Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE  

E-Print Network [OSTI]

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

2

The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India  

E-Print Network [OSTI]

High-frequency atmospheric measurements of methane (CH[subscript 4]), nitrous oxide (N[subscript 2]O) and sulfur hexafluoride (SF[subscript 6]) from Darjeeling, India are presented from December 2011 (CH[subscript 4])/March ...

Chatterjee, A.

3

Closing the Gaps in the Budgets of Methane and Nitrous Oxide  

SciTech Connect (OSTI)

Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the results that were obtained.

Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

2013-11-22T23:59:59.000Z

4

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

5

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

6

Hydrogen, Methane and Nitrous oxide Trend variability, budgets, and interactions with the biosphere  

E-Print Network [OSTI]

emission regulations on CH4 and N2 O, and future impacts of a transition to a `hydrogen economy', taking transition to a `hydrogen economy' in the coming de- cades is likely to cause a significant increaseCH4 H2 N2O ............ ........ Hymn Hydrogen, Methane and Nitrous oxide Trend variability

Haak, Hein

7

The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*  

E-Print Network [OSTI]

The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan Program on the Science and Policy of Global Change combines cutting-edge scientific research with independent policy analysis to provide a solid foundation for the public and private decisions needed

8

AT A GLANCE Title: Hydrogen, Methane and Nitrous oxide: Trend  

E-Print Network [OSTI]

) and nitrous oxide (N2O). The possible future transition to a `hydrogen economy' is expected to lead to a hydrogen economy will affect H2, CH4 and O3 6) Evaluate simulations with a coupled atmospheric chemistry. - The effects of a possible future transfer to a hydrogen economy and the associated reduction in fossil fuel

Haak, Hein

9

Carbon dioxide adsorption and methanation on ruthenium  

SciTech Connect (OSTI)

The adsorption and methanation of carbon dioxide on a ruthenium-silica catalyst were studied using temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR). Carbon dioxide adsorption was found to be activated; CO/sub 2/ adsorption increased significantly as the temperature increased from 298 to 435 K. During adsorption, some of the CO/sub 2/ dissociated to carbon monoxide and oxygen; upon hydrogen exposure at room temperature, the oxygen reacted to water. Methanation of adsorbed CO and of adsorbed CO/sub 2/, using TPR in flowing hydrogen, yielded a CH/sub 4/ peak with a peak temperature of 459 K for both adsorbates, indicating that both reactions follow the same mechanism after adsorption. This peak temperature did not change with initial surface coverage of CO, indicating that methanation is first order in CO coverage. The desorption and reaction spectra for Ru/SiO/sub 2/ were similar to those previously obtained for Ni/SiO/sub 2/, but both CO/sub 2/ formation and CH/sub 4/ formation proceeded faster on Ru. Also, the details of CO desorption and the changes in CO/sub 2/ and CO desorptions with initial coverage were different on the two metals. 5 figures, 3 tables.

Zagli, E.; Falconer, J.L.

1981-05-01T23:59:59.000Z

10

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials  

E-Print Network [OSTI]

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C and flow conditions using methane as a supplemental fuel. The experiments were carried out at atmospheric-phase precursor for metal additives. In the methane-assisted (MA) system, the inert carrier gas was replaced

Wooldridge, Margaret S.

11

Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric  

E-Print Network [OSTI]

Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical@mit.edu Website: http://mit.edu/cgcs/ Printed on recycled paper #12;Estimation of Methane and Carbon Dioxide of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical Transport Model by Yu

12

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network [OSTI]

, and carbon dioxide. Introduction Carbon dioxide emissions resulting from the burning of fossil fuels 20 metric tons of carbon dioxide per capita are released annually into the atmosphere.1a,b CarbonStorage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks

Yaghi, Omar M.

13

Carbon dioxide and methane in karst systems Supervisors: Prof Dave Mattey, Dr Dave Lowry and Dr. Rebecca Fisher  

E-Print Network [OSTI]

Carbon dioxide and methane in karst systems Supervisors: Prof Dave Mattey, Dr Dave Lowry and Dr in the carbon cycle and very little is known about the behavior of methane in karst systems. Methane carbon isotopic evidence for oxidation of atmospheric methane in a dynamically ventilated cave

Royal Holloway, University of London

14

Adsorption and methanation of carbon dioxide on a nickel/silica catalyst  

SciTech Connect (OSTI)

Temperature-programed desorption and reaction studies showed that increasing amounts of CO/sub 2/ adsorbed on silica-supported 6.9% nickel with increasing temperature to a maximum adsorption at approx. 443/sup 0/K, i.e., that the adsorption was activated; that CO/sub 2/ desorbed partly as CO/sub 2/ with the peak at 543/sup 0/K, and partly as CO with several peaks; that in the presence of hydrogen, nearly all adsorbed CO/sub 2/ desorbed as methane, and a small amount as CO; and that the methane desorption peaks from adsorbed CO and CO/sub 2/ both occurred at 473/sup 0/K. These results suggested that carbon dioxide adsorbed dissociatively as a carbon monoxide and an oxygen species. An observed absence of higher hydrocarbons in the methanation products of carbon dioxide was attributed to a high hydrogen/carbon monoxide surface ratio caused by the activated carbon dioxide adsorption.

Falconer, J.L.; Zagli, A.E.

1980-04-01T23:59:59.000Z

15

Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling, investigation of their stability in Martian2  

E-Print Network [OSTI]

1 Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling-4Dec2012 #12;3 Keywords: Mars, clathrate hydrate, nitrogen, carbon dioxide, argon, methane, equilibrium and allows to simulating a Martian gas, CO2 dominated (95.3%) plus nitrogen6 (2.7%) and argon (2

Paris-Sud XI, Université de

16

Adsorption and methanation of carbon dioxide on a nickel/silica catalyst  

SciTech Connect (OSTI)

The adsorption and methanation of carbon dioxide on a nickel/silica catalyst were studied using temperature-programmed desorption and temperature-programmed reaction. Carbon dioxide adsorption on nickel was found to be activated; almost no adsorption occurred at room temperature, but large coverages were obtained between 383 and 473 K. The data indicate CO/sub 2/ dissociates upon adsorption at elevated temperatures to yield carbon monoxide and oxygen atoms. These oxygen atoms react with hydrogen at room temperature, so the methane and water observed during programmed heating in flowing hydrogen are identical for adsorbed CO and adsorbed CO/sub 2/. Single CH/sub 4/ and H/sub 2/O peaks, each with a peak temperature at 473 K, were observed. This peak temperature did not change with initial coverage, indicating methanation is first order in CO surface coverage. The activated adsorption of CO/sub 2/ allowed these coverage variation experiments to be carried out. Thus, following adsorption, CO and CO/sub 2/ methanation proceed by the same mechanism. However, the activated adsorption of CO/sub 2/ may create a higher H/sub 2/:CO surface ratio during steady-state hydrogenation, causing CO/sub 2/ hydrogenation to favor methane over higher hydrocarbons. 5 figures.

Falconer, J.L.; Zagli, A.E.

1980-04-01T23:59:59.000Z

17

Synthesis and characterization of catalysts containing nickel for reforming methane with carbon dioxide  

E-Print Network [OSTI]

Methane with Carbon Dioxide. (August 1988) Michael Edward Sommer, B. S. , Rutgers University Chairman of Advisory Committee: Dr. Ahmed M. Gadalla An industrial Ni catalyst supported on CaO-TiOq-AlqOs was characterized and used for methane reforming... reduction to 15. 6m /g after reduction to 6, 35m /g after reaction. It should be noted that reduction of NiO is accompanied by contraction. Moreover, since CAs is more dense than CAs but comparable in density to aAlsOs (Table 2), the reaction of formation...

Sommer, Michael Edward

2012-06-07T23:59:59.000Z

18

Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model  

E-Print Network [OSTI]

Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

Chen, Yu-Han, 1973-

2004-01-01T23:59:59.000Z

19

Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.  

E-Print Network [OSTI]

??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible becauseÖ (more)

Ripepi, Nino Samuel

2009-01-01T23:59:59.000Z

20

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

SciTech Connect (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& amp; G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel  

SciTech Connect (OSTI)

The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

Mavila Chathoth, Suresh [ORNL; He, Lilin [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL

2012-01-01T23:59:59.000Z

22

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

23

Instrument Development and Measurements of the Atmospheric Pollutants Sulfur Dioxide, Nitrate Radical, and Nitrous Acid by Cavity Ring-down Spectroscopy and Cavity Enhanced Absorption Spectroscopy  

E-Print Network [OSTI]

A. , A method of nitrogen dioxide and sulphur dioxidedetermination of nitrogen dioxide and sulfur dioxide in theDOAS) have measured nitrogen dioxide (NO 2 ), nitrate

Medina, David Salvador

2011-01-01T23:59:59.000Z

24

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

SciTech Connect (OSTI)

Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

2011-02-15T23:59:59.000Z

25

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network [OSTI]

Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

Kwon, T.H.

2012-01-01T23:59:59.000Z

26

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network [OSTI]

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycle

Mallinson, Richard

27

Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores  

E-Print Network [OSTI]

of carbon dioxide in depleted gas reservoirs appears to be a feasible way to dispose of industrial quantities of carbon dioxide generated by fossil fired power plants. Depleted gas reservoirs amongst others (oil reservoirs, saline aquifers) is a very... from the Sleipner Vest field is separated from the produced natural gas and is injected each year into the underlying Utsira aquifer. 1, 7, 8 A combined enhanced oil recovery (EOR) scheme and CO2 sequestration project has been undertaken in which CO2...

Maduakor, Ekene Obioma

2006-10-30T23:59:59.000Z

28

Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints  

E-Print Network [OSTI]

, the importance of non-CO2 substances, and the problems of excessive focus on long-term targets. The results in low-cost mitigation policies that are effective on timescales up to three centuries. Therefore Warming Potential based trading between methane reductions and fossil CO2 reductions is flawed because

de Weck, Olivier L.

29

Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal  

SciTech Connect (OSTI)

The major objectives of this project were to (a) measure the adsorption behavior of pure methane, nitrogen, CO{sub 2} and their binary and ternary mixtures on wet Tiffany coal at 130 F and pressures to 2000 psia; (b) correlate the equilibrium adsorption isotherm data using the extended Langmuir model, the Langmuir model, the loading ratio correlation and the Zhou-Gasem-Robinson equation of state; and (c) establish sorption-time estimates for the pure components. Specific accomplishments are summarized below regarding the complementary tasks involving experimental work and data correlation. Representative coal samples from BP Amoco Tiffany Injection Wells No.1 and No.10 were prepared, as requested. The equilibrium moisture content and particle size distribution of each coal sample were determined. Compositional coal analyses for both samples were performed by Huffman Laboratories, Inc. Pure gas adsorption for methane on wet Tiffany coal samples from Injection Wells No.1 and No.10 was measured separately at 130 F (327.6 K) and pressures to 2000 psia (13.7 MPa). The average expected uncertainty in these data is about 3% (9 SCF/ton). Our measurements indicate that the adsorption isotherms of the two coal samples exhibit similar Langmuir-type behavior. For the samples from the two wells, a maximum variation of about 5% in the amount adsorbed is observed at 2000 psia. Gas adsorption isotherms were measured for pure methane, nitrogen and CO{sub 2} on a wet, mixed Tiffany coal sample. The coal sample was an equal-mass mixture of coals from Well No.1 and Well No.10. The adsorption measurements were conducted at 130 F at pressures to 2000 psia. The adsorption isotherms have average expected experimental uncertainties of 3% (9 SCF/ton), 6% (8 SCF/ton), and 7% (62 SCF/ton) for methane, nitrogen, and CO{sub 2}, respectively. Adsorption isotherms were measured for methane/nitrogen, methane/CO{sub 2} and nitrogen/CO{sub 2} binary mixtures on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. These measurements were conducted for a single molar feed composition for each mixture. The expected uncertainties in the amount adsorbed for these binary mixtures vary with pressure and composition. In general, average uncertainties are about 5% (19 SCF/ton) for the total adsorption; however, the expected uncertainties in the amount of individual-component adsorption are significantly higher for the less-adsorbed gas at lower molar feed concentrations (e.g., nitrogen in the 20/80 nitrogen/CO{sub 2} system). Adsorption isotherms were measured for a single methane/nitrogen/CO{sub 2} ternary mixture on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. The nominal molar feed composition was 10/40/50. The average expected uncertainty for the total adsorption and CO{sub 2} adsorption is about 5% (16 SCF/ton). However, the low adsorption of nitrogen and methane in this ternary yield average experimental uncertainties of 14% (9 SCF/ton) and 27% (9 SCF/ton), respectively. Limited binary and ternary gas-phase compressibility factor measurements at 130 F and pressures to 2000 psia involving methane, nitrogen, and CO{sub 2} were conducted to facilitate reduction of our ternary adsorption data. These newly acquired data (and available data from the literature) were used to improve the Benedict-Webb-Rubin (BWR) equation-of-state (EOS) compressibility factor predictions, which are used in material balance calculations for the adsorption measurements. In general, the optimized BWR EOS represents the experimental compressibility factor data within 0.5% AAD. The Langmuir/loading ratio correlation (LRC) and the Zhou-Gasem-Robinson (ZGR) two-dimensional EOS were used to analyze the newly acquired adsorption data. Model parameters were obtained for the systems studied. The LRC and ZGR EOS were used to correlate the adsorption data for methane, nitrogen, and CO{sub 2} and their mixtures on wet Tiffany coal. The model parameters were determined by minimizing the sum of squares of weighted errors in the calculated amounts of gas adsorbed. The results

