Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

2

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

3

Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol  

Science Conference Proceedings (OSTI)

Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N{sub 2}O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N{sub 2}O production over the 28 day incubation from the control soil was 1.5 mg/N{sub 2}O/m{sup 2}, and 11 mg/N{sub 2}O/m{sup 2} from the control + N. The N{sub 2}O emission decreased with GWC addition (P < 0.05) for the high N soil, reducing cumulative N{sub 2}O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N{sub 2}O production during the first week of the trial, when soil N{sub 2}O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N{sub 2}O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N{sub 2}O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N{sub 2}O, an important greenhouse gas.

Vaughan, Sarah M., E-mail: s.vaughan@uq.edu.au [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Dalal, Ram C. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Department of Environment and Resource Management, 80 Meiers Rd., Indooroopilly, QLD 4068 (Australia); Harper, Stephen M. [Department of Employment, Economic Development and Innovation, Warrego Highway, Gatton, QLD 4343 (Australia); Menzies, Neal W. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia)

2011-08-15T23:59:59.000Z

4

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOE Patents (OSTI)

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10T23:59:59.000Z

5

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

6

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

Apel, W.A.

1998-08-18T23:59:59.000Z

7

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

8

Method For Selective Catalytic Reduction Of Nitrogen Oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

9

Method for selective catalytic reduction of nitrogen oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

10

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

11

nitrogen oxides | OpenEI  

Open Energy Info (EERE)

20 20 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279720 Varnish cache server nitrogen oxides Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago)

12

Passive measurement of nitrogen oxides to assess traffic-related...  

NLE Websites -- All DOE Office Websites (Extended Search)

393-403 Date Published 012004 Keywords Freeways, nitrogen dioxide, Passive sampler, schools Abstract The East Bay Children's Respiratory Health Study is examining associations...

13

Nitrogen oxide delivery systems for biological media  

E-Print Network (OSTI)

Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

Skinn, Brian Thomas

2012-01-01T23:59:59.000Z

14

Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide  

E-Print Network (OSTI)

The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon dioxide has recently been paid attention in the field of extraction, separation, and reaction medium, its aptitude for both a reaction solvent and a reactant was examined in zinc glutarate-catalyzed reactions. As a result, it was proved that supercritical carbon dioxide was a suitable substitute for organic solvents in the copolymerization reactions. Great diffusivity of supercritical carbon dioxide into polymer segments was thought to promote carbon dioxide supply to the active sites of the zinc species and to afford alternating polycarbonate production. Low reaction temperature appeared to be advantageous to polycarbonate and cyclic carbonate formation. Apart from zinc glutarate catalyst whose detailed mechanistic studies were hard to perform due to its insolubility, some other zinc compounds were studied. A homogeneous catalyst, bis(ethyl fumarato)zinc, showed similar polycarbonate yield to zinc glutarate, and the method of the catalyst preparation affected its catalytic activity. Only a small amount of the catalyst was considered to be active in the copolymerization process even in the homogeneous systems. In the zinc dicarboxylate complexes, the carbon number between two carboxyl groups and the steric nature in the vicinity of the zinc atom might be important factors for the copolymerization catalysis.

Katsurao, Takumi

1994-01-01T23:59:59.000Z

15

Removal of nitrogen oxides from a gas stream by using monatomic nitrogen induced by a pulsed arc  

DOE Green Energy (OSTI)

The effectiveness of N atoms, nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. Goal is reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. Initial tests with 100, 500, and 1,000 ppM NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. At an NO concentration of 100 ppM, a greater than 90% NO/NO{sub x} reduction was recorded. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area had the best reduction, but also the highest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of N0{sub 2} and 0{sub 2} on the NO/NO{sub x} reduction efficiency. When N0{sub 2} and 0{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or N0{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage purser apparatus for a 100-kW engine was estimated to be 3 kW.

Ng, H.K.; Novick, V.J.; Sekar, R.R. [Argonne National Lab., IL (United States); Pierucci, K.A. [Illinois Inst. of Tech., Chicago, IL (United States); Geise, M.F. [Notre Dame Univ., IN (United States)

1995-01-01T23:59:59.000Z

16

A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont  

Science Conference Proceedings (OSTI)

Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

Paulozzi, L.J. (Vermont Health Dept., Burlington, VT (United States)); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

1993-12-01T23:59:59.000Z

17

METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN  

DOE Patents (OSTI)

A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

Harteck, P.; Dondes, S.

1959-08-01T23:59:59.000Z

18

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

19

Evolution of Nitrogen Oxide Chemistry in the Nocturnal Boundary Layer  

Science Conference Proceedings (OSTI)

The nocturnal cycle of nitrogen oxides in the atmospheric boundary layer is studied by means of a one-dimensional model. The model solves the conservation equations of momentum, entropy, total water content, and of five chemical species. The ...

S. Galmarini; P. G. Duynkerke; J. Vilà-Guerau de Arellano

1997-07-01T23:59:59.000Z

20

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

22

Nitrogen oxide abatement by distributed fuel addition  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

23

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

24

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... acid rain program in the eastern half of the United States. ... and settlements under the Clean Air Act's New Source Review ...

25

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

26

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

27

Permeation of argon, carbon dioxide, helium, nitrogen and oxygen through Mylar windows  

SciTech Connect

In secondary beam lines in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory, low mass vacuum windows are used to reduce background radiation near particle detectors. These windows are fabricated using Mylar films and are generally made as thin as possible. Mylar films as thin as 0.002 inch have been used as vacuum windows ranging in size up to 36 inch {times} 76 inch. When using Mylar for low mass window applications, permeation must be considered to achieve system design pressures. The permeation of several different gas species through both Mylar and aluminized Mylar films with thicknesses of 0.002`` and 0.005`` was studied. Testing was performed under high vacuum and a quadrupole mass spectrometer was used to identify and quantify gas species during the study. Permeability of argon, carbon dioxide, helium, nitrogen and oxygen were determined for Mylar from 20 up to 90C.

Mapes, M.; Hseuh, H.C.; Jiang, W.S.

1993-11-01T23:59:59.000Z

28

Nitrogen oxide abatement by distributed fuel addition  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

29

Carbon-nitrogen bond-forming reactions in supercritical and expanded-liquid carbon dioxide media : green synthetic chemistry with multiscale reaction and phase behavior modeling  

E-Print Network (OSTI)

The goal of this work was to develop a detailed understanding of carbon-nitrogen (C-N) bond-forming reactions of amines carried out in supercritical and expanded-liquid carbon dioxide (CO2) media. Key motivations behind ...

Ciccolini, Rocco P

2008-01-01T23:59:59.000Z

30

Production Test IP-358-AC: Replacement of carbon dioxide with nitrogen as a constituent of the K reactor atmosphere  

SciTech Connect

Compensation for the positive long-term reactivity transient associated with Hanford reactor may be accomplished in two ways: The addition of a poisonous material (rods, splines, etc.) to the reactor, or cooling the moderator by changing the gas composition. The objective of this study is to investigate the reactivity and temperature effects and the associated operating problems if any, resulting from the use of nitrogen instead of carbon dioxide as a constituent of the reactor atmosphere.

Bailey, G.F.; Benoliel, R.W.

1960-10-03T23:59:59.000Z

31

Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel  

Science Conference Proceedings (OSTI)

The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

Mavila Chathoth, Suresh [ORNL; He, Lilin [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL

2012-01-01T23:59:59.000Z

32

Nitrogen and carbon oxides chemistry in the HRS retorting process  

Science Conference Proceedings (OSTI)

The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

Reynolds, J.G.

1993-11-12T23:59:59.000Z

33

Method for reducing nitrogen oxides in combustion effluents  

DOE Patents (OSTI)

Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

Zauderer, Bert (Merion Station, PA)

2000-01-01T23:59:59.000Z

34

Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets  

E-Print Network (OSTI)

1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

35

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

36

Nitrogen oxide emissions from coal fired MHD plants  

DOE Green Energy (OSTI)

In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

Chapman, J.N. [ed.

1996-03-01T23:59:59.000Z

37

Improved Prediction of Nitrogen Oxides Using GRNN with K-Means Clustering and EDA  

Science Conference Proceedings (OSTI)

The current study presented a generalized regression neural network (GRNN) based approach to predict nitrogen oxides (NOx) emitted from coal-fired boiler. A novel 'multiple' smoothing parameters, which is different from the standard algorithm in which ... Keywords: GRNN, EDA, K-means Clustering, Nitrogen Oxides, Power plants

Ligang Zheng; Shuijun Yu; Wei Wang; Minggao Yu

2008-10-01T23:59:59.000Z

38

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOE Patents (OSTI)

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01T23:59:59.000Z

39

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network (OSTI)

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycleOxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

Mallinson, Richard

40

structural defects in uranium dioxide : from oxidation to irradiation.  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Radiation Effects in Oxide Ceramics and Novel LWR Fuels. Presentation Title ...

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved efficiency in the sulfur dioxide-iodine hydrogen cycle through the use of magnesium oxide  

DOE Green Energy (OSTI)

The reaction of iodine with dry magnesium oxide and magnesium sulfite hexahydrate was studied experimentally as a possible means of improving the efficiency of the sulfur dioxide-iodine cycle. When no extra water was introduced, the maximum product yield was 67% obtained at 423 K. With excess water vapor, a nonporous plug was formed which prevented complete reaction. In the second case, maximum yield was 62% measured at 433 K showing that added water does not increase reaction products. This reaction gives an alternate route for producing hydrogen from water via the sulfur dioxide-iodine process.

Mason, C.F.V.; Bowman, M.G.

1981-01-01T23:59:59.000Z

42

CARBON DIOXIDE UPTAKE STUDIES IN ALGAE GROWN IN WATER AND DEUTERIUM OXIDE  

SciTech Connect

A procedure is described for studying carbon dioxide uptake in algae using C/sup 14/-labeled sodium bicarbonate as the source of carbon dioxide, Actively dividing, water grown and deuterium oxide adapted, Scenedesmus obliquus and Chlorella vulgaris were employed in the studies. Uptake comparisons were made over pH range 6 to 9 using appropriate buffer systems. Uptake was fairly constant in the range pH 6 to 8 for both the aqueous and deuterated algae. Above pH 8 uptake dropped markedly. In general, the deuterated algae showed between 1O and 30% lower uptake than ordinary algae. Greater chlorophyll content is associated with higher carbon dioxide uptake. (auth)

Blake, M.I.; Kaganove, A.S.; Katz, J.J.

1962-04-01T23:59:59.000Z

43

The influence of Fe catalysts on the release of nitrogen oxides during the gasification of nitrogen doped carbon-13 material  

E-Print Network (OSTI)

855 The influence of Fe catalysts on the release of nitrogen oxides during the gasification. (Received 12 June 19%; accepted in revised form 4 April 1997) Key Words - A. Char, B. gasification, the rapid devol- atilisation of the coal is accompanied by the ignition/gasification of the volatiles

Thomas, Mark

44

TCE degradation by methane-oxidizing cultures grown with various nitrogen sources  

SciTech Connect

Methane-oxidizing microorganisms exhibit great potential for vadose zone bioremediation. This paper reports the effects of supplying nitrogen as nitrate, ammonia, and molecular nitrogen on the growth, trichloroethylene (TCE) degradation capacity, and energy storage capacity of a mixed methane-oxidizing culture. Cells inoculated from a nitrate-supplied methane-oxidizing culture grew fastest while fixing atmospheric nitrogen when oxygen partial pressures were kept less than 8%. Cell growth and methane oxidation were more rapid for ammonia-supplied cells than for nitrate-supplied or nitrogen-fixing cells. However, nitrogen-fixing cells were capable of oxidizing TCE as efficiently as nitrate or ammonia-supplied cells, and they exhibited the highest TCE transformation capacity of all three cultures both with and without formate as an exogenous reducing energy source. The TCE product toxicity was not as pronounced for the nitrogen fixing cells as for the nitrate- or ammonia-supplied cells after exposure to high (20 mg/L) or low (2 mg/L) TCE concentrations. Energy storage in the form of poly-{beta}- hydroxybutyrate was 20% to 30% higher for nitrogen-fixing cells; increased energy storage may be responsible for the higher transformation capacity of nitrogen-fixing cells when no external reducing energy was available. 35 refs., 4 figs., 2 tabs.

Chu, K.H.; Alvarez-Cohen, L. [Univ. of California, Berkeley, CA (United States)

1996-01-01T23:59:59.000Z

45

Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal  

SciTech Connect

The major objectives of this project were to (a) measure the adsorption behavior of pure methane, nitrogen, CO{sub 2} and their binary and ternary mixtures on wet Tiffany coal at 130 F and pressures to 2000 psia; (b) correlate the equilibrium adsorption isotherm data using the extended Langmuir model, the Langmuir model, the loading ratio correlation and the Zhou-Gasem-Robinson equation of state; and (c) establish sorption-time estimates for the pure components. Specific accomplishments are summarized below regarding the complementary tasks involving experimental work and data correlation. Representative coal samples from BP Amoco Tiffany Injection Wells No.1 and No.10 were prepared, as requested. The equilibrium moisture content and particle size distribution of each coal sample were determined. Compositional coal analyses for both samples were performed by Huffman Laboratories, Inc. Pure gas adsorption for methane on wet Tiffany coal samples from Injection Wells No.1 and No.10 was measured separately at 130 F (327.6 K) and pressures to 2000 psia (13.7 MPa). The average expected uncertainty in these data is about 3% (9 SCF/ton). Our measurements indicate that the adsorption isotherms of the two coal samples exhibit similar Langmuir-type behavior. For the samples from the two wells, a maximum variation of about 5% in the amount adsorbed is observed at 2000 psia. Gas adsorption isotherms were measured for pure methane, nitrogen and CO{sub 2} on a wet, mixed Tiffany coal sample. The coal sample was an equal-mass mixture of coals from Well No.1 and Well No.10. The adsorption measurements were conducted at 130 F at pressures to 2000 psia. The adsorption isotherms have average expected experimental uncertainties of 3% (9 SCF/ton), 6% (8 SCF/ton), and 7% (62 SCF/ton) for methane, nitrogen, and CO{sub 2}, respectively. Adsorption isotherms were measured for methane/nitrogen, methane/CO{sub 2} and nitrogen/CO{sub 2} binary mixtures on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. These measurements were conducted for a single molar feed composition for each mixture. The expected uncertainties in the amount adsorbed for these binary mixtures vary with pressure and composition. In general, average uncertainties are about 5% (19 SCF/ton) for the total adsorption; however, the expected uncertainties in the amount of individual-component adsorption are significantly higher for the less-adsorbed gas at lower molar feed concentrations (e.g., nitrogen in the 20/80 nitrogen/CO{sub 2} system). Adsorption isotherms were measured for a single methane/nitrogen/CO{sub 2} ternary mixture on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. The nominal molar feed composition was 10/40/50. The average expected uncertainty for the total adsorption and CO{sub 2} adsorption is about 5% (16 SCF/ton). However, the low adsorption of nitrogen and methane in this ternary yield average experimental uncertainties of 14% (9 SCF/ton) and 27% (9 SCF/ton), respectively. Limited binary and ternary gas-phase compressibility factor measurements at 130 F and pressures to 2000 psia involving methane, nitrogen, and CO{sub 2} were conducted to facilitate reduction of our ternary adsorption data. These newly acquired data (and available data from the literature) were used to improve the Benedict-Webb-Rubin (BWR) equation-of-state (EOS) compressibility factor predictions, which are used in material balance calculations for the adsorption measurements. In general, the optimized BWR EOS represents the experimental compressibility factor data within 0.5% AAD. The Langmuir/loading ratio correlation (LRC) and the Zhou-Gasem-Robinson (ZGR) two-dimensional EOS were used to analyze the newly acquired adsorption data. Model parameters were obtained for the systems studied. The LRC and ZGR EOS were used to correlate the adsorption data for methane, nitrogen, and CO{sub 2} and their mixtures on wet Tiffany coal. The model parameters were determined by minimizing the sum of squares of weighted errors in the calculated amounts of gas adsorbed. The results

K. A. M. Gasem; R. L. Robinson; S. R. Reeves

2002-03-01T23:59:59.000Z

46

Carbon dioxide enrichment: Data on the response of cotton to varying CO{sub 2}, irrigation, and nitrogen  

Science Conference Proceedings (OSTI)

This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

Sepanski, R.J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. [Agricultural Research Service, Phoenix, AZ (United States); Lakatos, E.A. [Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science

1992-06-01T23:59:59.000Z

47

Soil–Atmosphere Exchange of Nitrous Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil  

Science Conference Proceedings (OSTI)

Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam ...

