jim Lehrer On August 6, Spencer Michaels presented a fifteen minute report on carbon sequestration, emphasizing MBARI’s work on ocean sequestration research and the Weyburn geologic sequestration project. For a transcript or video of the report, see CO2: Burial at Sea? Washington Post On August 19th Eileen Claussen and Elliot Diringer of the Pew Center on Global Climate Change published an editorial, "The Climate Challenge Begins at Home," which highlights bills currently in congress, including Jefford’s four pollutant bill, the Stevens/Byrd Climate Change Act, and McCain and Lieberman’s Cap-and-Trade proposal. USA Today An August 27th article talks about the United States’ strong reliance on coal and indicated the Bush Administration may look towards coal gasification as a means of reducing GHG emissions.

277

Carbon sequestration in depleted oil shale deposits  

SciTech Connect

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

278

Nitrogen dioxide detection  

DOE Patents (OSTI)

Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

1993-01-01T23:59:59.000Z

279

West, T.O., and W.M. Post. 2002. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Depa  

E-Print Network (OSTI)

). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak/a 1989 15-30 15 1.11 KY01 CT corn 0 1975 0-5 5 1.33 KY01 CT corn 0 1975 5-15 10 1.24 KY01 CT corn 0 1975 15-30 15 0.68 KY01 CT corn 0 1980 0-5 5 1.25 KY01 CT corn 0 1980 5-15 10 1.38 KY01 CT corn 0 1980 15

280

Environmental Enterprise: Carbon Sequestration using Texaco Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Enterprise: Carbon Sequestration using Texaco Carbon Sequestration using Texaco Gasification Process Gasification Process First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration May 16, 2001 May 16, 2001 Jeff Seabright Jeff Seabright Texaco Inc. Texaco Inc. Presentation Highlights Presentation Highlights * * Texaco and climate change Texaco and climate change * * Introduction to gasification Introduction to gasification * * Environmental benefits of gasification Environmental benefits of gasification * * CO CO 2 2 capture & sequestration capture & sequestration * * Challenges going forward Challenges going forward Texaco's Climate Change Policy Texaco's Climate Change Policy * * Know enough to take action now Know enough to take action now

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Shallow Carbon Sequestration Demonstration Project  

SciTech Connect

The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

2013-09-30T23:59:59.000Z

282

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES  

SciTech Connect

In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

Bert R. Bock; Richard G. Rhudy; David E. Nichols

2001-07-01T23:59:59.000Z

283

Sequestration in the Media: Changes in Public Perception  

NLE Websites -- All DOE Office Websites (Extended Search)

Media: Media: Changes in Public Perception Third Annual Conference on Carbon Sequestration Alexandria, VA, May 2-6, 2004 National Energy Technology Laboratory Office of Fossil Energy Phil DiPietro and Rose Dakin, Energetics Inc. and Sarah Forbes, NETL Carbon Sequestration SF 05/3/04 Purpose of the Analysis * Assemble and study published articles on Carbon Sequestration between 1989 and 2003 * Quantify trends, themes and areas of emphasis * Compare results to priorities within the carbon sequestration research community Carbon Sequestration SF 05/3/04 Methodology * Use data on sequestration-related articles from NETL's Carbon Sequestration Newsletter - Conduct additional archive searches to find missed articles and articles that pre- date the newsletter * Define a set of sequestration-related

284

Carbon sequestration in forest vegetation of Beijing at sublot level  

Science Journals Connector (OSTI)

Based on forest inventory data (FID) at sublot level, we estimated the carbon sequestration in forest vegetation of Beijing, China in 2009. In this study, the carbon sequestration in forest vegetation at sublot l...

Yu Xiao; Kai An; Gaodi Xie; Chunxia Lu; Biao Zhang

2011-06-01T23:59:59.000Z

285

Carbon Sequestration and the Restoration of Land Health  

Science Journals Connector (OSTI)

Carbon sequestration, the conversion of greenhouse gas CO2...toorganic matter, offers a powerful tool with which to combat climate change. The enlargement of carbon sinks stored in soil and biota is...2. Carbon sequestration

Andres Arnalds

2004-08-01T23:59:59.000Z

286

Viscosity of tetrahydrothiophene-1,1-dioxide  

Science Journals Connector (OSTI)

Substance name(s): tetrahydrothiophene-1,1-dioxide; tetrahydrothiophene-S,S-dioxide; tetrahydro-thiophene-1,1 ... ,1-dioxide; thiacyclopentane dioxide; tetramethylene sulfone; tetrahydrothiophene 1...

Ch. Wohlfarth

2009-01-01T23:59:59.000Z

287

Carbon sequestration and stoichiometry of motile and nonmotile ...  

Science Journals Connector (OSTI)

Carbon sequestration and stoichiometry of motile and nonmotile green algae. Striebel, Maren, Silvia Bartholmé, Rebekka Zernecke, Christina Steinlein, Florian

288

Uranium Sequestration via Phosphate Infiltration/Injection Test...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Immediate sequestration - Stable mineral form * Apatite formation - Sorbent for uranium - Conversion to autunite 5 Advantages of Phosphate Technology * Direct treatment...

289

Map of Geologic Sequestration Training and Research Projects  

Energy.gov (U.S. Department of Energy (DOE))

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

290

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

291

CO2 Mineral Sequestration Studies in US  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Sequestration Studies in US Mineral Sequestration Studies in US Philip Goldberg 1 , Zhong-Ying Chen 2 , William O'Connor 3 , Richard Walters 3 , and Hans Ziock 4 1 National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, goldberg@netl.doe.gov, (412)386-5806 2 Science Applications International Corporation, 1710 Goodridge Dr. McLean, VA, zhong- ying.chen@saic.com, (703)676-7328 3 Albany Research Center, Albany, OR oconner@arc.doe.gov, walters@alrc.doe, (541)967-5834 4 Los Alamos National Laboratory, Los Alamos, NM, ksl@lanl.gov, ziock@lanl.gov, (505)667- 7265 Abstract Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO

292

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION  

SciTech Connect

The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

2004-11-01T23:59:59.000Z

293

Carbon Sequestration Initiative CSI | Open Energy Information  

Open Energy Info (EERE)

Sequestration Initiative CSI Sequestration Initiative CSI Jump to: navigation, search Name Carbon Sequestration Initiative (CSI) Place Cambridge, Massachusetts Zip MA 02139-4307 Sector Carbon Product Massachusetts based consortium which was formed in 2000 to investigate carbon capture and storage technologies. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Decarbonization and Sequestration for Mitigating Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

295

RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE  

SciTech Connect

Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

Takashi Nakamura

2004-11-01T23:59:59.000Z

296

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem  

E-Print Network (OSTI)

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

White, Luther

297

Economic Modeling of Carbon Capture and Sequestration Technologies  

E-Print Network (OSTI)

Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

298

Historical forest baselines reveal potential for continued carbon sequestration  

E-Print Network (OSTI)

Historical forest baselines reveal potential for continued carbon sequestration Jeanine M-based studies suggest that land-use history is a more important driver of carbon sequestration in these systems agricultural lands are being promoted as important avenues for future carbon sequestration (8). But the degree

Mladenoff, David

299

Carbon Sequestration via Mineral Carbonation: Overview and Assessment  

E-Print Network (OSTI)

1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

300

DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION  

E-Print Network (OSTI)

DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION D.M. Reiner1 , H.J. Herzog2 1 Judge Avenue, Cambridge, MA 02139, USA, email: hjherzog@mit.edu ABSTRACT Carbon capture and sequestration variables critical for determining the success of carbon sequestration as a viable climate policy option

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs  

E-Print Network (OSTI)

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs Draft paper Bruce A Mc............................................................................................................. 5 2 Why Consider Promoting Agricultural Soil Carbon Sequestration?...................... 6 2 Agricultural Soil Carbon Sequestration....... 11 3.1 What is the cost of GHGE offsets arising from large

McCarl, Bruce A.