K. A. M. Gasem; R. L. Robinson; S. R. Reeves

2002-03-01T23:59:59.000Z

30

Henry's Law Constants of Methane, Nitrogen, Oxygen and Carbon Dioxide in Ethanol from 273 to 498 K: Prediction from Molecular Simulation  

E-Print Network [OSTI]

noindent Henry's law constants of the solutes methane, nitrogen, oxygen and carbon dioxide in the solvent ethanol are predicted by molecular simulation. The molecular models for the solutes are taken from previous work. For the solvent ethanol, a new rigid anisotropic united atom molecular model based on Lennard-Jones and Coulombic interactions is developed. It is adjusted to experimental pure component saturated liquid density and vapor pressure data. Henry's law constants are calculated by evaluating the infinite dilution residual chemical potentials of the solutes from 273 to 498K with Widom's test particle insertion. The prediction of Henry's Law constants without the use of binary experimental data on the basis of the Lorentz-Berthelot combining rule agree well with experimental data, deviations are 20%, except for carbon dioxide for which deviations of 70% are reached. Quantitative agreement is achieved by using the modified Lorentz-Berthelot combining rule which is adjusted to one experimental mixture ...

Schnabel, T; Hasse, H

2009-01-01T23:59:59.000Z

31

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect (OSTI)

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

32

Nitrous Oxide Fluxes from the Gulf of Mexico "Dead Zone" Primary Investigator: Craig Stow -NOAA GLERL  

E-Print Network [OSTI]

forecasts require accurate estimates of greenhouse gas emission rates. Currently, there are few measurements Management Research Laboratory Overview Nitrous oxide is a potent greenhouse gas with a global warming oxide is a potent greenhouse gas with a global warming potential ~300 times that of carbon dioxide

33

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-Print Network [OSTI]

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

34

Selective methane oxidation over promoted oxide catalysts. Quarterly report, March--May 1995  

SciTech Connect (OSTI)

The objective of this research is the selective oxidative coupling of methane to C{sub 2}H{sub 4} hydrocarbons and oxygenates, in particular formaldehyde and methanol. Air, oxygen or carbon dioxide, rather than nitrous oxide will be utilized as the oxidizing gas at high gas hourly space velocity, but mild reaction conditions (500-700 {degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. The research is divided into the following three tasks: (1) maximizing selective methane oxidation to C{sub 2}H{sub 4} products over promoted Sr/La{sub 2}O{sub 3}; (2) selective methane oxidation to oxygenates; and (3) catalyst characterization and optimization. Task 1 dealt with the preparation, testing, and optimization of acidic promoted lanthana-based catalysts for the synthesis of C{sub 2}H{sub 4} hydrocarbons and is essentially completed. Task 2 aims at the formation and optimization of promoted catalysts for the synthesis of oxygenates, in particular formaldehyde and methanol. Task 3 involves characterization of the most promising catalysts so that optimization can be achieved under Task 2. Accomplishments for this period are presented.

Klier, K.; Herman, R.G.; Wang, Chaun-Bao; Shi, Chunlei; Sun, Qun

1995-08-01T23:59:59.000Z

35

4370 J. Phys. Chem. 1003, 87, 4378-4387 Methanation of Carbon Dioxide on Ni(100) and the Effects of Surface Modifiers?  

E-Print Network [OSTI]

of CHIand CO production, but no change in activation energy. Results showed that the effects of K(a) can Laboratffles, Albuquerque,New Mexico 87185 and J. M. White Depamnt of Chemlsby, Unlverslty of Texas,Austln, Texas 78712 (Recehd: February 10, 1983) The methanation of COzover Ni(100)was studied with H2/C02ratios

Goodman, Wayne

36

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

37

Planetary and Space Science 54 (2006) 11771187 Titan's methane cycle  

E-Print Network [OSTI]

Abstract Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and the pressure induced opacity in the infrared, particularly by CH4­N2 and H2­N2 collisions in the troposphere), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas

Atreya, Sushil

38

Introduction In the past two centuries, atmospheric methane  

E-Print Network [OSTI]

90 Introduction In the past two centuries, atmospheric methane (Ch4) concentrations have more than doubled. Despite the about 20o times smaller atmospheric burden of methane compared to carbon dioxide (CO2 ; IPCC 4th assessment report, 2007), because on a per molecule basis methane is a much more effective

Haak, Hein

39

Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake  

E-Print Network [OSTI]

Methane is the second most important greenhouse gas after carbon dioxide, and it can significantly impact global climate change. Considerable amounts of methane can be released to the atmosphere from freshwater lakes, ...

Varadharajan, Charuleka, 1980-

2009-01-01T23:59:59.000Z

40

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL  

E-Print Network [OSTI]

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Methane production by attached film  

DOE Patents [OSTI]

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

42

Nitrous Oxide Systems Maintenance in Clinical Areas  

E-Print Network [OSTI]

. It specifically speaks to maintenance of nitrous oxide delivery systems, preventive maintenance for house. Arrange with Facilities for regular preventive maintenance and annual performance check of ventilation). b. Provides preventive maintenance on ventilation system as necessary. c. Coordinates annual

Jia, Songtao

43

The biogeochemistry of marine nitrous oxide  

E-Print Network [OSTI]

Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

Frame, Caitlin H

2011-01-01T23:59:59.000Z

44

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane  

E-Print Network [OSTI]

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH2D2 and CD4, at a momentum constituent. For example, Fig. 1 of Ref. 2 shows that, for gaseous methane, above a certain momentum transfer

Hitchcock, Adam P.

45

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network [OSTI]

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

46

E-Print Network 3.0 - argon carbon dioxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Geosciences 22 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: dioxide emissions from power plants, while...

47

E-Print Network 3.0 - arteriovenous carbon dioxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Materials Science 6 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: dioxide emissions from power plants, while...

48

Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009  

E-Print Network [OSTI]

catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

49

Process Modeling of Global Soil Nitrous Oxide Emissions  

E-Print Network [OSTI]

Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

Saikawa, E.

2011-09-01T23:59:59.000Z

50

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

SciTech Connect (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

51

Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change  

SciTech Connect (OSTI)

A proposal for continuation of research on net ecosystem carbon dioxide and methane flux and sampling and analysis of soil samples from arctic tundra regions is presented.

Oechel, W.

1990-05-23T23:59:59.000Z

52

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. Image by Joshua Schrier, Haverford...

53

Bisphosphine dioxides  

DOE Patents [OSTI]

A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, Kenneth G. (Charleston, WV)

1990-01-01T23:59:59.000Z

54

Bisphosphine dioxides  

DOE Patents [OSTI]

A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, K.G.

1990-02-20T23:59:59.000Z

55

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents [OSTI]

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

56

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents [OSTI]

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

57

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. EIA4. Nitrous Oxide

58

Availability of Nitrous Nitrogen to Plants.  

E-Print Network [OSTI]

V, .=DL ULL LI~C a~ailability 01 ILILKLL~: IIILIU~~I~ LU curn, l~aa, 8011 31LY3 1 27.3 .53 .I447 1 I 1 5: 1250 .I349 ic nitrogen ( 37.P' 1 -59 1 .2195 ru.. nv / 36.6 .57 1 .2086 I -2141 1 .O7b/ I 1. gm. nitrous nitrogen 30.2 1 .64 1 .I933 1... .12 -.01 ' .09 V1 -- I w 01 ---- I ------ el M - 1 --O6 X * ---- ------ U1 $ !z - --- i d $ --- - I -20 2 Y * F - I M 4 M .34 I --- .20 M .14 5 nitrogen --- --- -.02 .14 -.48 -.01 -12 .18 .OS...

Fraps, G. S. (George Stronach); Sterges, A. J.

1935-01-01T23:59:59.000Z

59

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network [OSTI]

, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

Agrawal, Angeni

2007-09-17T23:59:59.000Z

60

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. ē Historical Methane Hydrate Project Review Report ē Methane Hydrate Workshop Report ē Topical Report: Marine Methane Hydrate Field Research Plan ē Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect (OSTI)

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

None

2001-09-30T23:59:59.000Z

62

Methane Digester Loan Program  

Broader source: Energy.gov [DOE]

Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

63

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

64

Methanation assembly using multiple reactors  

DOE Patents [OSTI]

A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

Jahnke, Fred C.; Parab, Sanjay C.

2007-07-24T23:59:59.000Z

65

The Net Environmental Effects of Carbon Dioxide Reduction Policies  

E-Print Network [OSTI]

of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

66

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase  

E-Print Network [OSTI]

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3 are bacteria that live on methane as their only source of carbon.1 The first step in their utilization

Baik, Mu-Hyun

67

Nitrous Oxide Nitrous oxide (chemical formula N2O), is a trace gas in Earth's atmosphere, with a  

E-Print Network [OSTI]

fuel, biomass and biofuel, and industrial processes. Nitrous oxide emissions related to biofuel, the Global Warming Potential (GWP) is a more useful quantity. The GWP of N2O is the time- integrated radiative forcing following a 1 kg pulse emission of N2O, relative to the same quantity following a 1 kg

68

Cyclic process for producing methane in a tubular reactor with effective heat removal  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

1986-01-01T23:59:59.000Z

69

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

70

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

71

Timelines for mitigating methane emissions from energy technologies  

E-Print Network [OSTI]

Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

Roy, Mandira; Trancik, Jessika E

2015-01-01T23:59:59.000Z

72

Carbon dioxide capture process with regenerable sorbents  

DOE Patents [OSTI]

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

73

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents [OSTI]

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

74

Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 2834 Electron Compton scattering from methane and methane-d4  

E-Print Network [OSTI]

from methane and methane-d4 G. Coopera, A.P. Hitchcocka,, C.A. Chatzidimitriou-Dreismannb, M. Vosc]. © 2006 Elsevier B.V. All rights reserved. Keywords: Quasi-elastic electron scattering; Methane; CD4

Hitchcock, Adam P.

75

E-Print Network 3.0 - anesthetic nitrous oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such concentrations of anesthetics are safe... ), hypoxemia (eg, nitrogen and carbon monoxide), addiction (eg, nitrous oxide), or health effects resulting... from chronic exposure...