Michael Keller; Ruth Varner; Jadson D. Dias; Hudson Silva; Patrick Crill; Raimundo Cosme de Oliveira Jr.; Gregory P. Asner

2005-11-01T23:59:59.000Z

48

Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal Oxide ...  

Science Conference Proceedings (OSTI)

Presentation Title, Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal ... which can split carbon dioxide as well as water molecules by abstracting ...

49

Electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor capacitors with various nitrogen concentration profiles  

Science Conference Proceedings (OSTI)

The comparative studies of electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor (MOS) capacitors with various nitrogen concentration profiles (NCPs) were investigated. Various NCPs in HfLaON gate dielectrics were adjusted ... Keywords: Charge trapping, Current-conduction, High-k dielectric, Metal-oxide-semiconductor (MOS), Nitrogen concentration profiles (NCPs)

Chin-Lung Cheng; Jeng-Haur Horng; Hung-Yang Tsai

2011-02-01T23:59:59.000Z

50

Henry's Law Constants of Methane, Nitrogen, Oxygen and Carbon Dioxide in Ethanol from 273 to 498 K: Prediction from Molecular Simulation  

E-Print Network (OSTI)

noindent Henry's law constants of the solutes methane, nitrogen, oxygen and carbon dioxide in the solvent ethanol are predicted by molecular simulation. The molecular models for the solutes are taken from previous work. For the solvent ethanol, a new rigid anisotropic united atom molecular model based on Lennard-Jones and Coulombic interactions is developed. It is adjusted to experimental pure component saturated liquid density and vapor pressure data. Henry's law constants are calculated by evaluating the infinite dilution residual chemical potentials of the solutes from 273 to 498K with Widom's test particle insertion. The prediction of Henry's Law constants without the use of binary experimental data on the basis of the Lorentz-Berthelot combining rule agree well with experimental data, deviations are 20%, except for carbon dioxide for which deviations of 70% are reached. Quantitative agreement is achieved by using the modified Lorentz-Berthelot combining rule which is adjusted to one experimental mixture ...

Schnabel, T; Hasse, H

2009-01-01T23:59:59.000Z

51

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

52

Nitrogen oxide -- Sensors and systems for engine management  

DOE Green Energy (OSTI)

The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

Hiller, J.M.; Bryan, W.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Miller, C.E. [General Motors, Inc., Flint, MI (United States). A.C. Rochester Div.

1997-06-24T23:59:59.000Z

53

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

54

PROCESSING OF HIGH-FIRED URANIUM DIOXIDE FUELS BY A REDUCTION-MERCURY EXTRACTION-OXIDATION PROCESS  

DOE Green Energy (OSTI)

A preliminary flowsheet for the purification of uranium dioxide fuels by a magnesium reduction-- mercury extraction-- steam oxidation process is proposed. Feasibility was indicated by laboratory-scale scouting experiments. Data evaluation indicated 100% reduction of uranium dioxide by magnesium although this figure was not demonstrated, chiefly because of poor choice of materials and design of equipment. Steam oxidation of uranlum tetramercuride produced an oxide with an O/U ratio of 2.43. This ratio was decreased to 2.09 by heating the oxide in a hydrogen atmosphere at 900 deg C for 1 hr. The final product had a surface area of 3.5 m/sup 2//g, and 18% of the panticles were < 1 mu diam. A pellet of the oxide sintered at 1750 deg C had a density of 9.76 g/cc, 89% of theoretical. Decontamination factors demonstrated for ruthenium, cesium, and samarium, when present originally in amounts equivalent to 30,000 Mwd/ton fuel burnup and 60 days' decay, were

Messing, A. F.; Dean, O. C.

1960-08-12T23:59:59.000Z

55

Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process  

DOE Patents (OSTI)

A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

56

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

57

Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

Li, W.B.; Yang, R.T.

1995-12-01T23:59:59.000Z

58

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

Ates Akyurtlu; Jale F. Akyurtlu

2003-11-30T23:59:59.000Z

59

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

factors for carbon monoxide, nitrogen oxidesnitrogen dioxide, factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide

Singer, Brett C.

2010-01-01T23:59:59.000Z

60

Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system  

DOE Green Energy (OSTI)

The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

Lu, Xiaoliang

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

62

Environmental considerations of selected energy-conserving manufacturing process options. Volume XVII. Nitrogen oxides summary report. Final report  

SciTech Connect

Arthur D. Little, Inc. undertook a study of the 'Environmental Consideration of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in 13 industrial sectors. Results were published in 15 volumes, including a summary, industry prioritization report, and 13 industry oriented reports. The present report summarizes the information regarding nitrogen oxide pollutants in the 13 industry reports. Topics considered include the following: Processes and potential nitrogen oxide emissions--(Bases of calculations, NOx control methods, petroleum refining industry, cement industry, olefins industry, alumina and aluminum industry, glass industry, copper industry, fertilizer industry, ammonia, iron and steel, phosphorus/phosphoric acid, textile industry, pulp and paper industry, and chlor-alkali industry).

1979-07-01T23:59:59.000Z

63

Dynamics of nitrogen and greenhouse gas emission under elevated carbon dioxide in semi-arid cropping systems in Australia and China.  

E-Print Network (OSTI)

??Within less than 50 years, atmospheric carbon dioxide concentration [CO2] will likely be double that observed in 1950. In this higher [CO2] world the sustainability… (more)

Lam, Shu Kee

2012-01-01T23:59:59.000Z

64

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

in soils cropped to corn with varying N fertilization. Can.as affected by tillage, corn-soybean-alfalfa rotations, andsoil nitrogen mineralization for corn production in eastern

2009-01-01T23:59:59.000Z

65

Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

Martin, Katherine C

2007-01-01T23:59:59.000Z

66

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith Gégo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

67

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

68

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network (OSTI)

Balbach, J. H. (1991). "Modeling the removal of sulfur dioxide and nitrogen oxides from flue gases using% by volume (Chang et al. 1992b). Such observation is important for combustors that operate with flue gases and ultraviolet radiation. The composition, tem- perature, and pressure of the treated gas streams simulate gases

69

REDUCTION AND SEQUESTRATION OF PERTECHNETATE TO TECHNETIUM DIOXIDE AND PROTECTION FROM RE-OXIDATION  

Science Conference Proceedings (OSTI)

This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-I0S simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table 1 shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit.

DUNCAN JB; JOHNSON JM; MOORE WP; HAGERTY KJ; RHODES RN; MOORE RC

2012-07-11T23:59:59.000Z

70

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

71

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

72

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

73

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

74

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

75

Role of char during reburning of nitrogen oxides. First quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

Customarily, coal and lignite have not been considered viable reburning fuels for a number of reasons. NO reduction through homogeneous gas phase mechanisms is generally believed more important than the heterogeneous NO reduction on char; and coal devolatilization in the fuel rich environment generates only about 50% of the volatile hydrocarbon radicals than gaseous hydrocarbons under the same fuel-to-oxidant stoichiometry. In addition, the fuel nitrogen could result in additional nitrogen oxide emissions in the burnout stage. What has not been anticipated is the highly active nature of lignite char surface. First, it has been demonstrated in the literature that lignite char can be gasified by nitrogen oxide; second, the minerals in lignite char can catalyze the CO + NO and gasification reaction; and third, lignite char has a highly porous structure which is desirable for gas/solid reactions. The unique NO activity on char surface is expected to benefit the utilities which are involved in coal combustion and have to meet the stringent Clean Air Act Amendments of 1990. This program is aimed at a better understanding of the chemical and physical mechanisms involved in the reburning with chars. Char gasification rates will be measured with and without the presence of CO. Further, the rate of the char catalyzed CO + NO reaction will also be measured. Experiments have been conducted with a flow reactor which simulates the reburning stage. One bituminous coal and two lignites, one from North Dakota and the other from Mississippi, are used in these tasks. A unique component of this program is the use of the fractal concept in the estimations of these gas/solid reaction rates. The proposed program is designed to investigate the relative importance of these two reactions (char gasification and ash catalyzed CO + NO reactions) under reburning conditions.

Chen, Wei-Yin

1993-12-31T23:59:59.000Z

76

Variations of the weight concentrations of dust, nitrogen oxides, sulphur dioxide and ozone in the surface air in tbilisi  

Science Conference Proceedings (OSTI)

The data of the Georgian air pollution monitoring network were analyzed in order to establish any trends in the variations of the near-ground concentrations of various substances. It was shown that despite a considerable fall-down in the Georgian economy in the recent years

A. Amiranashvili; V. Amiranashvili; T. Gzirishvili; G. Gunia; L. Intskirveli; J. Kharchilava

2000-01-01T23:59:59.000Z

77

Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas  

DOE Patents (OSTI)

A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

Huang, Hann-Sheng; Livengood, Charles David

1997-12-01T23:59:59.000Z

78

Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis  

E-Print Network (OSTI)

The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

Harris, E.

79

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

1993-01-01T23:59:59.000Z

80

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

Cohen, M.R.; Gal, E.

1993-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

82

Increased Cytotoxicity of Oxidized Flame Soot  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Cytotoxicity of Oxidized Flame Soot Increased Cytotoxicity of Oxidized Flame Soot Title Increased Cytotoxicity of Oxidized Flame Soot Publication Type Journal Article Year of Publication 2012 Authors Holder, Amara L., Brietta J. Carter, Regine Goth-Goldstein, Donald Lucas, and Catherine P. Koshland Journal Atmospheric Pollution Research Volume 3 Start Page 25 Issue 1 Pagination 25-31 Date Published 01/2012 Keywords health effects, ozone, soot, toxicity Abstract Combustion-generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles' physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5-2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin-8 (IL-8) secretion, is unchanged. These results imply that combustion-generated particles released into the atmosphere will have an increased toxicity on or after high ozone days.

83

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

Tallent, Othar K. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

84

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1996-12-31T23:59:59.000Z

85

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

SciTech Connect

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

86

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

87

Air Pollution Control Regulations: No.27 - Control of Nitrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Eligibility Commercial...

88

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents (OSTI)

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

89

Standard specification for blended uranium oxides with 235U content of less than 5 % for direct hydrogen reduction to nuclear grade uranium dioxide  

E-Print Network (OSTI)

1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

90

Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

to gain importance. These processes comprise combustion or gasification stages at elevated pressure in gasification processes 4.13.1 Formation of nitrogen species during gasification In gasification, a solid.3..0.4). One of the challenges met at developing the (pressurized) gasification technique called the IGCC

Laughlin, Robert B.

91

Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

. As the laughing gas in a burner #12;Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-40 flame enters hot zones, or "combustion" in a fuel cell (+Chapter 2). Combustion of the gas in a gas turbine or engine may result, flame length and where hot/cold spots are), 3) inlet pressure/ temperature, 4) spark or fuel injection

Zevenhoven, Ron

92

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network (OSTI)

Nitrogeneous Species in Gas Turbine Exhaust, from Conkle, et82) Percent of Organic Gas Turbine Emissions which containnitrogen dioxide from gas turbines (from the data presented

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

93

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

94

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

95

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

96

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

97

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emission factors for carbon monoxide, nitrogen oxidesnitrogen dioxide, emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide

Singer, Brett C.

2010-01-01T23:59:59.000Z

98

Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste  

DOE Green Energy (OSTI)

Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

Bryan, S.A.; Pederson, L.R.

1996-02-01T23:59:59.000Z

99

THE NITROGEN OXIDES CONTROVERSY  

E-Print Network (OSTI)

2 ) by far ultraviolet solar radiation (hv) 02 + hv (A solar radiation above the atmosphere.by Chapman concerning solar radiation above the atmosphere

Johnston, Harold S.

2012-01-01T23:59:59.000Z

100

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Three Dimensional CFD Model of a Planar Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon-Dioxide  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE). A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. An experimental study is also being performed at the INL to assess the SOE. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and syn-gas production over a range of stack operating conditions. Typical results of current density versus cell potential, cell current versus H2 and CO production, temperature, and voltage potential are all presented within this paper. Plots of mole fraction of CO2, CO, H2, H2O, O2, are presented. Currently there is strong interest in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. This process takes the carbon-neutral approach where the amount of CO2 in the atmosphere does not increase. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen. In the mean time, with the price of oil currently over $70 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis or thermochemical processes, using high-temperature nuclear process heat. In order to achieve competitive efficiencies, both processes require high-temperature operation (~850°C). High-temperature electrolytic CO2 and water splitting supported by nuclear process heat and electricity has the potential to produce syn-gas with an overall system efficiency near those of the thermochemical processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to

G. Hawkes; J. O' Brien; C. Stoots; S. Herring; R. Jones

2006-11-01T23:59:59.000Z

102

Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn[superscript 2+] with S-Nitrosothiols and Implications for Nitric Oxide Synthase  

E-Print Network (OSTI)

Zinc thiolate complexes containing N[subscript 2]S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of ...