302

Trading Water for Carbon with Biological Carbon Sequestration  

E-Print Network (OSTI)

Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

Nacional de San Luis, Universidad

303

A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION  

E-Print Network (OSTI)

A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION D.M. Reiner and H.J. Herzog1 1 Laboratory for Energy and the Environment, M.I.T., Cambridge, MA. 02139, USA ABSTRACT Carbon capture and sequestration for determining the success of carbon sequestration as a viable climate policy option. INTRODUCTION To date

304

CO2 Hydrate Composite for Ocean Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 Hydrate Composite for Ocean Carbon Sequestration ... Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration. ...

Sangyong Lee; Liyuan Liang; David Riestenberg; Olivia R. West; Costas Tsouris; Eric Adams

2003-07-18T23:59:59.000Z

305

B.2 Subproject Brokate Simulating CO2 Sequestration  

E-Print Network (OSTI)

79 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 Sequestration and implement models describing the hysteresis in the context of the CO2 sequestration process. The hysteresis's law but in contrast to most Darcy's law based models it assumes the phases to be weakly compressible

Turova, Varvara

306

Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings  

SciTech Connect

A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

NONE

2006-07-01T23:59:59.000Z

307

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Economic  Geology Billion  Gallons  per  Year Brine  Use  Sequence Carbon  dioxide  Capture  and  Storage Carbon  Dioxide Coal-­?

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

308

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young’s modulus, Poisson’s ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

309

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

310

Carbon Sequestration Advisory Committee (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Sequestration Advisory Committee (Nebraska) Carbon Sequestration Advisory Committee (Nebraska) Carbon Sequestration Advisory Committee (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Climate Policies Provider Nebraska Carbon Sequestration Advisory Committee Under this statute, the Director of Natural Resources will document and quantify carbon sequestration and greenhouse emissions reductions

311

NETL: News Release - Regional Carbon Sequestration Partnerships Program  

NLE Websites -- All DOE Office Websites (Extended Search)

February 17, 2005 February 17, 2005 Regional Carbon Sequestration Partnerships Program Adds Canadian Provinces Will Develop, Deploy and Validate Carbon Sequestration Options WASHINGTON, DC - The Department of Energy (DOE) today announced that the Provinces of Alberta and British Columbia have joined Saskatchewan and Manitoba as Canadian partners in the Regional Carbon Sequestration Partnerships program, the centerpiece of North American efforts to validate and deploy carbon sequestration technologies. The program, a network of federal and state agencies, as well as private sector entities, will determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage, and sequestration in different areas of the country. MORE INFO

312

Experimental Study of Carbon Sequestration Reactions Controlled  

E-Print Network (OSTI)

Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

Demouchy, Sylvie

313

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION  

SciTech Connect

On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

Howard J. Herzog; E. Eric Adams

2005-04-01T23:59:59.000Z

314

Sequestration of CO2 by Concrete Carbonation  

Science Journals Connector (OSTI)

Sequestration of CO2 by Concrete Carbonation ... Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. ... This work attempts to advance the knowledge of the carbon footprint of cement. ...

Isabel Galan; Carmen Andrade; Pedro Mora; Miguel A. Sanjuan

2010-03-12T23:59:59.000Z

315

Pore-Level Modeling of Carbon Dioxide Infiltrating the Ocean Floor  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltrating the Ocean Floor Infiltrating the Ocean Floor Grant S. Bromhal, Duane H. Smith, US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; M. Ferer, Department of Physics, West Virginia University, Morgantown, WV 26506-6315 Ocean sequestration of carbon dioxide is considered to be a potentially important method of reducing greenhouse gas emissions (US DOE, 1999). Oceans are currently the largest atmospheric carbon dioxide sink; and certainly, enough storage capacity exists in the oceans to hold all of the CO 2 that we can emit for many years. Additionally, technologies exist that allow us to pump liquid CO 2 into the oceans at depths between one and two kilometers for extended periods of time and five times that deep for shorter durations. The biggest unknown in the ocean sequestration process, however, is the fate and

316

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

Brian McPherson

2006-03-31T23:59:59.000Z

317

DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Sequestration Partnership Program Adds Canadian Carbon Sequestration Partnership Program Adds Canadian Provinces DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces February 16, 2005 - 10:14am Addthis Will Develop, Deploy, and Validate Carbon Sequestration Options WASHINGTON, DC -- The Department of Energy (DOE) today announced that the Provinces of Alberta and British Columbia have joined Saskatchewan and Manitoba as Canadian partners in the Regional Carbon Sequestration Partnership program, the centerpiece of North American efforts to validate and deploy carbon sequestration technologies. The program, a network of federal and state agencies, as well as private sector entities, will determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage, and sequestration in different areas of

318

DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Carbon Sequestration Partnership Program Adds Canadian DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces February 16, 2005 - 10:14am Addthis Will Develop, Deploy, and Validate Carbon Sequestration Options WASHINGTON, DC -- The Department of Energy (DOE) today announced that the Provinces of Alberta and British Columbia have joined Saskatchewan and Manitoba as Canadian partners in the Regional Carbon Sequestration Partnership program, the centerpiece of North American efforts to validate and deploy carbon sequestration technologies. The program, a network of federal and state agencies, as well as private sector entities, will determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage, and sequestration in different areas of

319

An Industry Perspective on Geologic Storage & Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2001, NETL's 1st National Conference on Carbon Sequestration 5, 2001, NETL's 1st National Conference on Carbon Sequestration 1 An Industry Perspective on Geologic Storage & Sequestration Gardiner Hill, BP Craig Lewis, Chevron 15 th May'01 1 st National Conference on Carbon Sequestration 2 Disclaimer * The following may not be the only Industry Perspective on Storage & Sequestration * It represents the opinions of BP and Chevron and some other energy companies that we have talked to 15 th May'01 1 st National Conference on Carbon Sequestration 3 Overview * Potential New Business Impact * Business Drivers for R&D * Technology Objectives * Definitions of Storage & Sequestration * Break-down of Geologic Storage R&D Categories * Where We Think Industry (and others) are already strong * Where We Think Additional R&D Gaps Still

320

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilized Aminosilane Sorbents Immobilized Aminosilane Sorbents for Carbon Dioxide Capture Opportunity Research is currently active on the patent-pending technology titled "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which CO 2 is first separated / captured from gas streams followed by permanent storage. Carbon capture represents a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high capacity amine-based sorbents offer many advantages over existing technology including increased CO

322

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

323

SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION  

SciTech Connect

The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

Brian McPherson

2004-04-01T23:59:59.000Z

324

International Collaboration on CO2 Sequestration  

SciTech Connect

On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be successfully designed to largely avoid zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively, but not analyzed quantitatively.

Peter H. Israelsson; E. Eric Adams

2007-06-30T23:59:59.000Z

325

What's Next for Vanadium Dioxide?  

NLE Websites -- All DOE Office Websites (Extended Search)

How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy...

326

PREDICTIVE MODELS  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding; 2) carbon dioxide miscible flooding; 3) in-situ combustion; 4) polymer flooding; and 5) steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. (DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States))

1988-10-01T23:59:59.000Z

327

Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio  

E-Print Network (OSTI)

Infrastructure with Carbon Capture and Sequestration: CaseINFRASTRUCTURE WITH CARBON CAPTURE AND SEQUESTRATION: CASEhydrogen production with carbon capture and sequestration,

Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

2005-01-01T23:59:59.000Z

328

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network (OSTI)

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4 viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

329

NETL: The Carbon Sequestration Newsletter: July 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

President Bush announces eight new carbon sequestration R&D awards On July 13th, President George Bush delivered an address on a "scientifically sound and effective global effort to reduce the buildup of greenhouse gases in the atmosphere." As a part of that speech the President announced recent R&D awards made by the DOE's Carbon Sequestration R&D Program. He highlighted two projects, one led by the Nature Conservancy and another by an international consortium of major energy companies. Click here for a copy of the President's remarks. The other winning proposals were led by Alstom Power, Praxair, Consol, Dakota Gasification, Advanced Resources International, and Yolo County, CA. Overall, industry is offering 40% cost share to the efforts. For a more detailed description of the DOE awards, click here.