76

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-Print Network [OSTI]

, Michigan State University, 2 Michigan State University Extension Climate Change and Agriculture Fact Sheet greenhouse gases carbon dioxide, methane, and nitrous oxide over the past 2000 years. Data are from ice core

77

Biological and environmental efficiency of high producing dairy systems through application of life cycle analysis†  

E-Print Network [OSTI]

Dairy production systems are an important global contributor to anthropogenic greenhouse gas (GHG) emissions including methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Due to the role GHG play in climate ...

Ross, Stephen Alexander

2014-11-27T23:59:59.000Z

78

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

79

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

80

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

ISSUE PAPER METHANE AVOIDANCE FROM COMPOSTING An Issue Paper for the: Climate Action Reserve...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG

Brown, Sally

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

5, 94059445, 2005 Methane emissions  

E-Print Network [OSTI]

ACPD 5, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title and Physics Discussions Sensitivity analysis of methane emissions derived from SCIAMACHY observations through, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title Page Abstract

Paris-Sud XI, Université de

82

4, 9931057, 2007 Methane hydrate  

E-Print Network [OSTI]

BGD 4, 993­1057, 2007 Methane hydrate stability and anthropogenic climate change D. Archer Title Discussions Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane 2007 Correspondence to: D. Archer (d-archer@uchicago.edu) 993 #12;BGD 4, 993­1057, 2007 Methane hydrate

Paris-Sud XI, Université de

83

5, 243270, 2008 Methane emissions  

E-Print Network [OSTI]

BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract and temperature on the emission of methane from plant biomass and structural components I. Vigano 1 , H. van.roeckmann@phys.uu.nl) 243 #12;BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract

Paris-Sud XI, Université de

84

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

85

METHANE OXIDATION (AEROBIC) Helmut Brgmann  

E-Print Network [OSTI]

METHANE OXIDATION (AEROBIC) Helmut B√ľrgmann Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland Synonyms Methanotrophy Definition Methane oxidation is a microbial metabolic process for energy generation and carbon assimilation from methane that is carried out by specific

Wehrli, Bernhard

86

6, 68416852, 2006 Methane emission  

E-Print Network [OSTI]

ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page Chemistry and Physics Discussions Methane emission from tropical savanna Trachypogon sp. grasses E. Sanhueza;ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page

Boyer, Edmond

87

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Církva, Vladimír; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

88

5, 23052341, 2008 Anaerobic methane  

E-Print Network [OSTI]

BGD 5, 2305­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title of Biogeosciences Regulation of anaerobic methane oxidation in sediments of the Black Sea N. J. Knab1 , B. A. Cragg2­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title Page Abstract

Paris-Sud XI, Université de

89

Utilization of fuel cells to beneficially use coal mine methane. Final report  

SciTech Connect (OSTI)

DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

1996-03-01T23:59:59.000Z

90

Nitrogen dioxide detection  

DOE Patents [OSTI]

Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

1993-01-01T23:59:59.000Z

91

TITLE: Effects of Nitrogen Fertilizer Types and Rates and Irrigation on Nitrous Oxide Fluxes in Turfgrass  

E-Print Network [OSTI]

1). The effects of drought were also evident in clippings biomass, which was 61 to 70% less in dry28 TITLE: Effects of Nitrogen Fertilizer Types and Rates and Irrigation on Nitrous Oxide Fluxes in concentrations of atmospheric nitrous oxide (N2O), a greenhouse gas, and agriculture is considered a significant

92

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room News

93

ARM - Methane Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room

94

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

95

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

96

Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

Siriwardane, H.J.; Gondle, R.; Smith, D.H.

2007-05-01T23:59:59.000Z

97

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

98

2005 international coalbed methane symposium  

SciTech Connect (OSTI)

Papers are under the following topics: well completions; diversity; geology/resource assessment; reservoirs; and carbon dioxide sequestration.

NONE

2005-07-01T23:59:59.000Z

99

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

100

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

102

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect (OSTI)

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

103

VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE  

E-Print Network [OSTI]

VIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,Rotation Spectra of Methane, U.S. Nat'L∑ Tech. Inform.tret t tllll. I. INTRODUCTION Methane is a relatively simple

Hess, Peter

2012-01-01T23:59:59.000Z

104

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

105

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

106

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the 2012Methane

107

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

108

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network [OSTI]

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

109

What's Next for Vanadium Dioxide?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy...

110

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to  

E-Print Network [OSTI]

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to Methanesulfonic Acid by SO3 of methane to value-added prod- ucts is a significant contemporary challenge.[1] Methane is a very unreactive, consider- able effort has been devoted to the oxidation and oxidative carbonylation of methane.[2

Bell, Alexis T.

111

Methane/CO{sub 2} sorption modeling for coalbed methane production and CO{sub 2} sequestration  

SciTech Connect (OSTI)

A thorough study of the sorption behavior of coals to methane and carbon dioxide (CO{sub 2}) is critical for carbon sequestration in coal seams and enhanced coalbed methane recovery. This paper discusses the results of an ad/de-sorption study of methane and CO{sub 2}, in single gas environment, on a set of coal samples taken from the San Juan and Illinois Basins. The results indicate that, under similar temperature and pressure conditions, coals exhibit higher affinity to CO{sub 2} as compared to methane and that the preferential sorption ratio varies between 2:1 and 4:1. Furthermore, the experimental data were modeled using Langmuir, BET, and Dubinin-Polanyi equations. The accuracy of the models in quantifying coal-gas sorption was compared using an error analysis technique. The Dubinin-Radushkevich equation failed to model the coal-gas sorption behavior satisfactorily. For methane, Langmuir, BET, and Dubinin-Astakhov (D-A) equations all performed satisfactorily within comparable accuracy. However, for CO{sub 2}, the performance of the D-A equation was found to be significantly better than the other two. Overall, the D-A equation fitted the experimental sorption data the best, followed by the Langmuir and BET equations. Since the D-A equation is capable of deriving isotherms for any temperature using a single isotherm, thus providing added flexibility to model the temperature variation due to injection/depletion, this is the recommended model to use. 49 refs., 9 figs., 5 tabs.

Satya Harpalani; Basanta K. Prusty; Pratik Dutta [Southern Illinois University-Carbondale, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

2006-08-15T23:59:59.000Z

112

Review article Methane production by ruminants  

E-Print Network [OSTI]

Review article Methane production by ruminants: its contribution to global warming Angela R. MOSSa of methane in the global warming scenario and to examine the contribution to atmospheric methane made by enteric fermentation, mainly by rumi- nants. Agricultural emissions of methane in the EU-15 have recently

Paris-Sud XI, Université de

113

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

114

Microbe-Metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew R

2010-01-01T23:59:59.000Z

115

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

Haven, Kendall F.

2011-01-01T23:59:59.000Z

116

Microbe-metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew Reichmann

2010-01-01T23:59:59.000Z

117

Sulfur Dioxide Regulations (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

118

Carbon dioxide removal process  

DOE Patents [OSTI]

A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

2003-11-18T23:59:59.000Z

119

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

2011-01-01T23:59:59.000Z

120

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments  

SciTech Connect (OSTI)

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

Valentine, David

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (‚??Methane in the Arctic Shelf‚?Ě or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (‚??metagenomes‚?Ě). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

122

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

SciTech Connect (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR√?¬Ę√?¬?√?¬?s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument√?¬Ę√?¬?√?¬?s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

123

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions  

E-Print Network [OSTI]

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

Zhang, Youxue

124

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE  

E-Print Network [OSTI]

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE CYCLE UNDER FUTURE the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, per- mafrost thawing

Chappellaz, J√©r√īme

125

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A  

E-Print Network [OSTI]

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A Theoretical component (MMOH) of the multicomponent soluble methane monooxygenase (MMO) system catalyzes the oxidation of methane by dioxygen to form methanol and water at non-heme, dinuclear iron active sites. The catalytic

Gherman, Benjamin F.

126

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian  

E-Print Network [OSTI]

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany Summary 1. Methane (CH4) oxidation to Sphagnum species and low-pH peatlands. 2. Moss-associated methane oxidation (MAMO) can be an effective

Wehrli, Bernhard

127

Nonequilibrium clumped isotope signals in microbial methane  

E-Print Network [OSTI]

Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

Wang, David T.

128

Project Profile: Direct Supercritical Carbon Dioxide Receiver...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The National...

129

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

130

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

131

Methane emission by termites: Impacts on the self-cleansing mechanisms of the atmosphere  

SciTech Connect (OSTI)

Termites are reported to emit large quantities of methane, carbon dioxide, carbon monoxide, hydrogen and dimethyl sulfide. The emission of other trace gases, namely C{sub 2} to C{sub 10} hydrocarbons, is also documented. We have carried out, both in the field and in the laboratory, measurements of methane emissions by Macrotermes subhyalinus (Macrotermitinae), Trinervitermes bettonianus (Termitinae), and unidentified Cubitermes and Microcerotermes species. Measured CH{sub 4} field flux rates ranged from 3.66 to 98.25g per m{sup 2} of termite mound per year. Laboratory measurements gave emission rates that ranged from 14.61 to 165.05 mg CH{sub 4} per termite per year. Gaseous production in all species sampled varied both within species and from species to species. Recalculated global emission of methane from termites was found to be 14.0 x 10{sup 12} g CH{sub 4}, per year. From our study, termites contribution to atmospheric methane content is between 1.11% and 4.25% per year. This study discusses the greenhouse effects as well as photochemical disposal of methane in the lower atmosphere in the tropics and the impacts on the chemistry of HO{sub x} systems and CL{sub x} cycles.

Mugedo, J.Z.A. [Maseno Univ. College (Kenya)

1996-12-31T23:59:59.000Z

132

Coalbed methane production case histories  

SciTech Connect (OSTI)

The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

Not Available

1981-02-01T23:59:59.000Z

133

Methane adsorption on Devonian shales  

E-Print Network [OSTI]

METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

Li, Fan-Chang

1992-01-01T23:59:59.000Z

134

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo¬īc,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

135

6, 36113626, 2006 Effects of methane  

E-Print Network [OSTI]

ACPD 6, 3611­3626, 2006 Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Effects of methane outgassing Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et al. Title Page Abstract

Paris-Sud XI, Université de

136

2, 11971241, 2005 Control of methane  

E-Print Network [OSTI]

BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane emission;BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al. Title

Boyer, Edmond

137

Carbon dioxide sensor  

DOE Patents [OSTI]

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

138

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

139

Climate Finance 35 Understanding the Causes and  

E-Print Network [OSTI]

change issue is well un- derstood: greenhouse gases (GHG) emitted in the process of electricity #12 arises from long-lived gases (carbon dioxide, methane, halocarbons, and nitrous oxide) because half- century. Carbon dioxide from the combustion of fossil fuels (coal, oil, and natu- ral gas

Oppenheimer, Michael

140

Climate Change Basics: Science, Adaptation, & Mitigation  

E-Print Network [OSTI]

Science Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased from ice cores spanning many thousands of years. The global increases in carbon dioxide concentrationClimate Change Basics: Science, Adaptation, & Mitigation with a Family Forest Perspective Baylor

Fox-Kemper, Baylor

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ORIGINAL PAPER Adaptation and mitigation strategies in agriculture  

E-Print Network [OSTI]

distri- bution. Major contributing factors will include increasing atmospheric carbon dioxide, rising gases, chiefly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (IPCC 2001a). CurrentlyORIGINAL PAPER Adaptation and mitigation strategies in agriculture: an analysis of potential

142

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

143

Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium  

E-Print Network [OSTI]

Nitrous oxide (N2O)[N subscript 2 O] is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O [N subscript 2 O] yield from nitrification (moles N2O-N [N subscript 2 O - N] produced ...

Frame, Caitlin H.

144

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

145

The Methane to Markets Coal Mine Methane Subcommittee meeting  

SciTech Connect (OSTI)

The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

NONE

2008-07-01T23:59:59.000Z

146

CARBON DIOXIDE FIXATION.  