Kozhukh, Julia

103

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

Science Conference Proceedings (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

104

Nitrogen spark denoxer  

DOE Patents (OSTI)

A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

1997-01-01T23:59:59.000Z

105

Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond  

Science Conference Proceedings (OSTI)

Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

Li, Meng [Brookhaven National Laboratory (BNL); Cullen, David A [ORNL; Sasaki, Kotaro [Brookhaven National Laboratory (BNL); Marinkovic, N. [University of Delaware; More, Karren Leslie [ORNL; Adzic, Radoslav R. [Brookhaven National Laboratory (BNL)

2013-01-01T23:59:59.000Z

106

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 9, August 1, 1989--October 31, 1989  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

107

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

108

Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen  

Science Conference Proceedings (OSTI)

Indium tin oxide (ITO) thin films have been grown onto soda-lime glass substrates by sputtering at room temperature with various oxygen to argon partial pressure ratios. After deposition, the samples have been annealed at temperatures ranging from 100 to 500 degree sign C in nitrogen or in air. The structure, optical, and electrical characteristics of the ITO coatings have been analyzed as a function of the deposition and the annealing parameters by x-ray diffraction, spectrophotometry, and Hall effect measurements. It has been found that the as-grown amorphous layers crystallize in the cubic structure by heating above 200 degree sign C. Simultaneously, the visible optical transmittance increases and the electrical resistance decreases, in proportions that depend mainly on the sputtering conditions. The lowest resistivity values have been obtained by annealing at 400 degree sign C in nitrogen, where the highest carrier concentrations are achieved, related to oxygen vacancy creation. Some relationships between the analyzed properties have been established, showing the dependence of the cubic lattice distortion and the infrared optical characteristics on the carrier concentration.

Guillen, C.; Herrero, J. [Departamento de Energia, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

2007-04-01T23:59:59.000Z

109

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

110

Implications of mercury interactions with band-gap semiconductor oxides  

SciTech Connect

Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

2008-09-01T23:59:59.000Z

111

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1996-05-14T23:59:59.000Z

112

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1993-01-01T23:59:59.000Z

113

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1996-01-01T23:59:59.000Z

114

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1993-07-06T23:59:59.000Z

115

New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate  

E-Print Network (OSTI)

Nitrogen ligands have been little studied with gold(I) and almost no chemistry has been described using anionic bridging nitrogen ligands. This dissertation concerns the impact of the bridging ligands amidinate, ArNHC(H)NAr, on the chemistry of gold(I) and, in particular, the effect of substituents on the molecular arrangement. The electronic vs. steric effect of the substituents on the molecular arrangement of gold(I) amidinates complexes is studied in detail. Tetra-, tri-, and dinuclear gold(I) amidinate complexes are synthesized and characterized using X-ray diffraction. Spectroscopic and electrochemical studies of the amidinate complexes are described. Catalytic studies suggest that gold amidinates and related gold nitrogen complexes are the best catalyst precursors for CO oxidation on TiO2 surface reported to date (87% conversion). The dinuclear gold(I) amidinate complex with a Auâ ¦Au distance of 2.711(3) Ã is rare. To our knowledge, there is only one other example of a symmetrical dinuclear gold(I) nitrogen complex. Oxidative-addition reactions to the dinuclear gold(I) complex, [Au2(2,6-Me2-form)2] are studied in detail and result in the formation of gold(II) complexes. The gold(II) amidinate complexes are the first formed with nitrogen ligands. The complexes are stable at room temperature. Mixed ligand tetranuclear gold(I) clusters and tetranuclear mixed Au-Ag metal clusters of pyrazolate and amidinate ligands are synthesized and characterized using Xray diffraction.

Abdou, Hanan Elsayed

2006-05-01T23:59:59.000Z

116

Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion  

Science Conference Proceedings (OSTI)

North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

Jianzhong Lou; Shamsuddin Ilias

2010-12-31T23:59:59.000Z

117

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 12, May 1, 1990--July 31, 1990  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

118

Carbon Dioxide: Threat or Opportunity?  

E-Print Network (OSTI)

Over the past century, fossil fuel consumption has added carbon dioxide to the atmosphere at rapidly increasing rates. The prospect of further acceleration of this rate by turning from petroleum to coal has alarmed climatologists because of possible catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar (Photosynthesis) energy, and genetic engineering. Some exciting new developments in genetic engineering will be touched on together with established bio-engineering-aquaculture, hydroponics, yeast, pharmaceutical production, fermentation, single cell protein, etc. A 'bio-factory' will be described, with a feed stream of carbon dioxide, water, nutrients containing sulfur, nitrogen, phosphorus and trace elements, and living culture interacting with light under controlled conditions to yield food and raw materials. Candidate products will be suggested and a few of the problems anticipated. Engineering and logistic requirements will be outlined and the economic impact assessed.

McKinney, A. R.

1982-01-01T23:59:59.000Z

119

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

120

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice vs. Liquid Nitrogen Previous Video (Dry Ice vs. Liquid Nitrogen) Frostbite Theater Main Index Next Video (Shattering Pennies) Shattering Pennies Liquid Nitrogen Cooled...

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

122

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Hopper Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. Image by Joshua Schrier, Haverford College. Carbon dioxide is the primary greenhouse gas emitted through human activities, such as the combustion of fossil fuels for energy and

123

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

124

OpenEI - nitrogen oxides  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4610 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

125

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

126

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

127

ODD NITROGEN PROCESSES  

E-Print Network (OSTI)

L. S. , and Chin, J. S. , Carbon dioxide variations at MaunaX Stratospheric air X Carbon dioxide X Ozone X Human race Xas these. The mass of carbon dioxide is 7 thousand times

Johnston, Harold S.

2013-01-01T23:59:59.000Z

128

Reduction of Carbon Dioxide inAqueous Solutions by IonizingRadiation  

DOE Green Energy (OSTI)

The question of the conditions under which living matter originated on the surface of the earth is still a subject limited largely to speculation. The speculation has a greater chance of approaching the truth insofar as it includes and is based upon the ever wider variety of established scientific fact. One of the purposes of the herein reported observation was to add another fact to the ever increasing information which might have any bearing upon this most interesting question. It is not our purpose in the present communication to discuss the various proposals or the arguments which have been adduced for and against them. One of the most popular current conceptions is that life originated in an organic milieu on the surface of the earth, (1,2,3,4,5). The problem to which we are addressed is the origin of that organic milieu in the absence of any life. It appeared to us that one source, if not the only source, of reduced carbon compounds in complex arrangements might be the interaction of various high energy radiations with aqueous solutions of inorganic materials, particularly carbon dioxide, and nitrogenous compounds such as ammonia and nitrogen, since it appears that these compounds were the commoner forms in which the essential elements found themselves on the primordial earth. While it has long been known that high energy radiations can cause organic decomposition and oxidation, it seemed useful to us to demonstrate that conditions could be found in which high energy radiations could induce the reduction with water of carbon dioxide and the ultimate creation of polyatomic molecules (other than simple polymerization of monomers) of carbon, oxygen, hydrogen and nitrogen.

Garrison, W.M.; Morrison, D.C.; Hamilton, J.G.; Benson, A.A.; Calvin, M.

1951-03-13T23:59:59.000Z

129

Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application  

Science Conference Proceedings (OSTI)

Titanium dioxide (TiO2) is the most investigated crystalline oxide in the surface science of metal oxides. Its physical and chemical properties are dominantly determined by its surface condition. Ti3+ surface defect (TSD) is one ...

Liang-Bin Xiong; Jia-Lin Li; Bo Yang; Ying Yu

2012-01-01T23:59:59.000Z

130

Nox control for high nitric oxide concentration flows through combustion-driven reduction  

DOE Patents (OSTI)

An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

1989-01-01T23:59:59.000Z

131

A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases  

SciTech Connect

Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

Brent Marquis

2007-05-31T23:59:59.000Z

132

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

133

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents (OSTI)

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

2013-03-19T23:59:59.000Z

134

Atmospheric Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

The production Of nitrogen oxides (NO and NO2) by lightning flashes has been computed from a model of gaseous molecular reactions occurring as heated lightning-channel air cools by mixing with surrounding ambient air. The effect of ozone (O3) on ...

R. D. Hill; R. G. Rinker; H. Dale Wilson

1980-01-01T23:59:59.000Z

135

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

136

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

137

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

138

Sulfur Dioxide Regulations (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

139

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

140

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

142

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

143

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

144

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

145

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, have also provided direct synergism with the original goals of our work. Specific accomplishments of this project during the current reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2003-03-10T23:59:59.000Z

146

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

147

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

148

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

149

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

150

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Deposition Data Available This data set, prepared by Elizabeth Holland and colleagues, contains data for wet and dry nitrogen-species deposition for the United States and...

151

Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Ice Cream If you have access to liquid nitrogen and the proper safety equipment and training, try this in place of your normal cryogenics demonstration Download...

152

SOOT-CATALYZED OXIDATION OF SULFUR DIOXIDE  

E-Print Network (OSTI)

produced by combustion of propane saturated with benzeneparticles produced by a propane flame. investigators foundand carbon(ls) regions of propane soot particles produced by

Chang, S.G.

2010-01-01T23:59:59.000Z

153

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

154

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

155

High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests  

DOE Green Energy (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

2007-07-01T23:59:59.000Z

156

High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests  

DOE Green Energy (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

2007-06-01T23:59:59.000Z

157

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

158

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

159

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

160

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

2001-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Glossary of Acronyms for In Search of Truth Project Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

No. Number NO 2 Nitrogen Dioxide NO 3 Nitrogen Trioxide NO X Oxides of Nitrogen NPAB Northeast Plateau Air Basin NPDES National Pollutant Discharge Elimination System NOAEL No...

162

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

163

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the… (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

164

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents (OSTI)

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

165

Glossary Term - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Lepton Previous Term (Lepton) Glossary Main Index Next Term (Mercury) Mercury Liquid Nitrogen Liquid nitrogen boils in a frying pan on a desk. The liquid state of the element...

166

Nitrogen control of chloroplast differentiation  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

167

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

168

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

169

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

170

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

171

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

4 January Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important...

172

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

173

Reading Comprehension - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

174

Radiation Effects in Oxide Ceramics and Novel LWR Fuels  

Science Conference Proceedings (OSTI)

Nuclear fuels, such as uranium dioxide (UO2) and Mixed Oxide (MOX) fuels, have been used in current light water reactors (LWRs) to produce about 15% of the ... of oxide ceramics for nuclear applications through experiment, theory and ...

175

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

176

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, fourth quarter, 1994, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NOx emission levels to be near 0.65 lb/MBtu. This NOx level represents a 48 percent reduction when compared to the baseline, full load value of 1.24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NOx emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NOx level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is now underway.

NONE

1995-09-01T23:59:59.000Z

177

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1994, July 1994--September 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB, with AOFA, and Advanced Digital Controls and Optimization Strategies. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Based on a preliminary analysis, approximately 17 percent of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations is the result of AOFA, the balance of the NOx reduction resulting from other operational adjustments. Preliminary diagnostic testing was conducted during August and September. The purpose of these tests was to determine the emissions and performance characteristics of the unit prior to activation of the advanced control/optimization strategies. Short-term, full load NOx emissions were near 0.47 lb/MBtu, slightly higher than that seen during the LNB+AOFA test phase. Long-term NO{sub x} emissions for this quarter averaged near 0.41 lb/MBtu. Due to turbine problems, a four week outage has been planned for Hammond 4 starting October 1. Two on-line carbon-in-ash monitors are being installed at Hammond Unit 4 as part of the Wall-Fired Project. These monitors will be evaluated as to their accuracy, repeatability, reliability, and serviceability.

NONE

1995-09-01T23:59:59.000Z

178

Gas Generation Testing of Plutonium Dioxide  

DOE Green Energy (OSTI)

Hydrogen and oxygen gas generation rates were measured for purified plutonium oxide (PuO2) powder as a function of water content, specific surface area (SSA), dose rate, and initial fill gas composition. Gas generation rates were found to increase with water content and dose rate and to decrease with specific surface area for given water content. Hydrogen generation rates were similar in air, nitrogen and argon, but oxygen generation rates were greater in nitrogen and argon than in air. The potential for reaching a steady state container pressure for PuO2 of given calcination temperature (i.e., SSA) and water content was evaluated by adding hydrogen to some test vessels and monitoring the effect on container pressure over time

Duffey, J.M.

2002-08-29T23:59:59.000Z

179

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

2001-05-01T23:59:59.000Z

180

Market Potential for Nitrogen Fertilizers Derived from the Electric Power Industry  

Science Conference Proceedings (OSTI)

This technology evaluation report describes the potential market for fertilizer materials derived from utility by-products from developing ammonia-based flue gas desulfurization (FGD) systems to control sulfur oxides (SOx) and nitrogen oxides (NOx).

2002-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein  

DOE Patents (OSTI)

A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

1980-01-01T23:59:59.000Z

182

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide - lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, A.H.; Godfrey, T.G. Jr.; Mowery, E.H.

1986-10-10T23:59:59.000Z

183

Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

When some of the uncertainties associated with lightning are reviewed, it becomes difficult to support a large production of fixed nitrogen from the lightning shock wave.

G. A. Dawson

1980-01-01T23:59:59.000Z

184

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

185

METHOD OF MAKING PLUTONIUM DIOXIDE  

DOE Patents (OSTI)

A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

Garner, C.S.

1959-01-13T23:59:59.000Z

186

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

Change Special Report on Carbon Dioxide Capture and Storage,Probability of Injected Carbon Dioxide Plumes Encounteringthe probability of injected carbon dioxide encountering and

Jordan, P.D.

2013-01-01T23:59:59.000Z

187

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

188

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

189

PREPARATION OF REFRACTORY OXIDE CRYSTALS  

DOE Patents (OSTI)

A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

1962-11-13T23:59:59.000Z

190

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents (OSTI)

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

191

Reaction products of chlorine dioxide  

E-Print Network (OSTI)

Concern over the presence of trihalomethanes and other chlorinated by-products in chlorinedisinfected drinking water has led to extensive investigations of treatment options for controlling these by-products. Among these treatment options is the use of an alternative disinfectant such as chlorine dioxide. Although chlorine dioxide does not react to produce trihalomethanes, considerable evidence does exist that chlorine dioxide, like chlorine, will produce other organic by-products. The literature describes chlorinated and nonchlorinated derivatives including acids, epoxides, quinones, aldehydes, disulfides, and sulfonic acids that are products of reactions carried out under conditions that are vastly different from those experienced during drinking water treatment. Evidence is beginning to emerge, however, that some by-products in these categories may be produced. Certain specific volatile aldehydes and halogenated derivatives as determined by the total organic halogen parameter are among those by-products that have been measured.

