National Library of Energy BETA

Sample records for dioxide sequestration cxs

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  3. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  5. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  6. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  7. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  8. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  9. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of ...

  10. Geomechanical risks in coal bed carbon dioxide sequestration

    SciTech Connect (OSTI)

    Myer, Larry R.

    2003-07-01

    The purpose of this report is to summarize and evaluate geomechanical factors which should be taken into account in assessing the risk of leakage of CO{sub 2} from coal bed sequestration projects. The various steps in developing such a project will generate stresses and displacements in the coal seam and the adjacent overburden. The question is whether these stresses and displacements will generate new leakage pathways by failure of the rock or slip on pre-existing discontinuities such as fractures and faults. In order to evaluate the geomechanical issues in CO{sub 2} sequestration in coal beds, it is necessary to review each step in the process of development of such a project and evaluate its geomechanical impact. A coal bed methane production/CO{sub 2} sequestration project will be developed in four steps: (1) Formation dewatering and methane production; (2) CO{sub 2} injection with accompanying methane production; (3) Possible CO{sub 2} injection for sequestration only; and The approach taken in this study was to review each step: Identify the geomechanical processes associated with it, and assess the risks that leakage would result from these processes.

  11. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  12. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcys law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  13. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical

  14. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  15. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcys law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Greens function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  16. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accuratelyeven for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  17. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect (OSTI)

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  18. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): A Minimally Invasive Method

    SciTech Connect (OSTI)

    Newmark, R L; Ramirez, A L; Daily, W D

    2002-08-05

    Successful geologic sequestration of carbon dioxide (CO{sub 2}), will require monitoring the CO{sub 2} injection to confirm the performance of the caprock/reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now used for site characterization and to monitor subsurface migration of fluids (i.e., leaking underground tanks, infiltration events, steam floods, contaminant movement, and to assess the integrity of engineered barriers). When electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, the method is nearly transparent to reservoir operators, and reduces the need for additional drilling. Using numerical simulations and laboratory experiments, we have conducted sensitivity studies to determine the potential of ERT methods to detect and monitor the migration of CO{sub 2} in the subsurface. These studies have in turn been applied to the design and implementation of the first field casing surveys conducted in an oil field undergoing a CO{sub 2} flood.

  19. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Carbon Sequestration

    SciTech Connect (OSTI)

    Jikich, Sinisha; McLendon, Robert; Seshadri, Kal; Irdi, Gino; Smith, Duane

    2009-01-01

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO2) in coal cores are important for designing enhanced coalbed-methane/CO2-sequestration field projects. Sorption isotherms measured in the laboratory can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO2. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core. and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated

  20. Carbon dioxide transport and sorption behavior in confined coal cores for carbon sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, R.; Seshadri, K.; Irdi, G.; Smith, D.H.

    2009-02-15

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO{sub 2}) in coal cores are important for designing enhanced coalbed-methane/CO{sub 2}-sequestration field projects. Many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh no. 8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO{sub 2}. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core and that diffusion and sorption progressed slowly. The amounts of CO{sub 2} sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh no. 8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO{sub 2} source. Also, the calculated isotherms showed that less CO{sub 2} was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure because of CO{sub 2} sorption.

  1. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  2. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  3. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Joan M. Ogden

    2005-11-29

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  4. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2003-06-26

    In this semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2002 through March 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  5. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2004-05-01

    In this third semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2003 through March 2004. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  6. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2003-12-01

    In this second semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period March 2003 through September 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  7. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    SciTech Connect (OSTI)

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  12. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore

  13. EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS

    SciTech Connect (OSTI)

    Rogers, John

    2014-08-31

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to

  14. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    SciTech Connect (OSTI)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  15. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration

    SciTech Connect (OSTI)

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2006-04-21

    Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201 structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.

  16. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  17. The Water, Energy, and Carbon Dioxide Sequestration Simulation Model (WECSsim). A user's manual

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor; Heath, Jason E.; Dewers, Thomas A.; Gutierrez, Karen A.; Malczynski, Leonard A.; Borns, David James; McNemar, Andrea

