Sample records for dioxide helium hydrogen

  1. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France [CERI, CNRS, 3 A rue de la Ferollerie, ORLEANS, 45071 (France); Garcia, Philippe; Carlot, Gaelle [DEN/DEC/SESC/LLCC, CEA Cadarache, Saint Paul Lez Durance, 13108 (France)

    2007-07-01T23:59:59.000Z

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  2. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic Gas Beneath Mammoth...

  3. Muon transfer from hydrogen to helium

    SciTech Connect (OSTI)

    Bystritskii, V.M.; Dzhelepov, V.P.; Petrukhin, V.I.; Rudenko, A.I.; Suvorov, V.M.; Filchenkov, V.V.; Khovanskii, N.N.; Khomenko, B.A.

    1983-04-01T23:59:59.000Z

    It is found that ..mu../sup -/ mesons stopped in a gas mixture of hydrogen, helium, and xenon (hydrogen pressure about 20 atmospheres, helium and xenon densities relative to hydrogen 0.05--2 and approx.10/sup -4/ respectively) are transferred from the p..mu.. atoms in the ground state to helium atoms at a rate lambda/sub He/ = (3.6 +- 1.0)x10/sup 8/ sec/sup -1/. The result is in good agreement with the calculations in which a novel mesic-molecular mechanism of p..mu..-atom charge exchange with helium nuclei is taken into account. The dependence of the probability for p..mu..-atom formation in the ground state on the helium density is measured. An analysis of this dependence and a comparison of it with the corresponding data for ..pi../sup -/ mesons indicate that muons can also be transferred from excited levels of p..mu.. atoms at a rate higher than in the case of p..pi.. atoms (transfer constant ..lambda../sub ..mu../ = 3.8 +- 0.3 compared with ..lambda../sub ..pi../ = 1.84 +- 0.09).

  4. The Modular Helium Reactor for Hydrogen Production

    SciTech Connect (OSTI)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-10-01T23:59:59.000Z

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

  5. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01T23:59:59.000Z

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  6. Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers

    E-Print Network [OSTI]

    Green, Michael A.

    2010-01-01T23:59:59.000Z

    AND LIQUEFACTION OF HELIUM AND HYDROGEN USING COOLERS M. A.liquefaction for helium and hydrogen can occur. KEYWORDS:each contain a liquid hydrogen absorber [4] that is cooled

  7. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    SciTech Connect (OSTI)

    Steinfadt, Justin D. R. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil, E-mail: jdrs@physics.ucsb.ed, E-mail: bildsten@kitp.ucsb.ed, E-mail: arras@virginia.ed [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2010-07-20T23:59:59.000Z

    Helium core white dwarfs (WDs) with mass M {approx}< 0.20 M {sub sun} undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  8. Two phase coexistence for the hydrogen-helium mixture

    E-Print Network [OSTI]

    Fantoni, Riccardo

    2015-01-01T23:59:59.000Z

    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  9. Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces

    E-Print Network [OSTI]

    Harilal, S. S.

    Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces Ahmed Hassanein the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem. Hydrogen isotope (DT) particles are likely be trapped in the liquid metal surface (e.g., lithium) due

  10. Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma-facing components in

    E-Print Network [OSTI]

    Harilal, S. S.

    Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem rather than requiring a standard vacuum system. Hydrogen isotope (DT) particles that strike the surface

  11. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOE Patents [OSTI]

    Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

    2008-11-18T23:59:59.000Z

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  12. Hydrogen and helium traces in type Ib-c supernovae

    E-Print Network [OSTI]

    A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut; E. Baron; R. P. Kirshner

    2006-04-04T23:59:59.000Z

    The spectroscopic properties of a selected optical photospheric spectra of core collapse supernovae (CCSNe) are investigated.Special attention is devoted to traces of hydrogen at early phases. The generated spectra are found to match the observed ones reasonably well, including a list of only 23 candidate ions. Guided by SN Ib 1990I, the observed trough near 6300\\AA is attributed to H$\\alpha$ in almost all Type Ib events, although in some objects it becomes too weak to be discernible, especially at later phases. Alternative line identifications are discussed. Differences in the way hydrogen manifests its presence within CCSNe are highlighted. In Type Ib SNe, the H$\\alpha$ contrast velocity (i.e. line velocity minus the photospheric velocity) seems to increase with time at early epochs, reaching values as high as 8000 km s$^{-1}$ around 15-20 days after maximum and then remains almost constant. The derived photospheric velocities, indicate a lower velocity for Type II SNe 1987A and 1999em as compared to SN Ic 1994I and SN IIb 1993J, while Type Ib events display a somewhat larger variation. The scatter, around day 20, is measured to be $\\sim$5000 km s$^{-1}$. Following two simple approaches, rough estimates of ejecta and hydrogen masses are given. A mass of hydrogen of approximately 0.02 $M_\\odot$ is obtained for SN 1990I, while SNe 1983N and 2000H ejected $\\sim$0.008 $M_\\odot$ and $\\sim$0.08 $M_\\odot$ of hydrogen, respectively. SN 1993J has a higher hydrogen mass, $\\sim 0.7$ $M_\\odot$ with a large uncertainty. A low mass and thin hydrogen layer with very high ejection velocities above the helium shell, is thus the most likely scenario for Type Ib SNe. Some interesting and curious issues relating to oxygen lines suggest future investigations.

  13. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Cárdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu [Department of Physics, The University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209 (United States); Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Sciences, 7011 East Avenue, Livermore, California 94550 (United States)

    2014-11-01T23:59:59.000Z

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?°C to decompose the methane, and the second at 110?°C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  14. cpp header will be provided by the publisher Properties of Dense Fluid Hydrogen and Helium in Giant Gas

    E-Print Network [OSTI]

    Militzer, Burkhard

    cpp header will be provided by the publisher Properties of Dense Fluid Hydrogen and Helium in Giant molecular dynamics, equation of state, giant gas planets, hydrogen-helium mix- tures PACS 61.20.Ja, 61.25.Em, 61.25.Mv, 61.20.-p Equilibrium properties of hydrogen-helium mixtures under thermodynamic conditions

  15. The interaction second virial coefficient for the helium-carbon dioxide system between 230 and 300 K

    E-Print Network [OSTI]

    Watson, Michael Quealy

    1978-01-01T23:59:59.000Z

    closed during the entire experiment. After purging the system with the test gas (either helium or carbon dioxide), it was filled to some pressure below the limit of the dead-weight gauge (720 psi). The feed valve was closed and the system was allowed...THE INTERACTION SECOND VIRIAL COEFFICIENT FOR THE HELIUM-CARBON DIOXIDE SYSTEM BETWEEN 230 AND 300 K A Thesis by MICHAEL MEALY WATSON Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement...

  16. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms for COF-5, 65 mg g-1 for COF-6, 87 mg g-1 for COF-8, and 80 mg g-1 for COF-10; carbon dioxide at 298 K

  17. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Winston, Donald

    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article ...

  18. SPHERICALLY SYMMETRIC NLTE MODEL ATMOSPHERES OF HOT HYDROGEN-HELIUM FIRST STARS

    SciTech Connect (OSTI)

    Kubat, Jiri [Astronomicky ustav, Akademie ved Ceske Republiky, CZ-251 65 Ondrejov (Czech Republic)

    2012-12-15T23:59:59.000Z

    We present results of our calculations of NLTE model stellar atmospheres for hot Population III stars composed of hydrogen and helium. We use our own computer code for the calculation of spherically symmetric NLTE model atmospheres in hydrostatic and radiative equilibrium. The model atmospheres are then used for the calculation of emergent fluxes. These fluxes serve to evaluate the flow of high-energy photons for energies higher than ionization energies of hydrogen and helium, the so-called ionizing photon fluxes. We also present the time evolution of the ionizing photon fluxes.

  19. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric

    E-Print Network [OSTI]

    Sminchisescu, Cristian

    On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f on sparse grids. Here, O(d·(log N)d-1 ) different problems, each of size O(N), have to be solved

  20. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric

    E-Print Network [OSTI]

    Sminchisescu, Cristian

    On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f@iam.uni­bonn.de We introduce the combination technique for the numerical solution of eigenproblems on sparse grids

  1. Collisional excitation of hydrogen and the determination of the primordial helium abundance from H II regions

    E-Print Network [OSTI]

    G. Stasinska; Y. I. Izotov

    2001-09-17T23:59:59.000Z

    This paper investigates the effect of collisional enhancement of the hydrogen lines on the derivation of the helium abundances in low metallicity H II regions. For this, we have constructed a grid of photoionization models relevant for the analysis of giant \\hii regions in blue compact galaxies. We show that the effect of collisional excitation on the Halpha/Hbeta ratio can be quite important (up to 8% or more). The impact of this effect on the determination of the helium mass fraction has been tracked on four low-metallicity blue compact galaxies for which Keck spectra are available and which are among the best objects for the quest of the pregalactic helium abundance. We find that taking into account the effects of collisional excitation of hydrogen results in an upward correction of the helium mass fraction Y by up to 5%. However, combining with other systematic effects usually not considered in the determination of the helium abundance in low-metallicity galaxies, the resulting uncertainty should be much less.

  2. The Ratio of Helium- to Hydrogen-Atmosphere White Dwarfs: Direct Evidence for Convective Mixing

    E-Print Network [OSTI]

    P. -E. Tremblay; P. Bergeron

    2007-10-04T23:59:59.000Z

    We determine the ratio of helium- to hydrogen-atmosphere white dwarf stars as a function of effective temperature from a model atmosphere analysis of the infrared photometric data from the Two Micron All Sky Survey combined with available visual magnitudes. Our study surpasses any previous analysis of this kind both in terms of the accuracy of the Teff determinations as well as the size of the sample. We observe that the ratio of helium- to hydrogen-atmosphere white dwarfs increases gradually from a constant value of ~0.25 between Teff = 15,000 K and 10,000 K to a value twice as large in the range 10,000 > Teff > 8000 K, suggesting that convective mixing, which occurs when the bottom of the hydrogen convection zone reaches the underlying convective helium envelope, is responsible for this gradual transition. The comparison of our results with an approximate model used to describe the outcome of this convective mixing process implies hydrogen mass layers in the range log M_H/M_tot = -10 to -8 for about 15% of the DA stars that survived the DA to DB transition near Teff ~ 30,000 K, the remainder having presumably more massive layers above log M_H/M_tot ~ -6.

  3. Accelerated Helium and Hydrogen Production in Fe-54 Doped Alloys - Measurements and Calculations for the FIST Experiment

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Oliver, Brian M.; Ohnuki, Somei; Shiba, K.; Kohno, Yutaka; Kohyama, Akira; Robertson, J. P.; Meadows, J. W.; Gelles, David S.

    2000-12-01T23:59:59.000Z

    F-82H alloys isotopically enriched in 54Fe up to 86% were irradiated in the High Flux Isotope Reactor (HFIR) to determine the accelerated production of helium and hydrogen due to isotopic effects. Results are compared to calculations using isotopic helium production cross sections from ENDF/B-VI or GNASH and measured neutron spectra. Helium measurements demonstrated an accelerated helium (appm)/dpa ratio of 2.3 after a 1.25-year irradiation, an increase of a factor of 4.3 over natural iron. The accelerated helium production is due to higher helium production cross sections for 54Fe and 55Fe. Alloys doped with 55Fe could achieve helium/dpa ratios up to about 20, well above the fusion reactor ratio of 10. Hydrogen measurements were performed using a newly developed quadrupole mass spectrometer system at PNNL capable of detecting 5-appm hydrogen in milligram-sized irradiated specimens. Calculations predict that hydrogen production will be accelerated by about a factor of 13 over natural iron. However, measurements show that most of this hydrogen is not retained in the samples.

  4. Doubly excited states of the hydrogen negative ion and helium atom in astrophysical plasmas

    SciTech Connect (OSTI)

    Jiang Pinghui [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); College of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050 (China); Kar, Sabyasachi; Zhou, Y. [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2013-01-15T23:59:59.000Z

    The nonthermal effects on the doubly excited resonance states of the hydrogen negative ion and helium atom are investigated in Lorentzian astrophysical plasma environments using highly correlated Hylleraas-type wave functions in the framework of the stabilization method. Resonance parameters (resonance position and width) are reported for the first time as functions of the spectral index and plasma parameter. The screening effects are more pronounced in the stronger screening region.

  5. SUPERBURST MODELS FOR NEUTRON STARS WITH HYDROGEN- AND HELIUM-RICH ATMOSPHERES

    SciTech Connect (OSTI)

    Keek, L. [National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Heger, A. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); In 't Zand, J. J. M., E-mail: keek@nscl.msu.edu [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2012-06-20T23:59:59.000Z

    Superbursts are rare day-long type I X-ray bursts due to carbon flashes on accreting neutron stars in low-mass X-ray binaries. They heat the neutron star envelope such that the burning of accreted hydrogen and helium becomes stable, and the common shorter X-ray bursts are quenched. Short bursts reappear only after the envelope cools down. We study multi-zone one-dimensional models of the neutron star envelope, in which we follow carbon burning during the superburst, and we include hydrogen and helium burning in the atmosphere above. We investigate the cases of both a solar-composition and a helium-rich atmosphere. This allows us to study for the first time a wide variety of thermonuclear burning behavior as well as the transitions between the different regimes in a self-consistent manner. For solar composition, burst quenching ends much sooner than previously expected. This is because of the complex interplay between the 3{alpha}, hot CNO, and CNO breakout reactions. Stable burning of hydrogen and helium transitions via marginally stable burning (mHz quasi-periodic oscillations) to less energetic bursts with short recurrence times. We find a short-lived bursting mode where weaker and stronger bursts alternate. Eventually the bursting behavior changes back to that of the pre-superburst bursts. Because of the scarcity of observations, this transition has not been directly detected after a superburst. Using the MINBAR burst catalog we identify the shortest upper limit on the quenching time for 4U 1636-536, and derive further constraints on the timescale on which bursts return.

  6. Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma

    E-Print Network [OSTI]

    Dove, Patricia M.

    Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma H. P of a dc plasma reactor, and thus receives a large flux of low-energy electrons and hydrogen molecules-0269 Received 7 September 1994; accepted for publication 6 March 1995 Low energy electron-enhanced etching of Si

  7. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, M. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)] [and others

    1994-12-31T23:59:59.000Z

    There are a number of cases in fusion fuel processing where low-concentration hydrogen isotopes need to be separated from helium. Usually the helium is a purge gas used to move hydrogen isotopes from one location to another. One of the most notable applications is associated with removing tritium from a solid ceramic breeder. For some designs which have been considered, helium with about 1 % protium is purged through the ceramic. The protium exchanges with tritium which has been bred in the solid. The resulting gas composed of helium ({approximately}99%), protium ({approximately}1%) and tritium ({approximately}0.01%) flows out of the blanket and, for further processing, requires separation of the hydrogen isotopes and the helium. Earlier bench-scale (about 50 cc of sieve) work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. The purpose of this paper is to report practical-scale experiments including tritium. These tests used existing cryogenic molecular sieve beds (MSB`S) which each contain about 1.6 kg of Linde 5A molecular sieve.

  8. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  9. Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter

    E-Print Network [OSTI]

    N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

    2008-06-06T23:59:59.000Z

    The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

  10. Collisional Plasma Models with APEC/APED: Emission Line Diagnostics of Hydrogen-like and Helium-like Ions

    E-Print Network [OSTI]

    Randall K. Smith; Nancy S. Brickhouse; Duane A. Liedahl; John C. Raymond

    2001-06-26T23:59:59.000Z

    New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics, and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n=6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n=2) transitions.

  11. Extreme helium stars: non-LTE matters Helium and hydrogen spectra of the unique objects V652 Her and HD144941

    E-Print Network [OSTI]

    N. Przybilla; K. Butler; U. Heber; C. S. Jeffery

    2005-10-03T23:59:59.000Z

    Quantitative analyses of low-mass hydrogen-deficient (super-)giant stars - so-called extreme helium stars - to date face two major difficulties. First, theory fails to reproduce the observed helium lines in their entirety, wings and line cores. Second, a general mismatch exists for effective temperatures derived from ionization equilibria and from spectral energy distributions. Here, we demonstrate how the issue can be resolved using state-of-the-art non-LTE line-formation for these chemically peculiar objects. Two unique high-gravity B-type objects are discussed in detail, the pulsating variable V652 Her and the metal-poor star HD144941. In the first case atmospheric parameters from published LTE analyses are largely recovered, in the other a systematic offset is found. Hydrogen abundances are systematically smaller than previously reported, by up to a factor ~2. Extreme helium stars turn out to be important testbeds for non-LTE model atoms for helium. Improved non-LTE computations show that analyses assuming LTE or based on older non-LTE model atoms can predict equivalent widths, for the HeI 10830A transition in particular, in error by up to a factor ~3.

  12. Isotopes of helium, hydrogen, and carbon as groundwater tracers in aquifers along the Colorado River

    E-Print Network [OSTI]

    Haber, Samuel Ainsworth

    2009-01-01T23:59:59.000Z

    composition of radiogenic helium and its use to studyH. , Lupton, J.E. (1981) Helium-3 and mantle volatiles inand Izbicki, J.A. (2003). Helium isotope studies in the

  13. MASS/RADIUS CONSTRAINTS ON THE QUIESCENT NEUTRON STAR IN M13 USING HYDROGEN AND HELIUM ATMOSPHERES

    SciTech Connect (OSTI)

    Catuneanu, A.; Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7 (Canada)] [Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom)] [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Servillat, M., E-mail: heinke@ualberta.ca [Laboratoire AIM, CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France)

    2013-02-20T23:59:59.000Z

    The mass and radius of the neutron star (NS) in low-mass X-ray binaries can be obtained by fitting the X-ray spectrum of the NS in quiescence, and the mass and radius constrains the properties of dense matter in NS cores. A critical ingredient for spectral fits is the composition of the NS atmosphere: hydrogen atmospheres are assumed in most prior work, but helium atmospheres are possible if the donor star is a helium white dwarf. Here we perform spectral fits to XMM-Newton, Chandra, and ROSAT data of a quiescent NS in the globular cluster M13. This NS has the smallest inferred radius from previous spectral fitting. Assuming an atmosphere composed of hydrogen, we find a significantly larger radius, more consistent with those from other quiescent NSs. With a helium atmosphere (an equally acceptable fit), we find even larger values for the radius.

  14. Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate

    SciTech Connect (OSTI)

    Hrbek, J.; Hoffmann, F.M.; Yang, Y.; Paul, J.; White, M.G.

    2010-07-15T23:59:59.000Z

    Conversion of carbon dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO{sub 2} + H{sub 2}O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO{sub 2} and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO{sub 2} to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures.