Alan A. Stevens

1982-01-01T23:59:59.000Z

192

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

193

Electro Catalytic Oxidation (ECO) Operation  

Science Conference Proceedings (OSTI)

The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

Morgan Jones

2011-03-31T23:59:59.000Z

194

SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE  

DOE Patents (OSTI)

The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1958-04-22T23:59:59.000Z

195

Erbium diffusion in silicon dioxide  

SciTech Connect

Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

Lu Yingwei; Julsgaard, B.; Petersen, M. Christian [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, R. V. Skougaard [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Pedersen, T. Garm; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark); Larsen, A. Nylandsted [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark)

2010-10-04T23:59:59.000Z

196

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

197

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

198

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Cycle Data Available The ORNL DAAC announces the release of a data set prepared by Elisabeth Holland and colleagues titled "Global N Cycle: Fluxes and N2O Mixing Ratios...

199

INSENSITIVE HIGH-NITROGEN COMPOUNDS  

DOE Green Energy (OSTI)

The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB--the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it too is a better explosive performer. The recently discovered tetrazol derivative, 3,6-bis-(1H-1,2,3,4-tetrazol-5-ylamino)-s-tetrazine (BTATz) was measured to have exceptional positive heats of formation and to be insensitive to explosive initiation. Because of its high burn rate with low sensitivity to pressure, this material is of great interest to the propellant community.

D. CHAVEZ; ET AL

2001-03-01T23:59:59.000Z

200

Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2 Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2 Irrigation, and Nitrogen (1992) (NDP-037) DOI: 10.3334/CDIAC/vrc.ndp037 image Data image PDF file Investigators B. A. Kimball, J. R. Mauney, R. L. La Morte, G. Guinn, F. S. Nakayama, J. W. Radin, E. A. Lakatos, S. T. Michell, L. L. Parker, G. J. Peresta, P. E. Nixon III, B. Savoy, S. M. Harris, R. MacDonald, H. Pros, and J. Martinez This NDP presents data on the effects of continuous CO2 enrichment of cotton during five consecutive growing seasons, 1983 to 1987, under both optimal and limiting levels of water and nitrogen. Unlike many prior CO2-enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions with

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Flame Inhibition by Ferrocene, Carbon Dioxide, and ...  

Science Conference Proceedings (OSTI)

Flame Inhibition by Ferrocene, Carbon Dioxide, and Trifluoromethane Blends: Synergistic ... a straight sided schlieren image which is captured by a ...

2012-10-23T23:59:59.000Z

202

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

203

Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies  

SciTech Connect

This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

2011-09-28T23:59:59.000Z

204

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

Liu, D. Kwok-Keung; Chang, Shih-Ger

1987-08-25T23:59:59.000Z

205

Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films  

SciTech Connect

Nitrogen doped tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-doping induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicates that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.

Vemuri, Venkata Rama Sesha R.; Noor-A-Alam, M.; Gullapalli, Satya K.; Engelhard, Mark H.; Ramana, C.V.

2011-12-30T23:59:59.000Z

206

Application Of Optical Processing For Growth Of Silicon Dioxide  

DOE Patents (OSTI)

A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

Sopori, Bhushan L. (Denver, CO)

1997-06-17T23:59:59.000Z

207

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

208

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Atmospheric Carbon Dioxide Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most datasets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to atmospheric carbon dioxide data includes: Atmospheric Carbon Dioxide and Carbon Isotopes • Atmospheric carbon dioxide records from Mauna Loa, Hawaii • Monthly atmospheric CO2 mixing ratios and other data from the NOAA/CMDL continuous monitoring network • Data from the CSIRO GASLAB Flask Sampling Network • Atmospheric CO2 records from continuous measurements at Jubany Station, Antarctica and from 10 sites in the SIO air sampling network • Historical data from the extended Vostok ice core (2003) and the Siple Station ice core (1997) • Historical records from the Law Dome DE08, DE08-2, and DSS ice cores (1998) • AmeriFlux Carbon Dioxide, Water Vapor, and Energy Balance Measurements • Data from the Canadian Background Air Pollution Monitoring Network • Flask Samples from at U.S.S.R.-Operated Sites (1991) • The CISIRO (Australia) Monitoring Program from Aircraft for 1972-1981 • CO2 Concentrations in Surface Water and the Atmosphere during 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Surface Water and Atmospheric CO2 and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 (1992) • IPCC Working Group 1, 1994: Modeling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995). New datasets are added when available to the category of atmospheric carbon dioxide.

209

Effects of CO{sub 2} and nitrogen fertilization on growth and nutrient content of juvenile ponderosa pine  

DOE Green Energy (OSTI)

This data set presents measured values of plant diameter and height, biomass of plant components, and nutrient (carbon, nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc) concentrations from a study of the effects of carbon dioxide and nitrogen fertilization on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) conducted in open-top chambers in Placerville, California, from 1991 through 1996. This data set contains values from 1991 through 1993.

Johnson, D.W. [Desert Research Inst., Reno, NV (United States). Biological Sciences Center]|[Univ. of Nevada, Reno, NV (United States). Coll. of Agriculture; Ball, J.T. [Desert Research Inst., Reno, NV (United States). Biological Sciences Center; Walker, R.F. [Univ. of Nevada, Reno, NV (United States). Coll. of Agriculture; Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

1998-03-01T23:59:59.000Z

210

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

211

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-12-31T23:59:59.000Z

212

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-01-01T23:59:59.000Z

213

The Dissolution of Uranium Oxides in HB-Line Phase 1 Dissolvers  

SciTech Connect

A series of characterization and dissolution studies has been performed to define flowsheet conditions for the dissolution of uranium oxide materials in dissolvers. The samples selected for analysis were uranium oxide materials. The selection of these uranium oxide materials for characterization and dissolution studies was based on high enriched uranium content and trace levels of plutonium. Test results from the characterization study identified ferric oxide (Fe2O3) and iron/chromium/nickel (Fe/Cr/Ni) particles as impurities along with the tri-uranium oxide (U3O8) and uranium trioxide (UO3). The weight percent uranium in this material was found to vary depending on the impurity content. The trace impurity plutonium appears to be associated with the Fe/Cr/Ni particles. A small amount of absorbed moisture and waters of hydration is present. Most of the uranium oxides easily dissolved in low-molar nitric acid solutions without fluoride within one to two hours at solution temperature s between 60-80 degrees C. A small amount of residue remained following this dissolution step. To assure complete dissolution of uranium from these oxide materials, an additional dissolution step at 90 degrees C to boiling for at least one to two hours has been suggested. Only trace amounts of iron associated with Fe2O3 and Fe/Cr/Ni particles will dissolve during the dissolution steps. Neither hydrogen nor heat will be generated during the dissolution of these uranium oxide materials in nitric acid solutions. Some brown nitrogen dioxide (NO2) fumes will be generated during the dissolution of U3O8.

Gray, J.H.

2003-08-28T23:59:59.000Z

214

Reductive Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reductive Sequestration of Carbon Dioxide Reductive Sequestration of Carbon Dioxide T. Mill (ted.mill@sri.com; 650-859-3605) SRI, PS273 333 Ravenswood Menlo Park, CA 94025 D. Ross (dsross3@yahoo.com; 650-327-3842) U.S. Geological Survey, Bldg 15 MS 999 345 Middlefield Rd. Menlo Park, CA 94025 Introduction The United States currently meets 80% of its energy needs by burning fossil fuels to form CO 2 . The combustion-based production of CO 2 has evolved into a major environmental challenge that extends beyond national borders and the issue has become as politically charged as it is technologically demanding. Whereas CO 2 levels in the atmosphere had remained stable over the 10,000 years preceeding the industrial revolution, that event initiated rapid growth in CO 2 levels over the past 150 years (Stevens, 2000). The resulting accelerating accumulation of

215

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

216

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

217

Bayesian Modelling Volatility of Growth Rate in Atmospheric Carbon Dioxide Concentrations  

Science Conference Proceedings (OSTI)

Atmospheric gases, such as carbon dioxide, ozone, methane, nitrous oxide, and etc., create a natural greenhouse effect and cause climate change. Therefore, modelling behavior of these gases could help policy makers to control greenhouse effects. In a ... Keywords: Stochastic volatility, Smooth transition autoregressive, Markov chain Monte Carlo, methods, Bayesian, ARCH, GARCH

Esmail Amiri

2009-12-01T23:59:59.000Z

218

Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestering Carbon Dioxide and Sulfur Dioxide Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,922,792 entitled "Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams." Disclosed in this patent is the invention of a neutralization/sequestration method that concomitantly treats bauxite residues from aluminum production processes, as well as brine wastewater from oil and gas production processes. The method uses an integrated approach that coincidentally treats multiple industrial waste by-product streams. The end results include neutralizing caustic

219

Carbon Dioxide Compression and Transportation  

Science Conference Proceedings (OSTI)

This report summarizes the state of the art regarding carbon dioxide CO2 compression and transportation in the United States and Canada. The primary focus of the report was on CO2 compression because it is a significant cost and energy penalty in carbon capture and storage CCS. The secondary focus of the report was to document the state of the art of CO2 pipeline transportation in the United States and Canada.

2008-12-23T23:59:59.000Z

220

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents (OSTI)

A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL  

NLE Websites -- All DOE Office Websites (Extended Search)

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL 1909 Pushnik, J.C., R.S. Demaree, J.L.J. Houpis, W.B. Flory, S.M. Bauer, and P.D. Anderson. 1995. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa. Journal of Biogeography 22(2-3):249-254. The impact of increasing atmospheric CO2 has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinus ponderosa were grown in environmentally controlled chambers under increased CO2 conditions (525 mu L L(-1) and 700 mu L L(-1)) for 6 months. These trees exhibited morphological, physiological and biochemical alterations when compared to our controls (350 mu L L(- 1)). Analysis of whole plant biomass distribution has shown no

222

Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic  

Science Conference Proceedings (OSTI)

This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.

Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France)

2010-03-15T23:59:59.000Z

223

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

224

TABLE OF CONTENTS Carbon Dioxide Reduction Metallurgy  

Science Conference Proceedings (OSTI)

Chemical Utilization of Sequestered Carbon Dioxide as a. Booster of Hydrogen ... CO2 Capture and Sequestration – Implications for the Metals. Industry.

225

Atmospheric carbon dioxide and the greenhouse effect  

SciTech Connect

This document contains a non-technical review of the problems associated with atmospheric carbon dioxide and the resulting greenhouse effect. (TEM)

Firestine, M.W. (ed.)

1989-05-01T23:59:59.000Z

226

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

227

Carbon Dioxide Transportation and Sequestration Act (Illinois...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

process for the issuance of a certificate of authority by an owner or operator of a pipeline designed, constructed, and operated to transport and to sequester carbon dioxide...

228

Scientists Crack Materials Mystery of Vanadium Dioxide  

Science Conference Proceedings (OSTI)

Dec 1, 2010 ... Using a condensed physics theory to explain the observed phase behaviors of vanadium dioxide, ORNL scientists have discovered that the ...

229

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

230

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

231

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

232

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

233

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

234

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

235

Turn-on fluorescent probes for detecting nitric oxide in biology  

E-Print Network (OSTI)

Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

McQuade, Lindsey Elizabeth, 1981-

2010-01-01T23:59:59.000Z

236

The biogeochemistry of marine nitrous oxide  

E-Print Network (OSTI)

Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

Frame, Caitlin H

2011-01-01T23:59:59.000Z

237

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Vermont: Nitrogen Oxide: 2,491: Texas: District of Columbia: Carbon Dioxide 2,388,596: Texas: Vermont: Sulfur Dioxide (lbs/MWh) 2.9: Ohio: Vermont: Nitrogen ...

238

Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda  

E-Print Network (OSTI)

influence of ammonia and carbon dioxide on the sorption of aInfluence of ammonia and carbon dioxide on the sorption of acarbon monoxide, formaldehyde, hydrogen cyanide, nicotine, nitrogen oxides, polycyclic aromatic hydrocarbons (PAHs), sulfur dioxide

Matt, Georg E.

2013-01-01T23:59:59.000Z

239

Carbon dioxide storage professor Martin Blunt  

E-Print Network (OSTI)

Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

240

ORNL DAAC, Effects of Increased Carbon Dioxide, Dec. 11, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Carbon Dioxide on Vegetation The ORNL DAAC announces the release of a data set entitled "Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition." The...

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

242

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

243

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania...

244

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

245

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

246

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

247

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

248

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color...

249

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

250

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

251

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

252

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

253

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

254

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

255

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

256

PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES  

DOE Patents (OSTI)

A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

Hamilton, N.E.

1957-12-01T23:59:59.000Z

257

Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders  

SciTech Connect

Rutile-type vanadium dioxide nanopowders with four different sizes were successfully synthesized by carbothermal reducing V{sub 2}O{sub 5} in KCl-LiCl molten salt. XRD and TEM characterizations suggested that vanadium dioxide particles formed by a broken and reunited process of vanadium oxide. Molten salt and organic carbon sources are crucial to the size of final particles. In the presence of the molten salt, the organic carbon with a shorter chain length would induce smaller particles. The UV-VIS-IR spectral measurements for as-prepared vanadium dioxide announced an obvious localized surface plasmon resonance band in the near infrared region at 90 deg. C. - Graphical abstract: Schematic illustration of the formation mechanism of VO{sub 2}(M) nanoparticles in molten salt, particles size can be controlled by choosing organic carbon sources with different chain length.