    2014-01-01

    The Water, Energy, and Carbon Sequestration Simulation Model (WECSsim) is a national dynamic simulation model that calculates and assesses capturing, transporting, and storing CO2 in deep saline formations from all coal and natural gas-fired power plants in the U.S. An overarching capability of WECSsim is to also account for simultaneous CO2 injection and water extraction within the same geological saline formation. Extracting, treating, and using these saline waters to cool the power plant is one way to develop more value from using saline formations as CO2 storage locations. WECSsim allows for both one-to-one comparisons of a single power plant to a single saline formation along with the ability to develop a national CO2 storage supply curve and related national assessments for these formations. This report summarizes the scope, structure, and methodology of WECSsim along with a few key results. Developing WECSsim from a small scoping study to the full national-scale modeling effort took approximately 5 years. This report represents the culmination of that effort. The key findings from the WECSsim model indicate the U.S. has several decades' worth of storage for CO2 in saline formations when managed appropriately. Competition for subsurface storage capacity, intrastate flows of CO2 and water, and a supportive regulatory environment all play a key role as to the performance and cost profile across the range from a single power plant to all coal and natural gas-based plants' ability to store CO2. The overall system's cost to capture, transport, and store CO2 for the national assessment range from $74 to $208 / tonne stored ($96 to 272 / tonne avoided) for the first 25 to 50% of the 1126 power plants to between $1,585 to well beyond $2,000 / tonne stored ($2,040 to well beyond $2,000 / tonne avoided) for the remaining 75 to 100% of the plants. The latter range, while extremely

  18. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies

    SciTech Connect (OSTI)

    Newmark, R L; Ramierz, A L; Daily, W D

    2001-02-28

    If geologic formations are used to sequester carbon dioxide (CO{sub 2}), monitoring the CO{sub 2} injection will be required to confirm the performance of the reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now possible using it 3D technique called electrical resistance tomography (ERT). Surveys are commonly conducted utilizing vertical arrays of point electrodes in a cross-well configuration. Recent field results obtained using steel well casings as electrodes are promising. When 3D ERT imaging can be performed using existing well casings as long electrodes, the need for additional drilling of observation wells is minimized. Using a model patterned after an oil field undergoing CO{sub 2} flood, forward and inverse simulations of ERT surveys have been run to test the sensitivity of the method to changes resulting from CO{sub 2} migration. Factors considered include resistivity contrast, anomaly proximity to electrodes, anomaly size and shape, measurement noise, and the electrode configuration used to perform the measurements. Field data suggest that CO{sub 2} migration changes the resistivity of a layer, producing an anomalous region. In our numerical study, the anomalous region s resistivity ranges from 0.2 to 10 times that of the initial value. Its geometry ranges from a thin, horizontal finger to a planar, horizontal mass having vertical protrusions simulating leakage of CO{sub 2} through caprock. Results of simulations run assuming that well casings are used as long electrodes or with arrays of point electrodes (simulating high resolution surveys) show useful information for even the narrowest simulated CO{sub 2} fingers.

  19. EFRC Carbon Capture and Sequestration Activities at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

  20. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  1. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  2. DE-SC0004118 (Wong & Lindquist). Final Report: Changes of Porosity, Permeability and Mechanical Strength Induced by Carbon Dioxide Sequestration.

    SciTech Connect (OSTI)

    WONG, TENG-FONG; Lindquist, Brent

    2014-09-22

    In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  6. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  7. Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-10-02

    Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called ?¢????an open path device?¢??? to measure CO2 concentrations near the ground above a CO2 storage area.

  8. Mobilization of Metals from Eau Claire Siltstone and the Impact of Oxygen under Geological Carbon Dioxide Sequestration Conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Kukkadapu, Ravi K.; Krogstad, Eirik J.; Newburn, Matthew K.; Cantrell, Kirk J.

    2014-09-01

    Geologic CO2 sequestration (GCS) has been proposed as a viable strategy to reduce anthropogenic CO2 emission; however, the increased cost that will be incurred by fossil energy production facilities is a deterrent to implementation of this technology. Allowing impurities in the effluent CO2 stream could result in significant financial and energy savings for CO2 capture and separation. However, impurities such as O2 have the potential to influence the redox state and alter the geochemical interactions that occur within GCS reservoirs, which increases the concern for CO2 and brine leakage from the storage reservoir as well as the overlying groundwater contamination. In this work, to investigate the impact of O2 co-injected with CO2 on the geochemical interactions, especially the trace metal mobilization from a GCS reservoir rock, batch studies were conducted with Eau Claire siltstone collected from CO2 sequestration sites. The rock was reacted with synthetic brines in contact with either 100% CO2 or a mixture of 95 mole% CO2-5 mole% O2 at 10.1 MPa and 75 C. Both microscopic and spectroscopic measurements, including 57Fe-Mssbauer spectroscopy, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, powder X-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and chemical extraction were combined in this study to investigate reaction mechanisms. The Eau Claire siltstone contains quartz (52 wt%), fluorapatite (40%), and aluminosilicate (5%) as major components, and dolomite (2%), pyrite (1%), and small-particle-/poorly-crystalline Fe-oxides as minor components. With the introduction of CO2 into the reaction vessel containing rock and brine, the leaching of small amounts of fluorapatite, aluminosilicate, and dolomite occurred. Trace metals of environmental concern, including Pb, As, Cd, and Cu were detected in the leachate with concentrations up to 400 ppb in the CO2-brine-rock reaction system within 30 days. In the presence of O2