  15. A dependence of carbon impurity transport coefficients on fuel ions in hydrogen and helium plasmas of Large Helical Device

    SciTech Connect (OSTI)

    Nozato, H.; Morita, S.; Goto, M.; Takase, Y.; Ejiri, A.; Amano, T.; Tanaka, K.; Inagaki, S. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8563 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Goshikien 1-1706, Nisshin, Aichi 470-0105 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2006-09-15T23:59:59.000Z

    Impurity transport of carbon has been studied using a new method combined carbon pellet injection with high-spatial resolution bremsstrahlung measurement on the Large Helical Device [A. Iiyoshi et al., Fusion Technol. 17, 169 (1990)]. The carbon pellets are injected into a steady phase in neutral beam heated discharges with a standard configuration of R{sub ax}=3.6 m. The particle transport coefficients (diffusion coefficient D and convective velocity V) are inferred using a diffusive/convective model. The results are compared between hydrogen and helium plasmas. As a result, it is found that the analyzed D has a constant radial profile with almost closed values of 0.2 m{sup 2}/s in both plasmas. On the other hand, the inward V is required only at the plasma outer region ({rho}>0.6) where the electron density gradient exits, and the inward V in helium plasmas (-0.4 m/s at {rho}=0.8 and n{sub e}{approx}4.0x10{sup 19} m{sup -3}) is nearly half as much as that in hydrogen plasmas (-0.7 m/s). This difference of the inward V between hydrogen and helium plasmas suggests a dependence on the charge state of fuel ions predicted from neoclassical theory.

  16. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-02-03T23:59:59.000Z

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. The membranes showed excellent perm-selectivity for hydrogen. This makes the Pd-composite membrane attractive for selective separation and recovery of H{sub 2} from mixed gases at elevated temperature.

  17. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect (OSTI)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20T23:59:59.000Z

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  18. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, Mikio; Okuno, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-06-01T23:59:59.000Z

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB`s) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H{sub 2} and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  19. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  20. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    SciTech Connect (OSTI)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ''Federico II'', I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ''Tor Vergata'', I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ''Tor Vergata'', I-00133 Rome (Italy); and others

    2013-06-10T23:59:59.000Z

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  1. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    SciTech Connect (OSTI)

    Danilchenko, B. A., E-mail: danil@iop.kiev.ua; Yaskovets, I. I.; Uvarova, I. Y. [Institute of Physics NASU, Pr. Nauki 46, 03680 Kiev (Ukraine); Dolbin, A. V.; Esel'son, V. B.; Basnukaeva, R. M.; Vinnikov, N. A. [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Ave., Kharkov 61103 (Ukraine)

    2014-04-28T23:59:59.000Z

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or ?-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10–300?K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent with theoretical prediction.

  2. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  3. Hydrogenation of the nanopowders that form in a carbon-helium plasma stream during the introduction of Ni and Mg

    SciTech Connect (OSTI)

    Churilov, G. N., E-mail: churilov@iph.krasn.ru; Osipova, I. V. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation); Tomashevich, Ye. V. [Russian Academy of Sciences, Institute of Chemistry and Chemical Technology, Siberian Branch (Russian Federation); Glushchenko, G. A.; Fedorov, A. S.; Popov, Z. I. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation); Bulina, N. V. [Russian Academy of Sciences, Institute of Solid State Chemistry and Mechanochemistry (Russian Federation); Vereshchagin, S. N.; Zhizhaev, A. M. [Russian Academy of Sciences, Institute of Chemistry and Chemical Technology, Siberian Branch (Russian Federation); Cherepakhin, A. V. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation)

    2011-12-15T23:59:59.000Z

    Composite nanoparticles consisting of magnesium, nickel, and carbon atoms are studied both theoretically and experimentally. The calculations performed in terms of the density functional theory show that the jump frequency of hydrogen atoms in nickel-containing magnesium hydride increases substantially near impurity nickel atoms; as a result, the rate of hydrogen absorption by magnesium also increases. Nickel on the magnesium surface is shown to be absorbed via an island growth mechanism. Composite Mg-C, Ni-C, and Mg-Ni-C powders are produced by plasmachemical synthesis in a carbon-helium plasma stream. Hydrogen is introduced into a chamber during synthesis. It is found by X-ray photoelectron spectroscopy and thermogravimetric analysis that, among these three composites, only Mg-Ni-C contains magnesium fixed in the MgH{sub 2} compound. The process of such 'ultrarapid' hydrogenation of magnesium, which occurs in the time of formation of composite nanoparticles, can be explained by the catalytic action of nickel, which is enhanced by a high temperature. Scanning electron microscopy micrographs demonstrate the dynamics of the dehydrogenation of Mg-Ni-C composite nanoparticles in heating by an electron beam.

  4. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect (OSTI)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29T23:59:59.000Z

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  5. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  6. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H.J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  7. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    E-Print Network [OSTI]

    Ketzer, B; Von Egidy, T; Maierl, C; Pohl, R; Eades, John; Widmann, E; Yamazaki, T; Kumakura, M; Morita, N; Hayano, R S; Hori, Masaki; Ishikawa, T; Torii, H A; Sugai, I; Horváth, D

    1997-01-01T23:59:59.000Z

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of \\htwo\\ molecules. By selectively shortening the lifetimes of states with higher principal quantum number $n$ as compared to those of lower $n$, this method for the first time provides access to all initially populated metastable states of \\pbar\\hep\\ atoms. This was demonstrated by observing the transitions $(n,l)=(38,l)\\rightarrow (39,l+1),\\ l=35,36,37$ and $(n,l)=(37,l)\\rightarrow (38,l+1),\\ l=34,35,36$.

  8. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metalorganic framework (Fe-BTT) discovered via high-throughput methods

    E-Print Network [OSTI]

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal­organic framework/or volumetric capacities that approach the U.S. Department of Energy targets2 for mobile hydrogen storage storage capacity of 1.1 wt% and 8.4 g LŔ1 at 100 bar and 298 K. Powder neutron diffraction experiments

  9. Hydrodynamic simulations of a combined hydrogen, helium thermonuclear runaway on a 10-km neutron star

    SciTech Connect (OSTI)

    Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.

    1983-01-01T23:59:59.000Z

    We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10/sup 5/ L. A shock wave caused a precursor in the light curve which lasted 10/sup -5/ sec.

  10. Anionic group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation: the production of alkyl formates

    SciTech Connect (OSTI)

    Darensbourg, D.J.; Ovalles, C.

    1984-06-27T23:59:59.000Z

    The production of alkyl formates from the hydrocondensation of carbon dioxide in alcohols utilizing anionic group 6B carbonyl hydrides as catalysts is herein reported. HM(CO)/sub 5//sup -/ (M = Cr, W; derived from ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/) and their products of carbon dioxide insertion, HCO/sub 2/M(CO)/sub 5//sup -/, have been found to be effective catalysts for the hydrogenation of CO/sub 2/ in alcohols under rather mild conditions (loading pressures of CO/sub 2/ and H/sub 2/, 250 psi each, and 125/sup 0/C) to provide alkyl formates. The only metal carbonyl species detected in solution via spectroscopy, both at the end of a catalytic period and during catalysis, were M(CO)/sub 6/ and HCO/sub 2/M(CO)/sub 5//sup -/. The metal hexacarbonyls were independently shown to be catalytically inactive. A catalytic cycle is proposed which initially involves release of formic acid from the metal center, either by reductive elimination of the hydrido formato ligands or ligand-assisted heterolytic splitting of dihydrogen with loss of formic acid. In a rapid subsequent process HCOOH reacts with alcohols to yield HCOOR. The addition of carbon monoxide retards alkyl formate production, strongly implying CO/sub 2/ to be the primary source of the carboxylic carbon atom in HCOOR. This was verified by carrying out reactions in the presence of HCO/sub 2/W(/sup 13/CO)/sub 5//sup -/ which provided only H/sup 12/COOR after short reaction periods. However, in the absence of hydrogen and carbon dioxide ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/ species were observed to be effective catalyst precursors for converting CO and methanol into methyl formate. 36 references, 2 figures, 2 tables.

  11. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect (OSTI)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01T23:59:59.000Z

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  12. The Cost of Helium Refrigerators and Coolers for Superconducting Devices as a Function of Cooling at 4 K

    E-Print Network [OSTI]

    Green, Michael A.

    2008-01-01T23:59:59.000Z

    pulse tube coolers as liquefiers of helium and hydrogen. 7.Byrns, R. A. , "Large Helium Refrigerators and Liquefiers,"P. , et al, “Economics of Large Helium Cryogenics Systems:

  13. Hydrogen in tin dioxide films and bulk ceramics: An attempt to identify the most hidden impurity

    SciTech Connect (OSTI)

    Watanabe, Ken, E-mail: WATANABE.Ken@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Young Scientists (ICYS-MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Hashiguchi, Minako; Sakaguchi, Isao; Bryant, Alex, E-mail: awbryant@gatech.edu; Adachi, Yutaka; Zhen, Yuhua, E-mail: zhenyh@upc.edu.cn; Ohgaki, Takeshi; Ohsawa, Takeo; Haneda, Hajime [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ohashi, Naoki, E-mail: OHASHI.Naoki@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 13-4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

    2014-01-27T23:59:59.000Z

    Hydrogen impurities in SnO{sub 2} films and bulk ceramics were investigated in terms of mass transport and electron transport. The hydrogen concentration (n[H]) in these samples was found to be 10{sup 19}?cm{sup ?3} or higher. Further increase in n[H] could be achieved by annealing the samples in a humid atmosphere. The isotope tracer ({sup 1}H/{sup 2}H exchange) study revealed that a part of the hydrogen in these samples showed rapid migration even at 300?°C. However, electrical measurements revealed that the electron concentration in the samples was much less than n[H]. These results could be explained by assuming the presence of defect-hydrogen complexes.

  14. Microstructural Evolution of Alloy 718 at High Helium and Hydrogen Generation Rates during Irradiation with 600-800 MeV protons

    SciTech Connect (OSTI)

    Sencer, Bulent H. (PNNL); Bond, G M. (PNNL); Garner, F.A. (Pacific Northwest National Laboratory); Hamilton, M L. (PNNL); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB)); Thomas, L E. (PNNL); Maloy, S A. (Los Alamos National Laboratory); Sommer, Walter F. (LOS ALAMOS NATL LAB); James, M R. (Los Alamos National Laboratory); Ferguson, P D. (Los Alamos National Laboratory)

    2000-12-01T23:59:59.000Z

    When precipitation hardened Alloy 718 is irradiated with high-energy protons (600?800 MeV) and spallation neutrons at temperatures below > 60 C, it quickly hardens and loses almost all uniform elongation. It later softens somewhat at higher exposures but does not regain any elongation. This behavior is explained in terms of the evolution of Frank loop formation, disordering and eventual dissolution of the?? and?? strengthening phases, and the steady accumulation of very large levels of helium and hydrogen. These gases must be dispersed on a very fine scale in the matrix since no cavities could be found.

  15. The Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO

    E-Print Network [OSTI]

    B. Bartoli; P. Bernardini; X. J. Bi; P. Branchini; A. Budano; P. Camarri; Z. Cao; R. Cardarelli; S. Catalanotti; S. Z. Chen; T. L. Chen; P. Creti; S. W. Cui; B. Z. Dai; A. D'Amone; Danzengluobu; I. De Mitri; B. D'Ettorre Piazzoli; T. Di Girolamo; G. Di Sciascio; C. F. Feng; Zhaoyang Feng; Zhenyong Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Haibing Hu; Hongbo Hu; M. Iacovacci; R. Iuppa; H. Y. Jia; Labaciren; H. J. Li; G. Liguori; C. Liu; J. Liu; M. Y. Liu; H. Lu; L. L. Ma; X. H. Ma; G. Mancarella; S. M. Mari; G. Marsella; D. Martello; S. Mastroianni; P. Montini; C. C. Ning; M. Panareo; L. Perrone; P. Pistilli; F. Ruggieri; P. Salvini; R. Santonico; P. R. Shen; X. D. Sheng; F. Shi; A. Surdo; Y. H. Tan; P. Vallania; S. Vernetto; C. Vigorito; H. Wang; C. Y. Wu; H. R. Wu; L. Xue; Q. Y. Yang; X. C. Yang; Z. G. Yao; A. F. Yuan; M. Zha; H. M. Zhang; L. Zhang; X. Y. Zhang; Y. Zhang; J. Zhao; Zhaxiciren; Zhaxisangzhu; X. X. Zhou; F. R. Zhu; Q. Q. Zhu; G. Zizzi; Y. X. Bai; M. J. Chen; Y. Chen; S. H. Feng; B. Gao; M. H. Gu; C. Hou; X. X. Li; J. Liu; J. L. Liu; X. Wang; G. Xiao; B. K. Zhang; S. S. Zhang; B. Zhou; X. Zuo

    2015-02-11T23:59:59.000Z

    The measurement of cosmic ray energy spectra, in particular for individual species, is an essential approach in finding their origin. Locating the "knees" of the spectra is an important part of the approach and has yet to be achieved. Here we report a measurement of the mixed Hydrogen and Helium spectrum using the combination of the ARGO-YBJ experiment and of a prototype Cherenkov telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a clear steepening of the spectrum, is observed. This gives fundamental inputs to galactic cosmic ray acceleration models.

  16. The Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO

    E-Print Network [OSTI]

    Bartoli, B; Bi, X J; Branchini, P; Budano, A; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Chen, S Z; Chen, T L; Creti, P; Cui, S W; Dai, B Z; D'Amone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liguori, G; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Panareo, M; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G; Bai, Y X; Chen, M J; Chen, Y; Feng, S H; Gao, B; Gu, M H; Hou, C; Li, X X; Liu, J L; Wang, X; Xiao, G; Zhang, B K; Zhang, S S; Zhou, B; Zuo, X

    2015-01-01T23:59:59.000Z

    The measurement of cosmic ray energy spectra, in particular for individual species, is an essential approach in finding their origin. Locating the "knees" of the spectra is an important part of the approach and has yet to be achieved. Here we report a measurement of the mixed Hydrogen and Helium spectrum using the combination of the ARGO-YBJ experiment and of a prototype Cherenkov telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a clear steepening of the spectrum, is observed. This gives fundamental inputs to galactic cosmic ray acceleration models.

  17. Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes

    E-Print Network [OSTI]

    Reza, S.M. Mohsin

    2009-05-15T23:59:59.000Z

    Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet...

  18. The production of pure hydrogen with simultaneous capture of carbon dioxide

    E-Print Network [OSTI]

    Bohn, Christopher

    2010-10-12T23:59:59.000Z

    The need to stabilise or even reduce the production of anthropogenic CO2 makes the capture of CO2 during energy generation from carbonaceous fuels, e.g. coal or biomass, necessary for the future. For hydrogen, an environmentally-benign energy vector...

  19. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  20. A New Wide Range Equation of State for Helium-4 

    E-Print Network [OSTI]

    Ortiz Vega, Diego O

    2013-08-01T23:59:59.000Z

    chemical inertness makes it a safer option. Helium replaced hydrogen for blimps in the 1930s after a number of tragic accidents involving hydrogen- filled airships. Helium is used in blimps for advertising, to detect low-flying cruise missiles...

  1. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – OptimizingM.W. , Initiating hydrogen infrastructures: preliminaryDesign of a Fossil Hydrogen Infrastructure with Capture and

  2. HELIUM, SOLID 1 Helium, Solid

    E-Print Network [OSTI]

    Glyde, Henry R.

    HELIUM, SOLID 1 Helium, Solid Henry R. Glyde Introduction Helium was first solidified at the famous focused on the melting curve, the specific heat, and the thermal conductivity of solid helium as a test criterion of melting does not hold in solid helium. This pioneering work up to 1957 is elegantly

  3. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-01-01T23:59:59.000Z

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  4. High Temperature Separation of Carbon Dioxide/Hydrogen Mixtures Using Facilitated Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Myers, C.R.; Pennline, H.W.; Luebke, D.R.; Ilconich, J.B.; Dixon, J.K. (Univ. of Notre Dame, Notre Dame, IN); Maginn, E.J. (Univ. of Notre Dame, Notre Dame, IN); Brennecke, J.F. (Univ. of Notre Dame, Notre Dame, IN)

    2008-09-01T23:59:59.000Z

    Efficiently separating CO2 from H2 is one of the key steps in the environmentally responsible uses of fossil fuel for energy production. A wide variety of resources, including petroleum coke, coal, and even biomass, can be gasified to produce syngas (a mixture of COand H2). This gas stream can be further reacted with water to produce CO2 and more H2. Once separated, the CO2 can be stored in a variety of geological formations or sequestered by other means. The H2 can be combusted to operate a turbine, producing electricity, or used to power hydrogen fuel cells. In both cases, onlywater is produced as waste. An amine functionalized ionic liquid encapsulated in a supported ionic liquid membrane (SILM) can separate CO2 from H2 with a higher permeability and selectivity than any known membrane system. This separation is accomplished at elevated temperatures using facilitated transport supported ionic liquid membranes.

  5. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

    2002-01-01T23:59:59.000Z

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  6. Ab Initio Equation of State for Hydrogen-Helium Mixtures with Recalibration of the Giant-Planet Mass-Radius Relation

    E-Print Network [OSTI]

    Militzer, B

    2013-01-01T23:59:59.000Z

    Using density functional molecular dynamics simulations, we determine the equation of state for hydrogen-helium mixtures spanning density-temperature conditions typical of giant planet interiors, ~0.2-9 g/cc and 1000-80000 K for a typical helium mass fraction of 0.245. In addition to computing internal energy and pressure, we determine the entropy using an ab initio thermodynamic integration technique. A comprehensive equation of state (EOS) table with 391 density-temperature points is constructed and the results are presented in form of two-dimensional free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial revision of the inferred thermal state of giant planets with known values for mass and radius. Changes are most pronounced for planets in the Jupiter mass range and below. We present a revision to the mass-radius relationship which makes the hottest exoplanets increase in rad...

  7. AB INITIO EQUATION OF STATE FOR HYDROGEN-HELIUM MIXTURES WITH RECALIBRATION OF THE GIANT-PLANET MASS-RADIUS RELATION

    SciTech Connect (OSTI)

    Militzer, B. [Departments of Earth and Planetary Science and of Astronomy, University of California, Berkeley, CA 94720 (United States); Hubbard, W. B. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-09-10T23:59:59.000Z

    Using density functional molecular dynamics simulations, we determine the equation of state (EOS) for hydrogen-helium mixtures spanning density-temperature conditions typical of giant-planet interiors, {approx}0.2-9 g cm{sup -3} and 1000-80,000 K for a typical helium mass fraction of 0.245. In addition to computing internal energy and pressure, we determine the entropy using an ab initio thermodynamic integration technique. A comprehensive EOS table with 391 density-temperature points is constructed and the results are presented in the form of a two-dimensional free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial revision of the inferred thermal state of giant planets with known values for mass and radius. Changes are most pronounced for planets in the Jupiter mass range and below. We present a revision to the mass-radius relationship that makes the hottest exoplanets increase in radius by {approx}0.2 Jupiter radii at fixed entropy and for masses greater than {approx}0.5 Jupiter mass. This change is large enough to have possible implications for some discrepant ''inflated giant exoplanets''.

  8. A potential-splitting approach applied to the Temkin-Poet model for electron scattering off the hydrogen atom and the helium ion

    E-Print Network [OSTI]

    Yarevsky, E; Larson, Ĺ; Elander, N

    2014-01-01T23:59:59.000Z

    The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schr\\"odinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.

  9. Time evolution of the exponential wavenumber spectra of turbulence upon helium injection into a hydrogen discharge at the FT-2 tokamak

    SciTech Connect (OSTI)

    Gurchenko, A. D.; Gusakov, E. Z.; Lashkul, S. I.; Altukhov, A. B.; Selyunin, E. P.; Esipov, L. A.; Kantor, M. Yu.; Kouprienko, D. V.; Stepanov, A. Yu. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2013-05-15T23:59:59.000Z

    The effect of variations in the key parameter of short-wavelength turbulence-the ion-acoustic Larmor radius {rho}{sub s}, which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers-was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3-5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.