SciTech Connect (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

147

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

148

Nitrous oxide (N?O) isotopic composition in the troposphere : instrumentation, observations at Mace Head, Ireland, and regional modeling  

E-Print Network [OSTI]

Nitrous oxide (N?O) is a significant greenhouse gas and main contributor to stratospheric ozone destruction. Surface measurements of N?O mole fractions have been used to attribute source and sink strengths, but large ...

Potter, Katherine Ellison

2011-01-01T23:59:59.000Z

149

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect (OSTI)

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

150

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

151

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

152

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

153

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

154

A guide to coalbed methane operations  

SciTech Connect (OSTI)

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

155

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

156

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

157

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

158

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance theÖ (more)

Pang, Yu

2013-01-01T23:59:59.000Z

159

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

160

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

162

A conduit dilation model of methane venting from lake sediments  

E-Print Network [OSTI]

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

163

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

164

Methane productivity and nutrient recovery from manure Henrik B. Mller  

E-Print Network [OSTI]

Methane productivity and nutrient recovery from manure Henrik B. MÝller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

165

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents [OSTI]

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

166

Carbon Dioxide Reduction Through Urban Forestry  

E-Print Network [OSTI]

. Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

Standiford, Richard B.

167

Three-dimensional model synthesis of the global methane cycle  

E-Print Network [OSTI]

39, Ehhalt, D. H. , The atmoēheric cycle of methane, Tellugworld-wide increase in tēheric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

168

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized byÖ (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

169

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. TheÖ (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

170

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network [OSTI]

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. TheÖ (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

171

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.Ö (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

172

Direct Observation of the Active Center for Methane Dehydroaromatizati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Direct Observation of the Active Center for Methane Dehydroaromatization Using an...

173

Studies of the Active Sites for Methane Dehydroaromatization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State Mo95 NMR Spectroscopy. Studies of the Active Sites for Methane Dehydroaromatization Using...

174

Scientists detect methane levels three times larger than expected...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

175

Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

176

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

177

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

178

Carbon dioxide and climate  

SciTech Connect (OSTI)

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

179

Coalbed Methane (CBM) is natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean,Coalbed Methane (CBM)

180

The 1991 coalbed methane symposium proceedings  

SciTech Connect (OSTI)

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

SciTech Connect (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

182

Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}?hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to react with Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} to form CO/CO{sub 2} and H{sub 2}O. This mechanism is supported by the characterization studies, which also suggest that the formation of carbonaceous intermediates may affect the reaction rate and selectivity of the oxygen carrier.

Miller, Duane D.; Siriwardane, Ranjani

2013-08-01T23:59:59.000Z

183

Uranium dioxide electrolysis  

DOE Patents [OSTI]

This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

2009-12-29T23:59:59.000Z

184

CARBON DIOXIDE AND OUR OCEAN LEGACY  

E-Print Network [OSTI]

is a biologist at the California State Univer- sity San Marcos, with expertise in the effects of carbon dioxideCARBON DIOXIDE AND OUR OCEAN LEGACY G Carbon Dioxide: Our Role The United States is the single. Every day the average American adds about 118 pounds of carbon dioxide to the atmos- phere, due largely

185

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network [OSTI]

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

186

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

187

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

Haven, Kendall F.

2011-01-01T23:59:59.000Z

188

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE Full-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY ALLENE OR PROPYNE * E investigated: a pure methane flame and two methane flames doped by allene and propyne, respectively. The gases

Paris-Sud XI, Université de

189

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

Grossman, Ethan L.

190

Carbon Dioxide: Threat or Opportunity?  

E-Print Network [OSTI]

catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar...

McKinney, A. R.

1982-01-01T23:59:59.000Z

191

Reducing carbon dioxide to products  

DOE Patents [OSTI]

A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

2014-09-30T23:59:59.000Z

192

Recuperative supercritical carbon dioxide cycle  

DOE Patents [OSTI]

A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

2014-11-18T23:59:59.000Z

193

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)  

E-Print Network [OSTI]

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID to equilibrate the methane between the air and water. · With the syringe pointing down, eject all the water fromL of gas in the syringe · We will now move to the GC lab in Starr 332 to measure methane. · Repeat

Vallino, Joseph J.

194

Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures  

E-Print Network [OSTI]

Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet in laminar jet flames of methane at elevated pressures in a high-pressure combustion chamber, we have MPa, after the laminar methane jet flame had been stabilized on a co-flow circular nozzle-type burner

G√ľlder, √?mer L.

195

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect (OSTI)

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngís modulus, Poissonís ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

196

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

197

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

198

The role of methane in tropospheric chemistry  

E-Print Network [OSTI]

While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

Golomb, D.

1989-01-01T23:59:59.000Z

199

Virginia Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

200

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Pennsylvania Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

202

Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

203

Arkansas Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

204

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

205

Pennsylvania Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

206

Virginia Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

207

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

208

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

209

Montana Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

210

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

211

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

212

Arkansas Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

213

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

214

Miscellaneous States Coalbed Methane Proved Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

215

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

216

Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

217

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

218

Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

219

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

220

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

222

Arkansas Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

223

Virginia Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

224

Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

225

Transient Supersonic Methane-Air Flames  

E-Print Network [OSTI]

The purpose of this study was to investigate the thermochemical properties of a transient supersonic flame. Creation of the transient flame was controlled by pulsing air in 200 millisecond intervals into a combustor filled with flowing methane...

Richards, John L.

2012-07-16T23:59:59.000Z

226

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methaneÖ (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

227

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions ofÖ (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

228

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

229

Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates  

E-Print Network [OSTI]

Goldberg, E.D. , 1976. Methane production and consumption inanaerobic oxidation of methane. Nature, 407 , 623-626.profiles indicate in situ methane flux from underlying gas

Berg, Richard D.

2008-01-01T23:59:59.000Z

230

Marine methane cycle simulations for the period of early global warming  

E-Print Network [OSTI]

aspects of atmospheric methane, Global Biogeochem. Cycles 2,Budeus, Fate of vent derived methane in seawater above theHanfland, Pathways of methane in seawater: Plume spreading

Elliott, S.

2011-01-01T23:59:59.000Z

231

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

232

A review on recent advances in the numerical simulation for coalbed-methane-recovery process  

SciTech Connect (OSTI)

The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia)

2007-12-15T23:59:59.000Z

233

Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing  

SciTech Connect (OSTI)

Increases in the abundance of methane (CH4) in the Earthís atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

Emanuel, William R.; Janetos, Anthony C.

2013-02-01T23:59:59.000Z

234

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network [OSTI]

extraction (including coalbed methane release), processing,extraction (including coalbed methane release), processing,

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

235

Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

236

Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal  

SciTech Connect (OSTI)

For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a point on the isotherm, the process is repeated until the sample weight reaches a constant value (i.e., typically equilibration times of several weeks). The slope of a plot of sample weight vs. square root of elapsed desorption time gives a measurement for the rate of diffusion. In order to advance all three experimental methods, results from this ďambient-pressure gravimetryĒ method were compared with data obtained by conventional manometry and by computer tomography. The isotherm and ďdiffusionĒ rate measured for the core can be directly used in simulators for reservoir engineering studies of coalseam sequestration and enhanced coalbed methane production.

Smith, D.H.; Jikich, S.; Seshadri, K.

2007-05-01T23:59:59.000Z

237

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network [OSTI]

pp. 67. Murray D. 1993. Coalbed methane reservoir evaluation1 to 3-31. Bland D. 1992. Coalbed methane from the Fruitlandregulations specific to coalbed methane operations have been

Myer, Larry R.

2003-01-01T23:59:59.000Z

238

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

239

MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1  

E-Print Network [OSTI]

2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

Boyer, Edmond

240

GISS ICP at Columbia University SSttuuddyyiinngg GGlloobbaall CChhaannggee aanndd tthhee EEnnvviirroonnmmeenntt  

E-Print Network [OSTI]

large quantities of fossil fuels such as petroleum, coal and natural gas. Burning fossil fuels release additional greenhouse gases, such as nitrous oxide, methane and carbon dioxide into the atmosphere storage in the trees. We can study this forest carbon as well, with land-use variations (fire) as we began

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emissions of greenhouse gases in the United States 1995  

SciTech Connect (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

242

California Climate Change Center www.climatechange.ca.gov/research  

E-Print Network [OSTI]

for methane, nitrous oxide, and other non-carbon-dioxide (CO2 ) greenhouse gases, have significant--provides information on emissions, impacts, adapta- tion, and mitigation strategies. The Center was the first state works very closely with state and local agencies to make sure its scientific results are relevant

243

-We sampled three replicated chambers with floating collars  

E-Print Network [OSTI]

, such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). - Constructed treatment wetland systems (CWS 2003, Holland et al. 1999). Trace gas fluxes from The Tres Rios Wetlands Project in Phoenix, AZ Introduction Site Description Jorge Ramos Jr.1, Eric J. Chapman1, Nicholas A. Weller2, Dan L. Childers2 Wetland

Hall, Sharon J.

244

TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial Ryegrass under Different Irrigation Regimes  

E-Print Network [OSTI]

80 TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial). effects of irrigation on N2 O emissions from perennial ryegrass AUTHOR: Jason Lewis and Dale Bremer and frequencies, and irrigated with different amounts of water, all of which may affect N2 O emissions

245

E-Print Network 3.0 - active methane weather Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry 48 Universitt Stuttgart Auslandsorientierter Studiengang Summary: Potential of Coalbed Methane Recovery during Active Coalmin- ing... Methane Recovery from Active...

246

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

SciTech Connect (OSTI)

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

247

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D¬īe, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ¬≠ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ¬≠ p. #12;Introduction. II CO2 is separated from natural

Santos, Juan

248

The Effects of Moisture and Organic Matter Lability on Carbon Dioxide and Methane Production in an  

E-Print Network [OSTI]

amounts of carbon in the form of peat and other undecomposed plant matter. Global climate change al. 2003). The carbon stored in wetlands is in the form of undecayed plant matter, or peat. Peat carbon are very useful for agricultural purposes. Their peat and preserved timber has been mined

Vallino, Joseph J.

249

Climate policy design : interactions among carbon dioxide, methane, and urban air pollution constraints  

E-Print Network [OSTI]

Limiting anthropogenic climate change over the next century will require controlling multiple substances. The Kyoto Protocol structure constrains the major greenhouse gases and allows trading among them, but there exist ...

Sarofim, Marcus C

2007-01-01T23:59:59.000Z

250

The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas  

E-Print Network [OSTI]

.90 4000 2.06 3.76 6.10 11.71 25.05 3.71 3000 1.47 1.90 2.46 7.34 15.76 1.26 2000 0.83 0.59 0.83 2.37 4.31 0.88 1000 0.063 0.44 0.37 0.63 0.69 0.64 200 ?F 6000 15.7 23.12 32.87 62.83 109.40 44.50 5000 9.93 15.70 24.10 47.01 78.01 26.83 4000 3.58 8....30 2000 20.87 137.30 384.00 205.90 1000 8.98 37.04 136.50 123.20 CO CM CMO X O ? C>- ? ?oin-S- 437.50 359.50 300.20 234.70 57.50 9.20 972.60 797.20 587.50 264.50 67.70 17.10 2,027.00 970.10 658.40 278.40 64.50 20.30 ^ 9 TABLE 1 ( C...

Wieland, Denton R.

1958-01-01T23:59:59.000Z

251

Numerical modeling of methane venting from lake sediments  

E-Print Network [OSTI]

The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

Scandella, Benjamin P. (Benjamin Paul)

2010-01-01T23:59:59.000Z

252

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene...

Alkhawaldeh, Ammar

2000-01-01T23:59:59.000Z

253

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

254

Methane Adsorption and Dissociation and Oxygen Adsorption and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

255

Diurnal variations in methane emission from rice plants  

E-Print Network [OSTI]

A greenhouse study was conducted to investigate the mechanisms causing diurnal variations in methane emission from rice plants (Oryza sativa L.). Methane emission was measured using a closed chamber system on individual rice plants at five stages...