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production

    SciTech Connect (OSTI)

    Brandon C. Nuttall; Cortland F. Eble; James A. Drahovzal; R. Marc Bustin

    2005-09-30

    Carbonaceous (black) Devonian gas shales underlie approximately two-thirds of Kentucky. In these shales, natural gas occurs in the intergranular and fracture porosity and is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO2 is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO2. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine both CO2 and CH4 adsorption isotherms. Sidewall core samples were acquired to investigate CO2 displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO2 adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton in the more organic-rich zones. There is a direct linear correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO2 adsorption capacity increases with increasing organic carbon content. Initial volumetric estimates based on these data indicate a CO2 sequestration capacity of as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. In the Big Sandy Gas Field area of eastern Kentucky, calculations using the net thickness of shale with 4 percent or greater total organic carbon, indicate that 6.8 billion tonnes of CO2 could be sequestered in the five county area. Discounting the uncertainties in reservoir volume and injection efficiency, these results indicate that the black shales of Kentucky are a potentially large geologic sink for CO2. Moreover, the extensive occurrence of gas shales in Paleozoic and Mesozoic

  15. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  16. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  17. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Greening up fossil fuels with carbon sequestration Researchers make progress fighting climate change by capturing carbon dioxide from power plants and storing it deep underground in geological reservoirs March 25, 2013 Greening up fossil fuels with carbon sequestration Most of the world's existing energy supply is stored underground in

  18. Terrestrial sequestration

    ScienceCinema (OSTI)

    Charlie Byrer

    2010-01-08

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  19. Terrestrial sequestration

    SciTech Connect (OSTI)

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  20. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sequestration Program | Department of Energy Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2

  1. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  2. Carbon Sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  4. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  5. RECS student sequestration program

    SciTech Connect (OSTI)

    2007-12-31

    The 2007 Research Experiment in Carbon Sequestration (RECS) met at the Montana State University (MSU) and a variety of field sites over the 10-day period of July 29 - Aug 10. This year's group consisted of 17 students from graduate and doctoral programs in the United States and Canada, as well as early career professionals in fields related to carbon mitigation. Appropriately, because greenhouse gas reduction and storage is a global problem, the group included seven international students, from France, Iran, Paraguay, Turkey, Russia and India. Classroom talks featured experts from academia, government, national laboratories, and the private sector, who discussed carbon capture and storage technologies and related policy issues. Then, students traveled to Colstrip, Montana to visit PPL Montana's coal-fired power plant and view the local geology along the Montana/Wyoming border. Finally, students spent several days in the hands-on work at ZERT, using carbon dioxide detection and monitoring equipment. 1 photo.

  6. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  7. OSTIblog Articles in the carbon dioxide Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    regions and seasons, increasing intensity and frequency of storm events, flooding and... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  8. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold W.

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  9. Carbon Sequestration.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concepts Current Sequestration Methods Novel Concepts * Glacial Storage * Biogenic Methane * Mineralization * Waste Streams Recycling * Calcium Carbonate Hydrates Glacial...

  10. Pacific Northwest National Laboratory--Capture and Sequestration Support Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest National Laboratory - Capture and Sequestration Support Services Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to reduce green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS)-the capture of CO 2 from large point sources and subsequent injection into deep

  11. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect (OSTI)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  12. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration...

    Office of Scientific and Technical Information (OSTI)

    Title: W.A. Parish Post-Combustion COsub 2 Capture and Sequestration Project Phase 1 ... and reduce its emissions of carbon dioxide (COsub 2) and other greenhouse gases (GHGs). ...

  13. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  14. Regional Carbon Sequestration Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  15. Sequestration: isolating the issues

    SciTech Connect (OSTI)

    Blankinship, S.