  10. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

    2013-12-16T23:59:59.000Z

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  11. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect (OSTI)

    Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

    1991-01-01T23:59:59.000Z

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  12. Shock compression of liquid helium and helium-hydrogen mixtures : development of a cryogenic capability for shock compression of liquid helium on Z, final report for LDRD Project 141536.

    SciTech Connect (OSTI)

    Lopez, Andrew J.; Knudson, Marcus D.; Shelton, Keegan P.; Hanson, David Lester

    2010-10-01T23:59:59.000Z

    This final report on SNL/NM LDRD Project 141536 summarizes progress made toward the development of a cryogenic capability to generate liquid helium (LHe) samples for high accuracy equation-of-state (EOS) measurements on the Z current drive. Accurate data on He properties at Mbar pressures are critical to understanding giant planetary interiors and for validating first principles density functional simulations, but it is difficult to condense LHe samples at very low temperatures (<3.5 K) for experimental studies on gas guns, magnetic and explosive compression devices, and lasers. We have developed a conceptual design for a cryogenic LHe sample system to generate quiescent superfluid LHe samples at 1.5-1.8 K. This cryogenic system adapts the basic elements of a continuously operating, self-regulating {sup 4}He evaporation refrigerator to the constraints of shock compression experiments on Z. To minimize heat load, the sample holder is surrounded by a double layer of thermal radiation shields cooled with LHe to 5 K. Delivery of LHe to the pumped-He evaporator bath is controlled by a flow impedance. The LHe sample holder assembly features modular components and simplified fabrication techniques to reduce cost and complexity to levels required of an expendable device. Prototypes have been fabricated, assembled, and instrumented for initial testing.

  13. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

    2012-03-13T23:59:59.000Z

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  14. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect (OSTI)

    Klas, M.; Matej?ik, Š. [Department of Experimental Physics, Comenius University, Mlynskadolina F2, 84248 Bratislava (Slovakia); Radjenovi?, B.; Radmilovi?-Radjenovi?, M. [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

    2014-10-15T23:59:59.000Z

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1??m and 100??m. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100??m interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  15. Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride

    E-Print Network [OSTI]

    Hu, Xunxiang

    2013-01-01T23:59:59.000Z

    Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, K.J. Nucl. Mater. D.S. Gelles. On quantification of helium

  16. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel: Cooperative Research and Development Final Report, CRADA Number: CRD-10-408

    SciTech Connect (OSTI)

    Maness, P. C.

    2014-06-01T23:59:59.000Z

    OPX Biotechnologies, Inc. (OPX), the National Renewable Energy Laboratory (NREL), and Johnson Matthey will develop and optimize a novel, engineered microorganism that directly produces biodiesel from renewable hydrogen (H2) and carbon dioxide (CO2). The proposed process will fix CO2 utilizing H2 to generate an infrastructure-compatible, energy-dense fuel at costs of less than $2.50 per gallon, with water being produced as the primary byproduct. NREL will perform metabolic engineering on the bacterium Cupriavidus necator (formerly Ralstonia eutropha) and a techno-economic analysis to guide future scale-up work. H2 and CO2 uptakes rates will be genetically increased, production of free fatty acids will be enhanced and their degradation pathway blocked in order to meet the ultimate program goals.

  17. Helium Ion Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium Ion Microscope Helium Ion Microscope The Helium Ion Microscope promises to advance biological, geochemical, biogeochemical, and surfaceinterface studies using its combined...

  18. Helium Ion Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium Ion Microscope Helium Ion Microscope Bruce Arey discusses the capabilities of EMSL's new helium ion microscope housed in EMSL's Quiet Wing....

  19. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30T23:59:59.000Z

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  20. Ogden, Williams and Larson, Toward a Hydrogen-Based Transportation System, final draft, 8 May 2001 Toward a Hydrogen-Based Transportation System

    E-Print Network [OSTI]

    ..................................................................................6 Hydrogen from Fossil Fuels with Geological Sequestration of Carbon Dioxide

  1. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31T23:59:59.000Z

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  2. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20T23:59:59.000Z

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  3. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G. (Charleston, WV)

    1990-01-01T23:59:59.000Z

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  4. Evidence for molecular activated recombination of He single ions from particle balance measurements in helium and hydrogen mixture plasmas in PISCES A

    E-Print Network [OSTI]

    Cai, Laizhong

    2008-01-01T23:59:59.000Z

    order to observe the Doppler effect, two mirrors are mountedof Zeeman effect and Doppler effect for hydrogen-like spec-including Zeeman, Doppler, and Stark effects. Due to the

  5. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01T23:59:59.000Z

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  6. Hydrogen-Triggered Type I X-ray Bursts in a Two-Zone Model

    E-Print Network [OSTI]

    Randall L. Cooper; Ramesh Narayan

    2007-02-01T23:59:59.000Z

    We use the two-zone model of Cooper & Narayan to study the onset and time evolution of hydrogen-triggered type I X-ray bursts on accreting neutron stars. At the lowest accretion rates, thermally unstable hydrogen burning ignites helium as well and produces a mixed hydrogen and helium burst. For somewhat higher accretion rates, thermally unstable hydrogen burning does not ignite helium and thus triggers only a weak hydrogen flash. The peak luminosities of weak hydrogen flashes are typically much lower than the accretion luminosity. These results are in accord with previous theoretical work. We find that a series of weak hydrogen flashes generates a massive layer of helium that eventually ignites in an energetic pure helium flash. Although previously conjectured, this is the first time such bursting behavior has been actually demonstrated in a theoretical model. For yet higher accretion rates, hydrogen burning is thermally stable and thus steadily generates a layer of helium that ultimately ignites in a pure helium flash. We find that, for a narrow range of accretion rates between the mixed hydrogen and helium burst and weak hydrogen flash regimes, unstable hydrogen burning ignites helium only after a short series of weak hydrogen flashes has generated a sufficiently deep layer of helium. These bursts have fluences that are intermediate between those of normal mixed hydrogen and helium bursts and energetic pure helium flashes.

  7. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19T23:59:59.000Z

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  8. Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through

    E-Print Network [OSTI]

    hydrogen atom could easily bond to a terminal oxygen site13 . The observed hydrogen diffusion into the TiO2Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation Xiaobo, on the other hand, can undergo fast diffusion and exchange. The enhanced hydrogen mobility may be explained

  9. SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH A SOLAR CYCLE

    E-Print Network [OSTI]

    Richardson, John

    SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux

  10. Cooling with Superfluid Helium

    E-Print Network [OSTI]

    Lebrun, P

    2014-01-01T23:59:59.000Z

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  11. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

  12. Hydrogen cryomagnetics: the way forward for superconductivity Glowacki B. A.

    E-Print Network [OSTI]

    Glowacki, Bartek A.

    their helium dependence. Because helium is a by-product of natural gas production, and its value is very small compared with the value of natural gas (although it costs more per MCF, the raw helium concentration superconductivity interlocked with hydrogen economy can be the solution to most of our energy and transport problems

  13. Surface blistering and flaking of sintered uranium dioxide samples under high dose gas implantation and annealing

    E-Print Network [OSTI]

    Boyer, Edmond

    Surface blistering and flaking of sintered uranium dioxide samples under high dose gas implantation, flaking Abstract. High helium contents will be generated within minor actinide doped uranium dioxide blankets which could be used in fourth generation reactors. In this framework, it is essential to improve

  14. The Primordial Helium Abundance

    E-Print Network [OSTI]

    Manuel Peimbert

    2008-11-18T23:59:59.000Z

    I present a brief review on the determination of the primordial helium abundance by unit mass, Yp. I discuss the importance of the primordial helium abundance in: (a) cosmology, (b) testing the standard big bang nucleosynthesis, (c) studying the physical conditions in H II regions, (d) providing the initial conditions for stellar evolution models, and (e) testing the galactic chemical evolution models.

  15. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    SciTech Connect (OSTI)

    Dupree, A. K.; Avrett, E. H., E-mail: dupree@cfa.harvard.edu, E-mail: eavrett@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-20T23:59:59.000Z

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  16. SPECIAL TOPIC: HELIUM NANODROPLETS Experimental studies of helium droplets

    E-Print Network [OSTI]

    Northby, Jan A.

    SPECIAL TOPIC: HELIUM NANODROPLETS Experimental studies of helium droplets J. A. Northbya) Physics September 2001 In this report I will review experimental studies of free helium droplets, with the exception of spectroscopic studies of helium droplets that contain impurities. This particular topic, as well as theoretical

  17. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Hydrogen Storage Materials Workshop Proceedings, August 14th...

    Broader source: Energy.gov (indexed) [DOE]

    molecular sieve MCM-48 impregnated with sucrose and then pyrolyzed. * Silica dioxide aerogels and xerogels have not been explored as hydrogen storage materials. * Other mesoporous...

  19. Decoding Titanium Dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decoding Titanium Dioxide Decoding Titanium Dioxide Released: December 03, 2010 Scientists advance understanding of remarkable catalyst STM images of 1-, 2-, 3-, and 4-octoxy...

  20. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  1. Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

    E-Print Network [OSTI]

    Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

  2. The effects of He I 10830 on helium abundance determinations

    E-Print Network [OSTI]

    Aver, Erik; Skillman, Evan D

    2015-01-01T23:59:59.000Z

    Observations of helium and hydrogen emission lines from metal-poor extragalactic H II regions provide an independent method for determining the primordial helium abundance, Y_p. Traditionally, the emission lines employed are in the visible wavelength range, and the number of suitable lines is limited. Furthermore, when using these lines, large systematic uncertainties in helium abundance determinations arise due to the degeneracy of physical parameters, such as temperature and density. Recently, Izotov, Thuan, & Guseva (2014) have pioneered adding the He 10830 infrared emission line in helium abundance determinations. The strong electron density dependence of He 10830 makes it ideal for better constraining density, potentially breaking the degeneracy with temperature. We revisit our analysis of the dataset published by Izotov, Thuan, & Stasinska (2007) and incorporate the newly available observations of He 10830 by scaling them using the observed-to-theoretical Paschen-gamma ratio. The solutions are b...

  3. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect (OSTI)

    SHAPLEY, B.J.

    2000-04-20T23:59:59.000Z

    The purpose of this System Design Description (SDD) is to describe the characteristics of the Cold Vacuum Drying (CVD) Facility general service helium system. The general service helium system is a general service facility process support system, but does include safety-class structures, systems and components (SSCs) providing protection to the offsite public. The general service helium system also performs safety-significant functions that provide protection to onsite workers. The general helium system essential function is to provide helium (He) to support process functions during all phases of facility operations. General service helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The general service helium system also supplies helium to purge the process water conditioning (PWC) lines and components and the vacuum purge system (VPS) vacuum pump. The general service helium system, if available following an Safety Class Instrument and Control System (SCIC) Isolation and Purge (IS0 and PURGE) Trip, can provide an alternate general service helium system source to supply the Safety-Class Helium (SCHe) System.

  4. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect (OSTI)

    FARWICK, C.C.

    1999-07-06T23:59:59.000Z

    This document describes the Cold Vacuum Drying Facility general service helium system (GSHe). The GSHe is a general service facility process support system, but does include safety-class systems, structures and components providing protection to the offsite public. The GSHe also performs safety-significant functions that provide protection to onsite workers. The GSHe essential function is to provide helium to support process functions during all phases of facility operations. GSHe helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The GSHe also supplies helium to purge the PWC lines and components and the VPS vacuum pump.

  5. Nanostructures from hydrogen implantation of metals.

    SciTech Connect (OSTI)

    McWatters, Bruce Ray (Sandia National Laboratories, Albuquerque, NM); Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.

    2009-09-01T23:59:59.000Z

    This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

  6. Pellet charge exchange helium measurement using neutral particle analyzer in large helical device

    SciTech Connect (OSTI)

    Ozaki, T.; Goncharov, P.; Veshchev, E.; Tamura, N.; Sudo, S.; Seki, T.; Kasahara, H. [High Energy Particle Group, Wave Heating Group and LHD Experimental Group, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takase, Y.; Ohsako, T. [Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561 (Japan)

    2008-10-15T23:59:59.000Z

    It is very important to investigate the confinement of {alpha} particles, which will be produced by nuclear reactions in ITER and fusion reactors. The pellet charge exchange (PCX) measurement is one of the most powerful methods because it can directly provide the profile of the {alpha} particle energy spectra in a plasma. In the large helical device, PCX using tracer encapsulated solid pellet (TESPEL) has been tried in many hydrogen and helium plasmas, including helium accelerated by using the cyclotron resonance heating. In the PCX, we use the compact neutral particle analyzer without simultaneous mass separation ability. The helium particle measurement can be achieved by the application of voltage in the condenser plate. The scattering of hydrogen particle is carefully considered during the estimation of the helium amount. The radial helium profiles can also be obtained by comparing four TESPEL injection shots with/without higher harmonic fast wave heating and at applied plate voltages for He or H, respectively.

  7. Mining for Helium Jurriaan Hage

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Mining for Helium Jurriaan Hage Peter van Keeken Department of Information and Computing Sciences-year functional programming course using the Helium compiler. The mining of such a collection is not trivial a type error. 1 #12;1 Introduction and motivation When the Helium compiler for learning Haskell

  8. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14T23:59:59.000Z

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  9. Entanglement in helium

    E-Print Network [OSTI]

    Giuliano Benenti; Stefano Siccardi; Giuliano Strini

    2013-05-01T23:59:59.000Z

    Using a configuration-interaction variational method, we accurately compute the reduced, single-electron von Neumann entropy for several low-energy, singlet and triplet eigenstates of helium atom. We estimate the amount of electron-electron orbital entanglement for such eigenstates and show that it decays with energy.

  10. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2008-09-09T23:59:59.000Z

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  11. Material Mixing of Tungsten with Carbon and Helium

    SciTech Connect (OSTI)

    Ueda, Y.; Lee, H. T. [Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

    2010-05-20T23:59:59.000Z

    In ITER, graphite and tungsten are used for divertor materials and are mixed through erosion, transport, and redeposition. Helium, a fusion reactant, is an intrinsic element in fusion plasmas that impinges on the metallic wall materials to form He bubbles. W-C mixed layers and He bubble layers greatly affect tritium retention. In this paper, impacts of W-C material mixing on erosion and hydrogen isotope retention are reviewed. Then, recent results on carbon deposition on tungsten in TEXTOR tokamak and helium effects on blistering and retention are discussed.

  12. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

    1993-01-01T23:59:59.000Z

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  13. Helium in Chemically Peculiar Stars

    E-Print Network [OSTI]

    F. Leone

    1998-05-05T23:59:59.000Z

    For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and helium abundance have to be determined simultaneously by matching the Balmer line profiles. New MULTI NLTE calculations, performed adopting ATLAS9 model atmospheres and updated helium atomic parameters, reproduce most of the observed equivalent widths of neutral helium lines for main sequence B-type stars and they make us confident of the possibility to correctly derive the helium abundance in chemically peculiar stars. An application of previous methods to the helium rich star HD 37017 shows that helium could be stratified in the magnetic pole regions, as expected in the framework of the diffusion theory in the presence of mass loss.

  14. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14T23:59:59.000Z

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  15. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  16. PERFORMANCE OF DIPOLE MAGNETS IN HELIUM II

    E-Print Network [OSTI]

    Althaus, R.

    2010-01-01T23:59:59.000Z

    in Pressurized Superfluid Helium", EX5 40 11th InternationalOF DIPOLE MAGNETS IN HELIUM II R. Althaus, S. Cacpi, W.S.OF DIMLE NMMETS IN HELIUM II* R. Althaus, S. Caspl, W.S.

  17. ELECTRONS ON THE SURFACE OF LIQUID HELIUM

    E-Print Network [OSTI]

    Lambert, David Kay

    2011-01-01T23:59:59.000Z

    ON THE SURFACE OF LIQUID HELIUM David Kay Lambert (Ph. D.ON THE SURFACE OF LIQUID HELIUM David Kay Lambert Materialsthe potential well near a helium surface, The charge density

  18. Regimes Of Helium Burning

    E-Print Network [OSTI]

    F. X. Timmes; J. C. Niemeyer

    2000-05-16T23:59:59.000Z

    The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into existance in the radial direction. In the thin helium shell case, turbulent deflagrations travelling in the lateral or radial directions encounter the distributed regime at densities below 10^7 g cm^{-3}, and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^4 g cm^{-3}, indicating that steady-state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at 5 10^4 g cm^{-3}, suggesting that steady-state, self-sustained detonations cannot come into existance in the radial direction.

  19. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, P.R.; Gray, K.E.

    1988-09-13T23:59:59.000Z

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  20. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  1. THE HELIUM ABUNDANCE IN POLAR CORONAL HOLES AND THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Byhring, H. S., E-mail: hanne-sigrun.byhring@uit.no [Department of Physics and Technology, University of Tromsoe, No-9037 Tromsoe (Norway)

    2011-09-10T23:59:59.000Z

    I have studied the helium abundance in polar coronal holes and the fast solar wind using a time-dependent numerical model for the hydrogen-helium solar wind that spans the mid-to-upper chromosphere, transition region, corona, and solar wind. The model calculates the particle density, flow velocity, parallel and perpendicular temperature, and heat flux for all particle species simultaneously. The focus is on (1) the coronal/solar wind helium abundance as a function of the total magnetic field expansion and (2) the coronal abundance enhancements resulting from low helium heating rates. It is shown that the magnetic field expansion factor may be important in the determination of the solar wind helium abundance and that this can be understood in terms of gravitational settling in the chromosphere. I find that a total magnetic field expansion factor of about 20 is consistent with the observed helium abundance in the solar wind. Furthermore, it is demonstrated that existing observations, both spectroscopic observations of the corona and in situ observations in the solar wind, are compatible with helium abundance enhancements in the corona. For proton-electron plasma properties in accordance with observations, the coronal helium abundance enhancements occur in the region 1.2-2 R{sub sun}.

  2. Hydrogen in Type Ic Supernovae?

    E-Print Network [OSTI]

    David Branch; David J. Jeffery; Timothy R. Young; E. Baron

    2006-05-09T23:59:59.000Z

    By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.

  3. Process for producing hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a heteropolyanionic metal complex catalyst

    SciTech Connect (OSTI)

    Kuch, Ph. L.

    1984-12-18T23:59:59.000Z

    Hydrogen and carbonyl sulfide are produced by a process comprising contracting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a heteropolymolybdate or tungstate complex. Use of these catalysts reduce the amount of by-product carbon dioxide and methane formation and thus enhance the make of hydrogen and carbonyl sulfide.

  4. Hydrogen Burning on Magnetar Surfaces

    E-Print Network [OSTI]

    P. Chang; P. Arras; L. Bildsten

    2004-10-18T23:59:59.000Z

    We compute the rate of diffusive nuclear burning for hydrogen on the surface of a "magnetar" (Soft Gamma-Ray Repeater or Anomalous X-Ray Pulsar). We find that hydrogen at the photosphere will be burned on an extremely rapid timescale of hours to years, depending on composition of the underlying material. Improving on our previous studies, we explore the effect of a maximally thick "inert" helium layer, previously thought to slow down the burning rate. Since hydrogen diffuses faster in helium than through heavier elements, we find this helium buffer actually increases the burning rate for magnetars. We compute simple analytic scalings of the burning rate with temperature and magnetic field for a range of core temperature. We conclude that magnetar photospheres are very unlikely to contain hydrogen. This motivates theoretical work on heavy element atmospheres that are needed to measure effective temperature from the observed thermal emission and constrains models of AXPs that rely on magnetar cooling through thick light element envelopes.