330

Regional Partnerships in Terrestrial Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration November 6-7, 2001 Lexington, Kentucky Robert Addington AEI Incorporated 2000 Ashland Drive Ashland, KY 41101 Phone: 606-928-3433 Email: crystalj@aeiresources.com Jim Amonette MSIN K8-96 Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: 509-3765565 Email: jim.amonette@pnl.gov Patrick Angel Area Office Manager U.S. Department of Interior Office of Surface Mining P.O. Box 1048 London, KY 40741 Phone: 606-878-6440 Email: pangel@osmre.gov Hugh Archer Commissioner Kentucky Dept of Natural Resources 663 Teton Trail Frankfort, KY 40601 Phone: 502-564-2184 Email: hugh.archer@mail.state.ky.us Victor Badaker Mining Engineering Dept. University of Kentucky MML Bldg. Lexington, KY 40546 Phone: 859-257-3818

331

NETL: ARRA Regional Carbon Sequestration Training Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA Regional Carbon Sequestration Training Centers ARRA Regional Carbon Sequestration Training Centers ARRA Logo Projects in this area are funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009 (ARRA) and will train personnel in the implementation of carbon capture and storage (CCS) technology. While CCS technologies offer great potential for reducing CO2 emissions and mitigating potential climate change, deploying these technologies will require a significantly expanded workforce trained in the various specialties that are currently underrepresented in the United States. Education and training activities undertaken in this area are developing a future generation of geologists, scientists, and engineers that will provide the human capital and skills required for implementing CCS technologies.

332

Sequestration and Transport of Lignin Monomeric Precursors  

SciTech Connect

Lignin is the second most abundant terrestrial biopolymer after cellulose. It is essential for the viability of vascular plants. Lignin precursors, the monolignols, are synthesized within the cytosol of the cell. Thereafter, these monomeric precursors are exported into the cell wall, where they are polymerized and integrated into the wall matrix. Accordingly, transport of monolignols across cell membranes is a critical step affecting deposition of lignin in the secondarily thickened cell wall. While the biosynthesis of monolignols is relatively well understood, our knowledge of sequestration and transport of these monomers is sketchy. In this article, we review different hypotheses on monolignol transport and summarize the recent progresses toward the understanding of the molecular mechanisms underlying monolignol sequestration and transport across membranes. Deciphering molecular mechanisms for lignin precursor transport will support a better biotechnological solution to manipulate plant lignification for more efficient agricultural and industrial applications of cell wall biomass.

Liu, C.J.; Miao, Y.-C.; Zhang, K.-W.

2011-01-18T23:59:59.000Z

333

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

Brian McPherson

2006-04-01T23:59:59.000Z

334

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION  

SciTech Connect

The primary focus of this reporting period was to prepare for conducting the ocean carbon sequestration field experiment during the summer of 2002. We discuss four key aspects of this preparation: (1) Design criteria for a CO{sub 2} flow system mounted on a ship; (2) Inter-model comparison of plume models; (3) Application of a double plume model to compute near field mixing; and (4) Evaluation of tracers.

Howard J. Herzog; E. Eric Adams

2002-09-01T23:59:59.000Z

335

PREDICTIVE MODELS  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2) carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3) in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4) polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5) steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. (DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States))

1986-12-01T23:59:59.000Z

336

Integrating Steel Production with Mineral Carbon Sequestration  

SciTech Connect

The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

2008-05-01T23:59:59.000Z

337

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

338

New Jersey Joins the Energy Department's Carbon Sequestration Regional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey Joins the Energy Department's Carbon Sequestration New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program June 24, 2009 - 1:00pm Addthis Washington, DC -- The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. The addition of New Jersey, the 43rd state to join the program, helps strengthen U.S. efforts to reduce greenhouse gas emissions and mitigate climate change. New Jersey--along with Indiana, Kentucky, Maryland, Michigan, New York, Ohio, Pennsylvania, and West Virginia--is a regional partner and a participant in the Midwest Regional Carbon Sequestration Partnership

339

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

340

New Jersey Joins the Energy Department's Carbon Sequestration Regional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Joins the Energy Department's Carbon Sequestration Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program June 24, 2009 - 1:00pm Addthis Washington, DC -- The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. The addition of New Jersey, the 43rd state to join the program, helps strengthen U.S. efforts to reduce greenhouse gas emissions and mitigate climate change. New Jersey--along with Indiana, Kentucky, Maryland, Michigan, New York, Ohio, Pennsylvania, and West Virginia--is a regional partner and a participant in the Midwest Regional Carbon Sequestration Partnership

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

342

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network (OSTI)

Community acceptance of carbon capture and sequestrationand realities of carbon capture and storage; www.eenews.net/Howard. What Future for Carbon Capture and Sequestration?

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

343

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Equation  2   5  Carbon  capture  technology  requires  for  Geologic  Carbon  Capture  and   Sequestration."  the  additional  carbon  capture  system  (1.24  assuming  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

344

Improving Carbon Sequestration | U.S. DOE Office of Science ...  

Office of Science (SC) Website

Improving Carbon Sequestration Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD)...

345

Optimal forest management for carbon sequestration and biodiversity maintenance.  

E-Print Network (OSTI)

??Managing planted forests for carbon sequestration and biodiversity maintenance has become increasingly important in times of rapid climate change and the loss of biodiversity worldwide.… (more)

Nghiem, Thi Hong Nhung

2011-01-01T23:59:59.000Z

346

Successful Sequestration and Enhanced Oil Recovery Project Could...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery." In the first phase of the research...

347

Regional evaluation of brine management for geologic carbon sequestration  

E-Print Network (OSTI)

Coal Bed Methane. US DOE, NETL. Ventyx, 2012. Velocity SuiteCarbon Sequestration. NETL. Earles, M.J. , Halog, A. , 2011.

Breunig, H.M.

2014-01-01T23:59:59.000Z

348

China Needs Forest Management Rather Than Reforestation for Carbon Sequestration  

Science Journals Connector (OSTI)

In the last decade, both the U.S. and China implemented forestry carbon sequestration programs to reduce the carbon print. ...

Guanglei Gao; Guodong Ding; Haiyan Wang; Yintong Zang; Wenjun Liang

2011-11-16T23:59:59.000Z

349

FutureGen -- A Sequestration and Hydrogen Research Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

governmentindustry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. FutureGen -- A Sequestration and...

350

South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

CCUS projects. Existing small-scale field projects have been conducted by the Regional Carbon Sequestration Partnerships (RCSP) during their Validation Phase. These small-scale...

351

Understanding carbon sequestration in north central Montana dryland wheat systems.  

E-Print Network (OSTI)

??Agricultural management practices that reduce tillage and/or increase crop intensity have been shown to promote soil carbon sequestration in many regions of the Great Plains.… (more)

Feddema, Ryan Patrick.

2013-01-01T23:59:59.000Z

352

Carbon Sequestration with Reforestations and Biodiversity-scenic Values  

Science Journals Connector (OSTI)

This paper presents an optimal control model to analyze reforestations with two different species, including commercial values, carbon sequestration and biodiversity or scenic values. We discuss ... of environmen...

Alejandro Caparrós; Emilio Cerdá; Paola Ovando…

2010-01-01T23:59:59.000Z

353

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network (OSTI)

2 Sequestration in Coalbed Methane Reservoirs of the Black2006 International Coalbed Methane Symposium Proceedings,and the third is for a coalbed methane formation. EOR/

Gasperikova, E.

2008-01-01T23:59:59.000Z

354

Small Scale Field Test Demonstrating CO2 Sequestration in Arbuckle...  

NLE Websites -- All DOE Office Websites (Extended Search)

CCUS projects. Existing small-scale field projects have been conducted by the Regional Carbon Sequestration Partnerships (RCSP) during their Validation Phase. These small-scale...

355

Efficiency of incentives to jointly increase carbon sequestration and species conservation  

E-Print Network (OSTI)

Efficiency of incentives to jointly increase carbon sequestration and species conservation the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under

Weiblen, George D

356

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration  

E-Print Network (OSTI)

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

Bau, Domenico A.

357

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS  

E-Print Network (OSTI)

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

Wisconsin at Madison, University of

358

Carbon sequestration potential of tropical pasture compared with afforestation in Panama  

E-Print Network (OSTI)

Carbon sequestration potential of tropical pasture compared with afforestation in Panama S E B) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3 show the potential for considerable carbon sequestration of tropical afforestation and highlight

Potvin, Catherine

359

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and  

E-Print Network (OSTI)

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

Daniels, Jeffrey J.