    2007-06-15

    A question and answer session between Steve Blankinship and David Ball, Battelle program manager and Neeraj Gupta, research leader at Battelle digs deep into one of USA's largest CO{sub 2} sequestration research programs. Under the US Department of Energy's Regional Carbon Sequestration Partnership Program, the Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Ohio-based Battelle, has assessed the technical, economic and social feasibility of carbon sequestration in the region. In the second phase, small-scale field tests of sequestration opportunities will be conducted. Theoretically, North America, and the region in particular, which has many coal-fired power plants has the potential to store centuries worth of CO{sub 2} from anthropogenic CO{sub 2} point sources. The additional cost of sequestration to coal-fired power generation could be 10-40% with main part of the costs relating to the energy needed to capture CO{sub 2} and compress it to pipeline pressures. 3 photos.

  16. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  17. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    SciTech Connect (OSTI)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  18. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  19. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing

  20. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct

  1. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    SciTech Connect (OSTI)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  2. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  3. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  4. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  5. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  6. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  7. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  8. SciTech Connect: "carbon sequestration"

    Office of Scientific and Technical Information (OSTI)

    carbon sequestration" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "carbon sequestration" Semantic Semantic Term Title: Full Text:...

  9. Carbon Sequestration Initiative CSI | Open Energy Information

    Open Energy Info (EERE)

    Sequestration Initiative CSI Jump to: navigation, search Name: Carbon Sequestration Initiative (CSI) Place: Cambridge, Massachusetts Zip: MA 02139-4307 Sector: Carbon Product:...

  10. Sequestration Options for the West Coast States

    SciTech Connect (OSTI)

    Myer, Larry

    2006-04-30

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source

  11. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  12. CX-009374: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  13. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect (OSTI)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  14. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name: Big Sky Carbon Sequestration Partnership Address: 2327 University...

  15. Geomechanical risks in coal bed carbon dioxide sequestration...

    Office of Scientific and Technical Information (OSTI)

    Authors: Myer, Larry R. Publication Date: 2003-07-01 OSTI Identifier: 815530 Report Number(s): LBNL--53250 R&D Project: 80XM01; TRN: US200319%%325 DOE Contract Number: ...

  16. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  17. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect (OSTI)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  18. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2005-05-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

  19. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    SciTech Connect (OSTI)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  20. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    SciTech Connect (OSTI)

    Thistle, D

    2008-09-30

    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim

  1. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  2. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  3. In-Situ MVA of CO2 Sequestration Using Smart Field Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In-Situ MVA of CO 2 Sequestration Using Smart Field Technology Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an

  4. CO2 Sequestration short course

    SciTech Connect (OSTI)

    DePaolo, Donald J.; Cole, David R; Navrotsky, Alexandra; Bourg, Ian C

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  5. The future of carbon sequestration. 2nd ed.

    SciTech Connect (OSTI)

    2007-04-15

    The report is an overview of the opportunities for carbon sequestration to reduce greenhouse gas emissions. It provides a concise look at what is driving interest in carbon sequestration, the challenges faced in implementing carbon sequestration projects, and the current and future state of carbon sequestration. Topics covered in the report include: Overview of the climate change debate; Explanation of the global carbon cycle; Discussion of the concept of carbon sequestration; Review of current efforts to implement carbon sequestration; Analysis and comparison of carbon sequestration component technologies; Review of the economic drivers of carbon sequestration project success; and Discussion of the key government and industry initiatives supporting carbon sequestration.

  6. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  7. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  9. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox

  10. Structural Sequestration of Uranium in Bacteriogenic Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford ... Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore ...

  11. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  12. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Greening up fossil...

  13. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  14. CX-014190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Borehole-Deployed Electric Field Sources and Sensors for Permanent Monitoring of Carbon Dioxide Sequestration CX(s) Applied: B3.1Date: 10/20/2015 Location(s): IllinoisOffices(s): Chicago Office

  15. CX-012825: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Borehole-Deployed Electric Field Sources and Sensors for Permanent Monitoring of Carbon Dioxide Sequestration CX(s) Applied: B3.1, B3.6Date: 41905 Location(s): IllinoisOffices(s): Chicago Office

  16. CX-008945: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Simplified Predictive Models for Carbon Dioxide Sequestration Performance Assessment CX(s) Applied: A9 Date: 08/15/2012 Location(s): Ohio, California Offices(s): National Energy Technology Laboratory

  17. CX-012159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZERT II: Investigating the Fundamental Issues of Carbon Dioxide Sequestration CX(s) Applied: A1, A9, B3.6 Date: 05/08/2014 Location(s): Montana Offices(s): National Energy Technology Laboratory

  18. CX-008441: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir (Task 17 - Office Work) CX(s) Applied: A9, A11 Date: 06/26/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  19. CX-008440: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir (Task 17 - Seismic Survey) CX(s) Applied: B3.1 Date: 06/26/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  20. CX-012158: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    ZERT II: Investigating the Fundamental Issues of Carbon Dioxide Sequestration CX(s) Applied: B3.6 Date: 05/08/2014 Location(s): Montana Offices(s): National Energy Technology Laboratory

  1. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  2. Forestry-based Carbon Sequestration Projects in Africa: Potential...