  5. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  6. Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3

    E-Print Network [OSTI]

    Caupin, Frédéric

    Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3 S. Balibar in superfluid helium-4 and in normal liquid helium-3, both theoretically and experimentally. We compare the two by tunneling, to classical cavitation where their nu- cleation is thermally activated. In helium-3, where

  7. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30T23:59:59.000Z

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  8. Lung Function Measurement with Multiple-Breath-Helium Washout System

    E-Print Network [OSTI]

    Wang, Jau-Yi; Owers-Bradley, John; Mellor, Chris

    2011-01-01T23:59:59.000Z

    Multiple-breath-washout (MBW) measurements are regarded as a sensitive technique which can reflect the ventilation inhomogeneity of respiratory airways. Typically nitrogen is used as the tracer gas and is washed out by pure oxygen in multi-breath-nitrogen (MBNW) washout tests. In this work, instead of using nitrogen, helium is used as the tracer gas and a multiple-helium-breath-washout (MBHW) system has been developed for the lung function study. A commercial quartz tuning fork with a resonance frequency of 32768 Hz has been used for detecting the change of the respiratory gas density. The resonance frequency of the tuning fork decreases linearly with increasing density of the surrounding gas. Knowing the CO2 concentration from the infrared carbon dioxide detector, the helium concentration can be determined. Results from 12 volunteers (3 mild asthmatics, 2 smokers, 1 with asthma history, 1 with COPD history, 5 normal) have shown that mild asthmatics have higher ventilation inhomogeneity in either conducting o...

  9. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  10. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  11. Sulfur Dioxide Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

  12. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18T23:59:59.000Z

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  13. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  14. A Torsional Oscillator Study Solid Helium

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    A Torsional Oscillator Study of Solid Helium George Edgar Marcus Nichols Royal Holloway College and Andy Nichols and Alexandra Zuckermann for theirs out of it. #12;Contents 1 Motivation 10 1.1 Helium

  15. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  16. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  17. Fine structure of helium and light helium-like ions Krzysztof Pachucki and Vladimir A. Yerokhin

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    1 Fine structure of helium and light helium-like ions Krzysztof Pachucki and Vladimir A. Yerokhin Abstract: Calculational results are presented for the fine-structure splitting of the 23 P state of helium and helium-like ions with the nuclear charge Z up to 10. Theoretical predictions are in agreement

  18. 8 2. Helium und Tritium in der Geosphre 2. Helium und Tritium in der Geosphre

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    8 2. Helium und Tritium in der Geosphäre 2. Helium und Tritium in der Geosphäre 2.1. Spezielle Einheiten und Konstanten An dieser Stelle sollen die speziellen für Helium und Tritium verwendeten Einheiten definiert und dazugehörige Umrechnungen angegeben werden. Die Wahl der Werte einiger für Helium und Tritium

  19. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09T23:59:59.000Z

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  20. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  1. Cooling curves and initial models for low-mass white dwarfs (<0.25 Msun) with helium core

    E-Print Network [OSTI]

    Marek J. Sarna; Ene Ergma; Jelena Antipova

    2000-02-11T23:59:59.000Z

    We present a detailed calculation of the evolution of low-mass ($< 0.25~M_\\odot $) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 to 0.06$~M_\\odot $. Due to mixing between the core and outer envelope, the surface hydrogen content is 0.5 to 0.35, depending on the initial value of the heavy element (Z) and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213$~M_\\odot $ (Z=0.003), 0.198$~M_\\odot $ (Z=0.01), 0.192$~M_\\odot $ (Z=0.02) or 0.183$~M_\\odot $ (Z=0.03). The duration of the flashes (independent of chemical composition) is between few $\\times 10^6 $ years to few $\\times 10^7 $ years. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporary stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche-lobe overflow) occurs between 0.183-0.213$~M_\\odot $ (depending on the heavy element value).

  2. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2009-02-03T23:59:59.000Z

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  3. Phase and density dependence of the delayed annihilation of metastable antiprotonic helium atoms in gas, liquid and solid helium

    E-Print Network [OSTI]

    Widmann, E; Yamazaki, T; Hayano, R S; Iwasaki, M; Nakamura, S N; Tamura, H; Ito, T M; Kawachi, A; Nishida, N; Higemoto, W; Ito, Y; Morita, N; Hartmann, F J; Daniel, H; Von Egidy, T; Schmid, W; Hoffmann, J; Eades, John

    1995-01-01T23:59:59.000Z

    Phase and density dependence of the delayed annihilation of metastable antiprotonic helium atoms in gas, liquid and solid helium

  4. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  5. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  6. QUANTUM STATISTICS OF METASTABLE LIQUID HELIUM

    E-Print Network [OSTI]

    Caupin, Frédéric

    QUANTUM STATISTICS OF METASTABLE LIQUID HELIUM FR´ED´ERIC CAUPIN AND S´EBASTIEN BALIBAR Laboratoire in the spinodal line of liquid helium 3, for which experimental evidence has been reported. The calculations in the case of superfluid helium 4; we also consider the overpressurized region, and the location

  7. Mining Helium programs with Neon Jurriaan Hage

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Mining Helium programs with Neon Jurriaan Hage Peter van Keeken Department of Information in a first-year functional programming course using the Helium compiler. The mining of such a collection to resolve a type error. 1 #12;1 Introduction and motivation When the Helium compiler for learning Haskell

  8. Characterization of reconnecting vortices in superfluid helium

    E-Print Network [OSTI]

    Texas at Austin. University of

    Characterization of reconnecting vortices in superfluid helium Gregory P. Bewley*, Matthew S experimental observations of reconnection between quantized vortices in superfluid helium. We do so by imaging. reconnection Vorticity in superfluid helium is confined to filaments that are only angstroms in diameter

  9. Circuit Quantum Electrodynamics with Electrons on Helium

    E-Print Network [OSTI]

    Circuit Quantum Electrodynamics with Electrons on Helium A Dissertation Presented to the Faculty Fragner All rights reserved. ii #12;Abstract Circuit Quantum Electrodynamics with Electrons on Helium helium. Such a system represents a solid-state, electrical circuit analog of atomic cavity QED in which

  10. Helium Migration in Iron Christ's College

    E-Print Network [OSTI]

    Cambridge, University of

    Helium Migration in Iron Y. Zhang Christ's College Department of Materials Science and Metallurgy the achievement at all. ii #12;Abstract A theoretical model of helium migration in body centred cubic (BCC)structure irons has been developed using the concept of the effective helium diffusion coeffi- cient

  11. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29T23:59:59.000Z

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  12. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES

    SciTech Connect (OSTI)

    Wenger, Trey V.; Bania, T. M. [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States)] [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States)] [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)] [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2013-02-10T23:59:59.000Z

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

  13. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  14. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  15. The Liquefaction of Hydrogen and Helium Using Small Coolers

    E-Print Network [OSTI]

    Green, Michael A.

    2006-01-01T23:59:59.000Z

    with the extra compressor and the problem of clogging a J-Ttheir compressors, but one also has the reliability problems

  16. Microwave-excited microplasma thruster with helium and hydrogen propellants

    SciTech Connect (OSTI)

    Takahashi, Takeshi; Takao, Yoshinori; Ichida, Yugo; Eriguchi, Koji; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2011-06-15T23:59:59.000Z

    Microplasma thruster of electrothermal type has been investigated with feed or propellant gases of He and H{sub 2}. The thruster consisted of an azimuthally symmetric microwave-excited microplasma source 1.5 mm in diameter and 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. Surface wave-excited plasmas were established by 4.0-GHz microwaves at powers of {<=} 6 W, with the source pressure in the range 0.5-12 kPa at flow rates of 2-70 sccm. The microplasma generation, micronozzle flow, and thrust performance with He were numerically analyzed by using a two-dimensional fluid model, coupled with an electromagnetic model for microwaves interacting with plasmas in the source region. In experiments, the plasma electron density and gas temperature in the microplasma source were measured at around the top of the microwave antenna, or just upstream of the micronozzle inlet, by optical emission spectroscopy with a small amount of additive gases of H{sub 2} and N{sub 2}. In the case of He propellant, the Stark broadening of H Balmer-{beta} line and the vibronic spectrum of N{sub 2} 2nd positive (0, 2) band indicated that the electron density was in the range (2-5)x10{sup 19}m{sup -3} and the gas or rotational temperature was in the range 600-700 K. The thrust performance was also measured by using a target-type microthrust stand, giving a thrust in the range 0.04-0.51 mN, a specific impulse in the range 150-270 s, and a thrust efficiency in the range 2%-12%. These experimental results were consistent with those of numerical analysis, depending on microwave power and gas flow rate. Similar plasma characteristics and thrust performance were obtained with H{sub 2} propellant, where the specific impulse of {<=} 450 s was more than 1.5 times higher than that with He, owing to a difference in mass between He and H{sub 2}. A comparison with previous studies with Ar propellant [T. Takahashi et al., Phys. Plasmas 16, 083505 (2009)] indicated that in the presence as well as absence of plasma discharge, the specific impulse was enhanced by more than 3-5 times with light-mass propellants He and H{sub 2} as has been known for large-scale propulsion systems. Thus, it follows that in the microplasma thruster of electrothermal type, the high diffusivity and thermal conductivity of He and H{sub 2} in the microplasma source of high surface-to-volume ratios do not lead to a deterioration of the thrust performance, primarily owing to a more significant thermal energy gain due to elastic collisions between electrons and heavy particles in He and H{sub 2}.

  17. The Liquefaction of Hydrogen and Helium Using Small Coolers

    E-Print Network [OSTI]

    Green, Michael A.

    2006-01-01T23:59:59.000Z

    the cooler across the press fit joint will also be measuredon the shield near the press fit interface and the diode on

  18. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  19. Confined helium on Lagrange meshes

    E-Print Network [OSTI]

    Baye, Daniel

    2015-01-01T23:59:59.000Z

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  20. Hydrogen cooling options for MgB{sub 2}-based superconducting systems

    SciTech Connect (OSTI)

    Stautner, W.; Xu, M.; Mine, S.; Amm, K. [Electromagnetics and Superconductivity Lab, GE Global Research, Niskayuna, NY 12309 (United States)

    2014-01-29T23:59:59.000Z

    With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  1. The Epoch of Helium Reionization

    E-Print Network [OSTI]

    Aaron Sokasian; Tom Abel; Lars. E. Hernquist

    2001-12-14T23:59:59.000Z

    We study the reionization of Helium II by quasars using a numerical approach that combines 3D radiative transfer calculations with cosmological hydrodynamical simulations. Sources producing the ionizing radiation are selected according to an empirical quasar luminosity function and are assigned luminosities according to their intrinsic masses. We present models in which these parameters are varied and examine characteristics of the resultant reionization process that distinguish the various cases. In addition, we extract artificial spectra from the simulations and quantify statistical properties of the spectral features in each model. We find that the most important factor affecting the evolution of He II reionization is the cumulative number of ionizing photons that are produced by the sources. Comparisons between He II opacities measured observationally and those obtained by our analysis reveal that the available ranges in plausible values for the parameters provide enough leeway to provide a satisfactory match. However, one property common to all our calculations is that the epoch of Helium II reionization must have occurred at a redshift between 3 < z < 4. If so, future observational programs will be able to directly trace the details of the ionization history of helium and probe the low density phase of the intergalactic medium during this phase of the evolution of the Universe.

  2. CARBON DIOXIDE FIXATION.

    SciTech Connect (OSTI)

    FUJITA,E.

    2000-01-12T23:59:59.000Z

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  3. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  4. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  5. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  6. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  7. Helium in Near Earth Orbit The AMS Collaboration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Helium in Near Earth Orbit The AMS Collaboration Abstract The helium spectrum from 0.1 to 100 Ge the geomagnetic cutoff a second helium spectrum was observed. In the second he- lium spectra over the energy range ninety percent of the helium was deter- mined to be 3 He (at the 90 % CL). Tracing helium from the second

  8. What's Next for Vanadium Dioxide?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory (ORNL) has made an important advancement in understanding a classic transition-metal oxide, vanadium dioxide, by quantifying the thermodynamic forces driving...

  9. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  10. TESTING OF ACCELERATOR DIPOLES IN PRESSURIZED SUPERFLUID HELIUM

    E-Print Network [OSTI]

    Gilbert, W.S.

    2010-01-01T23:59:59.000Z

    ESD-10: facility. I i_ -i i_ Training in helium II Fig. 6 D-5: facility. Training in helium II .f liIN PRESSURIZED SUPERFLUID HELIUM W.S. G i l b e r t , S. C a

  11. Helium measurements of pore-fluids obtained from SAFOD drillcore

    E-Print Network [OSTI]

    Ali, S.

    2010-01-01T23:59:59.000Z

    the ductile lower crust: Helium isotope trends." ScienceHilton, Izbicki, J.A. (2003). "Helium isotope studies in the2005). "Source and movement of helium in the eastern Morongo

  12. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    Standiford, Richard B.

    . Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

  13. Effects of Helium Phase Separation on the Evolution of Giant Planets

    E-Print Network [OSTI]

    Jonathan J. Fortney; W. B. Hubbard

    2003-12-15T23:59:59.000Z

    We present the first models of Saturn and Jupiter to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium. The purpose of these models is to quantify the evolutionary effects of helium phase separation in Saturn's deep interior. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and find a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Y_atmos in agreement with recent estimates. We then expand our inhomogeneous evolutionary models to show that hypothetical extrasolar giant planets in the 0.15 to 3.0 Jupiter mass range may have T_effs 10-15 K greater than one would predict with models that do not incorporate helium phase separation.

  14. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20T23:59:59.000Z

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  15. Helium stratification in HD 145792: a new Helium strong star

    E-Print Network [OSTI]

    G. Catanzaro

    2007-11-28T23:59:59.000Z

    In this paper we report on the real nature of the star HD 145792, classified as He weak in {\\it ``The General Catalogue of Ap and Am stars''}. By means of FEROS@ESO1.52m high resolution spectroscopic data, we refined the atmospheric parameters of the star, obtaining: T$_{\\rm eff}$ = 14400 $\\pm$ 400 K, $\\log g$ = 4.06 $\\pm$ 0.08 and $\\xi$ = 0 $^{+0.6}$ km s$^{-1}$. These values resulted always lower than those derived by different authors with pure photometric approaches. Using our values we undertook an abundance analysis with the aim to derive, for the first time, the chemical pattern of the star's atmosphere. For metals a pure LTE synthesis (ATLAS9 and SYNTHE) has been used, while for helium a hybrid approach has been preferred (ATLAS9 and SYNSPEC). The principal result of our study is that HD 145792 belongs to He strong class contrary to the previous classification. Moreover, helium seems to be vertically stratified in the atmosphere, decreasing toward deepest layers. For what that concerns metals abundances, we found the following: overabundance of oxygen, neon, silicon, phosphorus, sulfur and calcium; carbon, nitrogen, magnesium, aluminum, titanium, chromium and nickel are normal, being the discrepancies from the solar values within the experimental errors; iron resulted to be slightly underabundant.

  16. Helium bubble bursting in tungsten

    SciTech Connect (OSTI)

    Sefta, Faiza [University of California, Berkeley, California 94720 (United States); Juslin, Niklas [University of Tennessee, Knoxville, Tennessee 37996 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [University of Tennessee, Oak Ridge National Laboratory, Knoxville, Tennessee 37996 (United States)

    2013-12-28T23:59:59.000Z

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  17. Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen 

    E-Print Network [OSTI]

    Joshi, Manoj

    2009-06-09T23:59:59.000Z

    68% of waste glycerol is converted into gaseous mixture. The excess glycerol is recycled back as a feedstock. Water gas shift (WGS) reaction, further convert carbon monoxide into hydrogen and carbon dioxide which is further subjected to separation...

  18. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    E-Print Network [OSTI]

    Bellina, Bruno; Kresin, Vitaly V

    2015-01-01T23:59:59.000Z

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H...N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  19. DESIGN OF EPOXY-FREE SUPERCONDUCTING DIPOLE MAGNETS AND PERFORMANCE IN BOTH HELIUM I AND PRESSURIZED HELIUM II

    E-Print Network [OSTI]

    Taylor, C.

    2010-01-01T23:59:59.000Z

    Exchange I " L ^ v v / / / / > > y^ffHn Helium II cryostatWarren et. al. , "A Pressurized Helium H-Cooled Magnet Testin Pressurized Superfluid Helium", CXS 40 11th International

  20. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  1. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

  2. High-Resolution Differential Ion Mobility Separations Using Helium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium-Rich Gases. High-Resolution Differential Ion Mobility Separations Using Helium-Rich Gases. Abstract: Analyses of complex mixtures and characterization of ions increasingly...

  3. Boron-10 Neutron Detectors for Helium-3 Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland Security & Defense Boron-10 Neutron Detectors for Helium-3 Replacement Boron-10 Neutron Detectors for Helium-3 Replacement As part of the Laboratory's national security...

  4. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Helium Isotope...

  5. Differential Ion Mobility Separations in up to 100% Helium Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in up to 100% Helium Using Microchips. Differential Ion Mobility Separations in up to 100% Helium Using Microchips. Abstract: The performance of differential IMS (FAIMS) analyzers...

  6. Hydrogen issue in Core Collapse Supernovae

    E-Print Network [OSTI]

    A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut

    2006-11-06T23:59:59.000Z

    We discuss results of analyzing a time series of selected photospheric-optical spectra of core collapse supernovae (CCSNe). This is accomplished by means of the parameterized supernovae synthetic spectrum (SSp) code ``SYNOW''. Special attention is addressed to traces of hydrogen at early phases, especially for the stripped-envelope SNe (i.e. SNe Ib-c). A thin low mass hydrogen layer extending to very high ejection velocities above the helium shell, is found to be the most likely scenario for Type Ib SNe.

  7. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01T23:59:59.000Z

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  8. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  9. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  10. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Program A Prospectus for Biological H 2 Production The Hydrogen Economy The hydrogen economy pertains to a world fundamentally different from the one we now know. Hydrogen...

  11. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29T23:59:59.000Z

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  12. Nuclear fusion in muonic deuterium-helium complex

    E-Print Network [OSTI]

    V. M. Bystritsky; M. Filipowicz; V. V. Gerasimov; P. E. Knowles; F. Mulhauser; N. P. Popov; V. A. Stolupin; V. P. Volnykh; J. Wozniak

    2005-06-22T23:59:59.000Z

    Experimental study of the nuclear fusion reaction in charge-asymmetrical d-mu-3He complex is presented. The 14.6 MeV protons were detected by three pairs of Si(dE-E) telescopes placed around the cryogenic target filled with the deuterium + helium-3 gas at 34 K. The 6.85 keV gamma rays emitted during the de-excitation of d-mu-3He complex were detected by a germanium detector. The measurements were performed at two target densities, 0.0585 and 0.169 (relative to liquid hydrogen density) with an atomic concentration of 3He c=0.0469. The values of the effective rate of nuclear fusion in d-mu-3He was obtained for the first time, and the J=0 nuclear fusion rate in d-mu-3He was derived.