360

Carbon sequestration and greenhouse gas emissions in urban turf  

E-Print Network (OSTI)

D. C. Lal, R. (2004), Carbon emission from farm operations,facts: Average carbon dioxide emissions resulting fromcalculation of carbon dioxide (CO 2 ) emissions from fuel

Townsend-Small, Amy; Czimczik, Claudia I

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Cost of Carbon Dioxide Capture and Storage in Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CosT of Carbon DioxiDe CapTure CosT of Carbon DioxiDe CapTure anD sTorage in geologiC formaTions The sequestration of carbon dioxide (CO 2 ) in geologic formations is a viable option for achieving deep reductions in greenhouse gas emissions without hindering economic prosperity. Due to the abundance of fossil fuels in the United States and around the globe as compared to other energy sources, there is strong interest in geologic sequestration, but cost is a key issue. The volume of CO 2 emitted from power plants and other energy systems is enormous compared to other emissions of concern. For example, a pulverized coal (PC) boiler operating on Illinois #6 coal (2.5 percent sulfur) may generate 0.03 pounds of sulfur dioxide per kilowatt hour (kWh) and emit CO 2 at a rate of 1.7 pounds per kWh.

362

In-Situ MVA of CO2 Sequestration Using Smart Field Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

In-Situ MVA of CO In-Situ MVA of CO 2 Sequestration Using Smart Field Technology Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing

363

Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia  

SciTech Connect

The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.

Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

2007-03-01T23:59:59.000Z

364

A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration  

E-Print Network (OSTI)

CO 2 enhanced oil recovery (EOR) and sequestration in athe measurement configuration. EOR/sequestration projects inshow that a CO 2 –based EOR could increase oil recovery by

Gasperikova, Erika; Hoversten, G. Michael

2006-01-01T23:59:59.000Z

365

Carbon Sequestration, Soil Conservation, and the Kyoto Protocol: Summary of Implications  

Science Journals Connector (OSTI)

This paper discusses relationships between soil conservation, carbon sequestration, and the Kyoto Protocol. The Kyoto ... particularly true for soil conservation, where the sequestration of carbon above and below...

Julian Dumanski

2004-08-01T23:59:59.000Z

366

Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration  

SciTech Connect

Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overlie injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.

McCray, John

2013-09-30T23:59:59.000Z

367

Mechanical effect of adsorption Carbon sequestration and swelling of coal  

E-Print Network (OSTI)

Mechanical effect of adsorption Carbon sequestration and swelling of coal Laurent BROCHARD on Carbon Capture and Sequestration (2005)) Pressure,psi Time, year Pressure 0 500 1000 1500 2000 2500 Rate Université Paris-Est. Laboratoire Navier (UMR CNRS 8205). Ecole des Ponts ParisTech CONTEXT - CARBON

Boyer, Edmond

368

Fiscal Year 1998 Annual Report, Carbon Dioxide Information Analysis Center, World Data Center -- A for Atmospheric Trace Gases  

SciTech Connect

Once again, the most recent fiscal year was a productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), as well as a year for change. The FY 1998 in Review section in this report summarizes quite a few new and updated data and information products, and the ''What's Coming in FY 1999'' section describes our plans for this new fiscal year. During FY 1998, CDIAC began a data-management system for AmeriFlux, a long-term study of carbon fluxes between the terrestrial biosphere of the Western Hemisphere and the atmosphere. The specific objectives of AmeriFlux are to establish an infrastructure for guiding, collecting, synthesizing, and disseminating long-term measurements of CO{sub 2}, water, and energy exchange from a variety of ecosystems; collect critical new information to help define the current global CO{sub 2} budget; enable improved predictions of future concentrations of atmospheric CO{sub 2}; and enhance understanding of carbon fluxes. Net Ecosystem Production (NEP), and carbon sequestration in the terrestrial biosphere. The data-management system, available from CDIAC'S AmeriFlux home page (http://cdiac.esd.ornl.gov/programs/ameriflux/ ) is intended to provide consistent, quality-assured, and documented data across all AmeriFlux sites in the US, Canada, Costa Rica, and Brazil. It is being developed by Antoinette Brenkert and Tom Boden, with assistance from Susan Holladay (who joined CDIAC specifically to support the AmeriFlux data-management effort).

Cushman, R.M.; Boden, T.A.; Hook, L.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

1999-03-01T23:59:59.000Z

369

EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35: Midwest Regional Carbon Sequestration Partnership (MRCSP) 35: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide approximately $65.5 million in financial assistance in a cost-sharing arrangement with the project proponent, MRCSP. MRCSP's proposed project would use CO2 captured from an existing natural gas processing plant in Chester Township, pipe it approximately 1 mile to an injection well, and inject it into a deep saline aquifer for geologic sequestration. This project would demonstrate the geologic sequestration of 1,000,000 metric

370

Advanced Research Power Program--CO2 Mineral Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

371

NETL: Regional Partnerships in Terrestrial Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration A "Hands-On" Workshop for the Appalachian Coal & Electric Utilities Industries Table of Contents Disclaimer General Conference Information Papers and Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

372

Aquifer Management for CO2 Sequestration  

E-Print Network (OSTI)

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

373

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

374

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network (OSTI)

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

375

Permanence Discounting for Land-Based Carbon Sequestration Man-Keun Kim  

E-Print Network (OSTI)

Permanence Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration 1. Introduction Land-based soil carbon sequestration has been explored the potential of land-based carbon sequestration strategies in the US such as afforestation

McCarl, Bruce A.

376

2005: Future effects of ozone on carbon sequestration and climate change policy using a global  

E-Print Network (OSTI)

production and carbon sequestration. The reduced carbon storage would then require further reductions in

B. Felzer; J. Reilly; J. Melillo; D. Kicklighter; M. Sarofim; C. Wang; R. Prinn; Q. Zhuang

377

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

methane compressor power requirement is: PcmH2/PcmCH4 = (HHVand methane. H2 pipeline energy flow = NG pipeline energy flow QH2 x HHV

Ogden, Joan

2004-01-01T23:59:59.000Z

378

1 A General Methodology for Evaluation of Carbon Dioxide Sequestration Activities  

E-Print Network (OSTI)

"The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.”

K. Thomas Klasson; Brian H. Davison; K. Thomas Klasson; Brian H. Davison

2002-01-01T23:59:59.000Z

379

Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation  

SciTech Connect

Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

2014-01-15T23:59:59.000Z

380

Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag .  

E-Print Network (OSTI)

??"The formation of carbonate solids from the alkaline earth oxide phases in steelmaking slag was investigated in dry and aqueous conditions as a vehicle for… (more)

Rawlins, C. Hank, 1968-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

aquifers and coal beds. Incorporate GIS layers for regionala GIS database for the state of Ohio, an area where coal-GIS) format to show the location of H 2 demand, fossil energy complexes, coal

Ogden, Joan M

2004-01-01T23:59:59.000Z

382

Carbon dioxide reuse and sequestration: The state of the art today  

E-Print Network (OSTI)

R.J.H. Richardson, Deep coalbed methane in Alberta, Canada:gas recovery and enhanced coalbed methane recovery. Suitableprojects of enhanced coalbed methane production using CO 2

Benson, Sally M.; Dorchak, Thomas; Jacobs, Gary; Ekmann, James; Bishop, Jim; Grahame, Thomas

2000-01-01T23:59:59.000Z

383

Reduction And Sequestration Of Pertechnetate To Technetium Dioxide And Protection From Reoxidation  

SciTech Connect

This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(lI)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(ll)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II) apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(lI)apatite exhibited a direct correlation with the pH of the technetium-spiked simulant media.