    Open Energy Info (EERE)

    Abstract "Carbon sequestration through forestry and agroforestry can help mitigate global warming. For Africa, carbon sequestration also represents an opportunity to fund...

  3. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report ...

  4. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Energy Savers [EERE]

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  5. Soil carbon sequestration and land use change associated with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil carbon sequestration and land use change associated with biofuel production: empirical evidence Title Soil carbon sequestration and land use change associated with biofuel...

  6. 2010 Carbon Sequestration Atlas of the United States and Canada...

    Open Energy Info (EERE)

    10 Carbon Sequestration Atlas of the United States and Canada: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Carbon Sequestration Atlas of the...

  7. Research Experience in Carbon Sequestration 2010 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Now Accepting Applications Research Experience in Carbon Sequestration 2010 Now ... (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. ...

  8. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration ...

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  10. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  11. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  12. Regional partnerships lead US carbon sequestration efforts

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    During the sixth annual conference on carbon capture and sequestration, 7-10 May 2007, a snapshot was given of progress on characterization efforts and field validation tests being carried out through the Carbon Sequestration Regional Partnership Initiative. The initiative is built on the recognition that geographical differences in fossil fuel/energy use and CO{sub 2} storage sinks across North America will dictate approaches to carbon sequestration. The first characterization phase (2003-2005) identified regional opportunities and developed frameworks to validate and deploy technologies. The validation phase (2005-2009) includes 10 enhanced oil recovery/enhanced gas recovery field tests in progress in Alberta and six US states and is applying lessons learned from these operations to sequestration in unmineable coal seams. Storage in saline formations are the focus of 10 field tests, and terrestrial sequestration will be studied in 11 other projects. 1 tab., 3 photos.

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  15. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  17. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  18. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  19. Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada

    Broader source: Energy.gov [DOE]

    There could be as much as 5,700 years of carbon dioxide storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy’s Carbon Sequestration Atlas (Atlas III).

  20. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, R.M.; Lu, Peng; Allen, D.E.; Soong, Yee; Hedges, S.W.; Fu, J.K.; Dobbs, C.L.; DeGalbo, A.D.; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20 °C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  1. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  2. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect (OSTI)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert

  3. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  4. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  5. Carbon Sequestration Documentary Wins Coveted Aurora Award

    Broader source: Energy.gov [DOE]

    A film about carbon sequestration produced with support from the U.S. Department of Energy has received a 2009 Gold Aurora Award in the documentary category for nature/environment.

  6. Geologic Sequestration Training and Research Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training...

  7. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    SciTech Connect (OSTI)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  8. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  9. Carbon sequestration in depleted oil shale deposits

    SciTech Connect (OSTI)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  10. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect (OSTI)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  11. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of

  12. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  13. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  14. Small-Scale Carbon Sequestration Field Test Yields Significant...

    Office of Environmental Management (EM)

    Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm ...

  15. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  16. New Jersey Joins the Energy Department's Carbon Sequestration Regional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Program | Department of Energy Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program June 24, 2009 - 1:00pm Addthis Washington, DC -- The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies.

  17. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  18. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2005-08-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of October 1, 2004--March 31, 2005. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. Action plans for possible Phase 2 carbon sequestration pilot tests in the region are completed, and a proposal was developed and submitted describing how the Partnership may develop and carry out appropriate pilot tests. The content of this report focuses on Phase 1 objectives completed during this reporting period.

  19. Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings

    SciTech Connect (OSTI)

    2006-07-01

    A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

  20. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions through forestry, agriculture, and use of biomass-based fuels to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  1. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  2. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  3. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2005-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  4. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  5. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    SciTech Connect (OSTI)

    Howard J. Herzog; E. Eric Adams

    2005-04-01

    On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

  6. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  7. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of

  8. Management of water extracted from carbon sequestration projects

    SciTech Connect (OSTI)

    Harto, C. B.; Veil, J. A.