Laskowski, Nicholas Aaron

2004-11-15T23:59:59.000Z

256

New Methane Hydrate Research: Investing in Our Energy Future...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed...

257

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

SciTech Connect (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

258

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

259

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

260

Gravimetric study of adsorbed intermediates in methanation of carbon monoxide  

SciTech Connect (OSTI)

The purpose of this study is to more fully elucidate the adsorbed intermediates and mechanism involved in catalytic methanation of CO on a typical nickel methanation catalyst. Rates of adsorption and desorption of surface species and of gasification of carbon were measured gravimetrically to determine their kinetics and possible roles in methanation. 19 refs.

Gardner, D.C.; Bartholomew, C.H.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

262

METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES  

E-Print Network [OSTI]

advanced models of adsorption occuring in coalbed methane recovery processes, and discuss the underlying methods, hysteresis, coalbed methane, mean-field equi- librium models AMS(MOS) subject classifications. 76 applications important for global climate and energy studies, namely Enhanced Coalbed Methane (ECBM) recovery

Peszynska, Malgorzata

263

An improved third order dipole moment surface for methane  

E-Print Network [OSTI]

An improved third order dipole moment surface for methane P. Cassam-Chena¨i Laboratoire J and used to calculate the rotational spectrum of methane vibrational ground state, by means. Keywords: Dipole moment surface; methane; generalized mean field configuration interaction. Suggested

Paris-Sud XI, Université de

264

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY  

E-Print Network [OSTI]

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY COVERS ON LANDFILLED MBT TREATED WASTE to oxidize the methane flux coming from the residual organic fraction. The first plant was operated without recovery of organic fraction and with concentration of the fine fraction in a cell. The methane fluxes were

Paris-Sud XI, Université de

265

PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW  

E-Print Network [OSTI]

1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer- cate the feasibility of arc pyrolysis of methane. Introduction he high specific enthalpy of combustion

Texas at Arlington, University of

266

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands  

E-Print Network [OSTI]

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands Jason M. Gonzales, Jonas, California 90089 ReceiVed July 31, 2006 Trends in methane activation have been explored for rhenium complexes proceeds with methane activation through a barrier of less than 35 kcal mol-1 . Study

Goddard III, William A.

267

Extreme Methane Emissions from a Swiss Hydropower Reservoir  

E-Print Network [OSTI]

Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments manuscript received February 3, 2010. Accepted February 15, 2010. Methane emission pathways.Methanediffusionfromthesediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane

Wehrli, Bernhard

268

Monterey Bay Aquarium Research A robotic sub samples the methane  

E-Print Network [OSTI]

Monterey Bay Aquarium Research Institute A robotic sub samples the methane content of the seafloor.263 News Seafloor probe taps methane reservoir Greenhouse gas found in high abundance but risk of mass release uncertain. Nicola Jones A robotic submarine has been used to measure the amount of methane lurking

Tian, Weidong

269

Carbon and Hydrogen Isotopic Effects in Microbial Methane  

E-Print Network [OSTI]

6 Carbon and Hydrogen Isotopic Effects in Microbial Methane from Terrestrial Environments Jeffrey Chanton, Lia Chaser, Paul Glasser,Don Siegel Methane is the ultimate end-product of anaerobic respiration. Methane production via CO2 reduction does not consume CO2. Also, acetate can be written as 2CH20, so Eq. 6

Saleska, Scott

270

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART III: CYCLOPENTENE-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY CYCLOPENTENE * E-mail : pierre with the studies presented in the parts I and II of this paper, the structure of a laminar rich premixed methane

Paris-Sud XI, Université de

271

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source of methane, the third most important greenhouse gas in the atmosphere. However, the absolute contribution

M√ľhlemann, Oliver

272

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic  

E-Print Network [OSTI]

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic Photochemistry1 Howard E zimmerman@bert.chem.wisc.edu Received May 31, 2000 ABSTRACT The di--methane rearrangement is firmly established as a mode of synthesizing three-membered-ring compounds. We now report the tri-- methane

Cirkva, Vladimir

273

METHANE SOURCES AND SINKS IN UPPER OCEAN WATERS  

E-Print Network [OSTI]

METHANE SOURCES AND SINKS IN UPPER OCEAN WATERS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION the distribution of dissolved methane in ocean surface waters were investigated. Water column and sediment trap and Antarctic waters to the oliogotrophic ocean off Hawaii. The methane concentrations in most of the surface

Luther, Douglas S.

274

Dissociation of methane under high pressure Guoying Gao,1,a  

E-Print Network [OSTI]

Dissociation of methane under high pressure Guoying Gao,1,a Artem R. Oganov,2,a Yanming Ma,1,b Hui Received 15 May 2010; accepted 18 August 2010; published online 12 October 2010 Methane is an extremely of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary

Oganov, Artem R.

275

Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT  

E-Print Network [OSTI]

Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT Christian Frankenberg,1; accepted 26 June 2008; published 12 August 2008. [1] Methane retrievals from near-infrared spectra recorded spectroscopic parameters, causing a substantial overestimation of methane correlated with high water vapor

Haak, Hein

276

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART II: 1,3-BUTADIENE-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY 1,3-BUTADIENE * E-mail : Pierre of this paper, the structure of a laminar rich premixed methane flame doped with 1,3-butadiene has been

Paris-Sud XI, Université de

277

Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach  

SciTech Connect (OSTI)

Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

Dominique Krzeminski, Christophe, E-mail: christophe.krzeminski@isen.fr [Dťpartment ISEN, IEMN-UMR-8520, 41 Boulevard Vauban, 59046 Lille Cedex (France)

2013-12-14T23:59:59.000Z

278

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the  

E-Print Network [OSTI]

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

Toohey, Darin W.

279

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network [OSTI]

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep heterogeneity. In particular, biogeochemical fluxes of volatiles such as methane remain largely unconstrained

Girguis, Peter R.

280

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

oxidation of methane above gas hydrates at Hydrate Ridge, NEsediment from a marine gas hydrate area. Environ. Microbiol.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide  

E-Print Network [OSTI]

Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

Harris, Eliza

282

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

283

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

284

Methane production from ozonated pulp mill effluent  

SciTech Connect (OSTI)

A study was made of the production of methane from desugared spent sulfite liquor (SSL) reacted with ozone. The ozonated SSL was fed continuously to three anaerobic fermenters for three months as the sole source of carbon and energy. The fermenters were inoculated with anaerobic bacteria obtained from sewage sludge and acclimated for 1 month in ozonated SSL prior to continuous fermentation. Chemical and biological parameters such as COD, BOD, total sulfur content, redox potential, pH, fatty acid composition, and methane bacteria populations were monitored to determine changes in the SSL during fermentation. Methane production from ozone-treated SSL averaged 1.7 liters/ liter or 17 ml of CH/sub 4/ produced/gram of volatile solids fed. Fatty acis analysis of fermenter effluent indicated a net production of 58 mM/ liter of acetate during ozonated SSL fermentation. This acetic acid production shows future potential for further fermentation by protein-producing yeast. Although the rate of conversion of volatile solids to CH/sub 4/ in this process was not competitive with domestic or agricultural waste digesters, this study did indicate the potential benefits of ozonating organic wastes for increased methane fermentation yields.

Bremmon, C.E.; Jurgensen, M.F.; Patton, J.T.

1980-07-01T23:59:59.000Z

285

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

286

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

287

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

coefficient of PVC, LLDPE, and HDPE geomembranes by performing the standard gas transport test (ASTM D1434). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day thicknesses is proposed using the measured permeability coefficients for PVC, LLDPE, and HDPE geomembranes

288

Methane present in an extrasolar planet atmosphere  

E-Print Network [OSTI]

Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

2008-02-07T23:59:59.000Z

289

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

290

Carbon dioxide reuse and sequestration: The state of the art today  

E-Print Network [OSTI]

R.J.H. Richardson, Deep coalbed methane in Alberta, Canada:gas recovery and enhanced coalbed methane recovery. Suitableprojects of enhanced coalbed methane production using CO 2

Benson, Sally M.; Dorchak, Thomas; Jacobs, Gary; Ekmann, James; Bishop, Jim; Grahame, Thomas

2000-01-01T23:59:59.000Z

291

Methane oxidation over dual redox catalysts  

SciTech Connect (OSTI)

Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

1992-06-01T23:59:59.000Z

292

Model Documentation for the MiniCAM  

SciTech Connect (OSTI)

The MiniCAM, short for the Mini-Climate Assessment Model, is an integrated assessment model of moderate complexity focused on energy and agriculture sectors. The model produces emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) and other radiatively important substances such as sulfur dioxide. Through incorporation of the simple climate model MAGICC, the consequences of these emissions for climate change and sea-level rise can be examined. The MiniCAM is designed to be fast and flexible.

Brenkert, Antoinette L.; Smith, Steven J.; Kim, Son H.; Pitcher, Hugh M.

2003-07-17T23:59:59.000Z

293

Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc  

E-Print Network [OSTI]

2009) Deep oxidation of methane on particles derived fromAbstract Methane conversion tests were performed on Pd, PdOFigure captions Figure 1: Methane conversion a), methane

Horwat, D.

2009-01-01T23:59:59.000Z

294

An analysis of the impact of having uranium dioxide mixed in with plutonium dioxide  

SciTech Connect (OSTI)

An assessment was performed to show the impact on airborne release fraction, respirable fraction, dose conversion factor and dose consequences of postulated accidents at the Plutonium Finishing Plant involving uranium dioxide rather than plutonium dioxide.

MARUSICH, R.M.

1998-10-21T23:59:59.000Z

295

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish  

SciTech Connect (OSTI)

The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

1990-01-01T23:59:59.000Z

296

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2003-01-01T23:59:59.000Z

297

Nitrous Oxide as a 1,3-Dipole: A Theoretical Study of Its Cycloaddition Mechanism  

E-Print Network [OSTI]

of N2O emissions have been identified, including biomass burning, fossil fuel combustion, industrial 200-300 times more powerful in warming potential than a molecule of carbon dioxide (CO2).6 Thus and stratospheric ozone loss, so its level should remain as low as possible, and the N2O emissions should be reduced

Nguyen, Minh Tho

298

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

santos

299

VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM  

E-Print Network [OSTI]

(for water: the SPC-, SPC/E-, and TIP4P-potential models; for carbon dioxide: the EPM2 potential model dioxide are calculated. For water, the SPC- and TIP4P-models give superior results for the vapor pressure when compared to the SPC/E-model. The vapor liquid equilibrium of the binary mixture carbon dioxide

300

Methane Sulfonation A High-Yield Approach to the Sulfonation of  

E-Print Network [OSTI]

Methane Sulfonation A High-Yield Approach to the Sulfonation of Methane to Methanesulfonic Acid Initiated by H2O2 and a Metal Chloride** Sudip Mukhopadhyay and Alexis T. Bell* Methane is abundant reactivity of methane makes it difficult to develop commercially viable processes for methane conversion.[1

Bell, Alexis T.

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RESEARCH ARTICLE -BASED ON MIR INVESTIGATIONS IN LAKE GENEVA Spatial heterogeneity of benthic methane dynamics  

E-Print Network [OSTI]

methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva) S. Sollberger ¬∑ J. P methane (CH4) dynam- ics from river deltas with important organic matter accumulation have been recently Methane emission √Ā Methane production Introduction Atmospheric methane (CH4) concentration has dramati

Wehrli, Bernhard

302

RESEARCH ARTICLE -BASED ON MIR INVESTIGATIONS IN LAKE GENEVA Spatial heterogeneity of benthic methane dynamics  

E-Print Network [OSTI]

methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva) S. Sollberger ¬∑ J. P Abstract Heterogeneous benthic methane (CH4) dynam- ics from river deltas with important organic matter Particle size √Ā Methane emission √Ā Methane production Introduction Atmospheric methane (CH4) concentration

Wehrli, Bernhard

303

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1  

E-Print Network [OSTI]

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1 K. M. Barkume,1 G. A regime and by absorption due to methane in the near-infrared. The solid methane absorption lines through the methane. These long path lengths can be parameterized as a methane grain size of approximately

Brown, Michael E.