Duncan, J. B. [Washington River Protection Solutions LLC, Richland , WA (United States); Johnson, J. M. [Center for Laboratory Sciences, Pasco, WA (United States); Moore, R. C. [Sandia National Laboratories, Albuquerque, NM (United States); Hagerty, K. [AREVA Federal Services LLC, Richland , WA (United States); Rhodes, R. N. [Center for Laboratory Sciences, Pasco, WA (United States); Huber, H. J. [Washington River Protection Solutions LLC, Richland , WA (United States); Moore, W. P. [Center for Laboratory Sciences, Pasco, WA (United States)

2012-11-07T23:59:59.000Z

384

Limestone-Particle-Stabilized Macroemulsion of Liquid and Supercritical Carbon Dioxide in Water for Ocean Sequestration  

Science Journals Connector (OSTI)

In relation to ocean disposal of CO2 from power plants, a comprehensive plume model was developed to simulate the dynamic, near-field behavior of CO2 released in the water column as either a buoyant liq. ... from flue gases and injected into the oceans. ...

D. Golomb; E. Barry; D. Ryan; C. Lawton; P. Swett

2004-07-20T23:59:59.000Z

385

Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean  

SciTech Connect

This semi-annual progress reports includes further findings on CO{sub 2}-in-Water emulsions stabilized by fine particles of limestone (CaCO{sub 3}). Specifically, here we report on the tests performed in the DOE National Energy Technology Laboratory High Pressure Water Tunnel Facility (HPWTF) using a Kenics-type static mixer for the formation of a CO{sub 2}-H{sub 2}O emulsion stabilized by fine particles of CaCO{sub 3}. The tested static mixer has an ID of 0.5 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} particles (mean particle size 6 {micro}m) in reverse osmosis (RO) water and liquid CO{sub 2} were co-injected into the mixer. From the mixer, the resulting emulsion flowed into the HPWTF, which was filled with RO water kept at 6.8 MPa pressure and 4, 8 or 12 C. The emulsion plume was photographed by three video cameras through spy windows mounted on the wall of the HPWTF. The mixer produced an emulsion consisting of tiny CO{sub 2} droplets sheathed with a layer of CaCO{sub 3} particles dispersed in water. The sheathed droplets are called globules. The globules diameter was measured to be in the 300-500 {micro}m range. The globules were sinking in the HPWTF, indicating that they are heavier than the ambient water. The tests in the HPWTF confirmed that the Kenics-type static mixer is an efficient device for forming a CO{sub 2}-H{sub 2}O emulsion stabilized by fine particles of CaCO{sub 3}. The static mixer may prove to be a practical device for sequestering large quantities of CO{sub 2} in the deep ocean in the form of a CO{sub 2}-H{sub 2}O-CaCO{sub 3} emulsion. The static mixer can be mounted at the end of pipelines feeding the mixer. The static mixer has no moving parts. The pressure drop across the mixer that is necessary to sustain good mixing is created by the hydrostatic pressure of liquid CO{sub 2} and the slurry of CaCO{sub 3} in the pipes that feed the mixer. The tests in the HPWTF demonstrated that the emulsion plume is heavier than ambient seawater, hence the plume will sink to greater depth from the release point. Preliminary modeling indicates that an emulsion plume released at 500 m depth (the minimum depth required to prevent liquid CO{sub 2} flashing into vapor) may sink hundreds of meters before the plume comes to rest in the density stratified ocean water. Furthermore, tests in our laboratory showed that the emulsion is slightly alkaline, not acidic, because of the excess of CaCO{sub 3} particles present in the plume. Thus, the release of the CO{sub 2}-H{sub 2}OCaCO{sub 3} emulsion in the deep ocean is not likely to acidify the seawater around the release point. The possible acidification of seawater is the major environmental hazard if pure liquid CO{sub 2} were released in the deep ocean.

Dan Golomb; Eugene Barry; David Ryan; Stephen Pennell; Peter Swett; Huishan Duan; Michael Woods

2006-04-01T23:59:59.000Z

386

REDUCTION AND SEQUESTRATION OF PERTECHNETATE TO TECHNETIUM DIOXIDE AND PROTECTION FROM RE-OXIDATION  

SciTech Connect

This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-I0S simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table 1 shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit.

DUNCAN JB; JOHNSON JM; MOORE WP; HAGERTY KJ; RHODES RN; MOORE RC

2012-07-11T23:59:59.000Z

387

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside...

Seo, Jeong Gyu

2004-09-30T23:59:59.000Z

388

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

to estimate hydrogen compressor costs based on a formulaMW are needed. The cost of hydrogen compressors in this sizecompression. Costs and performance for hydrogen compressors

Ogden, Joan M

2004-01-01T23:59:59.000Z

389

Commerical-Scale CO2 Capture and Sequestration for the Cement Industry  

SciTech Connect

On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

Adolfo Garza

2010-07-28T23:59:59.000Z

390

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

391

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Geological Sequestration Consortium The Midwest Geological Sequestration Consortium (MGSC) is a consortium of the geologic surveys of Illinois, Indiana, and Kentucky joined by private corporations, professional business associations, the Interstate Oil and Gas Compact Commission, three Illinois state agencies, and university researchers to assess carbon capture, transportation, and geologic storage processes and their costs and viability in the Illinois Basin region. The Illinois State Geological Survey is the Lead Technical Contractor for MGSC, which covers all of Illinois, southwest Indiana, and western Kentucky. To avoid atmospheric release of CO

392

Risk assessment framework for geologic carbon sequestration sites  

SciTech Connect

We have developed a simple and transparent approach for assessing CO{sub 2} and brine leakage risk associated with CO{sub 2} injection at geologic carbon sequestration (GCS) sites. The approach, called the Certification Framework (CF), is based on the concept of effective trapping, which takes into account both the probability of leakage from the storage formation and impacts of leakage. The effective trapping concept acknowledges that GCS can be safe and effective even if some CO{sub 2} and brine were to escape from the storage formation provided the impact of such leakage is below agreed-upon limits. The CF uses deterministic process models to calculate expected well- and fault-related leakage fluxes and concentrations. These in turn quantify the impacts under a given leakage scenario to so-called 'compartments,' which comprise collections of vulnerable entities. The probabilistic part of the calculated risk comes from the likelihood of (1) the intersections of injected CO{sub 2} and related pressure perturbations with well or fault leakage pathways, and (2) intersections of leakage pathways with compartments. Two innovative approaches for predicting leakage likelihood, namely (1) fault statistics, and (2) fuzzy rules for fault and fracture intersection probability, are highlighted here.

Oldenburg, C.; Jordan, P.; Zhang, Y.; Nicot, J.-P.; Bryant, S.L.

2010-02-01T23:59:59.000Z

393

Experimental Geochemical Studies Relevant to Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geochemical Studies Relevant to Geochemical Studies Relevant to Carbon Sequestration James G. Blencoe (blencoejg@ornl.gov; 865-574-7041) David R. Cole (coledr@ornl.gov; 865-574-5473) Juske Horita (horitaj@ornl.gov; 865-576-2750) Geochemistry Group Chemical and Analytical Sciences Division Oak Ridge National Laboratory P.O. Box 2008, Building 4500-S Oak Ridge, TN 37831-6110 Gerilynn R. Moline (molinegr@ornl.gov; 865-576-5134) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008, Building 1505 Oak Ridge, TN 37831-6038 Introduction Evidence is mounting that rising levels of atmospheric CO 2 will have profound effects on future global climates (1-2) . Consequently, many experts agree that technologies are needed to slow, and ultimately stop, further buildup (3-5) . One of the strategies proposed to achieve this aim

394

CARBON DIOXIDE FIXATION.  

SciTech Connect

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

395

Refractive index of tetrahydrothiophene-1,1-dioxide  

Science Journals Connector (OSTI)

Substance name(s): tetrahydrothiophene-1,1-dioxide; tetrahydrothiophene-S,S-dioxide; tetrahydro-thiophene-1,1 ... ,1-dioxide; thiacyclopentane dioxide; tetramethylene sulfone; tetrahydrothiophene 1...

Ch. Wohlfarth

2008-01-01T23:59:59.000Z

396

Dielectric constant of tetrahydrothiophene-1,1-dioxide  

Science Journals Connector (OSTI)

Substance name(s): tetrahydrothiophene-1,1-dioxide; tetrahydrothiophene-S,S-dioxide; tetrahydro-thiophene-1,1 ... ,1-dioxide; thiacyclopentane dioxide; tetramethylene sulfone; tetrahydrothiophene 1...