  13. Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions

    E-Print Network [OSTI]

    effects of global warming. In this article we describe a process which producesa lowProducing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks the electricity production cost by one third. The secondprovides hydrogenor a hydrogen-rich fuel gas

  14. CARBON DIOXIDE AND OUR OCEAN LEGACY

    E-Print Network [OSTI]

    is a biologist at the California State Univer- sity San Marcos, with expertise in the effects of carbon dioxideCARBON DIOXIDE AND OUR OCEAN LEGACY G Carbon Dioxide: Our Role The United States is the single. Every day the average American adds about 118 pounds of carbon dioxide to the atmos- phere, due largely

  15. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  16. Quasi-free electron energy in near critical point helium

    E-Print Network [OSTI]

    Findley, Gary L.

    Quasi-free electron energy in near critical point helium Yevgeniy Lushtak a,b , Samantha B, Monroe, LA 71209 Abstract We present for the first time the quasi-free electron energy V0() in helium from low density to the density of the triple point liquid (gaseous helium/liquid helium I

  17. Long range forces between atomic impurities in liquid helium

    E-Print Network [OSTI]

    Long range forces between atomic impurities in liquid helium J. Dupont-Roc Laboratoire Kastler in a polarizable medium. We show that atomic impurities in liquid helium may indeed realize repulsive forces embedded in liquid helium, super uid or not. Solid helium have also been used. Successful theoretical

  18. Helium refrigeration considerations for cryomodule design

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States)

    2014-01-29T23:59:59.000Z

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  19. Carbon Dioxide: Threat or Opportunity?

    E-Print Network [OSTI]

    McKinney, A. R.

    1982-01-01T23:59:59.000Z

    catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar...

  20. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30T23:59:59.000Z

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  1. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18T23:59:59.000Z

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  2. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  3. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K

    2008-04-02T23:59:59.000Z

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  4. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  5. DEVELOPMENT AND DEMONSTRATION OF A SUPERCRITICAL HELIUM-COOLED CRYOGENIC VISCOUS COMPRESSOR PROTOTYPE FOR THE ITER VACUUM SYSTEM

    SciTech Connect (OSTI)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Rasmussen, David A [ORNL; Edgemon, Timothy D [ORNL; Hechler, Michael P [ORNL; Barbier, Charlotte N [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Kersevan, R. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2012-01-01T23:59:59.000Z

    As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.

  6. argon carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 10 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  7. applied carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 8 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  8. aqueous carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 12 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  9. Equation of state of metallic helium

    SciTech Connect (OSTI)

    Shvets, V. T., E-mail: tarval@breezein.net [Odessa State Academy of Refrigeration (Ukraine)

    2013-01-15T23:59:59.000Z

    The effective ion-ion interaction, free energy, pressure, and electric resistance of metallic liquid helium have been calculated in wide density and temperature ranges using perturbation theory in the electron-ion interaction potential. In the case of conduction electrons, the exchange interaction has been taken into account in the random-phase approximation and correlations have been taken into account in the local-field approximation. The solid-sphere model has been used for the nuclear subsystem. The diameter of these spheres is the only parameter of this theory. The diameter and density of the system at which the transition of helium from the singly ionized to doubly ionized state occurs have been estimated by analyzing the pair effective interaction between helium atoms. The case of doubly ionized helium atoms has been considered. Terms up to the third order of perturbation theory have been taken into account in the numerical calculations. The contribution of the third-order term is significant in all cases. The electric resistance and its temperature dependence for metallic helium are characteristic of simple divalent metals in the liquid state. The thermodynamic parameters-temperature and pressure densities-are within the ranges characteristic of the central regions of giant planets. This makes it possible to assume the existence of helium in the metallic state within the solar system.

  10. Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer, large-scale production of hydrogen. A key step in the process is the oxidation of sulfur dioxide determines the product sulfuric acid concentration, iii affects SO2 crossover rate, and iv serves to hydrate

  11. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect (OSTI)

    Olsen, Khris B.; Dresel, P Evan; Evans, John C.

    2001-10-31T23:59:59.000Z

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground. This vadose zone source is likely the source of tritium in the groundwater. The helium-3/helium-4 ratios also suggest the groundwater plume is traveling east-northeast from the burial ground and the highest groundwater tritium value may be to the north of well 699-13-3A. Finally, there appears to be no immediately upgradient sources of tritium impacting the burial ground since all the upgradient helium-3/helium-4 ratios are approximately 1.0.

  12. The components for a quantum computer based on surface state electrons on liquid helium

    E-Print Network [OSTI]

    Naberhuis, Brian Patrick

    2007-01-01T23:59:59.000Z

    Electrons on Helium . . . . . . . . . . . . . . . . . 1.5.1calculating the stability of electrons on the helium poolNanoscale Posts . . 3.4.2 Helium Pool . . . . Wire Chapter 4

  13. Helium and Carbon Isotope Systematics in Groundwaters along the Southern San Andreas Fault System /

    E-Print Network [OSTI]

    Evans, Tyler John

    2013-01-01T23:59:59.000Z

    P. , & Newton, R. (2010). Low helium flux from the mantlefrom simulations of oceanic helium isotope data. Earth andJ. , & Baur, H. (1995). Helium, neon, and argon systematics

  14. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  15. Geothermal carbon dioxide for use in greenhouses

    SciTech Connect (OSTI)

    Dunstall, M.G. [Univ. of Auckland (New Zealand); Graeber, G. [Univ. of Stuttgart (Germany)

    1997-01-01T23:59:59.000Z

    Geothermal fluids often contain carbon dioxide, which is a very effective growth stimulant for plants in greenhouses. Studies have shown that as CO{sub 2} concentration is increased from a normal level of 300 ppm (mmol/kmol) to levels of approximately 1000 ppm crop yields may increase by up to 15% (Ullmann`s Encyclopedia of Industrial Chemistry, 1989). It is suggested that geothermal greenhouse heating offers a further opportunity for utilization of the carbon dioxide present in the fluid. The main difficulty is that plants react adversely to hydrogen sulphide which is invariably mixed, at some concentration, with the CO{sub 2} from geothermal fluids. Even very low H{sub 2}S concentrations of 0.03 mg/kg can have negative effects on the growth of plants (National Research Council, 1979). Therefore, an appropriate purification process for the CO{sub 2} must be used to avoid elevated H{sub 2}S levels in the greenhouses. The use of adsorption and absorption processes is proposed. Two purification processes have been modelled using the ASOEN PLUS software package, using the Geothermal Greenhouses Ltd. Operation Kawerau New Zealand and an example. A greenhouse area of 8,000 m{sup 2}, which would create a demand for approximately 20 kg CO{sub 2} per hour, was chosen based on a proposed expansion at Kawerau. The Kawerau operation currently takes geothermal steam (and gas) from a high temperature 2-phase well to heat an area of 1650 m{sup 2}. Bottled carbon dioxide is utilized at a rate of about 50 kg per day, to provide CO{sub 2} levels of 800 mg/kg when the greenhouse is closed and 300 to 350 mg/kg whilst venting. In England and the Netherlands, CO{sub 2} levels of 1000 mg/kg are often used (Ullmann`s Encyclopedia of Industrial Chemistry, 1989) and similar concentrations are desired at Kawerau, but current costs of 0.60 NZ$/kg for bottled CO{sub 2} are too high (Foster, 1995).

  16. EIS-0431: Hydrogen Energy California's Project, Kern County, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  17. Measurement of helium-3 and deuterium stopping power ratio for negative muons

    E-Print Network [OSTI]

    V. M. Bystritsky; V. V. Gerasimov; J. Wozniak

    2006-07-07T23:59:59.000Z

    The measurement method and results measuring of the stopping power ratio of helium-3 and deuterium atoms for muons slowed down in the D/$^3$He mixture are presented. Measurements were performed at four values of pure $^3$He gas target densities, $\\phi_{He} = 0.0337, 0.0355, 0.0359, 0.0363$ (normalized to the liquid hydrogen density) and at a density 0.0585 of the D/$^3$He mixture. The experiment was carried out at PSI muon beam $\\mu$E4 with the momentum P$\\mu =34.0$ MeV/c. The measured value of the mean stopping ratio $S_{^3He/D}$ is $1.66\\pm 0.04$. This value can also be interpreted as the value of mean reduced ratio of probabilities for muon capture by helium-3 and deuterium atoms.

  18. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  19. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  20. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  1. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov (indexed) [DOE]

    insert our Research Targets to see the impact List of Delivery Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid Hydrogen Truck...

  2. Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model

    SciTech Connect (OSTI)

    Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

    2009-09-15T23:59:59.000Z

    Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

  3. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    SciTech Connect (OSTI)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01T23:59:59.000Z

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  4. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  5. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic Gas

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney RiverSiemens)CarbonDome

  6. Helium corona-assisted air discharge

    SciTech Connect (OSTI)

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15T23:59:59.000Z

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  7. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  8. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  9. Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/

    DOE Patents [OSTI]

    Robinson, P.R.; Bamberger, C.E.

    1980-02-08T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  10. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  11. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  12. Quantum mechanicallycomplete measurements in electron impact excitation of helium

    E-Print Network [OSTI]

    Quantum mechanicallycomplete measurements in electron impact excitation of helium Andrew G. Mikosza, Nedlands, Perth. 6907, Australia. Abstract. A complete quantum description of the 3! D state of helium, with the Convergent Close Coupling (CCC) calculations. Previous data for helium at 40eV incident electrons

  13. Helium fine structure theory for determination of Krzysztof Pachucki

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Helium fine structure theory for determination of Krzysztof Pachucki Institute of Theoretical in the calculation of helium fine-structure splitting of the 23 PJ states, based on the quantum electrodynamic theory by comparison with all experimental results for light helium-like ions and with the known large nuclear charge

  14. Helium in confinement: the filling A Neutron Scattering investigation.

    E-Print Network [OSTI]

    Glyde, Henry R.

    Helium in confinement: the filling parameter. A Neutron Scattering investigation. Francesco Albergamo Institut Laue-Langevin, France Helium in confinement: the filling parameter. ­ p.1/13 #12;outline introduction and motivation Helium in confinement: the filling parameter. ­ p.2/13 #12;outline introduction

  15. RESEARCH ARTICLE Particles for tracing turbulent liquid helium

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    RESEARCH ARTICLE Particles for tracing turbulent liquid helium Gregory P. Bewley Ć K. R of local flow velocities in turbulent liquid helium, using tracer particles. We survey and evaluate, we note that cryogenic helium is attractive for experimental studies because its kinematic viscosity

  16. Fluid helium at conditions of giant planetary interiors Lars Stixrude*

    E-Print Network [OSTI]

    Stixrude, Lars

    Fluid helium at conditions of giant planetary interiors Lars Stixrude* and Raymond Jeanloz-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, includ- ing simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures

  17. Classical Helium Atom with Radiation Reaction G. Camelio,1

    E-Print Network [OSTI]

    Carati, Andrea

    Classical Helium Atom with Radiation Reaction G. Camelio,1 A. Carati,2 and L. Galgani2 1) Universit November 2011) We study a classical model of Helium atom in which, in addition to the Coulomb forces be singular with respect to that of Lebesgue. PACS numbers: 05.45.-a, 41.60.-m Keywords: classical Helium atom

  18. RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1 C. JOHANNES Service de Recherches Appliquées, L'hélium hypercritique. Abstract. - Conditions of thermal exchange in helium 1 are reviewed. Pool boiling thermosi- phon are given. Use of hypercritical helium. REVUE DE PHYSIQUE APPLIQU�E TOME 6, D�CEMBRE 1971, PAGE Introduction

  19. DETERMINATION DE LA FONCTION DE DISTRIBUTION DE L'ENERGIE ELECTRONIQUE DANS DES COLONNES POSITIVES D'HELIUM ET D'HELIUM-ARGON

    E-Print Network [OSTI]

    Boyer, Edmond

    D'HELIUM ET D'HELIUM-ARGON P. Davy P. Rabache Laboratoire de Physique Electronique, Universite de) have been determined in helium, and helium-argon positiv columns. Between q 06 and q 3 torr, for currents varying between 25 and 400mA, the EDF in helium i s a Maxwell one with a lack of fast electrons

  20. HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik

    E-Print Network [OSTI]

    HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik Arecibo Observatory #12;1 CONTENTS 1. Design goals 3 1.1 Features of the compressor monitoring system 4 2. EDAS: The basis of data acquisition 5 2 Compressor #1 Connectors Compressor #2 Connectors Compressor #3 Connectors Compressor #4 Connectors

  1. The Neon DSEL for mining Helium programs

    E-Print Network [OSTI]

    Utrecht, Universiteit

    studies We consider three case studies to illustrate how Neon can be used to data mine the collectionThe Neon DSEL for mining Helium programs Jurriaan Hage Peter van Keeken Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2007-023 www.cs.uu.nl ISSN: 0924-3275 #12

  2. Process for removing hydrogen sulfide from gases particularly coal pyrolysis gases

    SciTech Connect (OSTI)

    Ritter, H.; Herpers, E.T.

    1985-02-12T23:59:59.000Z

    Hydrogen sulfide is first removed by ammoniacal liquor from coke oven gas in the bottom part of a gas scrubber. In the top part of the scrubber, two consecutively-arranged fine scrubbing stages remove hydrogen sulfide by treating the gases, in the upper stage, with a caustic soda solution or a caustic potash solution. Beneath the upper scrubbing stage is the second fine scrubbing stage fed with a subflow of an aqueous carbonate solution collecting at the outlet of the upper fine scrubbing stage and a subflow of cooled, regenerated carbonate solution discharged from the hydrogen-sulfide/hydrogen-cyanide stripper. From the hydrogen-sulfide/hydrogen-cyanide stripper, a second subflow is admixed with coal liquor for removing fixed ammonia therefrom in a separator. The separator produces water vapor with carbon dioxide vapors that are delivered to the hydrogen-sulfide/hydrogen-cyanide stripper for regenerating the aqueous carbonate washing solution.

  3. Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

  4. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  5. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  6. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  7. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  8. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  9. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  10. Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets

    E-Print Network [OSTI]

    Jonathan J. Fortney; W. B. Hubbard

    2004-02-26T23:59:59.000Z

    We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.

  11. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect (OSTI)

    Olsen, Khris B; Dresel, P Evan; Evans, John C

    2001-10-31T23:59:59.000Z

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground.

  12. The primordial Helium-4 abundance determination: systematic effects

    E-Print Network [OSTI]

    T. X. Thuan; Y. I. Izotov

    2001-12-14T23:59:59.000Z

    By extrapolating to O/H = N/H = 0 the empirical correlations Y-O/H and Y-N/H defined by a relatively large sample of ~ 45 Blue Compact Dwarfs (BCDs), we have obtained a primordial 4Helium mass fraction Yp= 0.2443+/-0.0015 with dY/dZ = 2.4+/-1.0. This result is in excellent agreement with the average Yp= 0.2452+/-0.0015 determined in the two most metal-deficient BCDs known, I Zw 18 (Zsun/50) and SBS 0335-052 (Zsun/41), where the correction for He production is smallest. The quoted error (1sigma) of < 1% is statistical and does not include systematic effects. We examine various systematic effects including collisional excitation of Hydrogen lines, ionization structure and temperature fluctuation effects, and underlying stellar HeI absorption, and conclude that combining all systematic effects, our Yp may be underestimated by ~ 2-4%. Taken at face value, our Yp implies a baryon-to-photon number ratio eta = 4.7x10^-10 and a baryon mass fraction Omega_b h^2_{100} = 0.017+/-0.005 (2sigma), consistent with the values obtained from deuterium and Cosmic Microwave Background measurements. Correcting Yp upward by 2-4% would make the agreement even better.

  13. Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

  14. Helium white dwarf in PSR J0751+1807; too cool, in PSR J1012+5307; too hot?

    E-Print Network [OSTI]

    Ene Ergma; Marek J. Sarna; Jelena Gerskevits-Antipova

    2000-10-11T23:59:59.000Z

    We discuss the cooling history of the low-mass, helium core white dwarfs in short orbital period millisecond pulsars PSR J0751+1807 and PSR J1012+5307. The revised cooling age estimated by Alberts et al. agrees with the age estimation for PSR J1012+5307, removing the discrepancy between the spin-down age and the cooling age. However, if we accept this model then the helium white dwarf in the binary pulsar system PSR J0751+1807 must be much hotter than is observed. We propose that this discrepancy may be resolved if, after detachment of the secondary star from its Roche lobe in PSR J0751+1807, the star loses its hydrogen envelope due to pulsar irradiation. When hydrogen burning stops, the white dwarf will cool down much more quickly than in the case of a thick hydrogen envelope with a hydrogen burning shell. We discuss several possibilities to explain different cooling histories of white dwarfs in both systems.

  15. Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet

    E-Print Network [OSTI]

    Nicolas Labrosse; Pierre Gouttebroze; Jean-Claude Vial

    2006-12-08T23:59:59.000Z

    We aim at studying the effect of radial motions on the spectrum emitted by moving prominences in the helium resonance lines and at facilitating the interpretation of observations, in order to improve our understanding of these dynamic structures. We develop our non-local thermodynamic equilibrium radiative transfer code formerly used for the study of quiescent prominences. The new numerical code is now able to solve the statistical equilibrium and radiative transfer equations in the non-static case by using velocity-dependent boundary conditions for the solution of the radiative transfer problem. This first study investigates the effects of different physical conditions (temperature, pressure, geometrical thickness) on the emergent helium radiation. The motion of the prominence plasma induces a Doppler dimming effect on the resonance lines of He I and He II. The velocity effects are particularly important for the He II 304 A line as it is mostly formed by resonant diffusion of incident radiation under prominence conditions. The He I resonance lines at 584 and 537 A also show some sensitivity to the motion of the plasma, all the more when thermal emission is not too important in these lines. We also show that it is necessary to consider partial redistribution in frequency for the scattering of the incident radiation. This set of helium lines offers strong diagnostic possibilities that can be exploited with the SOHO spectrometers and with the EIS spectrometer on board the Hinode satellite. The addition of other helium lines and of lines from other elements (in particular hydrogen) in the diagnostics will further enhance the strength of the method.

  16. An analysis of the impact of having uranium dioxide mixed in with plutonium dioxide

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    1998-10-21T23:59:59.000Z

    An assessment was performed to show the impact on airborne release fraction, respirable fraction, dose conversion factor and dose consequences of postulated accidents at the Plutonium Finishing Plant involving uranium dioxide rather than plutonium dioxide.

  17. The Past and Future of Detached Double White Dwarfs with Helium Donors

    E-Print Network [OSTI]

    Macias, Phillip J; Ramirez-Ruiz, Enrico

    2015-01-01T23:59:59.000Z

    We present a method for modeling the evolution of detached double white dwarf (DWD) binaries hosting helium donors from the end of the common envelope (CE) phase to the onset of Roche Lobe overflow (RLOF). This is achieved by combining detailed stellar evolution calculations of extremely low mass (ELM) helium WDs possessing hydrogen envelopes with the the orbital shrinking of the binary driven by gravitational radiation. We show that the consideration of hydrogen fusion in these systems is crucial, as a significant fraction ($\\approx$50%) of future donors are expected to still be burning when mass transfer commences. We apply our method to two detached eclipsing DWD systems, SDSS J0651+2844 and NLTT-11748, in order to demonstrate the effect that carbon-nitrogen-oxygen (CNO) flashes have on constraining the evolutionary history of such systems. We find that when CNO flashes are absent on the low mass WD ($M_{2}$ < $0.18 M_{\\odot}$), such as in NLTT-11748, we are able to self consistently solve for the donor...