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water

  9. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state

  10. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, Robert; Lu, Peng; Allen, Douglas; Soong, Yee; Hedges, Sheila; Fu, Jaw K.; Dobbs, Charles L.; Degalbo, Angelo; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20 C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  11. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, Robert; Lu, Peng; Allen, Douglas; Soong, Yee; Hedges, Sheila; Fu, Jaw K.; Dobbs, Charles L.; Degalbo, Angelo; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20º C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  12. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in

  13. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    SciTech Connect (OSTI)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  14. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  15. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    SciTech Connect (OSTI)

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  16. Carbon Sequestration Atlas and Interactive Maps from the Southwest Regional Partnership on Carbon Sequestration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McPherson, Brian

    In November of 2002, DOE announced a global climate change initiative involving joint government-industry partnerships working together to find sensible, low cost solutions for reducing GHG emissions. As a result, seven regional partnerships were formed; the Southwest Regional Partnership on Carbon Sequestration (SWP) is one of those. These groups are utilizing their expertise to assess sequestration technologies to capture carbon emissions, identify and evaluate appropriate storage locations, and engage a variety of stakeholders in order to increase awareness of carbon sequestration. Stakeholders in this project are made up of private industry, NGOs, the general public, and government entities. There are a total of 44 current organizations represented in the partnership including electric utilities, oil and gas companies, state governments, universities, NGOs, and tribal nations. The SWP is coordinated by New Mexico Tech and encompasses New Mexico, Arizona, Colorado, Oklahoma, Utah, and portions of Kansas, Nevada, Texas, and Wyoming. Field test sites for the region are located in New Mexico (San Juan Basin), Utah (Paradox Basin), and Texas (Permian Basin).[Taken from the SWP C02 Sequestration Atlas] The SWP makes available at this website their CO2 Sequestration Atlas and an interactive data map.

  17. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  18. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the fifth and sixth project

  19. geologic-sequestration | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL has partnered with Tuskegee University (TU) to provide fundamental research and hands-on training and networking opportunities to undergraduate students at TU in the area of CO2 capture and transport with a focus on the development of the most economical separation methods for pre-combustion CO2 capture. The bulk of

  20. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect (OSTI)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  1. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  2. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  3. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  4. Rock Physics of Geologic Carbon Sequestration/Storage (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Rock Physics of Geologic Carbon Sequestration/Storage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon Sequestration/Storage This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties

  5. DOE Science Showcase - Carbon Sequestration | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Carbon Sequestration Map of United States with the Department of Energy's network of seven Regional Carbon Sequestration Partnerships. Image from the National Energy Technology Laboratory. The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP). Image Credit: National Energy Technology Laboratory (NETL). Reliance on fossil fuels, expanded transportation and deforestation has resulted

  6. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect (OSTI)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for

  7. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW ...

  8. Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL

    Office of Scientific and Technical Information (OSTI)

    Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL SCIENCES The main objective of this project is to...

  9. Recovery Act: Geologic Sequestration Training and Research (Technical...

    Office of Scientific and Technical Information (OSTI)

    and reservoir simulation, and (6) development of an advanced undergraduategraduate level course on coal combustion and gasification, climate change, and carbon sequestration. ...

  10. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  11. Recovery Act: Geologic Sequestration Training and Research Walsh...

    Office of Scientific and Technical Information (OSTI)

    simulation, and (6) development of an advanced undergraduategraduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate...

  12. Research Experience in Carbon Sequestration 2015 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Now Accepting Applications Research Experience in Carbon Sequestration 2015 Now ... Graduate students and early career professionals can gain hands-on field research ...

  13. Research Experience in Carbon Sequestration 2016 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience in Carbon Sequestration 2016 Now Accepting Applications Research Experience in ... professionals can gain hands-on field research experience in areas related to carbon ...

  14. Research Experience in Carbon Sequestration 2013 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now ... professionals can gain hands-on field research experience in areas related to carbon ...

  15. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the

  16. South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Louisiana Enhanced Oil Recovery Sequestration Demonstration Project Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is ...

  17. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  18. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: ... Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ...

  19. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect (OSTI)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  20. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up

  1. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect (OSTI)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  2. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  3. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    SciTech Connect (OSTI)

    Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

    2007-03-01

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality

  4. Seismicity Characterization and Monitoring at WESTCARB's Proposed Montezuma Hills Geologic Sequestration Site

    SciTech Connect (OSTI)

    Daley, T.M.; Haught, R.; Peterson, J.E.; Boyle, K.; Beyer, J.H.; Hutchings, L.R.