Ch. Wohlfarth

2008-01-01T23:59:59.000Z

397

Temperature–pressure conditions in coalbed methane reservoirs of the Black Warrior basin: implications for carbon sequestration and enhanced coalbed methane recovery  

Science Journals Connector (OSTI)

Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata. Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 °F (27–52 °C), and geothermal gradient ranges from 6.0 to 19.9 °F/1000 ft (10.9–36.2 °C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 °F/1000 ft (16.4 °C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin. Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas–liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist.

Jack C Pashin; Marcella R McIntyre

2003-01-01T23:59:59.000Z

398

Carbon Sequestration Documentary Wins Coveted Aurora Award | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Sequestration Documentary Wins Coveted Aurora Award Carbon Sequestration Documentary Wins Coveted Aurora Award Carbon Sequestration Documentary Wins Coveted Aurora Award August 26, 2009 - 1:00pm Addthis Washington, D.C. -- A film about carbon sequestration produced with support from the U.S. Department of Energy (DOE) has received a 2009 Gold Aurora Award in the documentary category for nature/environment. Titled Out of the Air - Into the Soil: Land Practices That Reduce Atmospheric Carbon Levels, the documentary discusses the effects that proper landscape management can have on carbon absorption. Documentaries such as this are an important tool in educating the public on steps being taken to mitigate climate change. Co-produced by Prairie Public Broadcasting, Fargo, N.D., and the Plains CO2 Reduction (PCOR) Partnership, which is led by the University of North

399

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

400

Carbon Sequestration Documentary Wins Coveted Aurora Award | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Sequestration Documentary Wins Coveted Aurora Award Carbon Sequestration Documentary Wins Coveted Aurora Award Carbon Sequestration Documentary Wins Coveted Aurora Award August 26, 2009 - 1:00pm Addthis Washington, D.C. -- A film about carbon sequestration produced with support from the U.S. Department of Energy (DOE) has received a 2009 Gold Aurora Award in the documentary category for nature/environment. Titled Out of the Air - Into the Soil: Land Practices That Reduce Atmospheric Carbon Levels, the documentary discusses the effects that proper landscape management can have on carbon absorption. Documentaries such as this are an important tool in educating the public on steps being taken to mitigate climate change. Co-produced by Prairie Public Broadcasting, Fargo, N.D., and the Plains CO2 Reduction (PCOR) Partnership, which is led by the University of North

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling the Sequestration of CO2 in Deep Geological Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

402

Discussion on Carbon Capture and Sequestration Legislation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation April 20, 2010 - 3:45pm Addthis Statement of Dr. James Markowsky, Assistant Secretary for Fossil Energy before the Senate Committee on Energy and Natural Resources on Carbon Capture and Sequestration Legislation, S. 1856, S. 1134, and other Draft Legislative Text. Thank you Mr. Chairman and members of the Committee. I appreciate this opportunity to meet with you this morning to discuss carbon capture and storage (CCS) legislation before the Committee. While this hearing is focused specifically on S. 1856, a bill to amend the Energy Policy Act of 2005 to clarify policies regarding ownership of pore space, introduced by Sen. John Barrasso (R-WY); S.1134, the Responsible Use

403

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

886: Big Sky Regional Carbon Sequestration Partnership - Phase 886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

404

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

405

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Big Sky Regional Carbon Sequestration Partnership - Phase 6: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

406

Research Experience in Carbon Sequestration 2013 Now Accepting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experience in Carbon Sequestration 2013 Now Accepting Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE) and the National Energy Technology Laboratory (NETL), is currently accepting applications for RECS 2013, scheduled for June 2-12, in Birmingham, AL. The deadline to apply is April 20. An intensive science and field-based program, RECS 2013 will combine background briefings with group exercises and field activities at an

407

Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Fauth and Yee Soong J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940 Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001 Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Introduction - Objective - Goals - NETL Facilities * Effect of Solution Chemistry on Carbonation Efficiency - Buffered Solution + NaCl - Buffered Solution + MEA * Effect of Pretreatment on Carbonation Efficiency - Thermal Treatments - Chemical Treatments * Carbonation Reaction with Ultramafic Minerals - Serpentine - Olivine Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Carbonation Reaction with Industrial By-products

408

Workshop on Carbon Sequestration Science - Modeling and Integrated Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Integrated Modeling and Integrated Assessment Howard Herzog MIT Energy Laboratory May 24, 2001 Economic Assessments * Engineering analysis of CO 2 separation and capture * Economic modeling/ integrated assessment of carbon capture and sequestration * Comparison on equal basis of the major sequestration options Economic Modeling Motivation * When might carbon capture and sequestration (CCS) become competitive? * What is its potential scale? * Which technologies look most promising? . . . . And when? * How to see the potential in a general market context? Detailed Reference *Sean Biggs Thesis: S Biggs, S. D., "Sequestering Carbon from Power Plants: The Jury is Still Out," M.I.T. Masters Thesis, (2000). S http://sequestration.mit.edu/pdf/SeanBiggs.pdf What Determines Competitiveness?

409

Geologic Sequestration Training and Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training opportunities for graduate and undergraduate students that will provide the human capital and skills required for implementing and deploying carbon capture and storage technologies. The results of these projects (detailed below) will make a vital contribution to the scientific, technical, and institutional knowledge necessary to establish frameworks for the development of commercial CCS projects. These projects will produce a trained workforce necessary for the

410

Southwest Regional Partnership for Carbon Sequestration--Validation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Socorro, NM 87801-4796 575-835-5403 reid@prrc.nmt.edu Southwest Regional Partnership for Carbon Sequestration-Validation Phase Background The U.S. Department of Energy Regional...

411

Estimating Carbon Sequestration Rates on a Regional Scale  

Science Journals Connector (OSTI)

Two regional case studies on carbon (C) sequestration rate for the forested land of Sweden...?1 year?1. With just two dominant tree species, a comparison was made. In humus layers, Scots pine stands sequestered C...

Björn Berg; Charles McClaugherty

2014-01-01T23:59:59.000Z

412

Offsetting China's CO2 Emissions by Soil Carbon Sequestration  

Science Journals Connector (OSTI)

Fossil fuel emissions of carbon (C) in China in 2000 was ... % or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted ... . A crude estimated potential of soil C sequestration in China is 1...

R. Lal

2004-08-01T23:59:59.000Z

413

Impacts of Geochemical Reactions on Geologic Carbon Sequestration  

Science Journals Connector (OSTI)

In the face of increasing energy demands, geologic CO2 sequestration (GCS) is a promising option to mitigate the adverse effects of climate change. To ensure the environmental sustainability of this option, we must understand the rates and mechanisms of ...

Young-Shin Jun; Daniel E. Giammar; Charles J. Werth

2012-11-06T23:59:59.000Z

414

Biomass carbon sequestration by planted forests in China  

Science Journals Connector (OSTI)

The planted forest area and carbon sequestration have increased significantly in China, because of ... based volume-to-biomass method to estimate the carbon storage by planted forests in China in ... inventories....

Xinliang Xu; Kerang Li

2010-08-01T23:59:59.000Z

415

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network (OSTI)

save the next generation of coal with carbon sequestration.29) California: No to “old” coal power; Casper Star Tribune:Concise guide to Wyoming coal; www.wma-minelife.com/coal/

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

416

Discussion on Carbon Capture and Sequestration Legislation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation April 20, 2010 - 3:45pm Addthis Statement of Dr. James Markowsky, Assistant Secretary for Fossil Energy before the Senate Committee on Energy and Natural Resources on Carbon Capture and Sequestration Legislation, S. 1856, S. 1134, and other Draft Legislative Text. Thank you Mr. Chairman and members of the Committee. I appreciate this opportunity to meet with you this morning to discuss carbon capture and storage (CCS) legislation before the Committee. While this hearing is focused specifically on S. 1856, a bill to amend the Energy Policy Act of 2005 to clarify policies regarding ownership of pore space, introduced by Sen. John Barrasso (R-WY); S.1134, the Responsible Use

417

Carbon Sequestration Kinetic and Storage Capacity of Ultramafic Mining Waste  

Science Journals Connector (OSTI)

Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO2 sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-...