304

Methane Hydrate Field Studies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate Field

305

Methane Hydrate Production Feasibility | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate

306

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

307

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents [OSTI]

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

308

Regional Sources of Nitrous Oxide over the United States: Seasonal Variation and Spatial Distribution  

SciTech Connect (OSTI)

This paper presents top-down constraints on the magnitude, spatial distribution, and seasonality of nitrous oxide (N{sub 2}O) emissions over the central United States. We analyze data from tall towers in 2004 and 2008 using a high resolution Lagrangian particle dispersion model paired with both geostatistical and Bayesian inversions. Our results indicate peak N{sub 2}O emissions in June with a strong seasonal cycle. The spatial distribution of sources closely mirrors data on fertilizer application with particularly large N{sub 2}O sources over the US Cornbelt. Existing inventories for N{sub 2}O predict emissions that differ substantially from the inverse model results in both seasonal cycle and magnitude. We estimate a total annual N{sub 2}O budget over the central US of 0.9-1.2 TgN/yr and an extrapolated budget for the entire US and Canada of 2.1-2.6 TgN/yr. By this estimate, the US and Canada account for 12-15% of the total global N{sub 2}O source or 32-39% of the global anthropogenic source as reported by the Intergovernmental Panel on Climate Change in 2007.

Miller, S. M.; Kort, E. A.; Hirsch, A. I.; Dlugokencky, E. J.; Andrews, A. E.; Xu, X.; Tian, H.; Nehrkorn, T.; Eluszkiewicz, J.; Michalak, A. M.; Wofsy, S. C.

2012-01-01T23:59:59.000Z

309

atmospheric sulphur dioxide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbon dioxide CERN Preprints Summary: The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause...

310

Carbon dioxide-assisted fabrication of highly uniform submicron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

311

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

312

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

313

Energy Department Expands Research into Methane Hydrates, a Vast...  

Broader source: Energy.gov (indexed) [DOE]

separate project funded by the EU through Universities of Bremen (Germany) and Tromso (Norway), will assess the response of methane hydrates to environmental changes at the...

314

Biomass Gasification and Methane Digester Property Tax Exemption  

Broader source: Energy.gov [DOE]

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

315

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

316

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

317

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

318

Ohio Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Revision Increases...

319

Ohio Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Adjustments...

320

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",201...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

322

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

323

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

324

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to miningÖ (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

325

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

326

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

327

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

328

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

329

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

330

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013...

331

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

332

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

333

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013...

334

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

335

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

336

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

337

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

338

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

339

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

340

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

342

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

343

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

344

Analysis of a direct methane conversion to high molecular weight hydrocarbons  

E-Print Network [OSTI]

Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

Al-Ghafran, Moh'd. J.

2000-01-01T23:59:59.000Z

345

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

E-Print Network [OSTI]

Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

Reagan, M.

2012-01-01T23:59:59.000Z

346

Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions  

E-Print Network [OSTI]

in tropospheric ozone and methane; global 3-D model studies,hydroxyl radical and methane life- time from the Atmosphericof meteorology and emissions on methane trends, 1990Ė2004,

Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

2013-01-01T23:59:59.000Z

347

Methane in lakes and wetlands -Microbiological production, ecosystem uptake, climatological significance  

E-Print Network [OSTI]

1 Methane in lakes and wetlands - Microbiological production, ecosystem Z√ľrcher, Fortunat Joos Global methane emissions from wet ecosystems 9:50 - 10 Were tropical wetlands C4-dominated during the glacial? A view from methane

M√ľhlemann, Oliver

348

Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations  

E-Print Network [OSTI]

S.S.H. , 1987. Kinetics of Methane Hydrate Decomposition,T. J. , et al. (2007), Methane Hydrate Formation andCharting the future of methane hydrate research in the

Kneafsey, T.

2012-01-01T23:59:59.000Z

349

Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions  

E-Print Network [OSTI]

Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions Andrew C process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated

Schuerger, Andrew C.

350

SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin  

E-Print Network [OSTI]

SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN 1 Sea Floor Methane are exposed at the sea floor. A methane-oxidizing bacterial consortium populates the exposures of hydrate; colonies of vent macro-fauna are abundant as well. Discharge of methane from destabilized hydrate

Goldfinger, Chris

351

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network [OSTI]

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

352

The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND  

SciTech Connect (OSTI)

We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gasóthe ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxideóis also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

2014-10-01T23:59:59.000Z

353

Exploiting coalbed methane and protecting the global environment  

SciTech Connect (OSTI)

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

354

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

355

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs isÖ (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

356

Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 Supporting Information  

E-Print Network [OSTI]

Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 1 (to sustain instream #12;Coalbed Methane Produced Water Screening Tool for Treatment Technology

357

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

358

E-Print Network 3.0 - anthropogenic methane emissions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

regional assessments... and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed... predictions of methane emissions from easily...

359

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

360

1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane  

E-Print Network [OSTI]

1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane also activate CHI. 1. Introduction Becauseof the enormousworldwidereservesof methane (CH4)andthe

Goddard III, William A.

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Anesthesia with halothane and nitrous oxide alters protein and amino acid metabolism in dogs  

SciTech Connect (OSTI)

General anesthesia in combination with surgery is known to result in negative nitrogen balance. To determine whether general anesthesia without concomitant surgery decreases whole body protein synthesis and/or increases whole body protein breakdown, two groups of dogs were studied: Group 1 (n = 6) in the conscious state and Group 2 (n = 8) during general anesthesia employing halothane (1.5 MAC) in 50% nitrous oxide and oxygen. Changes in protein metabolism were estimated by isotope dilution techniques employing simultaneous infusions of (4,53H)leucine and alpha-(1-14C)-ketoisocaproate (KIC). Total leucine carbon flux was unchanged or slightly increased in the anesthetized animals when compared to the conscious controls, indicating only a slight increase in the rate of proteolysis. However, leucine oxidation was increased (P less than 0.001) by more than 80% in the anesthetized animals when compared with their conscious controls, whereas whole body nonoxidative leucine disappearance, an indicator of whole body protein synthesis, was decreased. The ratio of leucine oxidation to the nonoxidative rate of leucine disappearance, which provides an index of the catabolism of at least one essential amino acid in the postabsorptive state, was more than twofold increased (P less than 0.001) in the anesthetized animals regardless of the tracer employed. These studies suggest that the administration of anesthesia alone, without concomitant surgery, is associated with a decreased rate of whole body protein synthesis and increased leucine oxidation, resulting in increased leucine and protein catabolism, which may be underlying or initiating some of the protein wasting known to occur in patients undergoing surgery.

Horber, F.F.; Krayer, S.; Rehder, K.; Haymond, M.W.

1988-09-01T23:59:59.000Z

362

Methane Hydrate Program Annual Report to Congress  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartmentFY 2010 Methane Hydrate

363

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames  

E-Print Network [OSTI]

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames K. Siegmanna) Swiss 96822 Received 24 August 1999; accepted 13 October 1999 A laminar diffusion flame of methane exhausts,7­17 coal-fired, electricity generating power plants,18,19 tobacco smoke,20 residential wood

Sattler, Klaus

364

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection ­ 126 Coalbed Areas ­ 34 Parameters Ordered

Mohaghegh, Shahab

365

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks extraction and pipeline transmission are the largest human-derived source of emissions (EPA, 2012). However

Jackson, Robert B.

366

Photofragment imaging of methane Albert J. R. Heck  

E-Print Network [OSTI]

on CH4. © 1996 American Institute of Physics. S0021-9606 96 03810-3 INTRODUCTION Knowledge about the photo dissociation pathways of the methane molecule is of fundamental importance as it is of central, the photochemistry of methane in the atmosphere is mostly driven by intense solar atomic emission lines

Zare, Richard N.

367

The thermal decomposition of methane in a tubular reactor  

SciTech Connect (OSTI)

The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

368

Displacement of crude oil by carbon dioxide  

E-Print Network [OSTI]

by Carbon Dioxide (December 1980) Olusegun Omole, B. S. , University of Ibadan, Nigeria Chairman of Advisory Committee: Dr. J. S. Osoba It has long been recognized that carbon dioxide could be used as an oil recovery agent. Both laboratory and field...- tion. Crude oil from the Foster Field in West Texas, of 7 cp and 34 API, 0 was used as the oil in place. Oil displacements were conducted at pres- sures between 750 psig and 1800 ps1g, and at a temperature of 110 F. 0 Carbon dioxide was injected...

Omole, Olusegun

1980-01-01T23:59:59.000Z

369

Identifying and Developing New, Carbon Dioxide Consuming Processes , Sudheer Indalaa  

E-Print Network [OSTI]

of propane, styrene from ethyl benzene and carbon dioxide, and methanol from hydrogenation of carbon dioxide408b Identifying and Developing New, Carbon Dioxide Consuming Processes Aimin Xua , Sudheer Indalaa@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Carbon Dioxide Processes, Greenhouse Gases, Chemical Complex, Sustainable

Pike, Ralph W.

370

Kinetics of methanation on nickel catalysts  

SciTech Connect (OSTI)

Extensive steady-state and transient measurements of the disproportionation of carbon monoxide, the hydrogenation of deposited carbon, and methanation of carbon monoxide were performed over 2 and 10% nickel on silica support. The results indicated that the methanation of carbon monoxide involves competitively adsorbed species; that the reaction is nearly zero order in carbon monoxide at 0.1-0.5 atm CO and 1 atm H/sub 2/, but negative at higher CO partial pressures and that it becomes less negative with increasing temperature or increasing hydrogen pressure; and that the reaction order with respect to hydrogen changes from 0.5 to 1.0 with increasing CO pressure and decreasing H/sub 2/ pressure. A reaction mechanism is proposed which consists of the molecular adsorption of CO, the dissociative adsorption of H/sub 2/, dissociation of the surface CO species, and reaction of two adsorbed hydrogen atoms with the oxygen; and a multistep hydrogenation and desorption process for the adsorbed carbon. The dissociation and reaction of adsorbed CO is probably the rate-limiting step. The kinetic behavior is best represented with the assumption of a heterogeneous catalyst surface, containing three types of sites of widely varying activity.

Ho, S.V.; Harriott, P.

1980-08-01T23:59:59.000Z

371

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network [OSTI]

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios...

De Vries, Jaap

2010-07-14T23:59:59.000Z

372

Regulating carbon dioxide capture and storage  

E-Print Network [OSTI]

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

373

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01T23:59:59.000Z

374

Thorium dioxide: properties and nuclear applications  

SciTech Connect (OSTI)

This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

Belle, J.; Berman, R.M. (eds.)

1984-01-01T23:59:59.000Z

375

Methane Recovery from Hydrate-bearing Sediments  

SciTech Connect (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

376

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS  

E-Print Network [OSTI]

methane levels. KEYWORDS Ventilation, water sprays, methane, coal mining, dust scrubber INTRODUCTIONChapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted

Saylor, John R.

377

Goldschmidt Conference Abstracts 2010 A331 Biogenic methane potential for Surat  

E-Print Network [OSTI]

methane when native Walloon coal was provided as the sole organic carbon source. Methane generation rates]. This is the first direct evidence of real-time biogenic coal-to-methane potential for an Australian coal seam sample not produce methane from a non-native coal. Pathway and Bioavailability Results Six of the eight Surat Basin

378

Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-  

E-Print Network [OSTI]

Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane- dominated to available experimental data. The enriched flame has 20% H2 in terms of mole fraction and lies in the methane methane flame in the methane- dominated regime. Copyright ª 2014, Hydrogen Energy Publications, LLC

G√ľlder, √?mer L.