    2010-09-15

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB), in collaboration with Shell Oil Co. performed site characterization for a potential small-scale pilot test of geologic sequestration of carbon dioxide (CO2). The site area, know as Montezuma Hills, is near the town of Rio Vista in northern California. During the process of injection at a CO2 storage site, there is a potential for seismic events due to slippage upon pre-existing discontinuities or due to creation of new fractures. Observations from many injection projects have shown that the energy from these events can be used for monitoring of processes in the reservoir. Typically, the events are of relatively high frequency and very low amplitude. However, there are also well documented (non-CO2-related) cases in which subsurface injection operations have resulted in ground motion felt by near-by communities. Because of the active tectonics in California (in particular the San Andreas Fault system), and the potential for public concern, WESTCARB developed and followed an induced seismicity protocol (Myer and Daley, 2010). This protocol called for assessing the natural seismicity in the area and deploying a monitoring array if necessary. In this report, we present the results of the natural seismicity assessment and the results of an initial temporary deployment of two seismometers at the Montezuma Hills site. Following the temporary array deployment, the project was suspended and the array removed in August of 2010.

  5. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  6. Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

    SciTech Connect (OSTI)

    McCray, John

    2013-09-30

    Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overlie injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.

  7. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    SciTech Connect (OSTI)

    H.J. Herzog; E.E. Adams

    1999-08-23

    The ocean represents the largest potential sink for anthropogenic CO{sub 2}. In order to better understand this potential, Japan, Norway, and the United States signed a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration in December 1997; since that time, Canada and ABB (Switzerland) have joined the project. The objective of the project is to investigate the technical feasibility of, and improve understanding of the environmental impacts from, CO{sub 2} ocean sequestration in order to minimize the impacts associated with the eventual use of this technique to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2000 off the Kona Coast of Hawaii. The implementing research organizations are the Research Institute of Innovative Technology for the Earth (Japan), the Norwegian Institute for Water Research (Norway), and the Massachusetts Institute of Technology (USA). The general contractor for the project will be the Pacific International Center for High Technology Research in Hawaii. A Technical Committee has been formed to supervise the technical aspects and execution of this project. The members of this committee are the co-authors of this paper. In this paper we discuss key issues involved with the design, ocean engineering, measurements, siting, and costs of this experiment.

  8. Double-Difference Tomography for Sequestration MVA

    SciTech Connect (OSTI)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  9. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  10. EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an...

  11. REDUCTION AND SEQUESTRATION OF PERTECHNETATE TO TECHNETIUM DIOXIDE AND PROTECTION FROM RE-OXIDATION

    SciTech Connect (OSTI)

    DUNCAN JB; JOHNSON JM; MOORE WP; HAGERTY KJ; RHODES RN; MOORE RC

    2012-07-11

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-I0S simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table 1 shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit.

  12. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  13. Reduction And Sequestration Of Pertechnetate To Technetium Dioxide And Protection From Reoxidation

    SciTech Connect (OSTI)

    Duncan, J. B.; Johnson, J. M.; Moore, R. C.; Hagerty, K.; Rhodes, R. N.; Huber, H. J.; Moore, W. P.

    2012-11-07

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(lI)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(ll)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II) apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(lI)apatite exhibited a direct correlation with the pH of the technetium-spiked simulant media.

  14. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  15. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: ...

  16. Commerical-Scale CO2 Capture and Sequestration for the Cement Industry

    SciTech Connect (OSTI)

    Adolfo Garza

    2010-07-28

    On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

  17. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  18. A Review of Major Non-Power-Related Carbon Dioxide Stream Compositions

    SciTech Connect (OSTI)

    Last, George V.; Schmick, Mary T.

    2015-07-01

    A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurface injection and geologic sequestration. This article reviews the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors then summarize the relative proportions of the remaining impurities assumed to be present in CO2 source streams that could be targeted for geologic sequestration. The summary is presented relative to five potential sources of CO2: 1) Flue Gas with Flue Gas Desulfurization, 2) Combustion Stack from Coke Production, 3) Portland Cement Kilns, 4) Natural Gas Combustion, and 5) Lime Production.

  19. DOE Science Showcase - Carbon Sequestration | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Carbon Sequestration Research Results in DOE Databases SciTech Connect: science, ... Energy.gov, DOE Office of Science, EIA, Open Energy Info, and other DOE offices and labs. ...

  20. Research Experience in Carbon Sequestration 2016 Now Accepting Applications

    Broader source: Energy.gov [DOE]

    Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) by participating in the Research Experience in Carbon Sequestration (RECS) program.

  1. Research Experience in Carbon Sequestration 2015 Now Accepting Applications

    Broader source: Energy.gov [DOE]

    Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) by participating in the Research Experience in Carbon Sequestration (RECS) program.