Julie Pronost; Georges Beaudoin; Joniel Tremblay; Faïçal Larachi; Josée Duchesne; Réjean Hébert; Marc Constantin

2011-09-15T23:59:59.000Z

418

The Viscosity of Carbon Dioxide  

Science Journals Connector (OSTI)

26 July 1912 research-article The Viscosity of Carbon Dioxide P. Phillips The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1912-01-01T23:59:59.000Z

419

Photosynthesis and carbon dioxide fixation  

Science Journals Connector (OSTI)

Photosynthesis and carbon dioxide fixation ... Photosynthetic pigments, photosystems, the Calvin cycle, the Hatch-Slack pathway, photorespiration, and photosynthetic yield improvement. ...

Muriel B. Bishop; Carl B. Bishop

1987-01-01T23:59:59.000Z

420

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents (OSTI)

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Thermodynamic Feasibility of the Conversion of Methane Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media Duane H. Smith (dsmith@netl.doe.gov; 304-285-4069), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Kal Seshadri (kal.seshadri@netl.doe.gov; 304-285-4680), Parsons Infrastructure and Technology Group, Morgantown, WV 26505 Joseph W. Wilder (wilder@math.wvu.edu; 304-293-2011), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 (Permanent Address: Dept of Mathematics, P. O. Box 6310, West Virginia University, Morgantown, WV, 26506-6310) Abstract Concerns about the potential effects of rising carbon dioxide levels in the atmosphere have stimulated interest in a number of carbon dioxide sequestration studies. One

422

Carbon dioxide capture and geological storage  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Carbon dioxide capture and geological storage Sam...Nottingham NG12 5GG, UK Carbon dioxide capture and geological storage is a...80-90%. It involves the capture of carbon dioxide at a large industrial...

2007-01-01T23:59:59.000Z

423

Workshop on Carbon Sequestration Science -- Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics Economics Howard Herzog MIT Energy Laboratory May 22, 2001 Cost Components * Capture S Separation S Compression * Sequestration S Transport S Injection Approach * Extract cost data from literature studies S Includes capture and compression S Excludes transportation and injection * Adjust cost data to common economic basis * Construct composite cost model * Conduct sensitivity analyses and other studies with the composite cost model Methodology for Analysis of Economic Studies 7210 Btu/kWh 2884 x 10 6 Btu/hr CO 2 to atmosphere 270 tonnes/hr (0.674 kg/kWh) 400 MW a) Reference Plant (No Capture) 9173 Btu/kWh 2884 x 10 6 Btu/hr 2 CO to atmosphere 28 tonnes/hr (0.088 kg/kWh) 314 MW 242 tonnes/hr (0.769 kg/kWh) b) Capture Plant CO 2 captured CO 2 Captured vs. CO 2 Avoided 0 0.2 0.4 0.6 0.8 1 Reference Plant Capture Plant

424

Received 28 Apr 2013 | Accepted 9 Sep 2013 | Published 15 Oct 2013 Earthworms facilitate carbon sequestration through  

E-Print Network (OSTI)

carbon sequestration through unequal amplification of carbon stabilization compared with mineralization carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon

Neher, Deborah A.

425

Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use  

E-Print Network (OSTI)

Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

Rissman, Adena

426

Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)  

E-Print Network (OSTI)

Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

Daniels, Jeffrey J.

427

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

428

POLYMER SOLUTIONS AND SOLVENT-SUPERCRITICAL CARBON DIOXIDE STUDIES APPLIYING PC-SAFT.  

E-Print Network (OSTI)

??ABSTRACTIn this thesis is presented the phase equilibria predictions for several polymer solutions and polymer-solvent-solvent systems with the presence of supercritical carbon dioxide (scCO2) applying… (more)

Catano-Barrera, Alma

2011-01-01T23:59:59.000Z

429

Big Sky Carbon Sequestration Partnership | Open Energy Information  

Open Energy Info (EERE)

Sky Carbon Sequestration Partnership Sky Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name Big Sky Carbon Sequestration Partnership Address 2327 University Way, 3rd Floor Place Bozeman, Montana Zip 59715 Region Pacific Northwest Area Phone number 406-994-3755 Notes One of the US DOE's seven regional carbon sequestration partnerships. Coordinates 45.6565752°, -111.041813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6565752,"lon":-111.041813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins  

SciTech Connect

The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

2014-01-01T23:59:59.000Z

431

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

432

Reducing risk in basin scale sequestration: A Bayesian model selection framework for improving detection  

E-Print Network (OSTI)

Geological CO[subscript 2] sequestration is a key technology for mitigating atmospheric greenhouse gas concentrations while providing low carbon energy. Deployment of sequestration at scales necessary for a material ...

Seto, C.J.

433

Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Of Pertechnetate (99TcO4–) By Nano Zerovalent Iron (nZVI) Transformed By Abiotic Sulfide. Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano...

434

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2003-01-01T23:59:59.000Z

435

2000): Soil carbon sequestration and land-use change: processes and potential  

E-Print Network (OSTI)

matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil

W. M. Post; K. C. Kwon

436

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southwest Regional Partnership on Carbon Sequestration The Southwest Regional Partnership on Carbon Sequestration (SWP) is investigating the CO 2 storage potential of the abundant oil and gas reservoirs, unmineable coal, and saline formations within the southwestern United States. In 2010, field-scale pilot injection tests were completed, paving the way for larger scale commercial projects, including an EOR project in Texas using an anthropogenic source of CO 2 . SWP draws on the experience of professionals within the fields of geology, engineering, economics, public policy, public outreach, and education. Stakeholders in SWP projects include private industry,

437

Forestry-based Carbon Sequestration Projects in Africa: Potential benefits  

Open Energy Info (EERE)

Forestry-based Carbon Sequestration Projects in Africa: Potential benefits Forestry-based Carbon Sequestration Projects in Africa: Potential benefits and challenges Jump to: navigation, search Tool Summary Name: Forestry-based Carbon Sequestration Projects in Africa: Potential benefits and challenges Agency/Company /Organization: Natural Resources Forum Sector: Land Focus Area: Forestry Topics: Implementation, GHG inventory, Resource assessment Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: www.worldagroforestry.org/downloads/publications/PDFs/JA08145.PDF UN Region: "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

438

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

439

Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim  

E-Print Network (OSTI)

1 Uncertainty Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration Abstract The effect of various stochastic factors like weather% to 10% for the East Texas region. #12;3 Uncertainty Discounting for Land-Based Carbon Sequestration 1

McCarl, Bruce A.

440

The Physical and Chemical Mechanisms Responsible for Carbon Sequestration in Soil Microaggregates  

E-Print Network (OSTI)

The Physical and Chemical Mechanisms Responsible for Carbon Sequestration in Soil Microaggregates aggregate formation and stability have profound implications to understanding and enhancing C sequestration in soil. Soil microaggregates are particularly crucial to long-term sequestration because they protect C

McCarthy, John F.

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands  

E-Print Network (OSTI)

1 DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands: An Economic affect program cost and net carbon sequestration. The focus on the provisions of tree planting agreements the cost and net carbon gains under a sequestration program. We will also investigate design aspects

McCarl, Bruce A.

442

Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1*  

E-Print Network (OSTI)

Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1* , L. S. Fisher1 , J of the potential for carbon sequestration in degraded mine lands, we have found that based on laboratory and field and its influence on carbon sequestration. Also, addition of fly ash to soil, while generally considered

Tiquia-Arashiro, Sonia M.

443

Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity analysis  

E-Print Network (OSTI)

Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity the application of the adjoint method to develop three-dimensional maps of carbon sequestration efficiency. Sequestration efficiency (the percentage of carbon injected at a continuous point source that remains

Follows, Mick

444

19.1 Introduction Carbon sequestration programs on land and in the  

E-Print Network (OSTI)

Chapter 19 19.1 Introduction Carbon sequestration programs on land and in the oceans are gaining sequestration programs emphasize storing carbon in soil organic matter in agri- cultural fields,in woody sequestration and management include the feasibil- ity and permanence of the carbon sequestered, the scale

Jackson, Robert B.

445

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger  

E-Print Network (OSTI)

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger://csite.eds.ornl.gov PROJECT DESCRIPTION The Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project conducts research of switchgrass growing in the field. #12;Carbon Sequestration in Terrestrial Ecosystems (CSiTE) tion of inputs

446

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach  

E-Print Network (OSTI)

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion of terrestrial carbon (C) sequestration is critical for the success of any policies geared toward stabilizing. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger, Sustainability of terrestrial carbon sequestration

DeLucia, Evan H.