379

CHEMISTRY OF METHANE AND RELATED HYDROCARBONS IN THE ATMOSPHERE OF MARS.  

E-Print Network [OSTI]

CHEMISTRY OF METHANE AND RELATED HYDROCARBONS IN THE ATMOSPHERE OF MARS. F. Lefèvre, LATMOS, Paris detection of methane on Mars [1,2,3,4] has revived the possibility of past or extant life on this planet of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced

380

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions  

E-Print Network [OSTI]

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

Minnesota, University of

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect on forest  

E-Print Network [OSTI]

ecosystem's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy, sustain life10/13/2010 1 Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect

Gray, Matthew

382

Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.  

E-Print Network [OSTI]

complexes between nitrogen dioxide, nitric acid, nitrous1992) Indoor ozone and nitrogen dioxide: A potential pathwaybed of SiO 2 pellets. Nitrogen dioxide is introduced from a

2009-01-01T23:59:59.000Z

383

The Scientific Basis of Tobacco Product Regulation  

E-Print Network [OSTI]

contains nitric oxide, nitrogen dioxide and nitrous oxide,nitric oxide, while nitrogen dioxide is rapidly formedreadily oxidized to nitrogen dioxide, a pulmonary irritant.

World Health Organization

2008-01-01T23:59:59.000Z

384

Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star  

E-Print Network [OSTI]

Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% ...

Grenfell, J L; Patzer, B; Rauer, H; Segura, A; Stadelmann, A; Stracke, B; Titz, R; Von Paris, P; Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Paris, Philip von

2007-01-01T23:59:59.000Z

385

Single-well Modeling of Coalbed Methane Production  

E-Print Network [OSTI]

The presented study concerns the unconventional coal bed methane (CBM) fields that imply peculiarity of their evaluation. The theoretical basis of the CBM field development is briefly described, most widely known models of changes in the properties...

Martynova, Elena

2014-01-14T23:59:59.000Z

386

Direct Biological Conversion of Electrical Current into Methane by  

E-Print Network [OSTI]

electrical energy and substrate heat of combustion energy (82%) (3). One disadvantage of electrically-chamber MEC, methane was produced at anoverallenergyefficiencyof80%(electricalenergyandsubstrate heat of combustion). These results show that electrometha- nogenesis can be used to convert electrical current

387

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

388

New Mexico Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

389

New Mexico Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

390

West Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

391

Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6...

392

Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

393

Montana Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

394

New Mexico Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

395

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

396

Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

397

Louisiana--North Coalbed Methane Proved Reserves Sales (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

398

Utah Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

399

Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

400

Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

402

Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

403

Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

404

New Mexico Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

405

Kansas Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

406

West Virginia Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

407

Wyoming Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

408

Montana Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

409

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

410

Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

411

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

412

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0...

413

Kansas Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

414

Utah Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

415

Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

416

West Virginia Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

417

Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

418

Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

419

Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

420

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect (OSTI)

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

E-Print Network [OSTI]

of predicted and measured methane gas production data within the heterogeneous porous methane hydrate sample.Global Distribution of Methane Hydrate in Ocean Hydrate.

Gupta, A.

2010-01-01T23:59:59.000Z

422

5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane),  

E-Print Network [OSTI]

5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane), 105633-31-6;7, 109745-48-4;8, 109745-49-5;8 (parent methane), 109745-52-0;9,109745-50-8;9 (parent methane), 105633-32-7;10, 109745-53-1;11, 109745-51-9;1,2,3,4-tetrachlorobenzene,634

Goddard III, William A.

423

Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend at 1306 cm-1 and a stretch at 3019 cm-1. Demonstrate that a  

E-Print Network [OSTI]

Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend symmetry for methane is consistent with this spectroscopic data. Also predict how many Raman active modes methane should have. E C3 C2 S4 A1 : x2 + y2 + z2 A2 C Td 1 1 2 3 3 1 1 1 0 0 1 1 2 1 1 1 1 0 1 1 1 1 0 1

Rioux, Frank

424

Proceedings of the international coalbed methane symposium. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains 36 papers divided among the following sessions: Resources/development potential; Mine safety and productivity issues; Reservoir characterization, modeling, and well testing; and a Poster session whose papers discuss coal geology, well completion methods, origin of coalbed methane, rock mechanics of coal seams, geologic fractures in coal seams, and the use of coalbed methane for mitigation of greenhouse gases. All papers have been processed for inclusion on the data base.

NONE

1993-09-01T23:59:59.000Z

425

Nuclear magnetic resonance study of methane adsorbed on porous silicon  

E-Print Network [OSTI]

NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG I I Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1992 Major Subject: Physics NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG LI Approved as to style and content by: . P. Kirk (Chair of Committee) i G. Agnolet (Member) J. H. Ross, r (Member) M...

Li, Feng

1992-01-01T23:59:59.000Z

426

The study of methane adsorbed on porous silicon by NMR  

E-Print Network [OSTI]

THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Physics THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Approved as to style and content by: e Wile . Kirk (Chairman of Committee) J eevak M. Par pi a (Member) Randall L. Geiger...

Czermak, Adam Kazimierz

1986-01-01T23:59:59.000Z

427

Velocity of sound in solid methane near melting temperatures  

E-Print Network [OSTI]

VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

Whitehead, John Martin

1968-01-01T23:59:59.000Z

428

Two dimensional properties of methane adsorbed on porous silicon  

E-Print Network [OSTI]

TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Physics TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Approved as to style and content by: P. Kirk (C ir of Committee) Glenn olet (M er) Da J. Ernst...

Tennis, Richard Franklin

1989-01-01T23:59:59.000Z

429

Method of determining methane and electrochemical sensor therefor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

1986-01-01T23:59:59.000Z

430

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE  

SciTech Connect (OSTI)

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE Lucia M. Petkovic, Harry W. Rollins, Daniel M. Ginosar, and Kyle C. Burch Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-2208 Introduction Anthropogenic emissions of carbon dioxide, a gas often associated with global warming, have increased considerably since the beginning of the industrial age.1 In the U.S., stationary CO2 sources, such as electricity generation plants, produce about one-third of the anthropogenic CO2 generation. Reports2 indicate that the power required to recover 90% of the CO2 from an integrated coal-fired power-plant is about 10% of the power-plant capacity. This energy requirement can be reduced to less than 1% if the recovered CO2 is applied to the production of synthetic fuels. However, the lack of efficient catalysts along with the costs of energy and hydrogen has prevented the development of technologies for direct hydrogenation of CO2.3 Although the cost of hydrogen for hydrogenating CO2 is not economically attractive at present, the future production of hydrogen by nuclear power sources could completely change this scenario.2 Still, an efficient catalyst will be essential for commercial application of those processes. The objective of the work presented here was the development of hybrid catalysts for one-step carbon dioxide hydrogenation to liquid fuels. The hybrid catalysts, which were prepared by two novel techniques, included a copper/zinc oxide catalytic function distributed within an acidic zeolitic matrix. Results of catalyst activity and selectivity studies at atmospheric pressure are presented in this contribution. Experimental Catalysts were prepared by two novel techniques and under several different conditions to produce copper/zinc oxide/zeolite materials. Once synthesized, samples were pelletized and the fraction between 40-60 mesh was utilized for the experiments. Two hundred milligrams of catalyst were loaded in a U-tube stainless steel reactor and a flow of 100 cm3/min of a 10:90 H2:Ar mixture was passed through the catalyst bed while the temperature was increased from room temperature to 513 K at 1.8 K/min and held at 513 K for 15 h. A reactant gas mixture composed by 10 cm3/min of CO2 and 30 cm3/min of H2 was then passed through the catalyst bed and the reaction products monitored by on-line gas chromatographic analyses using an SRI Multiple Gas Analyzer #2 equipped with 3 columns (MoleSieve 13X, Hayesep-D, and MXT-1) and 3 detectors (TCD, FID, and FID-methanizer). This GC system allowed for quantification of inert gases, CO, CO2, methanol, dimethylether, higher alcohols, water, and hydrocarbons up to C20. One hundred milligrams of a commercial syngas-to-methanol catalyst along with the same amount of a commercial zeolite catalyst was utilized under the same reaction conditions for comparison purposes. These catalysts were utilized either in two-layers (Com1) or mixed together (Com2). Results and Discussion Under the conditions applied in this study, the main reaction products were CO, CH3OH, CH3OCH3, and H2O. Methanol and dimethylether production rates and selectivities with respect to CO formation are presented in Figures 1 and 2, respectively. Although the activity of the synthesized catalysts did not surpass the commercial catalysts, the selectivity to oxygenates with respect to CO on most of the synthesized catalysts were better than on the commercial catalysts. For example, cat

Licia M. Petkovic; Harry W. Rollins; Daniel M. Ginosar; Kyle C. Burch

2006-09-01T23:59:59.000Z

431

THE EARTH SYSTEM SCIENCE It is the science that studies the whole  

E-Print Network [OSTI]

by coal, continuing deforestation, and limited or no control of methane, nitrous oxide, and carbon of the twenty-first century, a phaseout of CFC emissions, and limitations on agricultural methane and nitrous

Gilbes, Fernando

432

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect (OSTI)

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

433

Reaction of titanium polonides with carbon dioxide  

SciTech Connect (OSTI)

It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800/sup 0/C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350/sup 0/C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo.

Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

1987-05-01T23:59:59.000Z

434

Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen  

DOE Patents [OSTI]

Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

2011-10-04T23:59:59.000Z

435

Methane production using resin-wafer electrodeionization  

DOE Patents [OSTI]

The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

2014-03-25T23:59:59.000Z

436

Breath is a mixture of nitrogen, oxygen, carbon dioxide, water  

E-Print Network [OSTI]

12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide

437

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network [OSTI]

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

Marroquin Cabrera, Juan Carlos

1998-01-01T23:59:59.000Z

438

Dry process fluorination of uranium dioxide using ammonium bifluoride  

E-Print Network [OSTI]

An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

Yeamans, Charles Burnett, 1978-

2003-01-01T23:59:59.000Z

439

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Broader source: Energy.gov [DOE]

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

440

Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)  

Broader source: Energy.gov [DOE]

This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network [OSTI]

carbon dioxide emissions per 1,000 cubic feet of natural gas. In this case, there is much less energy

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

442

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

443

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

444

Field Exploration of Methane Seep Near Atqasuk  

SciTech Connect (OSTI)

Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

Katey Walter, Dennis Witmer, Gwen Holdmann

2008-12-31T23:59:59.000Z

445

Methane conversion for application in fuel cells  

SciTech Connect (OSTI)

Conventional steam reformers are large and expensive for small scale fuel cell installations. But also the high endothermicity of the reforming reaction for the production of synthesis gas is a drawback. An alternative to conventional steam reforming is the partial oxidation of methane to synthesis gas. This process is slightly exothermic. The flexibility of the process makes small scale application possible. However, the partial oxidation process seems especially attractive for application within a high temperature fuel cell, because of relatively high CO/H{sub 2}-ratio for the output gases. In this paper the results of the study on the mechanism of the partial oxidation to synthesis gas on silica-supported nickel catalysts are discussed. Moreover, a process for the partial oxidation is proposed in which air instead of oxygen can be used. Based on the results of the mechanistic study two processes for the catalytic partial oxidation are proposed and simulated using the Aspen Plus flowsheeting program with which the mass and heat balances were optimized.

Mulder, A. [Gastec N.V., Apeldoorn (Netherlands); Looy, F. van [Utrecht Univ. (Netherlands). Dept. of Inorganic Chemistry; Waveren, A. van; Wingerden, A.J.M. van

1996-12-31T23:59:59.000Z

446

Air Pollution XVI 247 Emissions of Nitrogen Dioxide from Modern  

E-Print Network [OSTI]

Air Pollution XVI 247 Emissions of Nitrogen Dioxide from Modern Diesel Vehicles G.A. Bishop and D negative implications for local photochemical ozone production. Keywords: Nitrogen dioxide, automobile strategies, Lemaire [1] suggests that nitrogen dioxide (NO2) was forgotten as a separate component of the NOx

Denver, University of

447

Nanostructured Tin Dioxide Materials for Gas Sensor Applications  

E-Print Network [OSTI]

CHAPTER 30 Nanostructured Tin Dioxide Materials for Gas Sensor Applications T. A. Miller, S. D) levels for some species. Tin dioxide (also called stannic oxide or tin oxide) semi- conductor gas sensors undergone extensive research and development. Tin dioxide (SnO2) is the most important material for use

Wooldridge, Margaret S.