  18. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  19. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  20. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  1. The helium fine-structure controversy

    E-Print Network [OSTI]

    Ingvar Lindgren

    2008-10-05T23:59:59.000Z

    There is presently disagreement between theory and experiment as well as between different theoretical calculations concerning the fine-structure splitting of the lowest P state of the neutral helium atom. We believe that we have found a minor error in the formulas used by Drake et al. (Can. J. Phys. 80, 1195 (2002)) in their calculations, and we may have an explanation how the error has occurred. To what extent this might resolve (part of) the discrepancy is not known at present.

  2. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  3. Putting the pressure on carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on carbon dioxide Released: March 26, 2014 Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

  4. SIMULATION OF CARBON DIOXIDE STORAGE APPLYING ...

    E-Print Network [OSTI]

    Capture and storage of Carbon dioxide in aquifers and reservoirs is one of the solutions to mitigate the greenhouse effect. Geophysical methods can be used to

  5. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  6. HYDROGEN IN GERMANIUM

    E-Print Network [OSTI]

    Haller, E.E.

    2011-01-01T23:59:59.000Z

    •^f-1? c^4--^ LBL-7996 HYDROGEN IN GERMANIUM E. E. HallerW-7405-ENG-48 LBL-7996 HYDROGEN IN GERMANIUM* E. E. Haller48. LBL-7996 Abstract Hydrogen is shown to form molecular

  7. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  8. Development of charcoal sorbents for helium cryopumping

    SciTech Connect (OSTI)

    Sedgley, D.W.; Tobin, A.G.

    1985-09-30T23:59:59.000Z

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. This study period evaluated charcoal particle size, bonding agent type and thickness, and substrate thickness. The optimum combination of charcoal, bond, and substrate was used to form a scaled-up panel for evaluation in the Tritium Systems Test Assembly (TSTA) at Los Alamos. The optimum combination is a 12 x 30 mesh coconut charcoal attached to a 0.48 cm thick copper substrate by a 0.015 cm thick silver phosphorus copper braze. A copper cement bond for attaching charcoal to a substrate was identified and tested. Helium pumping performance of this combination was comparable to that of the charcoal braze system. Environmental tests showed the charcoal's susceptibility to vacuum chamber contamination. Performance degradation followed exposure of ambient temperature charcoal to a vacuum for prolonged periods. Maintaining a liquid nitrogen-cooled shield between the charcoal and the source of contamination prevented this degradation. A combination of bake-out and LN shielding effected recovery of degraded performance.

  9. Measurement of Hydrogen Balmer Line Broadening and Thermal Power Balances of Noble Gas-Hydrogen Discharge Plasmas

    E-Print Network [OSTI]

    talyst atoms or ions which ionize at integer multiples of the potential energy of atomic hydrogen (St, He + , or Ar + ) caused an increase in power; whereas, no excess power was observed in the case of krypton which does not provide a reaction with a net enthalpy of a multiple of the potential energy of atomic hydrogen under these conditions. For a power input to the glow discharge of 110 W, the excess output power of mixtures of strontium with argon- hydrogen (95/5%), strontium with hydrogen, strontium with helium-hydrogen (95/5%), and argon-hydrogen (95/5%) was 75, 58, 50, and 28 W, respectively, based a comparison of the temperature rise of the cell with krypton-hydrogen mixture (95/5%) and krypton alone. The input power was varied to find conditions that resulted in the optimal output for the strontium- hydrogen plasma. At 136 W input, the excess power significantly increased to 184 W. These studies provide a useful comparison of catalysts for the optimization of the catal

  10. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J. (Wheat Ridge, CO)

    1993-01-01T23:59:59.000Z

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  11. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-01-01T23:59:59.000Z

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  12. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-07-01T23:59:59.000Z

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  13. In situ controlled modification of the helium density in single helium-filled nanobubbles

    SciTech Connect (OSTI)

    David, M.-L., E-mail: marie-laure.david@univ-poitiers.fr; Pailloux, F. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Alix, K.; Mauchamp, V.; Pizzagalli, L. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Couillard, M.; Botton, G. A. [Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Department of Materials Science and Engineering, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2014-03-28T23:59:59.000Z

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  14. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  15. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  16. Hydrogen Permeation Barrier Coatings

    SciTech Connect (OSTI)

    Henager, Charles H.

    2008-01-01T23:59:59.000Z

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  17. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  18. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

  19. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  20. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

  1. MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS Qiyang dependent Helium transport in finite geometries, including the simultaneous transient production of defects of Helium bubbles. I. INTRODUCTION Helium production and helium bubble evolution in neutron

  2. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  3. An Experimental Study of Cold Helium Dispersion in Air

    E-Print Network [OSTI]

    Chorowski, M; Riddone, G

    2002-01-01T23:59:59.000Z

    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a scale 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions.

  4. The helium trimer with soft-core potentials

    E-Print Network [OSTI]

    A. Kievsky; E. Garrido; C. Romero-Redondo; P. Barletta

    2011-01-10T23:59:59.000Z

    The helium trimer is studied using two- and three-body soft-core potentials. Realistic helium-helium potentials present an extremely strong short-range repulsion and support a single, very shallow, bound state. The description of systems with more than two helium atoms is difficult due to the very large cancellation between kinetic and potential energy. We analyze the possibility of describing the three helium system in the ultracold regime using a gaussian representation of a widely used realistic potential, the LM2M2 interaction. However, in order to describe correctly the trimer ground state a three-body force has to be added to the gaussian interaction. With this potential model the two bound states of the trimer and the low energy scattering helium-dimer phase shifts obtained with the LM2M2 potential are well reproduced.

  5. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect (OSTI)

    Holcomb, Cole; Guillochon, James; De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-07-01T23:59:59.000Z

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range between 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.

  6. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    E-Print Network [OSTI]

    Jianqin, Zhang; Zhuo, Zhang; Rui, Ge

    2015-01-01T23:59:59.000Z

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders. After purification, the purified helium has an impurity content of less than 5ppm.

  7. Helium preenrichment in the star-forming regions

    E-Print Network [OSTI]

    Leonid Chuzhoy

    2006-05-15T23:59:59.000Z

    We show that element diffusion can produce large fluctuations in the initial helium abundance of the star-forming clouds. Diffusion time-scale, which in stars is much larger than the Hubble time, can fall below 10^8 years in the neutral gas clouds dominated by collisionless dark matter or with dynamically important radiation or magnetic pressure. Helium diffusion may therefore explain the recent observations of globular clusters, which are inconsistent with initially homogeneous helium distribution.

  8. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01T23:59:59.000Z

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  9. Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003

    SciTech Connect (OSTI)

    Dresselhaus, M; Crabtree, G.; Buchanan, M.; Mallouk, T.; Mets, L.; Taylor, K.; Jena, P.; DiSalvo, F.; Zawodzinski, T.; Kung, H.; Anderson, I.S.; Britt, P.; Curtiss, L.; Keller, J.; Kumar, R.; Kwok, W.; Taylor, J.; Allgood, J.; Campbell, B.; Talamini, K.

    2004-02-01T23:59:59.000Z

    The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

  10. absorbing sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 158 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  11. amorphous titanium dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 177 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  12. acute sulphur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 82 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  13. addressing chlorine dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 103 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  14. Water and Carbon Dioxide Adsorption at Olivine Surfaces. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Carbon Dioxide Adsorption at Olivine Surfaces. Water and Carbon Dioxide Adsorption at Olivine Surfaces. Abstract: Plane-wave density functional theory (DFT) calculations were...

  15. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon...

  16. Haverford Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

  17. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Energy Savers [EERE]

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers SWRI Logo The Southwest Research...

  18. Carbon dioxide-assisted fabrication of highly uniform submicron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

  19. atmospheric sulphur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide CERN Preprints Summary: The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause...

  20. atmospheric sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide CERN Preprints Summary: The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause...

  1. Mixing, Enhanced Helium and Blue Tails in Globular Clusters

    E-Print Network [OSTI]

    V. Caloi

    2000-12-15T23:59:59.000Z

    We investigate the consequences of an increase in the envelope helium abundance of pre-helium flash red giants in globular clusters. Comparing predictions with the CM diagrams of a few crucial GC, one finds no evidence for a substantial increase in the surface helium content of HB members of these clusters, at least for objects in the RR Lyrae region or close to it. The possibility that the most peculiar giants belong to the asymptotic giant branch is discussed. The consequences of a delay in the helium flash are briefly examined.

  2. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs...

  3. ON QUANTIFICATION OF HELIUM EMBRITTLEMENT IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect (OSTI)

    Gelles, David S.

    2000-12-01T23:59:59.000Z

    Helium accumulation due to transmutation has long been considered a potential cause for embrittlement in ferritic/martensitic steels. Three Charpy impact databases involving nickel- and boron-doped alloys are quantified with respect to helium accumulation, and it is shown that all predict a very large effect of helium production on embrittlement. If these predictions are valid, use of Ferritic/Martensitic steels for Fusion first wall applications is highly unlikely. It is therefore necessary to reorient efforts regarding development of these steels for fusion applications to concentrate on the issue of helium embrittlement.

  4. Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...

    Open Energy Info (EERE)

    Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

  5. Hydrogen generation under visible light using nitrogen doped titania anodes

    SciTech Connect (OSTI)

    Lin, H.; Rumaiz, A.; Schulz, M.; Huang, C.P.; Sha, S. I.

    2010-06-16T23:59:59.000Z

    Hydrogen is among several energy sources that will be needed to replace the quickly diminishing fossil fuels. Free hydrogen is not available naturally on earth and the current processes require a fossil fuel, methane, to generate hydrogen. Electrochemical splitting of water on titania proposed by Fujishima suffers from low efficiency. The efficiency could be enhanced if full sun spectrum can be utilized. Using pulsed laser deposition technique we synthesized nitrogen doped titanium dioxide (TiO{sub 2-x}N{sub x}) thin films with improved visible light sensitivity. The photoactivity was found to be N concentration dependent. Hydrogen evolution was observed under visible light irradiation (wavelength > 390 nm) without the presence of any organic electron donor.

  6. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04T23:59:59.000Z

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  7. Carbon Dioxide for pH Control

    SciTech Connect (OSTI)

    Wagonner, R.C.

    2001-08-16T23:59:59.000Z

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  8. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  9. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  10. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  11. Triple Differential Cross sections and Nuclear Recoil in Two-Photon Double Ionization of Helium

    E-Print Network [OSTI]

    Horner, Daniel A.

    2008-01-01T23:59:59.000Z

    Two-Photon Double Ionization of Helium D. A. Horner, 1 C. W.photon double ionization of helium are calculated using theDouble ionization of the helium atom by two XUV photons in

  12. The Helium Cooling System and Cold Mass Support System for the MICE Coupling Solenoid

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    18, No. 2, LBNL-63592 The Helium Cooling System and Coldmass support system and helium cooling system are discussedc and ? = 420 mm III. THE HELIUM COOLING SYSTEM The coupling

  13. Cross sections for short pulse single and double ionization of helium

    E-Print Network [OSTI]

    Palacios, Alicia; Rescigno, Thomas N.; McCurdy, C. William

    2008-01-01T23:59:59.000Z

    ton double ionization of helium at 20 eV above threshold. 1single and double ionization of helium A. Palacios, 1 T. N.double ionization of helium. In particular it is shown how

  14. The Helium Cooling System and Cold Mass Support System for the MICE Coupling Solenoid

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    LBNL-63592 The Helium Cooling System and Cold Mass Supportsystem and helium cooling system are discussed in detail.420 mm III. THE HELIUM COOLING SYSTEM The coupling magnet is

  15. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  16. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  17. Alternatives for Helium-3 in Multiplicity Counters

    SciTech Connect (OSTI)

    Ely, James H.; Siciliano, Edward R.; Lintereur, Azaree T.; Swinhoe, Martyn T.

    2013-04-01T23:59:59.000Z

    Alternatives to helium-3 are being actively pursued due to the shortage and rising costs of helium-3. For safeguards applications, there are a number of ongoing investigations to find alternatives that provide the same capability in a cost-effective manner. One of the greatest challenges is to find a comparable alternative for multiplicity counters, since they require high efficiency and short collection or die-away times. Work has been progressing on investigating three commercially available alternatives for high efficiency multiplicity counters: boron trifluoride (BF3) filled proportional tubes, boron-lined proportional tubes, and lithium fluoride with zinc sulfide coated light guides. The baseline multiplicity counter used for the investigation is the Epithermal Neutron Multiplicity Counter with 121 helium-3 filled tubes at 10 atmosphere pressure, which is a significant capability to match. The primary tool for the investigation has been modeling and simulation using the Monte Carlo N-Particle eXtended (MCNPX) radiation transport program, with experiments to validate the models. To directly calculate the coincidence rates in boron-lined (and possibly other) detectors, the MCNPX code has been enhanced to allow the existing coincidence tally to be used with energy deposition rather than neutron capture reactions. This allows boron-lined detectors to be modeled more accurately. Variations of tube number and diameter along with variations in the amount of inter-tube moderator have been conducted for the BF3 and boron-lined cases. Tube pressure was investigated for BF3, up to two atmospheres, as well as optimal boron thickness in the boron-lined tubes. The lithium fluoride was modeled as sheets of material with light guides in between, and the number and thickness of the sheets investigated. The amount of light guide, which in this case doubles as a moderator, was also optimized. The results of these modeling and simulation optimization investigations are described and results presented.

  18. 8. S. Perez, H. Schmiedel, and B. Schramm, "Second iteraction virial coefficients of the noble gas-hydrogen mixtures," Z. Phys. Chem., 123, No. I, 35-38 (1980).

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    1980-01-01T23:59:59.000Z

    of volume and pressure effects of mixing in dense gas solutions. Helium-carbon dioxide system," Trudy Mosk. Kuznetsov, and V. F. Bondarenko, "Experimental investigation of the thermodynamic properties of binary gas properties of the components. The error in the coefficients can be as large as 10% for the systems studied

  19. Polarized Helium to Image the Lung

    E-Print Network [OSTI]

    Leduc, M; Leduc, Mich\\`{e}le; Nacher, Pierre-Jean

    2006-01-01T23:59:59.000Z

    The main findings of the european PHIL project (Polarised Helium to Image the Lung) are reported. State of the art optical pumping techniques for polarising ^3He gas are described. MRI methodological improvements allow dynamical ventilation images with a good resolution, ultimately limited by gas diffusion. Diffusion imaging appears as a robust method of lung diagnosis. A discussion of the potential advantage of low field MRI is presented. Selected PHIL results for emphysema are given, with the perspectives that this joint work opens up for the future of respiratory medicine.

  20. Production of thorium-229 using helium nuclei

    DOE Patents [OSTI]

    Mirzadeh, Saed (Knoxville, TN) [Knoxville, TN; Garland, Marc Alan (Knoxville, TN) [Knoxville, TN

    2010-12-14T23:59:59.000Z

    A method for producing .sup.229Th includes the steps of providing .sup.226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form .sup.229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1.times.10.sup.13 n s.sup.-1cm.sup.-2. .sup.228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form .sup.229Th. Using .sup.230Th as a target material, .sup.229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.

  1. Classical Transitions in Superfluid Helium 3

    E-Print Network [OSTI]

    I-Sheng Yang; S. -H. Henry Tye; Benjamin Shlaer

    2011-10-10T23:59:59.000Z

    We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are shown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.

  2. Lamb shift in muonic helium ion

    E-Print Network [OSTI]

    A. P. Martynenko

    2014-07-09T23:59:59.000Z

    The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1379.028 meV can be considered as a reliable estimate for the comparison with experimental data.

  3. Kosterlitz-Thouless Transition in Helium Films

    E-Print Network [OSTI]

    Agnolet, Glenn; MCQUEENEY, DF; REPPY, JD.

    1989-01-01T23:59:59.000Z

    and the Materials Science Center, Cornell University, Ithaca, Xetv York 14853 (Received 4 November 1988) The superAuid response of helium Alms with transition temperatures ranging from 70 mK to 0.5 K has been studied using a torsional oscillator technique. A...-Thouless theory. Comparisons with the dynamic theory reveal nonuniversal behavior as a function of coverage. INTRODUCTION The superAuid phase transition in thin He films on planar surfaces is generally acknowledged to be a realiza- tion of a Kosterlitz...

  4. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22T23:59:59.000Z

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  5. Study of Impurity-Helium Condensates Formed by Multishell Nanoclusters

    E-Print Network [OSTI]

    Mao, Shun

    2014-12-17T23:59:59.000Z

    Impurity-helium condensates (IHCs) are porous gel-like materials created by injecting a mixed beam of helium gas and an impurity gas into super fluid 4He. Van der Waals forces lead to the formation of clusters of impurities each surrounded by a thin...

  6. Helium nanobubble release from Pd surface: An atomic simulation

    SciTech Connect (OSTI)

    Wang, Liang; Hu, Wangyu; Deng, Huiqiu; Xiao, Shifang; Yang, Jianyu; Gao, Fei; Heinisch, Howard L.; Hu, Shilin

    2011-02-14T23:59:59.000Z

    Molecular dynamic simulations of helium atoms escaping from a helium-filled nano-bubble near the surface of crystalline palladium reveal unexpected behavior. Significant deformation and cracking near the helium bubble occur initially, and then a channel forms between the bubble and the surface, providing a pathway for helium atoms to propagate towards the surface. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. The present simulation results show that, near the palladium surface, there is a helium-bubble-free zone, or denuded zone, with a typical thickness of about 3.0 nm. Combined with experimental measurements and continuum-scale evolutionary model predictions, the present atomic simulations demonstrate that the thickness of the denuded zone, which contains a low concentration of helium atoms, is somewhat larger than the diameter of the helium bubbles in the metal tritide. Furthermore, a relationship between the tensile strength and thickness of metal film is also determined.

  7. Diss. ETH Nr. 10714 Helium und Tritium als Tracer fr

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    Diss. ETH Nr. 10714 Helium und Tritium als Tracer für physikalische Prozesse in Seen ABHANDLUNG zur Zürich 1994 #12;Kurzfassung ix Kurzfassung Der radioaktive Zerfall von 3H (Tritium) zu 3He mit einer Fluide aus dem Erdinnern. Helium und Tritium werden massenspektrometrisch analysiert. Im Rahmen dieser Ar

  8. Heterogeneous cavitation in liquid helium 4 near a glass plate

    E-Print Network [OSTI]

    Caupin, Frédéric

    Heterogeneous cavitation in liquid helium 4 near a glass plate X. Chavanne, S. Balibar and F wave to study cavitation, i.e. the nucleation of bubbles, in liquid helium 4 near a clean glass plate and threshold pressures in the range 0 to -3 bar, significantly less negative than for homogeneous cavitation

  9. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15T23:59:59.000Z

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

  10. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, Vladimir (Skokie, IL)

    1986-01-01T23:59:59.000Z

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  11. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, V.