447

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-Print Network (OSTI)

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

448

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network (OSTI)

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

Hilley, George

449

Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy choices?  

E-Print Network (OSTI)

Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While Carbon Capture and Sequestration (CCS) technologies are receiving increasing atten- tion, mainly

Paris-Sud XI, Université de

450

What is the optimal heather moorland management regime for carbon sequestration?  

E-Print Network (OSTI)

What is the optimal heather moorland management regime for carbon sequestration? Supervisors: Prof, the Muirburn Code has no evidence base with regard to carbon sequestration. Given the increased concern use moorland carbon sequestration to offset emissions, it is essential that the most appropriate land

Guo, Zaoyang

451

Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and  

E-Print Network (OSTI)

Global Change Biology (2000) 6, 317­328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration

Post, Wilfred M.

452

Evaluating the options for carbon sequestration Clair Gough and Simon Shackley  

E-Print Network (OSTI)

Evaluating the options for carbon sequestration Clair Gough and Simon Shackley Tyndall Centre for carbon sequestration Tyndall Centre Technical Report No. 2 November 2002 This is the final report from Tyndall research project IT1.22 (Carbon sequestration: a pilot stage multi-criteria evaluation

Watson, Andrew

453

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector  

E-Print Network (OSTI)

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

Zhou, Chongwu

454

Carbon storage and sequestration by trees in urban and community areas of the United States  

E-Print Network (OSTI)

Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

455

On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money?  

E-Print Network (OSTI)

On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money? Tanveer A. Butt and Bruce A to the reduction in GHG emissions through what is known as carbon sequestration, which has gained attention mitigation policy, the comparative potential of carbon sequestration as a GHG mitigation alternative

McCarl, Bruce A.

456

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations  

E-Print Network (OSTI)

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

Mills, Richard

457

Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies  

E-Print Network (OSTI)

Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies, Technology and Policy Program #12;2 #12;Pathways to Carbon Capture and Sequestration in India: Technologies to control India's emissions will have to be a global priority. Carbon capture and sequestration (CCS) can

458

Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils  

E-Print Network (OSTI)

Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils W.M. Post, R.C. Izaurralde and retain soil carbon can lead to specific manipulations for enhancement of soil C sequestration for an integrated evaluation of soil carbon sequestration methods are presented. Keywords: soil carbon, greenhouse

McCarl, Bruce A.

459

Soil carbon sequestration and land-use change: processes and potential  

E-Print Network (OSTI)

Soil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration

460

Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship  

E-Print Network (OSTI)

Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship experiments combining EOR with carbon sequestration. "I thought this was a win-win solution," she said. "You of a research team conduct- ing a large-scale test of carbon sequestration. "I knew I wanted to learn more about

Yang, Zong-Liang

Note: This page contains sample records for the topic "dioxide sequestration prediction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-Print Network (OSTI)

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

462

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration  

E-Print Network (OSTI)

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration Zhenxue Dai a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration to the atmosphere.1-3 The Big Sky Carbon Sequestration Partnership (BSCSP) is one of seven partnerships tasked

Lu, Zhiming

463

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001  

E-Print Network (OSTI)

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001 Caldeira, K for Research on Ocean Carbon Sequestration (DOCS) *Climate and Carbon Cycle Modeling Group, Lawrence Livermore carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection

464

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems  

E-Print Network (OSTI)

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 � uptake -- CO2

Roegner, Matthias

465

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China  

E-Print Network (OSTI)

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

466

An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical Methods in Engineering  

E-Print Network (OSTI)

PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec

Gracie, Robert

467

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-Print Network (OSTI)

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

468

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS  

E-Print Network (OSTI)

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS M. A. de and institutional perceptions for future carbon sequestration projects. INTRODUCTION The United States Department scrutiny. DOE, NEDO and NRC agreed to an initial field experiment on ocean carbon sequestration via direct

469

Decision trees for the severity and recurrence of acute splenic sequestration in sickle cell disease  

E-Print Network (OSTI)

- 1 - Decision trees for the severity and recurrence of acute splenic sequestration in sickle cell Background Acute splenic sequestration is one of the major clinical forms of sickle cell disease. This potentially life-threatening complication is defined by a rapid sequestration of sickle red blood cells

Emilion, Richard

470

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

471

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

SciTech Connect

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

472

Portfolio analysis of carbon sequestration technologies and barriers to adoption.  

E-Print Network (OSTI)

??The effective targeting of investment funds and research efforts to reduce industrial carbon dioxide (CO2) emissions, while preserving access to fossil fuel energy resources, requires… (more)

Young-Lorenz, Jillian D

2013-01-01T23:59:59.000Z

473

Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water  

SciTech Connect

Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO{sub 2} and CH{sub 4} at three different seepage rates reveals that ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO{sub 2} solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO{sub 2} is stable between the deep regions where supercritical CO{sub 2} is stable and the shallow regions where gaseous CO{sub 2} is stable. The transition from liquid to gaseous CO{sub 2} is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO{sub 2} is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO{sub 2} migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO{sub 2} potentially preventing ebullition, depending on the CO{sub 2} leakage flux. However, as CO{sub 2} continues to move upward through shallower depths, CO{sub 2} solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO{sub 2} and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO{sub 2} leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO{sub 2} migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-06-17T23:59:59.000Z

474

CO{sub 2} SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. There were three main objectives for this reporting period, which related to obtaining accurate parameters for reservoir model description and modeling reservoir performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. The first objective was to collect and desorb gas from 10 sidewall core coal samples from an Anadarko Petroleum Corporation well (APCL2 well) at approximately 6,200-ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. The second objective was to measure sorptive capacities of these Wilcox coal samples for CO{sub 2}, CH{sub 4}, and N{sub 2}. The final objective was to contract a service company to perform pressure transient testing in Wilcox coal beds in a shut-in well, to determine permeability of deep Wilcox coal. Bulk density of the APCL2 well sidewall core samples averaged 1.332 g/cc. The 10 sidewall core samples were placed in 4 sidewall core canisters and desorbed. Total gas content of the coal (including lost gas and projected residual gas) averaged 395 scf/ton on an as-received basis. The average lost gas estimations were approximately 45% of the bulk sample total gas. Projected residual gas was 5% of in-situ gas content. Six gas samples desorbed from the sidewall cores were analyzed to determine gas composition. Average gas composition was approximately 94.3% methane, 3.0% ethane, and 0.7% propane, with traces of heavier hydrocarbon gases. Carbon dioxide averaged 1.7%. Coal from the 4 canisters was mixed to form one composite sample that was used for pure CO{sub 2}, CH{sub 4}, and N{sub 2} isotherm analyses. The composite sample was 4.53% moisture, 37.48% volatile matter, 9.86% ash, and 48.12% fixed carbon. Mean vitrinite reflectance was 0.54%. Coal rank was high-volatile C to B bituminous. Comparison of the desorbed gas content (395 scf/ton, as received) at reservoir pressure (2,697 psi) with the sorption isotherm indicates that Lower Calvert Bluff coal at this well site is oversaturated, but lost gas may have been overestimated. This high gas content suggests that little or no depressurization would be required to initiate methane production. Sorption isotherms results indicate that the sorptive capacity of CO{sub 2} is about 2.5 times that of CH{sub 4} at 1,000 psia. This ratio is similar to that of higher rank bituminous coals from other basins (e.g., Carroll, and Pashin, 2003), and it is very low in comparison to results of other low-rank coals and to the values that we used in our preliminary reservoir modeling. If this value from the APCL2 well is representative, Wilcox coals in this area will sequester less CO{sub 2} on a per ton basis than we had earlier inferred. However, because measured methane contents are higher, enhanced coalbed methane production potential is greater than we earlier inferred. Pressure transient testing for determining coal fracture permeability will be conducted soon by Pinnacle Technologies. The data from these analyses will be used to finalize our coal model for the reservoir simulation phase of the project.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2005-02-01T23:59:59.000Z

475

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z