Wang Fu [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100806 (China); Liu Yun [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Liu Chunyan, E-mail: cyliu@mail.ipc.ac.c [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)

2009-12-15T23:59:59.000Z

258

Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)  

SciTech Connect

Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

Mark Perna; Anant Upadhyayula; Mark Scotto

2012-11-05T23:59:59.000Z

259

Understanding Nitrogen Fixation  

DOE Green Energy (OSTI)

The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive giv

Paul J. Chirik

2012-05-25T23:59:59.000Z

260

Nitrogen fixation apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is the greenhouse effect? is the greenhouse effect? Greenhouse Effect Greenhouse Effect The greenhouse effect is used to describe the phenomenon whereby the Earth's atmosphere traps solar radiation, caused by the presence of gases, such as carbon dioxide (CO2), methane (CH4), and water vapor (H2O), in the atmosphere that allow incoming sunlight to pass through but absorb heat radiated back from the Earth's surface, resulting in higher temperatures. The greenhouse effect gets its name from what actually happens in a greenhouse. In a greenhouse, short wavelength visible sunlight shines through the glass panes and warms the air and the plants inside. The radiation emitted from the heated objects is of longer wavelength and is unable to pass through the glass barrier, maintaining a warm temperature

262

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

263

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

264

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

1988-01-01T23:59:59.000Z

265

Continuous Emission Monitoring (CEM) System Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Large quantities of gases and particulate matter are emitted daily from industrial plants and fossil-fueled steam generating facilities. The gases include sulfur dioxide (SO2), the nitrogen oxides (NOx), and carbon dioxide (CO2). All of these gases affect the environment in some manner. Sulfur dioxide and the nitrogen oxides are precursors to acid rain. High levels of nitrogen oxides lead to the generation of photochemical smog, while carbon dioxide is implicated in climate change (global warming).

2003-12-31T23:59:59.000Z

266

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

267

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

NLE Websites -- All DOE Office Websites (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

268

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-12-26T23:59:59.000Z

269

Nitrogen chiller acceptance test procedure  

SciTech Connect

This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

Kostelnik, A.J.

1995-03-07T23:59:59.000Z

270

Canada, carbon dioxide and the greenhouse effect  

SciTech Connect

One of the major contributors to the greenhouse effect is carbon dioxide from the combustion of fossil fuels such as coal, oil, and natural gas. Even with its low population density, Canada, on a per capita basis, has the dubious distinction of being the world's fourth largest producer of carbon from carbon dioxide. This paper considers the impact of Canadian carbon dioxide emissions on the greenhouse effect in light of the 1988 Conference on the Changing Atmosphere's recommendations. A computer model has been developed that, when using anticipated Canadian fossil fuel demands, shows that unless steps are taken immediately, Canada will not be able to meet the conference's proposed carbon dioxide reduction of 20 percent of 1988 levels by the year 2005, let alone meet any more substantial cuts that may be required in the future.

Hughes, L.; Scott, S. (Dept. of Mathematics and Computing Science, Saint Mary' s Univ., Halifax, Nova Scotia B3H 3C3 (CA))

1991-01-01T23:59:59.000Z

271

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

272

Sequestration of Carbon Dioxide in Coal Seams  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide in Coal Seams K. Schroeder (schroede@netl.doe.gov; 412.386.5910) U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236...

273

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

274

Turning unwanted carbon dioxide into electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

and use it as a tool to boost electric power. Turning unwanted carbon dioxide into electricity Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov High Resolution Image The...

275

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

276

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

277

Thorium dioxide: properties and nuclear applications  

SciTech Connect

This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

Belle, J.; Berman, R.M. (eds.)

1984-01-01T23:59:59.000Z

278

Copper mercaptides as sulfur dioxide indicators  

DOE Patents (OSTI)

Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

Eller, Phillip G. (Los Alamos, NM); Kubas, Gregory J. (Los Alamos, NM)

1979-01-01T23:59:59.000Z

279

Appendix B: CArBon dioxide CApture teChnology SheetS Oxygen PrOductiOn  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen PrOductiOn B-500 Oxygen PrOductiOn u.S. dePartment Of energy advanced carbOn diOxide caPture r&d PrOgram: technOlOgy uPdate, may 2013 itm Oxygen technOlOgy fOr integratiOn...

280

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

Science Conference Proceedings (OSTI)

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Eighth international congress on nitrogen fixation  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-01-01T23:59:59.000Z

282

Frostbite Theater - Liquid Nitrogen Experiments - Superconductors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Main Index Next Video (Cells vs. Liquid Nitrogen) Cells vs. Liquid Nitrogen Superconductors What happens when a magnet is placed on a superconductor? Play the video to find...

283

METHOD FOR SEPARATING PLUTONIUM AND FISSION PRODUCTS EMPLOYING AN OXIDE AS A CARRIER FOR FISSION PRODUCTS  

DOE Patents (OSTI)

Carrier precipitation processes for separating plutonium values from uranium fission products are described. Silicon dioxide or titanium dioxide in a finely divided state is added to an acidic aqueous solution containing hexavalent plutonium ions together with ions of uranium fission products. The supernatant solution containing plutonium ions is then separated from the oxide and the fission products associated therewith.

Davies, T.H.

1961-07-18T23:59:59.000Z

284

Alpha Radiolysis of Sorbed Water on Uranium Oxides and Uranium Oxyfluorides  

DOE Green Energy (OSTI)

The radiolysis of sorbed water and other impurities contained in actinide oxides has been the focus of a number of studies related to the establishment of criteria for the safe storage and transport of these materials. Gamma radiolysis studies have previously been performed on uranium oxides and oxyfluorides (UO{sub 3}, U{sub 3}O{sub 8}, and UO{sub 2}F{sub 2}) to evaluate the long-term storage characteristics of {sup 233}U. This report describes a similar study for alpha radiolysis. Uranium oxides and oxyfluorides (with {sup 238}U as the surrogate for {sup 233}U) were subjected to relatively high alpha radiation doses (235 to 634 MGy) by doping with {sup 244}Cm. The typical irradiation time for these samples was about 1.5 years, which would be equivalent to more than 50 years irradiation by a {sup 233}U sample. Both dry and wet (up to 10 wt % water) samples were examined in an effort to identify the gas pressure and composition changes that occurred as a result of radiolysis. This study shows that several competing reactions occur during radiolysis, with the net effect that only very low pressures of hydrogen, nitrogen, and carbon dioxide are generated from the water, nitrate, and carbon impurities, respectively, associated with the oxides. In the absence of nitrate impurities, no pressures greater than 1000 torr are generated. Usually, however, the oxygen in the air atmosphere over the oxides is consumed with the corresponding oxidation of the uranium oxide. In the presence of up to 10 wt % water, the oxides first show a small pressure rise followed by a net decrease due to the oxygen consumption and the attainment of a steady-state pressure where the rate of generation of gaseous components is balanced by their recombination and/or consumption in the oxide phase. These results clearly demonstrate that alpha radiolysis of either wet or dry {sup 233}U oxides will not produce deleterious pressures or gaseous components that could compromise the long-term storage of these materials.

Icenhour, A.S.

2003-09-10T23:59:59.000Z

285

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

286

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

287

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

288

Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 9, 2007 4: April 9, 2007 Carbon Dioxide Emissions to someone by E-mail Share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Facebook Tweet about Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Twitter Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Google Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Delicious Rank Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Digg Find More places to share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on AddThis.com... Fact #464: April 9, 2007 Carbon Dioxide Emissions Carbon dioxide (CO2) emissions from the transportation sector began to

289

NETL: News Release - Record Run by Solid Oxide Fuel Cell Comes...  

NLE Websites -- All DOE Office Websites (Extended Search)

the equivalent of 65 kilowatts of thermal energy in the form of hot water to the local district heating system. Air emissions from the unit - nitrogen oxides, sulfur oxides,...

290

It's Elemental - The Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

291

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

292

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

293

Diffuse alveolar damage in cats induced by nitrogen dioxide or feline calicivirus  

SciTech Connect

The ultrastructural morphogenesis of pulmonary lesions was studied in cats exposed to either aerosols of feline calicivirus (FCV) or high concentrations of NO/sub 2/. Both directly injured alveolar lining cells, particularly type I cells. Necrosis of pneumocytes attended by an acute exudative response in the air exchange tissues was evident from 0 through 24 hours after exposure of cats to NO/sub 2/ and from 12 through 96 hours after infection with FCV. The reparative process following alveolar injury was characterized by regenerative hyperplasia of type II pneumocytes, proliferation of stromal cells, and infiltration of mononuclear cells. Differences in the lesions produced by NO/sub 2/ and FCV also were encountered. Endothelial necrosis was detected only after NO/sub 2/ injury, whereas a marked infiltration of neutrophils and immunocytes was observed only after FCV injury, the FCV/NO/sub 2/ experimental system in cats is well suited for studies of diffuse alveolar damage of toxic and viral etiology.

Langloss, J.M.; Hoover, E.A.; Kahn, D.E.

1977-12-01T23:59:59.000Z

294

Autonomous Optical Sensor System for the Monitoring of Nitrogen Dioxide from Aging Rocket Propellant  

DOE Green Energy (OSTI)

An optical sensor system has been developed for the autonomous monitoring of NO{sub 2} evolution in energetic material aging studies. The system is minimally invasive, requiring only the presence of a small sensor film within the aging chamber. The sensor material is a perylene/PMMA film that is excited by a blue LED light source and the fluorescence detected with a CCD spectrometer. Detection of NO{sub 2} gas is done remotely through the glass window of the aging chamber. Irreversible reaction of NO{sub 2} with perylene, producing the non-fluorescent nitroperylene, provides the optical sensing scheme. The rate of fluorescence intensity loss over time can be modeled using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem to evaluate NO{sub 2} concentration levels. The light source, spectrometer, spectral acquisition, and data processing were controlled through a Labivew program run by a laptop PC. Due to the long times involved with materials aging studies the system was designed to turn on, warm up, acquire data, power itself off, then recycle at a specific time interval. This allowed the monitoring of aging HE material over the period of several weeks with minimal power consumption and stable LED light output. Despite inherent problems with gas leakage of the aging chamber they were able to test the sensor system in the field under an accelerated aging study of rocket propellant. They found that the propellant evolved NO{sub 2} at a rate that yielded a concentration of between 10 and 100 ppm. The sensor system further revealed that the propellant, over an aging period of 25 days, evolves NO{sub 2} with cyclic behavior between active and dormant periods.

COX, TRISHA D.; SINGH, SEEMA; HUNTER, JOHN A.; JONES, GARY D.; SINCLAIR, MICHAEL B.; ROHWER, LAUREN E. S.; POHL, PHILLIP I.; ANDRZEJEWSKI, WILLIAM; SASAKI, DARRYL Y.

2001-09-01T23:59:59.000Z

295

Thermodynamic Models for Vapor-Liquid Equilibria of Nitrogen+Oxygen+Carbon Dioxide at Low Temperatures  

E-Print Network (OSTI)

For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N2+O2+CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N2 and O2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region.

Vrabec, J; Buchhauser, U; Meyer-Pittroff, R; Hasse, H

2009-01-01T23:59:59.000Z

296

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

297

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

298

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

299

Polymers for metal extractions in carbon dioxide  

DOE Patents (OSTI)

A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

DeSimone, Joseph M. (7315 Crescent Ridge Dr., Chapel Hill, NC 27516); Tumas, William (1130 Big Rock Loop, Los Alamos, NM 87544); Powell, Kimberly R. (103 Timber Hollow Ct. Apartment 323, Chapel Hill, NC 27514); McCleskey, T. Mark (1930 Camino Mora, Los Alamos, NM 87544); Romack, Timothy J. (5810 Forest Ridge Dr., Durham, NC 27713); McClain, James B. (8530 Sommersweet La., Raleigh, NC 27612); Birnbaum, Eva R. (1930 Camino Mora, Los Alamos, NM 87544)

2001-01-01T23:59:59.000Z

300

CHLORINE DIOXIDE AND CHLORITE Chlorine Dioxide CAS # 10049-04-4  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about chlorine dioxide and chlorite. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Chlorine dioxide is a gas that does not occur naturally in the environment. It is used to disinfect drinking water and make it safe to drink. Chlorite is formed when chlorine dioxide reacts with water. High levels of chlorine dioxide can be irritating to the nose, eyes, throat, and lungs. Chlorine dioxide and chlorite have not been found in any of the 1,647 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are chlorine dioxide and chlorite? Chlorine dioxide is a yellow to reddish-yellow manufactured gas. It does not occur naturally in the environment. When

Chlorite Cas

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

302

Science and strategies to reduce mercury risks: a critical review Noelle E. Selin*  

E-Print Network (OSTI)

dioxide, nitrogen oxides, mercury, carbon dioxide) · Recent trends in emissions/impacts · Current policy") · Acid gases (sulfur oxides, nitrogen oxides) released from power plants can react in atmospheric to form emissions - elemental and oxidized mercury Global and regional sources Natural emissions Key species: Hg° Hg

303

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

304

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

305

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

306

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

307

Dry process fluorination of uranium dioxide using ammonium bifluoride  

E-Print Network (OSTI)

An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

Yeamans, Charles Burnett, 1978-

2003-01-01T23:59:59.000Z

308

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

309

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

310

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

311

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

312

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

E-Print Network (OSTI)

carbon dioxide can be less than the viscosity of the aqueous phase by a factorcarbon dioxide can be less than the viscosity of the aqueous phase by a factor

Garcia, Julio Enrique

2003-01-01T23:59:59.000Z

313

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

314

Ceramic coating system or water oxidation environments  

DOE Patents (OSTI)

A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

Hong, Glenn T. (Tewksbury, MA)

1996-01-01T23:59:59.000Z

315

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

316

Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy - 2011.

317

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

318

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

319

Cation Adsorption on Manganese Dioxide Impregnated Fibers  

Science Conference Proceedings (OSTI)

The complete removal of radioactive cations by standard mixed-bed ion-exchange resins is sometimes not achieved in liquid radwaste systems. This report documents an alternative ion adsorption process for the purification of liquid wastes, specifically, the use of manganese dioxide (MnO2) impregnated fibers to remove selected cations from PWR liquid waste streams.

1993-02-26T23:59:59.000Z

320

Carbon Dioxide Capture from Coal-Fired  

E-Print Network (OSTI)

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

322

Acid sorption regeneration process using carbon dioxide  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

2001-01-01T23:59:59.000Z

323

Synthetic fuels, carbon dioxide and climate  

Science Conference Proceedings (OSTI)

The observed increase in atmospheric carbon dioxide (CO2) has been attributed to the use of fossil fuels. There is concern that the generation and use of synthetic fuels derived from oil shale and coal will accelerate the increase of CO2.