    1984-06-13T23:59:59.000Z

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  12. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  13. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  14. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  15. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  16. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

  17. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01T23:59:59.000Z

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  18. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C., Ann Arbor, MI 48109-2125, USA Abstract Combustion synthesis of tin dioxide (SnO2) was studied using: Combustion synthesis; Nanoparticles; Tin dioxide; Metals 1. Introduction Tin dioxide (SnO2) is the most

  19. Displacement of crude oil by carbon dioxide

    E-Print Network [OSTI]

    Omole, Olusegun

    1980-01-01T23:59:59.000Z

    by Carbon Dioxide (December 1980) Olusegun Omole, B. S. , University of Ibadan, Nigeria Chairman of Advisory Committee: Dr. J. S. Osoba It has long been recognized that carbon dioxide could be used as an oil recovery agent. Both laboratory and field...- tion. Crude oil from the Foster Field in West Texas, of 7 cp and 34 API, 0 was used as the oil in place. Oil displacements were conducted at pres- sures between 750 psig and 1800 ps1g, and at a temperature of 110 F. 0 Carbon dioxide was injected...

  20. EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  1. Solar-assisted hydrogen generation by photoelectrocatalysis. Annual report, November 1, 1986-October 31, 1987

    SciTech Connect (OSTI)

    Sammells, A.F.; Cook, R.L.; Wessels, B.W.

    1987-11-07T23:59:59.000Z

    Carbon dioxide was electrochemically reduced at high rates and Faradaic efficiencies using in-situ deposited copper electrodes in CO/sub 2/ saturated potassium bicarbonate. Both methane and ethylene were found as reduction products. At a current density of 8.3mA/sq. cm. the cumulative yield for those two species was essentially Faradaic, and at 25mA/sq. cm. 79%. Carbon dioxide reduction did not appear to be a direct electrochemical process, but proceeded through the reaction of weakly adsorbed carbon dioxide with electrochemically generated chemisorbed hydrogen at the in situ deposited copper surface. Subsequent hydrogenation of this reduced species by chemisorbed hydrogen probably led to bridged CO groups which could either desorb to give carbon monoxide or become further reduced to give carbidic carbon available for subsequent hydrogenation to yield methane and ethylene. Carbon dioxide reduction to gaseous hydrocarbons was also promoted using solid polymer electrolyte cells, where the reaction occurred at less cathodic potentials than found in aqueous electrolyte.

  2. Dynamic viscosity estimation of hydrogen sulfide using a predictive scheme based on molecular dynamics.

    E-Print Network [OSTI]

    Boyer, Edmond

    natural gases containing hydrogen sulfide H2S and/or carbon dioxide CO2) are often encountered properties are very scarce because of the very high toxicity of H2S which leads to very complicated safety procedures for the experimentalists. This is especially true for the high pressures and temperatures

  3. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  4. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

  5. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  6. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  7. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  8. On the helium flash in low-mass Population III Red Giant stars

    E-Print Network [OSTI]

    H. Schlattl; S. Cassisi; M. Salaris; A. Weiss

    2001-05-23T23:59:59.000Z

    We investigate the evolution of initially metal-free, low-mass Red Giant stars through the He core flash at the tip of the Red Giant Branch. The low entropy barrier between the helium- and hydrogen-rich layers enables a penetration of the helium flash driven convective zone into the inner tail of the extinguishing H-burning shell. As a consequence, protons are mixed into high-temperature regions triggering a H-burning runaway. The subsequent dredge-up of matter processed by He and H burning enriches the stellar surface with large amounts of helium, carbon and nitrogen. Extending previous results by Hollowell et al. (1990) and Fujimoto et al. (2000), who claimed that the H-burning runaway is an intrinsic property of extremely metal-poor low-mass stars, we found that its occurrence depends on additional parameters like the initial composition and the treatment of various physical processes. We perform some comparisons between predicted surface chemical abundances and observational measurements for extremely metal-deficient stars. As in previous investigations, our results disclose that although the described scenario provides a good qualitative agreement with observations, considerable discrepancies still remain. They may be due to a more complex evolutionary path of `real' stars, and/or some shortcomings in current evolutionary models. In addition, we analyze the evolutionary properties after the He core flash, during both the central and shell He-burning phases, allowing us to deduce some interesting differences between models whose Red Giant Branch progenitor has experienced the H-flash and canonical models. In particular, the Asymptotic Giant Branch evolution of extremely metal-deficient stars and the occurrence of thermal pulses are strongly affected by the previous RGB evolution.

  9. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOE Patents [OSTI]

    May, Robert (Virginia Beach, VA)

    2008-03-11T23:59:59.000Z

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  10. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  11. Regulating carbon dioxide capture and storage

    E-Print Network [OSTI]

    De Figueiredo, Mark A.

    2007-01-01T23:59:59.000Z

    This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

  12. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  13. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01T23:59:59.000Z

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  14. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  15. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18T23:59:59.000Z

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  16. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    SciTech Connect (OSTI)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30T23:59:59.000Z

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional He is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.

  17. Searching for dark matter with helium atom

    E-Print Network [OSTI]

    Imre Ferenc Barna

    2006-08-10T23:59:59.000Z

    With the help of the boost operator we can model the interaction between a weakly interacting particle(WIMP) of dark matter(DAMA) and an atomic nuclei. Via this "kick" we calculate the total electronic excitation cross section of the helium atom. The bound spectrum of He is calculated through a diagonalization process with a configuration interaction (CI) wavefunction built up from Slater orbitals. All together 19 singly- and doubly-excited atomic sates were taken with total angular momenta of L=0,1 and 2. Our calculation may give a rude estimation about the magnitude of the total excitation cross section which could be measured in later scintillator experiments. The upper limit of the excitation cross section is $9.7\\cdot 10^{-8}$ barn.

  18. Helium solubility in SON68 nuclear waste glass

    SciTech Connect (OSTI)

    Fares, Toby; Peuget, Sylvain; Bouty, Olivier; Broudic, Veronique; Maugeri, Emilio; Bes, Rene; Jegou, Christophe [CEA, DEN, DTCD SECM LMPA, F-30207 Marcoule, Bagnols Sur Cez, (France); Chamssedine, Fadel; Sauvage, Thierry [CNRS, CEMHTI, F-245071 Orleans, (France); Deschanels, Xavier [LNAR, Marcoule Inst Separat Chem, F-30207 Bagnols Sur Ceze, (France)

    2012-12-15T23:59:59.000Z

    Helium behavior in a sodium borosilicate glass (SON68) dedicated to the immobilization of high-level nuclear waste is examined. Two experimental approaches on nonradioactive glass specimens are implemented: pressurized helium infusion experiments and {sup 3}He ion implantation experiments. The temperature variation of helium solubility in SON68 glass was determined and analyzed with the harmonic oscillator model to determine values of the energy of interaction E(0) at the host sites (about -4000 J/mol), the vibration frequency (about 1.7 x 10{sup 11} s{sup -1}), and the density of solubility sites (2.2 x 10{sup 21} sites cm{sup -3}). The implantation experiments show that a non diffusive transport phenomenon (i.e., athermal diffusion) is involved in the material when the helium concentration exceeds 2.3 x 10{sup 21} He cm{sup -3}, and thus probably as soon as it exceeds the density of solubility sites accessible to helium in the glass. We propose that this transport mechanism could be associated with the relaxation of the stress gradient induced by the implanted helium profile, which is favored by the glass damage. Microstructural characterization by TEM and ESEM of glass specimens implanted with high helium concentrations showed a homogeneous microstructure free of bubbles, pores, or cracking at a scale of 10 nm. (authors)

  19. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  20. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  1. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  2. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31T23:59:59.000Z

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  3. Primordial Helium And the Cosmic Background Radiation

    E-Print Network [OSTI]

    Gary Steigman

    2010-04-29T23:59:59.000Z

    The products of primordial nucleosynthesis and the cosmic microwave background (CMB) photons are relics from the early evolution of the Universe whose observations probe the standard model of cosmology and provide windows on new physics beyond the standard models of cosmology and of particle physics. In the standard, hot big bang cosmology, long before any stars have formed a significant fraction (~25%) of the baryonic mass in the Universe should be in the form of helium-4 nuclei. Since current 4He observations are restricted to low redshift regions where stellar nucleosynthesis has occurred, observations of high redshift, prestellar 4He would constitute a fundamental test of the hot, big bang cosmology. At recombination, long after big bang nucleosynthesis (BBN) has ended, the temperature anisotropy spectrum imprinted on the CMB depends on the 4He abundance through its connection to the electron density and the effect of the electron density on Silk damping. Since the relic abundance of 4He is relatively insensitive to the universal density of baryons, but is sensitive to a non-standard, early Universe expansion rate, the primordial mass fraction of 4He, Yp, offers a test of the consistency of the standard models of BBN and the CMB and, provides constraints on non-standard physics. Here, the WMAP seven year data (supplemented by other CMB experiments), which lead to an indirect determination of Yp at high redshift, are compared to the BBN predictions and to the independent, direct observations of 4He in low redshift, extragalactic HII regions. At present, given the very large uncertainties in the CMB-determined primordial 4He abundance (as well as for the helium abundances inferred from H II region observations), any differences between the BBN predictions and the CMB observations are small, at a level < 1.5 sigma.

  4. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  5. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  6. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  7. The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method

    E-Print Network [OSTI]

    Zhao, Lin

    2013-01-01T23:59:59.000Z

    synthesis of graphene-based titanium dioxide nanocompositesLos Angeles The Fabrication of Titanium Dioxide Based AnodeTHE THESIS The Fabrication of Titanium Dioxide Based Anode

  8. Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2013-01-01T23:59:59.000Z

    the physical properties of carbon dioxide, compare thei.e. , Physical Properties of Carbon Dioxide Z ? PV ? 1 ?Thermophysical Properties of Carbon Dioxide, Publishing

  9. Flexible corrugated cryotransferlines, long term experience at JET and the experience with supercritical helium flow conditions

    E-Print Network [OSTI]

    Obert, W

    1996-01-01T23:59:59.000Z

    Flexible corrugated cryotransferlines, long term experience at JET and the experience with supercritical helium flow conditions

  10. Physics 216 Spring 2012 The Variational Computation of the Ground State Energy of Helium

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 216 Spring 2012 The Variational Computation of the Ground State Energy of Helium I. Introduction to the variational computation The Hamiltonian for the two-electron system of the helium atom is state energy of the helium atom. The ground state wave function of the helium atom is of the form: 1 2

  11. Physics 139B Fall 2009 The Variational Computation of the Ground State Energy of Helium

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 139B Fall 2009 The Variational Computation of the Ground State Energy of Helium I. Introduction to the variational computation The Hamiltonian for the two-electron system of the helium atom is state energy of the helium atom. The ground state wave function of the helium atom is of the form: 1 2

  12. Flexible Corrugated Cryotransferlines, Long Term Experience at JET and the Experience with Supercritical Helium Flow Conditions

    E-Print Network [OSTI]

    Flexible Corrugated Cryotransferlines, Long Term Experience at JET and the Experience with Supercritical Helium Flow Conditions

  13. Recombination of He+ in a pulsed helium plasma

    E-Print Network [OSTI]

    Chang, Cheng-shu

    1967-01-01T23:59:59.000Z

    -body Recombinatior Rate Coefficient A for Helium Plasma at Pressure 5 and 6 mm Hg Calculs. ted Values of Electron Temperature Te and. 'Density Ne and the T1"ree-body Recombination Rate Coefficient A for Helium Plasma at Pressure 7 and 8 mm Hg 38 1 ?-. 1 i o.... . ! o. ' T. inc foe Hc '. ior. . 7 i, "1 2 0 i m'" Hg 7. j':lectron Vcm'ocr. . tur= T and Electron Dc!is i. ty a 'h, '" c L:i on o'* Time for Helium Plasma I! . J. r 4! i:lm ii)& ~ ~ ~ ~ ~ ~ 8. Electron Tempo. ature Te and Electron Density N as a...

  14. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  15. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  16. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  17. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  18. The confined hydrogen atom with a moving nucleus

    E-Print Network [OSTI]

    Francisco M. Fernandez

    2010-01-21T23:59:59.000Z

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first--order perturbation theory and by a more accurate variational approach. We show that it is greater than the one for the case in which the nucleus is clamped at the center of the box. Present approach resembles the well-known treatment of the helium atom with clamped nucleus.

  19. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  20. NEWS & VIEWS synchrotron or helium-lamp studies. But

    E-Print Network [OSTI]

    Loss, Daniel

    NEWS & VIEWS synchrotron or helium-lamp studies. But the low energy of the laser photons raises that of a conventional metal. The effects of projection have led to detailed quantitative insights into the properties

  1. Ab initio study of helium behavior in titanium tritides

    SciTech Connect (OSTI)

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01T23:59:59.000Z

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the ?-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in ?-phase TiT1.5[100].

  2. Helium Isotopes in Geothermal and Volcanic Gases of the Western...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium Isotopes in Geothermal and Volcanic Gases of the Western United States, II. Long...

  3. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A. [JLAB; Creel, Jonathan D. [JLAB; Dixon, Kelly d. [JLAB; Ganni, Venkatarao [JLAB; Martin, Floyd D. [JLAB; Norton, Robert O. [JLAB; Radovic, Sasa [JLAB

    2014-01-01T23:59:59.000Z

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  4. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search OpenEI Reference LibraryAdd...

  5. Regional And Local Trends In Helium Isotopes, Basin And Range...

    Open Energy Info (EERE)

    And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Jump to: navigation, search OpenEI Reference LibraryAdd...

  6. THE POPULATION OF HELIUM-MERGER PROGENITORS: OBSERVATIONAL PREDICTIONS

    SciTech Connect (OSTI)

    Fryer, Chris L. [CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Belczynski, Krzysztof; Bulik, Tomasz [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland)] [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thoene, Christina [IAA-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain)] [IAA-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Ellinger, Carola [Department of Physics, University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019 (United States)] [Department of Physics, University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019 (United States)

    2013-02-20T23:59:59.000Z

    The helium-merger gamma-ray burst (GRB) progenitor is produced by the rapid accretion onto a compact remnant (neutron star or black hole) when it undergoes a common envelope inspiral with its companion's helium core. This merger phase produces a very distinct environment around these outbursts and recent observations suggest that, in some cases, we are detecting the signatures of the past merger in the GRB afterglow. These observations allow us, for the first time, to study the specific features of the helium-merger progenitor. In this paper, we couple population synthesis calculations to our current understanding of GRB engines and common envelope evolution to make observational predictions for the helium-merger GRB population. Many mergers do not produce GRB outbursts and we discuss the implications of these mergers with the broader population of astrophysical transients.

  7. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of South America; it supplies water to more than 15 million people. Scientists found helium pools in this aquifer and is released to the atmosphere when the water reaches the...

  8. Etching of Graphene Devices with a Helium Ion Beam

    E-Print Network [OSTI]

    Baugher, Britton William Herb

    We report on the etching of graphene devices with a helium ion beam, including in situ electrical measurement during lithography. The etching process can be used to nanostructure and electrically isolate different regions ...

  9. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A. [Auburn Univ., AL (United States). Dept. of Materials Engineering; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1992-12-31T23:59:59.000Z

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  10. Helium bubble distributions in reactor tank repair specimens

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01T23:59:59.000Z

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  11. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  12. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  13. Helium-3/Helium-4 Ratios in Soil Gas as an Indicator of Tritium Contamination Near the 618-11 Burial Ground, Hanford Site, Washington

    SciTech Connect (OSTI)

    Olsen, Khris B.; Dresel, P. Evan; Evans, J. C.; Poreda, Robert; Shin, Jang Soo

    2003-10-01T23:59:59.000Z

    This paper discusses how Pacific Northwest National Laboratory sampled and analyzed soil gas for helium-3 and helium-4 concentrations from the vicinity of the 618-11 burial ground.

  14. Trace determination of lead by helium-4 activation analysis 

    E-Print Network [OSTI]

    Vargas Bernal, Maria E.

    1984-01-01T23:59:59.000Z

    TRACE DETERMINATION OF LEAD BY HELIUM-4 ACTIVATION ANALYSIS A Thesis by MARIA E. VARGAS BERNAL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1984 Major Subject: Chemistry TRACE DETERMINATION OF LEAD BY HELIUM-4 ACTIVATION ANALYSIS A Thesis by MARIA E. VARGAS BERNAL Approved as to style and format by: Emile A. Schweikert (Chairman of Committee) Marvin W. Rowe (Member) Gerald A. Sc...

  15. Trace determination of lead by helium-4 activation analysis

    E-Print Network [OSTI]

    Vargas Bernal, Maria E.

    1984-01-01T23:59:59.000Z

    TRACE DETERMINATION OF LEAD BY HELIUM-4 ACTIVATION ANALYSIS A Thesis by MARIA E. VARGAS BERNAL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1984 Major Subject: Chemistry TRACE DETERMINATION OF LEAD BY HELIUM-4 ACTIVATION ANALYSIS A Thesis by MARIA E. VARGAS BERNAL Approved as to style and format by: Emile A. Schweikert (Chairman of Committee) Marvin W. Rowe (Member) Gerald A. Sc...

  16. Possible stimulation of nuclear alpha-decay by superfluid helium

    E-Print Network [OSTI]

    A. L. Barabanov

    2009-09-03T23:59:59.000Z

    It is suggested that superfluid helium (condensate of 4-He atoms) may stimulate nuclear alpha-decay in a situation when an alpha-emitter moves through superfluid helium with fine-tuned velocity, so that the backward-emitted alpha-particle is at rest in the laboratory frame. It is shown that the probability of stimulated alpha-decay in this case may be sizable enough to be detected.

  17. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01T23:59:59.000Z

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  18. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect (OSTI)

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0033 (Japan); Kanekiyo, T. [Hitachi Plant Technologies, Ltd., Toshima-ku, Tokyo 170-8466 (Japan); Morita, S. [Hitachi Plant Mechanics Co., Ltd., Kudamatsu, Yamaguchi 744-0061 (Japan)

    2014-01-29T23:59:59.000Z

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  19. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

  20. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  1. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01T23:59:59.000Z

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  2. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. Helium-3/Helium-4 Ratios in Soil Gas as an Indicator of Tritium Contamination Near the 618-11 Burial Ground, Hanford Site, Washington

    SciTech Connect (OSTI)

    Olsen, Khris B.; Dresel, P Evan; Evans, J. C.; Poreda, Robert

    2004-10-09T23:59:59.000Z

    Pacific Northwest National Laboratory sampled and analyzed soil gas for helium-3 and helium-4 concentrations from the vicinity of the 618-11 burial ground. The results of the measurement of helium isotopes in soil gas provided a rapid and cost-effective technique to define the shape and extent of tritium contamination from the 618-11 burial ground.

  4. Classical Helium Atom with Radiation Reaction

    E-Print Network [OSTI]

    G. Camelio; A. Carati; L. Galgani

    2011-11-24T23:59:59.000Z

    We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero--dipole manifold, that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time--evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  5. Anti-helium from Dark Matter annihilations

    E-Print Network [OSTI]

    Marco Cirelli; Nicolao Fornengo; Marco Taoso; Andrea Vittino

    2014-10-21T23:59:59.000Z

    Galactic Dark Matter (DM) annihilations can produce cosmic-ray anti-nuclei via the nuclear coalescence of the anti-protons and anti-neutrons originated directly from the annihilation process. Since anti-deuterons have been shown to offer a distinctive DM signal, with potentially good prospects of detection in large portions of the DM-particle parameter space, we explore here the production of heavier anti-nuclei, specifically anti-helium. Even more than for anti-deuterons, the DM-produced anti-He flux can be mostly prominent over the astrophysical anti-He background at low kinetic energies, typically below 3-5 GeV/n. However, the larger number of anti-nucleons involved in the formation process makes the anti-He flux extremely small. We therefore explore, for a few DM benchmark cases, whether the yield is sufficient to allow for anti-He detection in current-generation experiments, such as AMS-02. We account for the uncertainties due to the propagation in the Galaxy and to the uncertain details of the coalescence process, and we consider the constraints already imposed by anti-proton searches. We find that only for very optimistic configurations it might be possible to achieve detection with current generation detectors. We estimate that, in more realistic configurations, an increase in experimental sensitivity at low-kinetic energies of about a factor of 500-1000 would allow to start probing DM through the rare cosmic anti-He production.