448

Designed amyloid fibers as materials for selective carbon dioxide capture  

E-Print Network [OSTI]

Designed amyloid fibers as materials for selective carbon dioxide capture Dan Lia,b,c,1 , Hiroyasu demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide

449

Array of titanium dioxide nanostructures for solar energy utilization  

DOE Patents [OSTI]

An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

2014-12-30T23:59:59.000Z

450

Glutamate Surface Speciation on Amorphous Titanium Dioxide and  

E-Print Network [OSTI]

Glutamate Surface Speciation on Amorphous Titanium Dioxide and Hydrous Ferric Oxide D I M I T R I (HFO) and titanium dioxide exhibit similar strong attachment of many adsorbates including biomolecules on amorphous titanium dioxide. The results indicate that glutamate adsorbs on HFO as a deprotonated divalent

Sverjensky, Dimitri A.

451

Chukwuemeka I. Okoye Carbon Dioxide Solubility and Absorption Rate in  

E-Print Network [OSTI]

Copyright by Chukwuemeka I. Okoye 2005 #12;Carbon Dioxide Solubility and Absorption Rate _______________________ Nicholas A. Peppas #12;Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O for. #12;iii Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O

Rochelle, Gary T.

452

Introduction Air Quality and Nitrogen Dioxide  

E-Print Network [OSTI]

- Global update 2005. Primary sources of air pollutants include combustion products from power generationIntroduction Air Quality and Nitrogen Dioxide Air pollution can be defined as "the presence effects to man and/or the environment". (DEFRA) "Clean air is considered to be a basic requirement

453

Carbon Dioxide Corrosion: Modelling and Experimental Work  

E-Print Network [OSTI]

Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

454

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide  

E-Print Network [OSTI]

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

Scherer, Norbert F.

455

Acid sorption regeneration process using carbon dioxide  

DOE Patents [OSTI]

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

2001-01-01T23:59:59.000Z

456

Carbon dioxide storage professor Martin Blunt  

E-Print Network [OSTI]

of CCS storage there are over a hundred sites worldwide where Co2 is injected under- ground as partCarbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS and those for injection and storage in deep geological formations. all the individual elements operate today

457

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

458

Carbon Dioxide Corrosion and Inhibition Studies  

E-Print Network [OSTI]

· Corrosion inhibition very important in the oil industry · Film forming inhibitors containing nitrogenCarbon Dioxide Corrosion and Inhibition Studies Kristin Gilida #12;Outline · Background = Zreal + Zim Rp 1/Corr Rate #12;Tafel · Measures corrosion rate directly · Measures iCORR from A and C

Petta, Jason

459

Electrochemistry of soluble methane monooxygenase on a modified gold electrode : implications for chemical sensing in natural waters  

E-Print Network [OSTI]

This work explored the possibility of using the soluble methane monooxygenase (MMO) enzyme, a three-component enzyme which catalyzes the oxygenation of methane and other substrates, to design a methane sensor for use in ...

Chuang, Janet Duanping

2005-01-01T23:59:59.000Z

460

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

E-Print Network [OSTI]

Deep Ocean Field Test of Methane Hydrate Formation from aW.J. , and Mason, D.H. , Methane Hydrate Formation inNatural and Laboratory--Formed Methane Gas Hydrate. American

Rees, E.V.L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program  

SciTech Connect (OSTI)

This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate ďScience ChallengesĒ and linking them with ďTechnical ChallengesĒ and potential field program locations.

Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

2013-11-30T23:59:59.000Z

462

Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol  

E-Print Network [OSTI]

High Purity (UHP) N 2 (Praxair, Richmond, CA) at 10 PSI.or UHP O 2 (99.993 % O 2 ; Praxair, Richmond, CA). Treatment

McNicol, Gavin; Silver, Whendee L

2015-01-01T23:59:59.000Z

463

Spatiotemporal dynamics of carbon dioxide and methane fluxes from agricultural and restored wetlands in the California Delta  

E-Print Network [OSTI]

carbon! loss! due! to! peat! oxidation,! and! continuing!carbon! by! reducing! peat! oxidation! in! the! shortCterm,!which! are! located! on! peat! soils! that! experience!

Hatala, Jaclyn

2013-01-01T23:59:59.000Z

464

Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol  

E-Print Network [OSTI]

overlying a thick sapric peat horizon (Table 1) (Drexler etal. 2009). We used peat soil from 80-100 cm depth thatas a sapric Histosol (mucky peat). Soils at this depth were

McNicol, Gavin; Silver, Whendee L

2015-01-01T23:59:59.000Z

465

2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b,  

E-Print Network [OSTI]

, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity 34of pores

466

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

SciTech Connect (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

467

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

468

49 new T dwarfs identified using methane imaging  

E-Print Network [OSTI]

We present the discovery of 49 new photometrically classified T dwarfs from the combination of large infrared and optical surveys combined with follow-up TNG photometry. We used multi-band infrared and optical photometry from the UKIRT and Sloan Digital Sky Surveys to identify possible brown dwarf candidates, which were then confirmed using methane filter photometry. We have defined a new photometric conversion between CH4s - CH4l colour and spectral type for T4 to T8 brown dwarfs based on a part of the sample that has been followed up using methane photometry and spectroscopy. Using methane differential photometry as a proxy for spectral type for T dwarfs has proved to be a very efficient technique. Of a subset of 45 methane selected brown dwarfs that were observed spectroscopically, 100% were confirmed as T dwarfs. Future deep imaging surveys will produce large samples of faint brown dwarf candidates, for which spectroscopy will not be feasible. When broad wavelength coverage is unavailable, methane imaging...

Cardoso, C V; Smart, R L; van Spaandonk, L; Baker, D; Smith, L C; Andrei, A H; Bucciarelli, B; Dhital, S; Jones, H R A; Lattanzi, M G; Magazzu, A; Pinfield, D J; Tinney, C G

2015-01-01T23:59:59.000Z

469

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

470

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

471

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

472

E-Print Network 3.0 - air methane vam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reagents Methane (99.99 v.%, Air Products and Chemicals, Inc.) and propane (99.0 v.%, Praxair) were used... of carbon catalyst activation on the rate of methane decomposition...

473

Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)  

E-Print Network [OSTI]

Géosciences, 1A rue de la Férolerie, 45071 Orléans Cedex 2, France Abstract Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced

Boyer, Edmond

474

DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle  

Broader source: Energy.gov [DOE]

Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research...

475

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION  

E-Print Network [OSTI]

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION of Technology August 2008 #12;MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET

Seitzman, Jerry M.

476

Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane into Ethylene  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane catalyst production labs, reactor testing lab, and testing equipment. Team Methane Fuzion was responsible. Temperature of the catalyst was closely monitored in order to prevent catalyst sintering. Testing

Demirel, Melik C.

477

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network [OSTI]

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

1993-01-01T23:59:59.000Z

478

Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling  

E-Print Network [OSTI]

A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

Locatelli, R.

479

Abiotic Aerobic Methane Release from Plant Material Dan Bruhn, Per Ambus & Teis N Mikkelsen  

E-Print Network [OSTI]

Abiotic Aerobic Methane Release from Plant Material Dan Bruhn, Per Ambus & Teis N Mikkelsen)1 reported a new finding of aerobic methane (CH4) release by living plant and even dead tissue. Keppler et al

480

New mineralogy of the outer solar system and the high-pressure behaviour of methane  

E-Print Network [OSTI]

This thesis will introduce the study of methane as a mineral. Along with ammonia and water, methane is one of the main planetary-forming materials in the outer solar system. The topic of `new mineralogy of the outer solar ...

Maynard-Casely, Helen E.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide methane nitrous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane  

E-Print Network [OSTI]

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

G√ľlder, √?mer L.

482

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-01-01T23:59:59.000Z

483

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-04-01T23:59:59.000Z

484

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-10-29T23:59:59.000Z

485

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

486

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

487

Integrated process for coalbed brine and methane disposal  

SciTech Connect (OSTI)

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

488

Safety at coal mines: what role does methane play?  

SciTech Connect (OSTI)

The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

NONE

2006-04-01T23:59:59.000Z

489

Financing coal mine, methane recovery and utilization projects  

SciTech Connect (OSTI)

The article describes types and sources of funding that may be available to project developers and investors that are interested in pursuing coal mine methane (CMM) project opportunities particularly in developing countries or economies in transition. It briefly summarizes prefeasibility and feasibility studies and technology demonstrations. It provides a guide to key parties involved in project financing (equity, debt or carbon financing) as well as project risk reduction support. This article provides an update to the information contained in two previous guides - Catalogue of Coal Mine Methane Project Finance Sources (2002) and A Guide to Financing Coalbed Methane Projects (1997) - both available on the CMOP web site http://www.epa.gov/cmop/resources/reports/finance.html.

NONE

2006-07-01T23:59:59.000Z

490

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

491

Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment  

E-Print Network [OSTI]

this disadvantage include · storing methane as liquefied natural gas (LNG, at 112 K) or compressed natural gas (CNG

Yaghi, Omar M.

492

Dissociative Adsorption of Methane on Surface Oxide Structures of Pd-Pt Alloys Arezoo Dianat,*,,  

E-Print Network [OSTI]

/C ratio of methane, the heat of combustion per mole of generated CO2 is higher than for other fuels

Cuniberti, Gianaurelio

493

Detection of methane on Kuiper Belt Object (50000) Quaoar  

E-Print Network [OSTI]

The near-infrared spectrum of (50000) Quaoar obtained at the Keck Observatory shows distinct absorption features of crystalline water ice, solid methane and ethane, and possibly other higher order hydrocarbons. Quaoar is only the fifth Kuiper belt object on which volatile ices have been detected. The small amount of methane on an otherwise water ice dominated surface suggests that Quaoar is a transition object between the dominant volatile-poor small Kuiper belt objects (KBOs) and the few volatile-rich large KBOs such as Pluto and Eris.

E. L. Schaller; M. E. Brown

2007-10-18T23:59:59.000Z

494

Methane Hydrate R&D | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartmentFY 2010 Methane HydrateMethane

495

Compatibility of selected ceramics with steam-methane reformer environments  

SciTech Connect (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

496

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations  

E-Print Network [OSTI]

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned sorption capacity of coal in the dry-air state through determining the isotherm of methane sorption

Boyer, Edmond

497

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network [OSTI]

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1 Xixi Wang, Assefa M. Melesse, Michael E. McClain, and Wanhong Yang2 ABSTRACT: Coalbed methane (CBM the Powder River. (KEY TERMS: coalbed methane, produced water; Montana; natural gas; pattern analysis

McClain, Michael

498

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network [OSTI]

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two wells drilled at Corbett Creek. Keywords: Coalbed methane; Mannville coals; Alberta; Petrology 71 TCF of methane, the Belly River Formation coals 147 TCF, and the Ardley Formation coals about 57

Paris-Sud XI, Université de

499

Regular Articles Coalbed methane produced water screening tool for treatment technology  

E-Print Network [OSTI]

Regular Articles Coalbed methane produced water screening tool for treatment technology and publicly available coalbed methane produced water screening tool to two simulated case studies to determine the largest volume waste stream in the industry (GWI, 2011). For coalbed methane (CBM) (coalbed natural gas

500

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release?  

E-Print Network [OSTI]

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Miriam E realms that has been attributed to a massive methane (CH4) release from marine gas hydrate reservoirs. Previously proposed mechanisms for this methane release rely on a change in deepwater source region