Alex R. Sapre; John R. Hummel; Ruth A. Reck

1982-01-01T23:59:59.000Z

324

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

325

The sacrificial oxide etching of poly-Si cantilevers having high aspect ratios using supercritical CO2  

Science Conference Proceedings (OSTI)

The aqueous etchants used in conventional wet etching for the micromachining of integrated circuits and MEMS devices often encumber the processes with a stiction problem. A dry etching method with anhydrous HF/pyridine in supercritical carbon dioxide ... Keywords: Cantilever, Etching, MEMS, Poly-Si, Sacrificial oxide, Supercritical carbon dioxide

Ha Soo Hwang; Jae Hyun Bae; Jae Mok Jung; Kwon Taek Lim

2010-11-01T23:59:59.000Z

326

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

327

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

SciTech Connect

The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely moisture, and easy regenerability, were all addressed during this program. As predicted at the start of the program, MOFs have high potential for CO{sub 2} capture in the IGCC and flue gas applications.

Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

2008-02-04T23:59:59.000Z

328

EIA - 2010 International Energy Outlook - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2010 Energy-Related Carbon Dioxide Emissions In 2007, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 17 percent. In the IEO2010 Reference case, energy-related carbon dioxide emissions from non-OECD countries in 2035 are about double those from OECD countries. Overview Because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels, world energy use continues to be at the center of the climate change debate. In the IEO2010 Reference case, world energy-related carbon dioxide emissions29 grow from 29.7 billion metric tons in 2007 to 33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 (Table 18).30

329

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

330

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

331

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

332

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

333

Nucleation and Characteristics of Liquid Nitrogen  

Science Conference Proceedings (OSTI)

This paper describes experiments on a refrigerating catalyst?liquid nitrogen (LN)?in different cloud chambers and their results. The nucleation threshold temperature of liquid nitrogen is 0°C, and when the temperature less than ?2°C, the ice ...

Cao Xuecheng; Wang Weimin

1996-09-01T23:59:59.000Z

334

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network (OSTI)

is needed. Besides petroleum, the only sources from whichdependence on petroleum as a fuel and chemical source. In

Borrevik, R.K.

2011-01-01T23:59:59.000Z

335

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

x Abatement and Control. IEA Coal Research: London, UnitedM. Air Pollution Control Costs for Coal-Fired PowerStations; IEA Coal Research: London, UK, 1995. 25. Arrow, K.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

336

Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits  

Reports and Publications (EIA)

The purpose of this article is to summarize the existing Federal Nox regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

Information Center

1998-05-01T23:59:59.000Z

337

Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology  

DOE Green Energy (OSTI)

reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

McGill, R.N.

1998-08-04T23:59:59.000Z

338

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

339

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Columbia University

340

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

utilizing all of the known techniques for NOx reduction. To be precise, the NOx formed within the flame] and several others [6, 7] have suggested certain reduction methods which are consistent with NOx formation, not solid waste. The results of NOx reduction techniques in coal combustion should be applied with caution

Columbia University

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Greatly reduces harmful nitrogen oxides in engine exhaust  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

342

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to reciprocating engines, fuel-burning equipment, or waste combusting equipment which are either attached to major stationary sources of NOx or have high potential NOx...

343

Proposal to Designate an Emission Control Area for Nitrogen Oxides,  

E-Print Network (OSTI)

on a massive scale. These processes include catalytic reforming (to increase the octane number), catalytic

Hanson, Thomas

344

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide (CO2) emissions, nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, photovoltaic installation costs, and payback periods. Pie chart of the...

345

Building Energy Software Tools Directory: IAQ-Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

monoxide, ethane, formaldehyde, hydrogen sulfide, methane, nitrogen oxides, ozone, propane, radon, and sulfur dioxide. 3. Bioaerosols, including bacteria, fungi, and molds. 4....

346

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Shale Derived Heavy Oil Coal Sarofim and Flagan (1976) Coal Liquids Coal-oil Slurry Heap (1978) Heap (1978) Heap (1978) Nitric oxide production

Brown, Nancy J.

2011-01-01T23:59:59.000Z

347

Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications  

Science Conference Proceedings (OSTI)

Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

2013-02-01T23:59:59.000Z

348

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

Science Conference Proceedings (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

349

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

350

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

351

Atmospheric Carbon Dioxide Record from Mauna Loa  

NLE Websites -- All DOE Office Websites (Extended Search)

SIO Air Sampling Network » Mauna Loa SIO Air Sampling Network » Mauna Loa Atmospheric Carbon Dioxide Record from Mauna Loa DOI: 10.3334/CDIAC/atg.035 graphics Graphics data Data Investigators R.F. Keeling, S.C. Piper, A.F. Bollenbacher and J.S. Walker Carbon Dioxide Research Group Scripps Institution of Oceanography University of California La Jolla, California 92093-0444, U.S.A. Period of Record 1958-2008 Methods Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5

352

Carbon dioxide utilization and seaweed production  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide utilization and seaweed production dioxide utilization and seaweed production V.R.P.Sinha World Bank Project Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh e-mails; vrpsinha@ mymensingh.net, vidyut_s@hotmail.com Lowell Fraley L.D. Fraley & Associates, LLC, P.O. Box 1525, Sugarland, TX 77487, USA, e-mail idf@hia.net BS Chowdhry ISS Consultants, Inc. 13111 Westheimer, Suite 303, Houston, Texas 77077, USA, e-mail bsc@issci.com Abstract: Stronger growth in many plants stimulated by increased CO 2 concentration should lead to greater biological productivity with an expected increase in the photosynthetic storage of carbon. Thus, the biosphere will serve as a sink for CO 2 , though it will also act as a source too, because of respiration. Normally net photosynthesis dominates in summer and

353

Carbon Dioxide Emissions from Industrialized Countries  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

354

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen Show!  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators! Insulators! Previous Video (Insulators!) Frostbite Theater Main Index Next Video (Superconductors!) Superconductors! Liquid Nitrogen Show! All of your favorite liquid nitrogen experiments all in one place! Flowers! Balloons! Racquetballs! Nothing is safe! Just sit back, relax, and enjoy the show! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Usually, every couple years, Jefferson Lab hosts an Open House. This is the one time the public and come and tour our accelerator and end stations. Steve: During the 2010 Open House, our cameraman snuck into one of the ongoing cryo shows that are held throughout the day. He missed half of it. So if you want to see the entire thing, check our website to see when the

355

Nitrogen control of chloroplast differentiation. Annual progress report  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

356

Solubilities of phenols in supercritical carbon dioxide  

SciTech Connect

Equilibrium solubilities of pure anthracene at 50 C, 1-naphthol at 35, 45, and 55 C, and hydroquinone at 35 and 45 C in supercritical carbon dioxide over a pressure range of about 85--300 bar have been measured using a supercritical fluid extractor coupled with an external high-pressure liquid chromatographer. The solubility results, along with those for other phenols reported in the literature, are correlated with the translated-modified Peng Robinson equation of state.

Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)

1995-07-01T23:59:59.000Z

357

Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.

Mangimbulude, Jubhar C. [Faculty of Biology, Universitas Kristen Satya Wacana, Jl Diponegoro 52-60, Salatiga 50711 (Indonesia); Straalen, Nico M. van [Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands); Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl [Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)

2012-01-15T23:59:59.000Z

358

The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen  

DOE Green Energy (OSTI)

The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

2012-06-20T23:59:59.000Z

359

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3A, Low NO{sub x} burner tests  

SciTech Connect

This Phase 3A test report summarizes the testing activities and results for the third testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. Described in this report are the test plans, data measurements, and data analyses performed during the Phase 3A effort. The present report also contains sufficient background material to provide an understanding of the overall program scope, the relationship of Phase 3A to the overall program, the testing methodologies, testing procedures, and unit configuration. Results from 66 short-term tests indicate increasing NO{sub x} emissions over the load range ranging from 0.5 lb/MBtu at 300 NM to around 0.65 lb/MBtu at 480 MW. Fly ash loss-on-ignition (LOI) for these loads ranged from 5.4 to 8.6 percent. Long-term test results indicated high load (480 MW) NO{sub x} emissions of approximately 0.65 lb/MBtu. At the 300 MW mid load point, the emissions dropped to 0.47 lb/MBtu which is slightly lower than the 0.50 lb/MBtu shown for the short-term data. The annual and 30-day average achievable NO{sub x} emissions were determined to be 0.55 and 0.64 lb/MBtu, respectively, for the load scenario experienced during the Phase 3A, long-term test period. Based on the long-term test results for Phase 3A, at full-load the low NO{sub x} burners (LNB) retrofit resulted in a NO{sub x} reduction of 48 percent from baseline, while at 300 MW the reduction was approximately 50 percent. A series of tests was also conducted to evaluate the effects of various burner equipment settings and mill coal flow biasing on both NO{sub x} and LOI emissions.

Not Available

1993-03-15T23:59:59.000Z

360

The production of pure hydrogen with simultaneous capture of carbon dioxide  

E-Print Network (OSTI)

dioxide is the combustion of carbona- ceous fuels. Currently, the combustion of oil, natural gas and coal accounts for 88 % of the world’s supply of primary energy, as seen in Table 1.1. While combustible renewables, such as wood, peat and animal waste... . For hydrogen, an environmentally-benign energy vector whose sole combustion product is water, to become a major energy source, it must be produced in an efficient, CO2- neutral manner. A process, which uses a packed bed of iron and its oxides, viz. Fe, Fe0.947O...

Bohn, Christopher

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE  

DOE Green Energy (OSTI)

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE Lucia M. Petkovic, Harry W. Rollins, Daniel M. Ginosar, and Kyle C. Burch Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-2208 Introduction Anthropogenic emissions of carbon dioxide, a gas often associated with global warming, have increased considerably since the beginning of the industrial age.1 In the U.S., stationary CO2 sources, such as electricity generation plants, produce about one-third of the anthropogenic CO2 generation. Reports2 indicate that the power required to recover 90% of the CO2 from an integrated coal-fired power-plant is about 10% of the power-plant capacity. This energy requirement can be reduced to less than 1% if the recovered CO2 is applied to the production of synthetic fuels. However, the lack of efficient catalysts along with the costs of energy and hydrogen has prevented the development of technologies for direct hydrogenation of CO2.3 Although the cost of hydrogen for hydrogenating CO2 is not economically attractive at present, the future production of hydrogen by nuclear power sources could completely change this scenario.2 Still, an efficient catalyst will be essential for commercial application of those processes. The objective of the work presented here was the development of hybrid catalysts for one-step carbon dioxide hydrogenation to liquid fuels. The hybrid catalysts, which were prepared by two novel techniques, included a copper/zinc oxide catalytic function distributed within an acidic zeolitic matrix. Results of catalyst activity and selectivity studies at atmospheric pressure are presented in this contribution. Experimental Catalysts were prepared by two novel techniques and under several different conditions to produce copper/zinc oxide/zeolite materials. Once synthesized, samples were pelletized and the fraction between 40-60 mesh was utilized for the experiments. Two hundred milligrams of catalyst were loaded in a U-tube stainless steel reactor and a flow of 100 cm3/min of a 10:90 H2:Ar mixture was passed through the catalyst bed while the temperature was increased from room temperature to 513 K at 1.8 K/min and held at 513 K for 15 h. A reactant gas mixture composed by 10 cm3/min of CO2 and 30 cm3/min of H2 was then passed through the catalyst bed and the reaction products monitored by on-line gas chromatographic analyses using an SRI Multiple Gas Analyzer #2 equipped with 3 columns (MoleSieve 13X, Hayesep-D, and MXT-1) and 3 detectors (TCD, FID, and FID-methanizer). This GC system allowed for quantification of inert gases, CO, CO2, methanol, dimethylether, higher alcohols, water, and hydrocarbons up to C20. One hundred milligrams of a commercial syngas-to-methanol catalyst along with the same amount of a commercial zeolite catalyst was utilized under the same reaction conditions for comparison purposes. These catalysts were utilized either in two-layers (Com1) or mixed together (Com2). Results and Discussion Under the conditions applied in this study, the main reaction products were CO, CH3OH, CH3OCH3, and H2O. Methanol and dimethylether production rates and selectivities with respect to CO formation are presented in Figures 1 and 2, respectively. Although the activity of the synthesized catalysts did not surpass the commercial catalysts, the selectivity to oxygenates with respect to CO on most of the synthesized catalysts were better than on the commercial catalysts. For example, cat

Licia M. Petkovic; Harry W. Rollins; Daniel M. Ginosar; Kyle C. Burch

2006-09-01T23:59:59.000Z

362

www.eia.gov  

U.S. Energy Information Administration (EIA)

SEPT07OH _fnt1 _fnt2 _fntref1 _fntref2 Sulfur Dioxide Coal Petroleum Natural Gas Other Gases Total Nitrogen Oxide Carbon Dioxide Table 7. Electric Power Industry ...

363

Improving Repository Performance by Using DU Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Dioxide Fill DU Dioxide Fill Improving Repository Performance by Using DU Dioxide Fill Fills may improve repository performance by acting as sacrificial materials, which delay the degradation of SNF uranium dioxide. Because fill and SNF have the same chemical form of uranium (uranium dioxide), the DU dioxide in a repository is the only fill which has the same behavior as that of the SNF. In the natural environment, some uranium ore deposits have remained intact for very long periods of time. The outer parts of the ore deposit degrade while the inner parts of the deposit are protected. The same approach is proposed herein for protecting SNF. The application could use half or more of the DU inventory in the United States. Behavior of Uranium and Potential Behavior of a Waste Package with SNF and Fill

364

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

365

Method of immobilizing carbon dioxide from gas streams  

DOE Patents (OSTI)

This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

Holladay, David W. (Knoxville, TN); Haag, Gary L. (Oliver Springs, TN)

1979-01-01T23:59:59.000Z

366

Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Nano-Enabled Titanium Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project to someone by E-mail Share Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Facebook Tweet about Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Twitter Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Google Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Delicious Rank Building Technologies Office: Nano-Enabled Titanium Dioxide

367

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

Ozawa Meida. 2001. “Carbon Dioxide Emissions from the Globalpost-combustion capture of carbon dioxide. ” InternationalIPCC Special Report on Carbon Dioxide Capture and Storage:

Zhou, Nan

2013-01-01T23:59:59.000Z

368

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

369

Transport Models for Radioactive Carbon Dioxide at RWMC  

SciTech Connect

Radioactive carbon dioxide (formed by oxidation of carbon-14) is a highly mobile, radioactive contaminant released from solid wastes buried at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Radioactive CO2 is chemically active in the environment, volatile, water soluble, and subject to adsorption on solids. For this reason, its fate must be understood and controlled to meet radiological requirements (protection of the atmosphere, aquifer, vadose zones, plants and animals). In the present work, the migration of carbon-14 as dissolved bicarbonate was studied using miscible displacement experiments in water-saturated columns containing sediments from RWMC. Dissolved carbon-14 was retarded relative to the movement of water by a factor of about 3.6, which translates to a partition coefficient (Kd) of 0.8 ml/g. Two different adsorption sites were identified, with one site possibly having a nonlinear adsorption isotherm. A conservative tracer gas, sulfur hexafluoride, was used to measure the tortuosity of sedimentary material for gaseous diffusion. The tortuosity of the RWMC sediment (Spreading Area B sediment) was determined to be 3.2, which is slightly greater than predicted by the commonly used Millington-Quirk equation. In terms of affecting the migration of carbon-14 to the aquifer, the relative importance of the parameters studied is: (1) natural moisture content of the sediments, (2) sediment tortuosity to gas-phase diffusion, and (3) adsorption onto solid phases.

Hull, Laurence Charles; Hohorst, Frederick August

2001-12-01T23:59:59.000Z

370

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ...  

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ... required for sequestration, an area of research identified as a high priority

371

Segregation of Ru to Edge Dislocations in Uranium Dioxide  

Science Conference Proceedings (OSTI)

Presentation Title, Segregation of Ru to Edge Dislocations in Uranium Dioxide. Author(s), Anuj Goyal, Bowen Deng, Minki Hong, Aleksandr Chernatynskiy, ...

372

Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation ...  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

373

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

SAF. 1958. The strength of coal in triaxial compression.Geomechanical Risks in Coal Bed Carbon Dioxide Sequestrationof leakage of CO 2 from coal bed sequestration projects. The

Myer, Larry R.

2003-01-01T23:59:59.000Z

374

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

375

Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanographic Institution Woods Hole, Massachusetts, U.S.A. Prepared by Alexander Kozyr Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

376

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of… (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

377

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole Oceanographic Institution Woods Hole, Massachusetts Prepared by Alexander Kozyr Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

378

Benchmark Results for TraPPE Carbon Dioxide  

Science Conference Proceedings (OSTI)

Benchmark results for TraPPE Carbon Dioxide. The purpose of these pages is to provide some explicit results from Monte ...

2013-09-20T23:59:59.000Z

379

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

**Scripps Institution of Oceanography La Jolla, California Prepared by Alexander Kozyr*** Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge,...

380

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the...

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

382

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

383

The Structure of Uranium Dioxide Grain Boundaries and its ...  

Science Conference Proceedings (OSTI)

The atomic structures of symmetric ?5 tilt, ?5 twist, and amorphous grain boundaries in uranium dioxide are explored in this work using empirical potentials and ...

384

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

385

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846:...

386

Carbon Dioxide, Hydrographic, and Chemical Data Obtained During...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington, U.S.A. Prepared by Alexander Kozyr1 Carbon Dioxide Information Analysis...

387

Bulk separation of carbon dioxide from natural gas  

SciTech Connect

In the bulk separation of carbon dioxide from feedstocks containing same in admixture with relatively nonsorbable gases using a zeolitic molecular sieve to adsorb selectively the carbon dioxide, higher product purity is attained by terminating the adsorption stroke using the feedstock while the bed still has capacity to adsorb more carbon dioxide at the same conditions, then purging the void space hydrocarbons from the bed using product carbon dioxide at a high partial pressure, and finally desorbing the bed by pressure reduction. (3 claims)

Collins, J.J.

1973-08-14T23:59:59.000Z

388

Historical Carbon Dioxide Record from the Vostok Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Vostok Ice Core Historical Carbon Dioxide Record from the Vostok Ice Core graphics Graphics data Data Investigators J.-M. Barnola, D. Raynaud, C. Lorius Laboratoire de Glaciologie...

389

Historical Carbon Dioxide Record from the Siple Station Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Siple Station Ice Core Historical Carbon Dioxide Record from the Siple Station Ice Core graphics Graphics data Data Investigators A. Neftel, H. Friedli, E. Moor, H. Ltscher, H....

390

Atmospheric Carbon Dioxide Record from Flask Measurements at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Atmospheric Carbon Dioxide Record from Flask Measurements at Lampedusa Island graphics Graphics data Data Investigators Paolo Chamard, Luigi Ciattaglia, Alcide di Sarra,...

391

Polyaniline-Based Membranes for Separating Carbon Dioxide and Methane  

Berkeley Lab researchers have optimized polymer membrane technology to more efficiently remove carbon dioxide (CO2) from natural gas. The invention ...

392

Available Technologies: Carbon Dioxide Capture at a Reduced Cost  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

393

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation ...  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

394

Amine Enriched Solid Sorbents for Carbon Dioxide Capture Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,547,854 entitled "Amine Enriched Solid Sorbents for Carbon Dioxide Capture."...

395

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide Injection and Geologic Sequestration Mark de Figueiredo U.S. Environmental Protection Agency RCSP Annual Review...

396

Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

industrial, or other uses, including the use of carbon dioxide for enhanced recovery of oil and gas. The mandates a coordinated statewide program related to the storage...

397

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

K.C. Kwon

2004-01-01T23:59:59.000Z

398

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

K.C. Kwon

2005-01-01T23:59:59.000Z

399

Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide  

SciTech Connect

Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

2012-07-31T23:59:59.000Z

400

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network (OSTI)

-intensive and would lower the thermal efficiency of coal gasification power plants. Selective separation membrane from the post- combustion flue gas of a steam-electric power plant or from the synthesis gas fuel of a coal gasification power plant. The separated carbon dioxide can be compressed and transported

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method for Extracting and Sequestering Carbon Dioxide  

DOE Patents (OSTI)

A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

Rau, Gregory H.; Caldeira, Kenneth G.

2005-05-10T23:59:59.000Z

402

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. ” AugustChina’s Industrial Carbon Dioxide Emissions in ManufacturingChina’s Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

403

Structural and electronic studies of complexes relevant to the electrocatalyic reduction of carbon dioxide  

E-Print Network (OSTI)

1981) Facile reduction of carbon dioxide by anionic Group 6bReduction of Carbon Dioxide on Mercury Electrode.in Reduction of Carbon-Dioxide. J. Chem. Soc. -Chem.

Benson, Eric Edward

2012-01-01T23:59:59.000Z

404

Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs  

E-Print Network (OSTI)

interface solution for carbon dioxide injection into porousJ.E. Fluid Dynamics of Carbon Dioxide Disposal into SalineGeologic storage of carbon dioxide as a climate change

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

405

Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores  

E-Print Network (OSTI)

An assessment of ozone and chlorine dioxide for treatment ofAston, R. ; Synan, J. , “Chlorine dioxide as a bactericide62, 80. 14. Keane, T. , “ Chlorine dioxide – why all the

Aydogan, Ahmet

2006-01-01T23:59:59.000Z

406

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

407

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

Chen, H.L.

1983-08-16T23:59:59.000Z

408

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1983-01-01T23:59:59.000Z

409

Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE  

SciTech Connect

All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

Weiss, R.F.

1998-10-15T23:59:59.000Z

410

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen.

411

NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO  

Science Conference Proceedings (OSTI)

We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO{sub 1-x}N{sub x} films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu{sup 3+}4f{sup 6} and a corresponding decrease in the number of Eu{sup 2+}4f{sup 7}, indicating that nitrogen is being incorporated in its 3{sup -} oxidation state. While small amounts of Eu{sup 3+} in over-oxidized Eu{sub 1-{delta}}O thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu{sup 3+} in EuO{sub 1-x}N{sub x} still allows the ferromagnetic phase to exist with an unaffected T{sub c}, thus providing an ideal model system to study the interplay between the magnetic f{sup 7} (J = 7/2) and the non-magnetic f{sup 6} (J = 0) states close to the Fermi level.

Wicks, R. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Tjeng, L. H. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Damascelli, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

2012-04-16T23:59:59.000Z

412

Solid oxide electrochemical reactor science.  

DOE Green Energy (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

413

The Bevatron liquid nitrogen circulation system  

SciTech Connect

A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented.

Hunt, D.; Stover, G.

1987-03-01T23:59:59.000Z

414

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

415

RELATIONSHIPS BETWEEN NITROGEN METABOLISM AND PHOTOSYNTHESIS  

E-Print Network (OSTI)

RG and JA Bassham, Photosynthesis by isolated chloroplasts.chloroplasts during photosynthesis. Plant Physiol ~0:22H-2?NITROGEN METABOLISM AND PHOTOSYNTHESIS James A. Bassham,

Bassham, James A.

2013-01-01T23:59:59.000Z

416

EIA - International Energy Outlook 2009-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2009 Chapter 8 - Energy-Related Carbon Dioxide Emissions In 2006, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 14 percent. In 2030, energy-related carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 77 percent. Figure 80. World Energy-Related Carbon Dioxide Emissions, 2006-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 81. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 82. U.S. Energy-Related Carbon Dioxide Emissions by Fuel in IEO2008 and IEO2009, 2006, 2015, and 2030 (billion metric tons). Need help, contact the National Energy Information Center at 202-586-8800.

417

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

418

A monitoring and diagnostic expert system for carbon dioxide capture  

Science Conference Proceedings (OSTI)

The research objective is to design and construct a knowledge-based decision support system for monitoring, control and diagnosis of the carbon dioxide capture process, which is a complicated task involving manipulation of sixteen components and their ... Keywords: Carbon dioxide capture, Diagnosis, Knowledge-based decision support system, Monitoring

Q. Zhou; C. W. Chan; P. Tontiwachiwuthikul

2009-03-01T23:59:59.000Z

419

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

420

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

E-Print Network (OSTI)

PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

Hultman, Nathan E.

422

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

423

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Composition ...

424

Why Sequence Sulfur-Oxidizing Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-Oxidizing Bacteria? Sulfur-Oxidizing Bacteria? Several environmental problems, such as acid rain, biocorrosion, etc., are caused by sulfur compounds, such as sulfur dioxide (SO2) and hydrogen sulfide (H2S). A sustainable process to remove these sulfur compounds is the production of elemental sulfur from H2S-containing gas streams by the use of sulfide-oxidizing bacteria. In this process, H2S is absorbed into the alkaline solution in the scrubber unit, followed by the biological oxidation of H2S to elemental sulfur and the recycling of water. With this two-step process, a variety of gas streams (i.e., natural gas, synthesis gas, biogas, and refinery gas) can be treated. For the treatment of sulfate-containing waste streams, an extra step has to be introduced: the transformation of sulfate into H2S by sulfate-reducing bacteria. In

425

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

1997-01-01T23:59:59.000Z

426

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25T23:59:59.000Z

427

Pages that link to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Pages that link to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

428

Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide.  

E-Print Network (OSTI)

??Mechanistic modeling of an underbalanced drilling operation using carbon dioxide has been developed in this research. The use of carbon dioxide in an underbalanced drilling… (more)

ALAdwani, Faisal Abdullah

2007-01-01T23:59:59.000Z

429

Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase feasibility study that will examine beneficial uses in a variety of ways, including mineralization to carbonates directly through conversion of CO2 in flue gas; the use of CO2 from power plants or industrial applications to grow algae/biomass; and conversion of CO2 to fuels and chemicals. Each project will be subject to

430

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

431

Microbial Sequestration of Carbon Dioxide and Subsequent Conversion to Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration of Carbon Dioxide and Subsequent Sequestration of Carbon Dioxide and Subsequent conversion to Methane By Nirupam Pal Associate Professor California Polytechnic State University San Luis Obispo, CA 93401 Email : npal@calpoly.edu Phone : (805) 756-1355 INTRODUCTION The rising level of carbon dioxide in the atmosphere has been of growing concern in recent years. The increasing levels of carbon dioxide, the most dominant component of greenhouse gases, contribute to global warming and changing global weather patterns which could potentially lead to catastrophic events that could threaten life in every form on this planet. The level of carbon dioxide in the worlds atmosphere has increased from about 280 ppm in 1850 to the current level of approximately 350 ppm. There are several natural sources and sinks of

432

DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Assesses Potential for Carbon Dioxide Storage Beneath Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands May 14, 2009 - 1:00pm Addthis Washington, DC - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

433

Carbon dioxide absorbent and method of using the same  

DOE Patents (OSTI)

In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

Perry, Robert James (Niskayuna, NY); Lewis, Larry Neil (Scotia, NY); O' Brien, Michael Joseph (Clifton Park, NY); Soloveichik, Grigorii Lev (Latham, NY); Kniajanski, Sergei (Clifton Park, NY); Lam, Tunchiao Hubert (Clifton Park, NY); Lee, Julia Lam (Niskayuna, NY); Rubinsztajn, Malgorzata Iwona (Ballston Spa, NY)

2011-10-04T23:59:59.000Z

434

NITROGEN K-SHELL PHOTOABSORPTION  

Science Conference Proceedings (OSTI)

Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein A-coefficients, radiative and Auger widths, and K-edge photoionization cross sections. An important issue is the lack of measurements that are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit-Pauli R-matrix method, both radiation and Auger dampings, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular XSTAR modeling code.

GarcIa, J. [Catholic University of America, IACS, Physics Department, Washington DC 20064 (United States); Kallman, T. R.; Witthoeft, M.; Behar, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mendoza, C. [Centro de Fisica, IVIC, Caracas 1020A (Venezuela, Bolivarian Republic of); Palmeri, P.; Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons, B-7000 Mons (Belgium); Bautista, M.A. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Klapisch, M. [ARTEP, Inc., Ellicott City, MD 21042 (United States)], E-mail: javier@milkyway.gsfc.nasa.gov, E-mail: michael.c.witthoeft@nasa.gov, E-mail: timothy.r.kallman@nasa.gov, E-mail: behar@milkyway.gsfc.nasa.gov, E-mail: claudio@ivic.ve, E-mail: palmeri@umons.ac.be, E-mail: quinet@umons.ac.be, E-mail: bautista@vt.edu, E-mail: marcel.klapisch.ctr@nrl.navy.mil

2009-12-01T23:59:59.000Z

435

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

436

Notification to Mirant by the Commonwealth of Virginia of Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2005 9, 2005 Lisa D. Johnson, President Mirant Potomac River, LLC 8711 Westphalia Road Upper Marlboro, Maryland 20774 Dear Ms. Johnson: DEQ is in receipt of the results of Mirant's "downwash" modeling provided by Mirant to DEQ pursuant to the consent special order between the State Air Pollution Control Board and Mirant Potomac River, LLC. A cursory review of the modeling reveals that emissions from the Potomac River Generating Station result in, cause or substantially contribute to serious violations of the primary national ambient air quality standards or "NAAQS" for sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and PM 10 . NAAQS are established by the U. S. Environmental Protection Agency at concentrations necessary to protect human health with an adequate margin of safety.

437

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

438

Frostbite Theater - Liquid Nitrogen Experiments - Freezing Balloons!  

NLE Websites -- All DOE Office Websites (Extended Search)

Season Two Bloopers Season Two Bloopers Previous Video (Season Two Bloopers) Frostbite Theater Main Index Next Video (Instant Liquid Nitrogen Balloon Party!) Instant Liquid Nitrogen Balloon Party! Freezing Balloons! What happens when a balloon full of air is plunged into a container full of liquid nitrogen? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And this is a really big balloon! Joanna: Let's see what happens when we place the balloon in the liquid nitrogen! Steve: Okay! Wait! Wait! Wait! Wait! Wait! Isn't the balloon going to pop? Joanna: We'll see! Steve: Aw, man... Huh. Okay, so the balloon didn't pop. But, there's

439

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

NLE Websites -- All DOE Office Websites (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

440

Visualizing Individual Nitrogen Dopants in Monolayer Graphene  

SciTech Connect

In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.

L Zhao; R He; K Rim; T Schiros; K Kim; H Zhou; C Gutierrez; S Chockalingam; C Arguello; et al.

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DEVELOPMENT AND MECHANISTIC STUDIES OF THE CHROMIUM TETRAMETHYLTETRAAZAANNULENE CATALYST SYSTEM FOR THE COPOLYMERIZATION OF CARBON DIOXIDE AND EPOXIDES  

E-Print Network (OSTI)

A prominent goal of scientists is to develop products and processes to meet the ever-growing needs of society. Today's needs include products that are economical, specialized, and made through processes with minimal impact on the environment. One such product that serves an important and widespread need is poly(bisphenol A carbonate) for its physical properties and ease of synthesis and processing. However, this polymer does not meet the growing need of being environmentally benign as production involves carcinogenic, chlorinated solvents and toxic monomers that can leach out from the polymer product. An answer to this new demand is the development of a different process for the production of polycarbonate plastics utilizing carbon dioxide and epoxides. Carbon dioxide is an attractive monomer that is cheap and nontoxic, and its utilization signifies an important contribution to counteract global greenhouse emissions. The stability of carbon dioxide has posed a significant and complex challenge towards its utilization. Epoxides are attractive since they are synthesized from a wide variety of olefins, both naturally occurring and those derived from petroleum. The exploration of catalysts to facilitate the coupling of epoxides to carbon dioxide to afford polycarbonates has been under investigation in the Darensbourg lab for fifteen years, and has lead to the development of several successful systems such as zinc bisphenoxides and chromium salens. This dissertation focuses on the development of another successful catalyst system, chromium tetramethyltetraazaannulene, and further elucidation of the mechanism by which polycarbonates are formed. Herein, aspects of the copolymerization process using this system will be discussed in detail, such as cocatalyst and pressure dependence, catalyst derivatization, and kinetic and mechanistic investigations. The end result of these investigations is the development of the most active chromium-based catalyst for the copolymerization of cyclohexene oxide and carbon dioxide and a better understanding of how the copolymer product is produced.

Fitch, Shawn

2009-05-01T23:59:59.000Z

442

Selected genomic and phenotypic responses of Salmonella serovars to chlorine, chlorine dioxide, and cetylpyridinium chloride  

E-Print Network (OSTI)

Non-typhoidal Salmonella enterica serovars continue to be the leading cause of foodborne illnesses in United States. Chlorine, chlorine related, and quaternary compounds are generally used for disinfecting carcasses and equipment in processing industries. The current study was aimed at understanding the inactivation kinetics of four Salmonella serovars to chlorine, chlorine dioxide and cetylpyridinium chloride (CPC). The transcriptomic responses to oxidative stress was investigated in stationary and log phase cells of S. Typhimurium. The study was also aimed at understanding the effect of the chemicals on the expression of virulence genes associated with the Salmonella Pathogenecity Island 1 (SPI1). The possible induction of the viable but nonculturable (VBNC) state in Salmonella due to CPC was also investigated. The inactivation parameters for each serovar and the chemical were estimated based on the Hom's model, ln (N/N0) = -k C^n T^m and it appeared that while disinfectant contact time was significant, biocide concentration in the overall disinfection was insignificant. This was true especially for chlorine and CPC with subtle differences observed between the serovars. The inactivation efficacy was, however, dependent on both concentration and the exposure time for chlorine dioxide. The highest degree of inactivation was obtained with chlorine followed by chlorine dioxide and CPC. Transcriptomic responses of S. Typhimurium revealed significant downregulation of several metabolic processes such as tricarboxylic acid cycle, oxidative phosphorylation, and amino acid biosynthesis in both log and stationary phase cells. Several stress related genes such as usp, rpoS and ompR were upregulated in the stationary phase cells. Majority of the virulence genes associated with the SPI1 were found to be downregulated for all the treatments. While treatment with chlorine and CPC caused downregulation of all the virulence genes, treatment with chlorine dioxide caused significant upregulation of few (hilC, invC, sipA and sipB) genes associated with the SPI1. Finally, the induction of VBNC state was not concluded as a result of treatment with CPC. However, significant percentage of cells (45 percent) with intact membrane was established based on the BacLight assayTM.

Kakani, Grihalakshmi

2011-05-01T23:59:59.000Z

443

Microbial and objective quality of whole muscle beef cuts packaged in film containing chlorine dioxide  

E-Print Network (OSTI)

The microbial and objective quality of top round steak treated with two deferent prototype chlorine dioxide containing films were evaluated deleing 14 days of refrigerated storage. The films were designed to deliver different dose rates of chlorine dioxide when in contact with tissue. A high dose rate film in combination with dip treatments resulted in a 1.0 log?? reduction of total hemophilic aerobes, total coliforms, and total lactic acid bacteria. However, this same film caused undesirable characteristics including the rapid loss of the red color associated with fresh beef and the development of a green colored pigment. This color change corresponded to a decrease in Hunter a* values. Ascorbic acid treatments slightly inhibited the development of green color after 2 days of storage, but the protective effect was not evident after 6 days of storage and the color remained undesirable. Chlorine dioxide released from the high dose rate film penetrated immediately into the surface of the beef to a depth of 1mm into the surface of the beef after 6 days of storage, and did not penetrate more than 2mm deep after 14 days of storage. The concentration of myoglobin in extracts of the treated samples decreased sharply after 2 days storage, suggesting oxidative degradation and possibly the formation of a compound similar to the green pigment cholemyoglobin. The TBA values of beef treated with the high dose rate film increased during storage but remained blow 1.0. A low chlorine dioxide dose rate film did not produce any microbiological or objective changes in the beef. The dose rate for the high dose rate film was 32ppm/h, as determined by neutron activation analysis. It decreased rapidly to 0ppm/h after 10 days storage and was not constant during the test period. Based on the unacceptable attributes produced by the high dose rate film, it may be better suited for low fat cuts of pork, ash, or chicken that are less susceptible to color changes and quality losses associated with undesirable oxidative changes.

Knight, Timothy David

1999-01-01T23:59:59.000Z

444

CARBON SEQUESTRATION IN ALASKA'S BOREAL FOREST: PLANNING FOR RESILIENCE IN A CHANGING LANDSCAPE  

E-Print Network (OSTI)

results in emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulates, mercury, and other in emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulates, and mercury Figure 11: Gasification pressure than is found in post-combustion flue gases (Rosenberg et al., 2005). This pre- combustion

Ruess, Roger W.

445

An experimental investigation of the urea-water decomposition and selective catalytic reduction (SCR) of nitric oxides with urea using V2O5-WO3-TiO2 catalyst.  

E-Print Network (OSTI)

Two flow reactor studies, using an electrically heated laminar flow reactor over Vanadia based (V2O5-WO3/TiO2) honeycomb catalyst, were performed at 1 atm pressure and various temperatures. The experiments were conducted using simulated exhaust gas compositions for different exhaust gases. A quartz tube was used in order to establish inert conditions inside the reactor. The experiments utilized a Fourier transform infrared (FTIR) spectrometer in order to perform both qualitative and quantitative analysis of the reaction products. Urea-water solution decomposition was investigated over V2O5-WO3/TiO2 catalyst over the entire SCR temperature range using the temperature controlled flow reactor. The solution was preheated and then injected into pure nitrogen (N2) stream. The decomposition experiments were conducted with a number of oxygen (O2) compositions (0, 1, 10, and 15%) over the temperature range of 227oC to 477oC. The study showed ammonia (NH3), carbon-dioxide (CO2) and nitric oxide (NO) as the major products of decomposition along with other products such as nitrous oxide (N2O) and nitrogen dioxide (NO2). The selective catalytic reduction (SCR) of nitric oxide (NO) with urea-water solution over V2O5-WO3/TiO2 catalyst using a laboratory laminar-flow reactor was investigated. Urea-water solution was injected at a temperature higher than the vaporization temperature of water and the flow reactor temperature was varied from 127oC to 477oC. A FTIR spectrometer was used to determine the concentrations of the product species. The major products of SCR reduction were NH3, NO and CO2 along with the presence of other minor products NO2 and N2O. NO removal of up to 87% was observed. The aim of the urea-water decomposition experiments was to study the decomposition process as close to the SCR configuration as possible. The aim of the SCR experiments was to delineate the effect of various parameters including reaction temperature and O2 concentration on the reduction process. The SCR investigation showed that changing parameter values significantly affected the NO removal, the residual NH3 concentration, the temperature of the maximum NO reduction, and the temperature of complete NH3 conversion. In the presence of O2, the reaction temperature for maximum NO reduction was 377?C for ratio of 1.0.

Johar, Jasmeet Singh

2005-08-01T23:59:59.000Z

446

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

447

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

448

Eighth international congress on nitrogen fixation. Final program  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-12-31T23:59:59.000Z

449

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. The membranes showed excellent perm-selectivity for hydrogen. This makes the Pd-composite membrane attractive for selective separation and recovery of H{sub 2} from mixed gases at elevated temperature.

Shamsuddin Ilias

2005-02-03T23:59:59.000Z

450

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive Xray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. Some of these results are discussed in this progress report.

Shamsuddin Ilias

2004-02-17T23:59:59.000Z

451

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

452

The Role of Manganese Dioxide (MnO2) Deposition in Microbiologically Influenced Corrosion  

Science Conference Proceedings (OSTI)

This report documents the role of manganese dioxide (MnO2) in microbiologically influenced corrosion.

2004-12-20T23:59:59.000Z

453

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

454

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

455

Selective methane oxidation over promoted oxide catalysts. Quarterly report, September 1 - November 30, 1995  

DOE Green Energy (OSTI)

The objective of this research is the selective oxidation of methane to C{sub 2}H{sub 4} hydrocarbons and to oxygenates, in particular formaldehyde and methanol. Air, oxygen, or carbon dioxide rather than nitrous oxide, are utilized as the oxidizing gas at high gas hourly space velocity but mild reaction conditions (500-700{degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. During this quarter, solid state {sup 51}V NMR and double catalyst bed experiments were conducted to demonstrate the unfavorable effect of the presence of bulk crystalline V{sub 2}O{sub 5} in V{sub 2}O{sub 5}-SiO{sub 2} xerogel catalysts on selective oxidation of methane to methanol and formaldehyde. Results are discussed.

Klier, Kamil; Herman, R.G.; Wang, C.B. [USDOE Morgantown Energy Technology Center, WV (United States)

1995-12-31T23:59:59.000Z

456

Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana  

DOE Green Energy (OSTI)

The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

Kevin Peavey; Norm Bessette

2007-09-30T23:59:59.000Z

457

Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell  

DOE Patents (OSTI)

A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Vora, Shailesh D. (Monroeville, PA)

2001-01-01T23:59:59.000Z

458

Effects of Chlorine and Other Flue Gas Parameters on Selective Catalytic Reduction Technology for Mercury Oxidation and Capture  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technologythe technology of choice for meeting stringent nitrogen oxides (NOx) emission limits for coal-fired electric generating plantshas potential for oxidizing mercury, which would provide enhanced removal in downstream systems. Catalyst behavior is relatively well understood for deNOx and SO2 oxidation, but less is known about mercury oxidation behavior. This test program was designed to determine general behavior of typical SCR catalysts on mercury oxidation and ...

2009-12-21T23:59:59.000Z

459

Depleted Uranium Dioxide as SNF Waste Package Fill: A Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865)...

460

Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Startup Will Put Carbon Dioxide To Good Use Geothermal Startup Will Put Carbon Dioxide To Good Use Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use March 17, 2011 - 2:09pm Addthis A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. JoAnn Milliken What does this project do? GreenFire Energy will conduct the first field demonstration of a CO2-based geothermal system. Getting geothermal power with CO2 instead of water would be particularly beneficial in the arid Southwestern U.S., where water is scarce. Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2). That's

Note: This page contains sample records for the topic "dioxide nitrogen oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

462

Annual Energy Outlook 2006 with Projections to 2030 - Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2006 with Projections to 2030 Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 107. Carbn dioxide emissions by sector and fuel, 2004 and 2030 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at

463

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

464

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

465

Carbon Dioxide Sequestration (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dioxide Sequestration (West Virginia) Dioxide Sequestration (West Virginia) Carbon Dioxide Sequestration (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Environmental Regulations Fees Safety and Operational Guidelines Siting and Permitting The purpose of this law is to: Establish a legal and regulatory framework for the permitting of carbon dioxide sequestration operations; Designate a state agency responsible for establishing standards and

466

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

467

NETL: News Release - DOE Study Monitors Carbon Dioxide Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2009 DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field U.S. World-Acclaimed Marine Institutes Partner with Europeans in North Sea Washington,...

468

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

469

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

470

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

471

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

2005-01-01T23:59:59.000Z

472

Cardiac Responses to Carbon Dioxide in Developing Zebrafish (Danio rerio) .  

E-Print Network (OSTI)

??The ontogeny of carbon dioxide (CO2) sensing in zebrafish (Danio rerio) has not been studied. In this thesis, CO2-mediated increases in heart rate were used… (more)

Miller, Scott

2013-01-01T23:59:59.000Z

473

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

474

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

475

Energy-related carbon dioxide emissions down in 2011 - Today ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

476

Synthesis of Amides and Lactams in Supercritical Carbon Dioxide  

E-Print Network (OSTI)

Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

Mak, Xiao Yin

477

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

478

U.S. Energy-Related Carbon Dioxide Emissions, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Energy-Related Carbon Dioxide Emissions, 2012 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2013 U.S. Energy...

479

Carbon Dioxide-Based Heat Pump Water Heater Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to...

480

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Energy-related carbon dioxide (CO 2) emissions in 2012 were the lowest in the United States since 1994, at 5.3 billion metric tons of CO 2 (see figure above).