  6. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  7. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30T23:59:59.000Z

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

  8. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  9. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01T23:59:59.000Z

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  10. Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

  11. Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)

    Broader source: Energy.gov [DOE]

    This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

  12. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 This document summarizes the progress of...

  13. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  14. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  15. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  16. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  17. Do Magnetic Fields Prevent Hydrogen from Accreting onto Cool Metal-line White Dwarf Stars?

    E-Print Network [OSTI]

    S. Friedrich; S. Jordan; D. Koester

    2004-10-21T23:59:59.000Z

    It is generally assumed that metals detected in the spectra of a few cool white dwarfs cannot be of primordial origin and must be accreted from the interstellar medium. However, the observed abundances of hydrogen, which should also be accreted from the interstellar medium, are lower than expected from metal accretion. Magnetic fields are thought to be the reason for this discrepancy. We have therefore obtained circular polarization spectra of the helium-rich white dwarfs GD40 and L745-46A, which both show strong metal lines as well as hydrogen. Whereas L745-46A might have a magnetic field of about -6900 G, which is about two times the field strength of 3000G necessary to repell hydrogen at the Alfen radius, only an upper limit for the field strength of GD40 of 4000G (with 99% confidence) can be set which is far off the minimum field strength of 144000G to repell hydrogen.

  18. Helium gas bubble trapped in liquid helium in high magnetic field

    SciTech Connect (OSTI)

    Bai, H., E-mail: bai@magnet.fsu.edu; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States)

    2014-03-31T23:59:59.000Z

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32?T, 32?mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T{sup 2}/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32?T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40?mm and an outer diameter of 140?mm was fabricated and tested in a resistive magnet providing a background field of 15?T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5?T at a current of 200?A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  19. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect (OSTI)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)] [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2013-11-15T23:59:59.000Z

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  20. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  1. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion

    E-Print Network [OSTI]

    J. M. Fontenla; E. H. Avrett; R. Loeser

    2001-09-24T23:59:59.000Z

    In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.

  3. Continuum-scale Modeling of Hydrogen and Helium Bubble Growth in Metals |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact Us

  4. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  5. Department of Energy - Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

  6. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  7. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  8. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16T23:59:59.000Z

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  9. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  10. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  11. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  12. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  13. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  14. Designed amyloid fibers as materials for selective carbon dioxide capture

    E-Print Network [OSTI]

    Designed amyloid fibers as materials for selective carbon dioxide capture Dan Lia,b,c,1 , Hiroyasu demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence

  15. Glutamate Surface Speciation on Amorphous Titanium Dioxide and

    E-Print Network [OSTI]

    Sverjensky, Dimitri A.

    Glutamate Surface Speciation on Amorphous Titanium Dioxide and Hydrous Ferric Oxide D I M I T R I (HFO) and titanium dioxide exhibit similar strong attachment of many adsorbates including biomolecules on amorphous titanium dioxide. The results indicate that glutamate adsorbs on HFO as a deprotonated divalent

  16. Nanostructured Tin Dioxide Materials for Gas Sensor Applications

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    CHAPTER 30 Nanostructured Tin Dioxide Materials for Gas Sensor Applications T. A. Miller, S. D) levels for some species. Tin dioxide (also called stannic oxide or tin oxide) semi- conductor gas sensors undergone extensive research and development. Tin dioxide (SnO2) is the most important material for use

  17. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    E-Print Network [OSTI]

    Lisal, Martin

    Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations C.M. COLINAa,b, *, C and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based: Fluctuations; Carbon dioxide; 2CLJQ; Joule­Thomson coefficient; Speed of sound INTRODUCTION Simulation methods

  18. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30T23:59:59.000Z

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  19. Chukwuemeka I. Okoye Carbon Dioxide Solubility and Absorption Rate in

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Copyright by Chukwuemeka I. Okoye 2005 #12;Carbon Dioxide Solubility and Absorption Rate _______________________ Nicholas A. Peppas #12;Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O for. #12;iii Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O

  20. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  1. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  2. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  3. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  4. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  5. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  6. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  7. Carbon Dioxide Corrosion: Modelling and Experimental Work

    E-Print Network [OSTI]

    Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

  8. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  9. Carbon Dioxide Corrosion and Inhibition Studies

    E-Print Network [OSTI]

    Petta, Jason

    · Corrosion inhibition very important in the oil industry · Film forming inhibitors containing nitrogenCarbon Dioxide Corrosion and Inhibition Studies Kristin Gilida #12;Outline · Background = Zreal + Zim Rp 1/Corr Rate #12;Tafel · Measures corrosion rate directly · Measures iCORR from A and C

  10. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  11. Asteroseismic determination of helium abundance in stellar envelopes

    E-Print Network [OSTI]

    Sarbani Basu; Anwesh Mazumdar; H. M Antia; Pierre Demarque

    2004-02-15T23:59:59.000Z

    Intermediate degree modes of the solar oscillations have previously been used to determine the solar helium abundance to a high degree of precision. However, we cannot expect to observe such modes in other stars. In this work we investigate whether low degree modes that should be available from space-based asteroseismology missions can be used to determine the helium abundance, Y, in stellar envelopes with sufficient precision. We find that the oscillatory signal in the frequencies caused by the depression in \\Gamma_1 in the second helium ionisation zone can be used to determine the envelope helium abundance of low mass main sequence stars. For frequency errors of 1 part in 10^4, we expect errors \\sigma_Y in the estimated helium abundance to range from 0.03 for 0.8M_sun stars to 0.01 for 1.2M_sun stars. The task is more complicated in evolved stars, such as subgiants, but is still feasible if the relative errors in the frequencies are less than 10^{-4}.

  12. Materials Solutions for Hydrogen Delivery in Pipelines

    SciTech Connect (OSTI)

    Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

    2013-01-02T23:59:59.000Z

    The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  14. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  15. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03T23:59:59.000Z

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  16. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  17. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  18. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  19. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31T23:59:59.000Z

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

  20. Hydrogen Delivery- Current Technology

    Broader source: Energy.gov [DOE]

    Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

  1. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  2. August 2006 Hydrogen Program

    E-Print Network [OSTI]

    after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

  3. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  4. The selective adsorption of hydrogen sulfide from natural gas streams

    E-Print Network [OSTI]

    Fails, James Clayton

    1959-01-01T23:59:59.000Z

    of hydrogen sulfide. However, with its larger capillaries it also adsorbs more carbon dioxide. The Molecular S1eve f15-X is a new modificat1on of the sodium-substituted alumina-silicate. It approaches a cubic crystal. Details have not been released... act. alumina) + 90oF 80 +001 0 ' 0016 Atmospheric Pressure Tests on Activated Alumina (F-1) 26 42 +013 0. 094 0@0072 0 ' 14 e0097 ~ 0090 ~ 025 . 014 ~ 033 ~ 037 ~ 011 F 011 +Silica gel type adsorbent with modified act. alumina added. (See...

  5. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  6. Focal depth measurement of scanning helium ion microscope

    SciTech Connect (OSTI)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp [Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Itoh, Hiroshi; Wang, Chunmei [Active State Technology Research Group, Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Umezono 1-Chome, Tsukuba, Ibaraki 305-8568 (Japan); Zhang, Han; Fujita, Daisuke [Nano Characterization Unit, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-07-14T23:59:59.000Z

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  7. Fast production of Bose-Einstein condensates of metastable Helium

    E-Print Network [OSTI]

    Bouton, Q; Hoendervanger, A L; Nogrette, F; Aspect, A; Westbrook, C I; Clément, D

    2015-01-01T23:59:59.000Z

    We report on the Bose-Einstein condensation of metastable Helium-4 atoms using a hybrid approach, consisting of a magnetic quadrupole and a crossed optical dipole trap. In our setup we cross the phase transition with 2x10^6 atoms, and we obtain pure condensates of 5x10^5 atoms in the optical trap. This novel approach to cooling Helium-4 provides enhanced cycle stability, large optical access to the atoms and results in production of a condensate every 6 seconds - a factor 3 faster than the state-of-the-art. This speed-up will dramatically reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable Helium to be detected individually.

  8. Spin-based quantum computing using electrons on liquid helium

    E-Print Network [OSTI]

    S. A. Lyon

    2006-11-17T23:59:59.000Z

    Numerous physical systems have been proposed for constructing quantum computers, but formidable obstacles stand in the way of making even modest systems with a few hundred quantum bits (qubits). Several approaches utilize the spin of an electron as the qubit. Here it is suggested that the spin of electrons floating on the surface of liquid helium will make excellent qubits. These electrons can be electrostatically held and manipulated much like electrons in semiconductor heterostructures, but being in a vacuum the spins on helium suffer much less decoherence. In particular, the spin orbit interaction is reduced so that moving the qubits with voltages applied to gates has little effect on their coherence. Remaining sources of decoherence are considered and it is found that coherence times for electron spins on helium can be expected to exceed 100 s. It is shown how to obtain a controlled-NOT operation between two qubits using the magnetic dipole-dipole interaction.

  9. Helium and mercury in the central Seward Peninsula

    SciTech Connect (OSTI)

    Wescott, E.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    The central Seward Peninsula, Alaska, has one Known Geothermal Resource Area (KGRA) at Pilgrim Springs, and has recent volcanic flows, fault systems, topographic and tectonic features which can be explained by a rift model. As part of a geothermal reconnaissance of the area we used helium and mercury concentrations in soil as indicators of geothermal resources. The largest helium concentrations were found in the vicinity of the Pilgrims Springs KGRA, and indicate prime drilling sites. Five profile lines were run across the suspected rift system. Significant helium anomalies were found on several of the traverses, where future exploration might be concentrated. Mercury values showed a great range of variability on the traverses, and seem unreliable as geothermal indicators except in the vicinity of the Pilgrim Springs. Permafrost at the surface resulting in variations in sampling depth may contribute to the mercury variations.

  10. Solvation of molecules in superfluid helium enhances the “interaction induced localization” effect

    SciTech Connect (OSTI)

    Walewski, ?ukasz, E-mail: Lukasz.Walewski@theochem.rub.de; Forbert, Harald; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)] [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)

    2014-04-14T23:59:59.000Z

    Atomic nuclei become delocalized at low temperatures as a result of quantum effects, whereas they are point-like in the high temperature (classical) limit. For non-interacting nuclei, the delocalization upon lowering the temperature is quantitatively described in terms of the thermal de Broglie wavelength of free particles. Clearly, light non-interacting nuclei – the proton being a prominent one – are much more delocalized at low temperatures compared to heavy nuclei, such as non-interacting oxygen having water in mind. However, strong interactions due to chemical bonding in conjunction with ultra-low temperatures characteristic to superfluid helium nanodroplets change this common picture substantially for nuclei in molecules or clusters. It turns out that protons shared in hydrogen bonds undergo an extreme “interaction induced localization” at temperatures on the order of 1 K, which compresses the protonic spatial distributions to the size of the much heavier donor or acceptor atoms, such as O or Cl nuclei, corresponding to about 0.1% of the volume occupied by a non-interacting proton at the same temperature. Moreover, applying our recently developed hybrid ab initio path integral molecular dynamics/bosonic path integral Monte Carlo quantum simulation technique to a HCl/water cluster, HCl(H{sub 2}O){sub 4}, we find that helium solvation has a significant additional localizing effect of up to about 30% in volume. In particular, the solvent-induced excess localization is the stronger the lesser the given nucleus is already localized in the gas phase reference situation.

  11. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItĆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  12. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  13. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  14. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  15. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  16. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  17. The latest developments and outlook for hydrogen liquefaction technology

    SciTech Connect (OSTI)

    Ohlig, K.; Decker, L. [Linde Kryotechnik AG, Pfungen, CH-8422 (Switzerland)

    2014-01-29T23:59:59.000Z

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.

  18. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  19. Non-Sticking of Helium Buffer Gas to Hydrocarbons

    E-Print Network [OSTI]

    Croft, James F E

    2014-01-01T23:59:59.000Z

    Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and are found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {\\it et al}.

  20. $?^4$ Ry corrections to singlet states of helium

    E-Print Network [OSTI]

    Krzysztof Pachucki

    2006-07-07T23:59:59.000Z

    Corrections of order $\\alpha^4$Ry are calculated for the singlet states $1^1S_0$ and $2^1S_0$ of the helium atom. The result for $1^1S_0$ state is in slight disagreement with that of Korobov and Yelkhovsky in [Phys. Rev. Lett. {\\bf 87}, 193003 (2001)]. The results obtained lead to a significant improvement of transition frequencies between low lying levels of the helium atom. In particular theoretical predictions for the $2^1S_0 - 1^1S_0$ transition are found to be in disagreement with experimental values.

  1. Electron scattering in helium for Monte Carlo simulations

    SciTech Connect (OSTI)

    Khrabrov, Alexander V.; Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-09-15T23:59:59.000Z

    An analytical approximation for differential cross-section of electron scattering on helium atoms is introduced. It is intended for Monte Carlo simulations, which, instead of angular distributions based on experimental data (or on first-principle calculations), usually rely on approximations that are accurate yet numerically efficient. The approximation is based on the screened-Coulomb differential cross-section with energy-dependent screening. For helium, a two-pole approximation of the screening parameter is found to be highly accurate over a wide range of energies.

  2. Cavitation Density of Superfluid Helium-4 around 1 K

    E-Print Network [OSTI]

    An Qu; Azer Trimeche; Jacques Dupont-roc; Jules Grucker; Philippe Jacquier

    2015-04-14T23:59:59.000Z

    Using an optical interferomertric method, the homogeneous cavitation density of superfluid helium at $T=0.96\\,$K is measured and found to be $\\rho_{cav}=0.1338\\pm0.0002\\rm\\,g.cm^{-3}$. A well established equation of state for liquid helium at negative pressures converts this to the cavitation pressure $P_{cav}=-5.1\\pm0.1\\,$bar. This cavitation pressure is consistent with a model taking into account the presence of quantized vortices, but disagrees with previously published experimental values of $P_{cav}$.

  3. Detection and Imaging of He_2 Molecules in Superfluid Helium

    E-Print Network [OSTI]

    W. G. Rellergert; S. B. Cahn; A. Garvan; J. C. Hanson; W. H. Lippincott; J. A. Nikkel; D. N. McKinsey

    2007-12-18T23:59:59.000Z

    We present data that show a cycling transition can be used to detect and image metastable He$_2$ triplet molecules in superfluid helium. We demonstrate that limitations on the cycling efficiency due to the vibrational structure of the molecule can be mitigated by the use of repumping lasers. Images of the molecules obtained using the method are also shown. This technique gives rise to a new kind of ionizing radiation detector. The use of He$_2$ triplet molecules as tracer particles in the superfluid promises to be a powerful tool for visualization of both quantum and classical turbulence in liquid helium.

  4. Spectroscopy of barium atoms in liquid and solid helium matrices

    SciTech Connect (OSTI)

    Lebedev, V.; Moroshkin, P.; Weis, A. [Departement de Physique, Universite de Fribourg, Chemin du Musee 3, CH-1700 Fribourg (Switzerland)

    2011-08-15T23:59:59.000Z

    We present an exhaustive overview of optical absorption and laser-induced fluorescence lines of Ba atoms in liquid and solid helium matrices in visible and near-infrared spectral ranges. Due to the increased density of isolated atoms, we have found a large number of spectral lines that were not observed in condensed helium matrices before. We have also measured the lifetimes of metastable states. The lowest {sup 3}D{sub 1} metastable state has lifetime of 2.6 s and can be used as an intermediate state in two-step excitations of high-lying states. Various matrix-induced radiationless population transfer channels have been identified.

  5. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  6. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01T23:59:59.000Z

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  7. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  8. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

    2000-01-01T23:59:59.000Z

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  9. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

    2010-01-01T23:59:59.000Z

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  10. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  11. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  12. Helium Jet-Cooled Tungsten Divertor Concept J.S. O'Della

    E-Print Network [OSTI]

    Raffray, A. René

    Helium Jet-Cooled Tungsten Divertor Concept J.S. O'Della and A.R. Raffrayb a Plasma Processes, Inc., Huntsville, Alabama, USA b University of California ­ San Diego, La Jolla, California, USA Abstract-- Helium helium cooling techniques for high heat flux (HHF) applications. However, because of the small size

  13. Chapter 11 HELIUM-COOLED REFRACTORY ALLOYS FIRST WALL AND BLANKET EVALUATION

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Chapter 11 HELIUM-COOLED REFRACTORY ALLOYS FIRST WALL AND BLANKET EVALUATION 11.1 Introduction performed thermal hydraulics, nuclear, activation and safety designs and analysis. High-pressure helium of the refractory alloy helium-cooled breeder FW/blanket concept developed under the APEX program is presented

  14. ccsd-00000262(version1):26Mar2003 Looking back at superfluid helium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00000262(version1):26Mar2003 Looking back at superfluid helium S´ebastien Balibar Laboratoire condensation in several gases, it is interesting to look back at some properties of superfluid helium. After and vortices in the existence of a critical velocity in superfluid helium. I finally discuss the existence

  15. Helium corona-assisted air discharge Nan Jiang, Lei Gao, Ailing Ji, and Zexian Caoa)

    E-Print Network [OSTI]

    Zexian, Cao

    Helium corona-assisted air discharge Nan Jiang, Lei Gao, Ailing Ji, and Zexian Caoa) Institute of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium

  16. The Helium Logging Facility Jurriaan Hage (jur@cs.uu.nl)

    E-Print Network [OSTI]

    Utrecht, Universiteit

    The Helium Logging Facility Jurriaan Hage (jur@cs.uu.nl) institute of information and computing sciences, utrecht university technical report UU-CS-2005-055 www.cs.uu.nl #12;Abstract Helium is a compiler experiences in using socket communication for the purpose. 1 #12;1 Introduction The Helium compiler implements

  17. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  18. Physics 216 Spring 2012 The Variational Computation of the Ground State Energy of Helium

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 216 Spring 2012 The Variational Computation of the Ground State Energy of Helium I. Introduction to the variational computation The Hamiltonian for the two­electron system of the helium atom is principle to compute the ground state energy of the helium atom. The ground state wave function

  19. Mantle helium reveals Southern Ocean hydrothermal venting Gisela Winckler,1,2

    E-Print Network [OSTI]

    Winckler, Gisela

    Click Here for Full Article Mantle helium reveals Southern Ocean hydrothermal venting Gisela the distribution of helium isotopes along an oceanic transect at 67°S to identify previously unobserved provided by the helium isotope anomaly with independent hydrographic information from the Southern Ocean

  20. Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4

    E-Print Network [OSTI]

    Caupin, Frédéric

    Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4 X. Chavanne, S. Balibar have measured the amplitude of 1MHz acoustic waves focused in liquid helium 4. Our resolution is 10 the reflec- tion of light at the glass/helium interface, which depends on the refractive index of the liquid