  2. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    SciTech Connect (OSTI)

    Todd French; Lew Brown; Rafael Hernandez; Magan Green; Lynn Prewitt; Terry Coggins

    2009-08-19

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  3. Investigations into Wetland Carbon Sequestration as Remediation for Global Warming

    SciTech Connect (OSTI)

    Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

    2002-01-01

    Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

  4. Geological Carbon Sequestration, Spelunking and You | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. ogden_geo_infrastructure_analysis.pdf (5.39 MB) More Documents & Publications Hydrogen Infrastructure Strategies Consumer Water Heater, UEF - v1.0 EIS-0105: Draft Environmental Impact Statement Sequestration Program | Department of Energy

    Background: The U.S. DOE's Sequestration Program began

  5. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    Preliminary CO2-PENS model (Technical Report) | SciTech Connect LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Authors: Stauffer, Philip H. [1] ; Dai, Zhenxue [1] ; Lu, Zhiming [1] ; Middleton, Richard S. [1] ; Jacobs, John F. [1] ; Carey, James W. [1] + Show Author Affiliations Los Alamos National Laboratory

  6. Research Experience in Carbon Sequestration Training Program Now Accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Department of Energy Research Experience in Carbon Sequestration Training Program Now Accepting Applications Research Experience in Carbon Sequestration Training Program Now Accepting Applications March 26, 2012 - 1:00pm Addthis Washington, D.C. - A Department of Energy (DOE) program that helps graduate students and early career professionals gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) is accepting applications

  7. Guide to CO{sub 2} capture, sequestration, and storage

    SciTech Connect (OSTI)

    Drazga, B.

    2007-02-15

    The report addresses the probability of incorporating carbon sequestration (CS) as a viable market mechanism for sustainable development. The approach includes analyzing the utility of carbon sequestration projects as a mechanism for promoting sustainable forestry practices and environmental preservation, as well as addressing stakeholder interests in the implementation of these projects. The report provides an overview and conceptual framework of the issues and the problems associated with sequestration projects in general; and discusses the economic and policy constraints and the challenges associated with the implementation of these projects. It examines the methodology currently being used in this area and address the problems associated with leakages specific to forest-based carbon sequestration projects. The report gives a conceptual framework of the topic, and provides a detailed analysis of the linkages between carbon and climate change and the issues associated with the current treaties, specifically the Kyoto Protocol. The report discusses the problem of leakage, compellance versus volunteerism, and the feasibility of the market approach to carbon sequestration. The report also examines the flaws involved with the current approach and identifies some of the early success stories. The report uses the Bolivia Noelle Kempff Climate Action model as a case study of a large-scale carbon project at work in a developing country. It examines what some countries are currently doing to link the various issues pertaining to carbon sequestration and sustainable development.

  8. Alliance for Sequestration Training, Outreach, Research & Education

    SciTech Connect (OSTI)

    Olson, Hilary

    2013-09-01

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE- FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  9. Natural CO2 Analogs for Carbon Sequestration

    SciTech Connect (OSTI)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  10. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    SciTech Connect (OSTI)

    Finley, Robert; Payne, William; Kirksey, Jim

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  11. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  12. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  13. In-Situ MVA of CO2 Sequestration Using Smart Field Technology

    SciTech Connect (OSTI)

    Mohaghegh, Shahab D.

    2014-09-01

    Capability of underground carbon dioxide storage to confine and sustain injected CO2 for a long period of time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2 . This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS

  14. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation

  15. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  16. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  17. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ... Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ...

  18. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  19. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

    2014-01-01

    The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

  20. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  1. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois Basin | Department of Energy Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well

  2. Successful Sequestration and Enhanced Oil Recovery Project Could Mean More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Less CO2 Emissions | Department of Energy Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn

  3. Carbon Sequestration on Surface Mine Lands

    SciTech Connect (OSTI)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  4. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  5. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  6. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of ...

  7. CX-009380: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multi-Point Pressure and Temperature Sensing Fiber Optic Cable for Monitoring Carbon Dioxide Sequestration CX(s) Applied: A9, B3.6 Date: 09/17/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

  8. CX-010602: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Coal-Seq III Consortium: Advancing the Science of Carbon Dioxide Sequestration in Coal Seam and Gas Shale CX(s) Applied: A9 Date: 07/25/2013 Location(s): Virginia, Texas Offices(s): National Energy Technology Laboratory

  9. CX-008474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: B1.15, B3.6, B5.2 Date: 06/04/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  10. CX-008478: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B5.3 Date: 06/04/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory