National Library of Energy BETA

Sample records for dioxide enhanced recovery

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  3. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  4. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Denbury Resources (http:www.denbury.com) Enhanced Oil Recovery Institute (http:eori.gg.uwyo.edu) 26 Untapped Domestic Energy Supply and Long Term ...

  5. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

  6. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  7. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  8. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  9. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    SciTech Connect (OSTI)

    Todd French; Lew Brown; Rafael Hernandez; Magan Green; Lynn Prewitt; Terry Coggins

    2009-08-19

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  10. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    SciTech Connect (OSTI)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types of chemical/ water buffers before and after the SPI mix ensured that pre-gelled SPI mix got out into the formation before setting into a gel. SPI gels were found to be 3 to 10 times stronger than any commercially available cross-linked polyacrylamide gels based on Penetrometer and Bulk Gel Shear Testing. Because of SPIs unique chemistry with CO{sub 2}, both laboratory and later field tests demonstrated that multiple, smaller volume SPI treatments maybe more effective than one single large SPI treatment. CO{sub 2} injectivities in injection well in both fields were reduced by 33 to 70% indicating that injected CO{sub 2} is now going into new zones. This reduction has lasted 1+ year in Field A. Oil production increased and CO{sub 2} production decreased in 5 Field A production wells, offsets to Well #1 injector, for a total of about 2,250 m{sup 3} (600,000 gallons/ 14,250 bbls) of incremental oil production- a $140 / SPI bbl return. Treated marginal production well, Field A Well #2, immediately began showing increased oil production totaling 238 m{sup 3} (63,000 gallons/ 1500 BBLs) over 1 year and an immediate 81% reduced gas-oil ratio.

  11. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  12. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrosynthesis with Synthetic Electromicrobiology and System Design | Department of Energy Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Presentation by Derek Lovley, UMass Amherst, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons,

  13. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  14. Enhanced carbon dioxide capture upon incorporation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri Previous Next List Thomas M. McDonald, Deanna M. D'Alessandro, Rajamani Krishna and Jeffrey R. Long, Chem. Sci., 2011,2, 2022-2028 DOI: 10.1039/C1SC00354B Graphical abstract: Enhanced carbon dioxide capture upon

  15. Enhanced Oil Recovery | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. PDF icon Fossil Energy Research Benefits - Enhanced Oil Recovery More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First Quarter,

  16. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team LANL researchers include Zhenxue Dai, Richard Middleton, Hari Viswanathan, Jacob Bauman, and Rajesh Pawar of the Computational Earth Science group; Julianna Fessenden-Rahn of...

  17. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  18. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  19. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  20. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  1. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES...

    Office of Scientific and Technical Information (OSTI)

    Reservoir Wettability and its Effect on Oil Recovery. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES; MINERALS; SURFACES; MICA; WETTABILITY We report on the...

  2. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect (OSTI)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer coefficients for the CO{sub 2}-water-organic layer system. For the CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system, the enhanced factor is not only dependent on the liquid mass transfer coefficients, but also the chemical reaction rates.

  3. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  4. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S. (Bartlesville, OK)

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  5. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  6. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  7. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect (OSTI)

    Madden, M.P.; Blatchford, R.P.; Spears, R.B.

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  8. Carbon dioxide recovery from cogeneration and energy projects: A technically, environmentally, and economically feasible option

    SciTech Connect (OSTI)

    Rushing, S.A.

    1997-12-31

    In this paper, the topics of carbon dioxide recovery from cogeneration projects and related industrial usage of carbon dioxide will be covered from North American and international perspectives. The CO{sub 2} recovery discussion will largely focus on one particular technology, namely the application of proprietary monoethanolamine (MEA) solvents, which have a very satisfactory record of performance in the cogeneration and power production industries. The US Federal Energy Act, the impetus behind the development of such projects, will be discussed along with its impacts on the feasibility of U.S. projects. This subject would be reviewed for other developed countries and developing economies as well. Moreover, capital and operating costs and requirements will be summarized for such plants, plus existing CO{sub 2} recovery (from cogeneration) projects will be identified.

  9. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, DC - Carbon dioxide (CO2) injection -- an important part of carbon capture and storage (CCS) technology -- is underway as part of a pilot study of CO2 enhanced oil ...

  10. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  11. Enhanced oil recovery. Progress review, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This document details current research in the area of enhanced recovery of petroleum as sponsored by the DOE. Progress reports are provided for over thirty projects.

  12. DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs

    Broader source: Energy.gov [DOE]

    A field test conducted by a U.S. Department of Energy team of regional partners has demonstrated that using carbon dioxide in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources.

  13. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Enhancement of automotive exhaust heat recovery by thermoelectric devices Citation Details In-Document Search Title: Enhancement of automotive exhaust heat recovery by thermoelectric devices In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas)

  14. Successful Sequestration and Enhanced Oil Recovery Project Could Mean More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Less CO2 Emissions | Department of Energy Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn

  15. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  16. enhanced_oil_recovery | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, hydrocarbons in unconventional rocks or that have unconventional characteristics (such as oil in fractured shales, kerogen in oil shale, or bitumen in tar sands) constitute an enormous potential domestic supply of energy. The application of enhanced oil recovery (EOR) technologies to overcome the physical forces holding

  17. Carbon sequestration with enhanced gas recovery: Identifying candidate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites for pilot study (Conference) | SciTech Connect Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study Citation Details In-Document Search Title: Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service.

  18. Recovery Act: Enhancing State Energy Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to lessen the devastating impact that such incidents can have on the economy and the health and safety of the public. Each state is required to track energy emergencies to assess the restoration and recovery times of any supply disruptions; to train appropriate personnel on energy infrastructure and supply systems; and conduct

  19. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a post-mortem analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases w

  20. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandridge Energy Inc. and Occidental Petroleum Corp. are developing a 1.1 billion natural gas processing plant in West Texas that will capture about 265 billion cubic feet...

  1. Enhancing Heat Recovery for Thermoelectric Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_szybist2.pdf More Documents & Publications Materials Issues Associated with EGR Systems Microstructural Evolution of EGR Cooler Deposits Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal

  2. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect (OSTI)

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  3. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Office of Scientific and Technical Information (OSTI)

    Surfactant Based Enhanced Oil Recovery and Foam Mobility Control 1 st Annual Technical Report Reporting Period Start Date: July 2003 Reporting Period End Date: June 2004 Principal Authors: George J. Hirasaki, Rice University Clarence A. Miller, Rice University Gary A. Pope, The University of Texas Richard E. Jackson, INTERA Date Report was Issued: July 2004 DE-FC26-03NT15406 Rice University Department of Chemical Engineering, MS-362 6100 Main Street Houston, TX 77005-1892 The University of Texas

  4. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  5. Microbial enhancement of oil recovery: Recent advances. Proceedings

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  6. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  7. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions through forestry, agriculture, and use of biomass-based fuels to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  8. Single well tracer method to evaluate enhanced recovery

    DOE Patents [OSTI]

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  9. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  10. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  11. NETL-RUA Scans for Improved Enhanced Oil Recovery Technique | Department of

    Office of Environmental Management (EM)

    Energy NETL-RUA Scans for Improved Enhanced Oil Recovery Technique NETL-RUA Scans for Improved Enhanced Oil Recovery Technique April 4, 2012 - 1:00pm Addthis Washington, DC - Researchers participating in the National Energy Technology Laboratory Regional University Alliance (NETL-RUA) are using a familiar piece of medical equipment - a CT scanner - to evaluate cutting-edge improvements to enhanced oil recovery (EOR) techniques. Results from these studies could be used to help increase

  12. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enhanced recovery in discovered fields - 90 billion in light oil, 20 billion in heavy oil; up to 179 billion barrels from undiscovered oil - 119 billion from conventional...

  13. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  14. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  15. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  16. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  17. Enhanced oil recovery using flash-driven steamflooding

    DOE Patents [OSTI]

    Roark, Steven D.

    1990-01-01

    The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

  18. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect (OSTI)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  19. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to

  20. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  1. DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elements from Coal and Coal Byproducts | Department of Energy Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal Byproducts DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal Byproducts December 2, 2015 - 10:20am Addthis The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected 10 projects to receive funding for research in support of the lab's program on

  2. Disruption of cell walls for enhanced lipid recovery

    DOE Patents [OSTI]

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  3. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  4. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  5. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.

  6. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    SciTech Connect (OSTI)

    Trumbo, Bradly A.; Ahmann, Martin L.; Renholods, Jon F.; Brown, Richard S.; Colotelo, Alison HA; Deng, Zhiqun

    2014-09-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  7. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    1996-10-01

    This document presents brief descriptions of research programs concerned with enhanced oil recovery.

  8. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments [OSTI]

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  9. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  10. Statistically designed study of the variables and parameters of carbon dioxide equations of state

    SciTech Connect (OSTI)

    Donohue, M.D.; Naiman, D.Q.; Jin, Gang; Loehe, J.R.

    1991-05-01

    Carbon dioxide is used widely in enhanced oil recovery (EOR) processes to maximize the production of crude oil from aging and nearly depleted oil wells. Carbon dioxide also is encountered in many processes related to oil recovery. Accurate representations of the properties of carbon dioxide, and its mixtures with hydrocarbons, play a critical role in a number of enhanced oil recovery operations. One of the first tasks of this project was to select an equation of state to calculate the properties of carbon dioxide and its mixtures. The equations simplicity, accuracy, and reliability in representing phase behavior and thermodynamic properties of mixtures containing carbon dioxide with hydrocarbons at conditions relevant to enhanced oil recovery were taken into account. We also have determined the thermodynamic properties that are important to enhanced oil recovery and the ranges of temperature, pressure and composition that are important. We chose twelve equations of state for preliminary studies to be evaluated against these criteria. All of these equations were tested for pure carbon dioxide and eleven were tested for pure alkanes and their mixtures with carbon dioxide. Two equations, the ALS equation and the ESD equation, were selected for detailed statistical analysis. 54 refs., 41 figs., 36 tabs.

  11. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  12. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  13. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect (OSTI)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  14. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, October 1994--December 1994. Progress review No. 81

    SciTech Connect (OSTI)

    1996-03-01

    This document consists of a publications list for field projects and brief descriptions of research projects on enhanced petroleum recovery.

  15. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    SciTech Connect (OSTI)

    1995-05-01

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  17. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  18. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  19. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  20. DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery |

    Office of Environmental Management (EM)

    Department of Energy Tests Novel Method to Increase Oil Recovery DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery February 3, 2015 - 8:11am Addthis DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery Successful laboratory tests at the Energy Department's National Energy Technology Laboratory (NETL) have verified that the use of a brine-soluble ionic surfactant could improve the efficiency of carbon dioxide enhanced oil recovery (CO2-EOR). Surfactants stabilize

  1. enhanced_oil_current_proj | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Project Number Project Name Primary Performer DE-FE0010799 Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control University of Pittsburgh Enhanced Oil Recovery and Other Oil Resources Other EOR and Oil Resources | CO2 EOR | Environmental | Completed Project Number Project Name Primary Performer

  2. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    SciTech Connect (OSTI)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  3. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  4. Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site

    SciTech Connect (OSTI)

    Kirkendall, B.; Roberts, J.

    2001-02-28

    Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

  5. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  6. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  7. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-14, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI, Brett Davidson and Tim Spanos, Prism Production Technologies, were the instructors. The sixteen attendees also participated in the half-day field trip to the test facility near Tulsa.

  8. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

  9. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect (OSTI)

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  10. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    SciTech Connect (OSTI)

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  11. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  12. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  13. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  14. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 80. Quarterly report, July--September, 1994

    SciTech Connect (OSTI)

    1995-11-01

    This report contains information on petroleum enhanced recovery projects. In addition to project descriptions, contract numbers, principal investigators and project management information is included.

  15. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly progress review No. 85, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Godley, P.; Waisley, S.

    1996-12-01

    This documents presents progress on enhanced oil recovery programs and reservoir characterization programs. Information is presented on contract numbers, awards, investigators, and project managers.

  16. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  17. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  18. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors.

  19. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

  20. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC???????¢????????????????s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot???????¢????????????????s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5% of the injected CO2 was stored at the Bald Unit Field after nine months of post-CO2 injection monitoring. Project improved oil recovery (IOR) was estimated at 412 m3 (2,590 bbl) and CO2 EOR as 325 m3 (2,045 bbl), although estimation of an EOR baseline was difficult because recovery was also increased by preproject well work. These figures would have been higher if not for variations in oil production rate due to winter weather. Oil production rates did not return to preshut-in level after the lengthy winter injection hiatuses, but remained elevated relative to production rates immediately before the pilot. The pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model of the Clore sandstone to project the EOR potential of a larger-scale project at the Bald Unit. A model calibrated to field data (including geologic data and oil and water production) was used to assess the full-field EOR potential of the Field. Projections based on these models indicated that full-field CO2 injection for 20 years could have 12% oil recovery or 27,000 scm (170,000 stb) with a CO2 net utilization of 4,900 scm/scm (31,000 scf/stb). The potential CO2 storage is estimated to be 193,600 to 277,450 tonnes (213,000 to 305,200 tons).

  1. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect (OSTI)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  2. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

  3. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  4. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  5. Microsoft Word - NETL-TRS-4-2014_CO2 Storage and Enhanced Gas Recovery_20140924.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of CO 2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual- Porosity/Dual-Permeability, Multiphase Reservoir Simulator 25 September 2014 Office of Fossil Energy NETL-TRS-4-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  6. Oil recovery enhancement from fractured, low permeability reservoirs. Part 2, Annual report, October 1, 1990--September 31, 1991

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990--1991 year may be summarized as follows: Geological Characterization -- Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. These results of these efforts were directly applied to the development of production decline type curves applicable to a dual fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. (VSP) Vertical-Seismic Profile data was used to use shear-wave splitting concepts to estimate fracture orientations. Several programs were to be written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the (EOR) Enhanced Oil Recovery Imbibition Process -- Laboratory displacement as well as MRI and CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery of an oil saturated, low permeability core material, when compared to that of a normal brine imbibition displacement process. A study of oil recovery by the application of a cyclic carbonated water imbibition process, followed by reducing the pressure below the bubble point of the CO{sub 2}-water solution, indicated the possibility of alternate and new enhanced recovery method. The installation of an artificial solution gas drive significantly increased oil recovery. The extent and arrangement of micro-fractures in Austin Chalk horizontal cores was mapped with CT scanning techniques. The degree of interconnection of the micro-fractures was easily visualized.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  12. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    SciTech Connect (OSTI)

    1998-04-01

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  13. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    SciTech Connect (OSTI)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-15

    Highlights: An enhanced process-based LCA model for MSWI is featured and applied in case study. LCA modeling of recent technological developments for metal recovery from fly ash. Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

  14. Recovery Act: Develop a Modular Curriculum for Training University Students in Industry Standard CO{sub 2} Sequestration and Enhanced Oil Recovery Methodologies

    SciTech Connect (OSTI)

    Trentham, R. C.; Stoudt, E. L.

    2013-05-31

    CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations, projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a number of different entry points into the data set with students and faculty form a number of different universities, it was clear that a standard website presentation with a list of available power point presentations, excel spreadsheets, word documents and pdf's would not entice faculty, staff, and students at universities to delve deeper into the website http://www.utpb.edu/ceed/student modules.

  15. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  16. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  17. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  18. Plutonium partitioning in uranium and plutonium co-recovery system for fast reactor fuel recycling with enhanced nuclear proliferation resistance

    SciTech Connect (OSTI)

    Nakahara, Masaumi; Koma, Yoshikazu; Nakajima, Yasuo

    2013-07-01

    For enhancement of nuclear proliferation resistance, a 'co-processing' method for U and Pu co-recovery was studied. Two concepts, no U scrubbing and no Pu reduction partitioning, were employed to formulate two types of flow sheets by using a calculation code. Their process performance was demonstrated using radioactive solutions derived from an irradiated fast reactor fuel. These experimental results indicated that U and Pu were co-recovered in the U/Pu product, and the Pu content in the U/Pu product increased approximately 2.3 times regardless of using reductant. The proposed no U scrubbing and no Pu reductant flow sheet is applicable to fast reactor fuel reprocessing and enhances its resistance to nuclear proliferation. (authors)

  19. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  20. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOE Patents [OSTI]

    Klunder, Edgar B. (Bethel Park, PA)

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  1. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  2. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  3. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-03-26

    This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS, gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.

  4. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  5. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect (OSTI)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO{sub 2} injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO{sub 2} was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO{sub 2} sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

  6. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  7. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production onmore » the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  8. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ASPEN Plus Simulation of CO2 Recovery Process (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    GENERATION; PURIFICATION; SCRUBBING; COMPUTERIZED SIMULATION; A CODES; CARBON DIOXIDE; AIR POLLUTION CONTROL; MATERIALS RECOVERY Word Cloud More Like This Full Text preview...

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  20. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  1. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  2. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  3. plutonium dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plutonium dioxide - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  5. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  6. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  7. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  8. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  9. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  10. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  11. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 ?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  12. Support of enhanced oil recovery to independent producers in Texas. Quarterly report, July 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Fotouh, K.H.

    1996-10-01

    To establish a Technology Transfer Resource Center (TRC) at Prairie View A&M University (PVAMU) to assist the Independent Oil Producers, in the state of Texas, (TIP) obtain and apply oil recovery technology to their operation. The University will conduct a field pilot project in cooperation with an Independent Producer to demonstrate how technology application improves the economic performance of a project. Experience gained from the project will be disseminated to other Independents. These activities will be coordinated with neighboring state Universities and private research entities active in technology transfer programs. The University`s goal is to stimulate Petroleum Engineering education and research at the university as a result of participating in these activities. The long term goal is to establish the first Petroleum Engineering Department at a Historically Black University.

  13. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  14. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Office of Environmental Management (EM)

    Energy Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase

  15. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  16. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  17. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  18. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  19. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    SciTech Connect (OSTI)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.

  20. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995

    SciTech Connect (OSTI)

    1996-06-01

    This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

  1. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  2. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Carbon Dioxide Atmospheric concentrations of carbon dioxide have ranged from 200 to 280 ppm over the last 160,000 years. During the 1,000 years before the industrial revolution, in a time of stable global climate, the range was

  3. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

  4. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  5. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  6. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Critical Infrastructures accepted "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks" for publication. The paper,...

  7. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  8. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  9. Contracts for field projects and supporting research on enhanced oil recovery, October--December 1992. Progress review No. 73, quarter ending December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Accomplishments for this quarter ending December 31, 1992 are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; reservoir classes; and novel technology.

  10. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  11. Contracts for field projects and supporting research on enhanced oil recovery, July--September 1992. Progress review No. 72, quarter ending September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  12. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Microbial Electrochemical Technology (MxCs): Challenges and Opportunities Non-Photosynthetic Biohydrogen--Overview of Options...

  13. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  14. Transporting carbon dioxide recovered from fossil-energy cycles

    SciTech Connect (OSTI)

    Doctor, R. D.; Molburg, J. C.; Brockmeier, J. F.

    2000-07-24

    Transportation of carbon dioxide (CO{sub 2}) for enhanced oil recovery is a mature technology, with operating experience dating from the mid-1980s. Because of this maturity, recent sequestration studies for the US Department of Energy's National Energy Technology Laboratory have been able to incorporate transportation into overall energy-cycle economics with reasonable certainty. For these studies, two different coal-fueled plants are considered; the first collects CO{sub 2} from a 456-MW integrated coal gasification combined-cycle plant, while the second employs a 353-MW pulverized-coal boiler plant retrofitted for flue-gas recycling (Doctor et al. 1999; MacDonald and Palkes 1999). The pulverized-coal plant fires a mixture of coal in a 33% O{sub 2} atmosphere, the bulk of the inert gas being made up to CO{sub 2} to the greatest extent practical. If one power plant with one pipe feeds one sequestration reservoir, projected costs for a 500-km delivery pipeline are problematic, because when supplying one reservoir both plant availability issues and useful pipeline life heavily influence capital recovery costs. The transportation system proposed here refines the sequestration scheme into a network of three distinctive pipelines: (1) 80-km collection pipelines for a 330-MW pulverized-coal power plant with 100% CO{sub 2} recovery; (2) a main CO{sub 2} transportation trunk of 320 km that aggregates the CO{sub 2} from four such plants; and (3) an 80-km distribution network. A 25-year life is assumed for the first two segments, but only half that for the distribution to the reservoir. Projected costs for a 500-km delivery pipeline, assuming an infrastructure, are $7.82/tonne ($17.22/10{sup 3} Nm{sub 3} CO{sub 2} or $0.49/10{sup 3} scf CO{sub 2}), a savings of nearly 60% with respect to base-case estimates with no infrastructure. These costs are consistent only with conditioned CO{sub 2} having low oxygen and sulfur content; they do not include CO{sub 2} recovery, drying, and compression.

  15. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  16. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govAboutRecovery Act Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM and the Recovery Act Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy's Office of

  17. Performance Engineering Research Center and RECOVERY. Performance

    Office of Scientific and Technical Information (OSTI)

    Engineering Research Institution SciDAC-e Augmentation. Performance enhancement (Technical Report) | SciTech Connect Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document Search Title: Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement This project concentrated on various ways to

  18. Extraction of furfural with carbon dioxide

    SciTech Connect (OSTI)

    Gamse, T.; Marr, R.; Froeschl, F.; Siebenhofer, M.

    1997-01-01

    A new approach to separate furfural from aqueous waste has been investigated. Recovery of furfural and acetic acid from aqueous effluents of a paper mill has successfully been applied on an industrial scale since 1981. The process is based on the extraction of furfural and acetic acid by the solvent trooctylphosphineoxide (TOPO). Common extraction of both substances may cause the formation of resin residues. Improvement was expected by selective extraction of furfural with chlorinated hydrocarbons, but ecological reasons stopped further development of this project. The current investigation is centered in the evaluation of extraction of furfural by supercritical carbon dioxide. The influence of temperature and pressure on the extraction properties has been worked out. The investigation has considered the multi-component system furfural-acetic acid-water-carbon dioxide. Solubility of furfural in liquid and supercritical carbon dioxide has been measured, and equilibrium data for the ternary system furfural-water-CO{sub 2} as well as for the quaternary system furfural-acetic acid-water-CO{sub 2} have been determined. A high-pressure extraction column has been used for evaluation of mass transfer rates.

  19. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  20. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  2. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  3. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  4. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO{sub 2} Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea

    1997-03-14

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  6. supercritical carbon dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supercritical carbon dioxide - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  8. Mineral Recovery from Geothermal Fluids | Open Energy Information

    Open Energy Info (EERE)

    Metals and Compounds from Geothermal Fluids California Simbol Mining Corp. Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Albuquerque, NM,...

  9. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  10. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates/Announcements Thu, 01 Sep 2011 00:00:00 +0000 http://www.arm.gov en September 2011 Thu, 01 Sep 2011 00:00:00 +0000 aa3f1e269969d96bd7b30dd7a408d745 &#60;/p&#62; &#60;p&#62;&#60;strong&#62;Final Recovery Act Milestone Complete! &#60;/strong&#62; This month, ARM celebrates the delivery of the last few instruments for its Recovery Act investment and reports its final FY11 milestone - &#34;Infrastructure Enhancements Complete.&#34; This closes out the

  11. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage...

  12. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  13. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  14. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  15. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  16. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  1. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  2. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  3. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  4. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  5. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  6. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  7. Enhanced Oil Recovery by Horizontal Waterflooding

    SciTech Connect (OSTI)

    Scott Robinowitz; Dwight Dauben; June Schmeling

    2005-09-05

    Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air-cooled and suitable for use with flat plate or higher-temperature collectors. Operation of the controls test facility and computer modeling of collector loop and building load dynamics are yielding quantitative evaluations of the performance of different control strategies for active solar-heating systems. Research is continuing on ''passive'' approaches to solar heating and cooling, where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed and incorporated into building energy analysis computer programs which are in the public domain. The resulting passive analysis capabilities are used in systems studies leading to design tools and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat-storage material would be cooled by radiation to the night sky, and would then provide ''coolness'' to the building. Laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Active Heating and Cooling Division and the Passive and Hybrid Division of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low-grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the ''shape-memory'' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources, such as solar-heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central

  8. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    SciTech Connect (OSTI)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  9. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the worlds largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  10. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  11. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  12. Caustic Recovery Technology

    Office of Environmental Management (EM)

    366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: ... (E. Stevens, Manager, Solid Waste and Special Programs) ...

  13. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  14. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  15. Recovery Act. Development and Validation of an Advanced Stimulation

    Office of Scientific and Technical Information (OSTI)

    Prediction Model for Enhanced Geothermal Systems (Technical Report) | SciTech Connect Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems Citation Details In-Document Search Title: Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems This research project aims to develop and validate an advanced computer model that can be used in the planning and design of

  16. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo

  17. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  18. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect (OSTI)

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10?ppm.

  19. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  20. Biological enhancement of hydrocarbon extraction

    DOE Patents [OSTI]

    Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  1. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State Smart Grid Investment Grant Awards Recipients by State GRID MODERNIZATION The American Recovery and Reinvestment Act of 2009 (Recovery Act) - which President Obama signed into law on February 17th, 2009 - was an unprecedented action to stimulate the economy. It included measures to modernize our nation's energy and communication infrastructure and enhance energy independence. The

  2. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  3. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  4. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  5. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  6. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  7. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  8. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon

  9. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Information Center » Recovery Act » Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to

  10. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  11. How Atomic Vibrations Transform Vanadium Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy November 10, 2014 Contact: Dawn Levy, levyd@ornl.gov, 865.576.6448 Budaivibe Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. Image credit: Oak Ridge National Laboratory For more than 50 years, scientists have

  12. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  13. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide (s-CO2) directly as the heat transfer fluid (HTF). ...

  14. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. ...

  16. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  17. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  18. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  19. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

  20. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period II.

  1. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    ......... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ...... 6 * ...

  2. Utilizing the market to control sulfur dioxide emissions

    SciTech Connect (OSTI)

    Loeher, C.F. III

    1995-12-01

    Environmental policy in the United States is evolving; command and control approaches are being slowly replaced with market-based incentives. Market-based regulation is favorable because it provides the regulated community with flexibility in choosing between pollution control options. A recent application of a market-based approach is Title IV of the 1990 Clean Air Act Amendments. This paper evaluates the advantages of utilizing market-based incentives to control sulfur dioxide emissions. The evaluation embodies an extensive methodology, which provides an overview of the policy governing air quality, discusses pollution control philosophies and analyzes their associated advantages and limitations. Further, it describes the development and operation of a market for emissions trading, impediments to the market, and recommends strategies to improve the market. The evaluation concludes by analyzing the results of five empirical simulations demonstrating the cost-effectiveness of employing market-based incentives versus command-and-control regulation for controlling sulfur dioxide emissions. The results of the evaluation indicate that regulatory barriers and market impediments have inhibited allowance trading. However, many of these obstacles have been or are being eliminated through Federal and state regulations, and through enhancement of the market. Results also demonstrate that sulfur dioxide allowance trading can obtain identical levels of environmental protection as command-and-control approaches while realizing cost savings to government and industry.

  3. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-01-01

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  4. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-12-31

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  5. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  7. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 American Recovery and Reinvestment Act Overview PROGRAMS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 32 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning

  8. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Recovery Act With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive approximately $40 billion to foster various energy, environmental, and science programs and initiatives. As a result, the Office of Inspector General's oversight responsibilities will increase dramatically. As is the case with all Office of Inspector General work, its overarching goal is to

  9. Layered solid sorbents for carbon dioxide capture (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Layered solid sorbents for carbon dioxide capture Citation Details In-Document Search Title: Layered solid sorbents for carbon dioxide capture You are accessing a document from...

  10. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Method for carbon dioxide sequestration Citation Details In-Document Search Title: Method for carbon dioxide sequestration You are accessing a document from the Department of...

  11. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  12. Chemically assisted in situ recovery of oil shale

    SciTech Connect (OSTI)

    Ramierz, W.F.

    1993-12-31

    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  13. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  14. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  15. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    SciTech Connect (OSTI)

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  16. Removing oxygen from a solvent extractant in an uranium recovery process

    DOE Patents [OSTI]

    Hurst, Fred J. (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN); Posey, Franz A. (Concord, TN)

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

  17. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOE Patents [OSTI]

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  18. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  19. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors

  20. Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  1. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  2. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  3. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  4. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  5. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs

  7. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  8. Recycling Carbon Dioxide to Make Plastics

    Broader source: Energy.gov [DOE]

    The world’s first successful large-scale production of a polypropylene carbonate polymer using waste carbon dioxide as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy.

  9. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  10. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  11. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  12. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  13. The American Recovery

    Energy Savers [EERE]

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  14. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  1. FE0005889_UTPermian | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the field characteristics and oil recovery data accumulated over the 40-year history of carbon dioxide enhanced oil recovery (CO2-EOR) research and practice are...

  2. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM)

  3. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  4. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  5. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  6. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  7. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  8. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  9. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  10. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon williamsbiomass2014.pdf More Documents & ...

  11. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

  12. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  13. Polymers for metal extractions in carbon dioxide

    DOE Patents [OSTI]

    DeSimone, Joseph M. (7315 Crescent Ridge Dr., Chapel Hill, NC 27516); Tumas, William (1130 Big Rock Loop, Los Alamos, NM 87544); Powell, Kimberly R. (103 Timber Hollow Ct. Apartment 323, Chapel Hill, NC 27514); McCleskey, T. Mark (1930 Camino Mora, Los Alamos, NM 87544); Romack, Timothy J. (5810 Forest Ridge Dr., Durham, NC 27713); McClain, James B. (8530 Sommersweet La., Raleigh, NC 27612); Birnbaum, Eva R. (1930 Camino Mora, Los Alamos, NM 87544)

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  14. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Pennsylvania

    Broader source: Energy.gov (indexed) [DOE]

    Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Texas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Wisconsin

    Broader source: Energy.gov (indexed) [DOE]

    Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Nevada

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  6. Plasmon-enhanced UV photocatalysis

    SciTech Connect (OSTI)

    Honda, Mitsuhiro; Saito, Yuika Kawata, Satoshi; Kumamoto, Yasuaki; Taguchi, Atsushi

    2014-02-10

    We report plasmonic nanoparticle enhanced photocatalysis on titanium dioxide (TiO{sub 2}) in the deep-UV range. Aluminum (Al) nanoparticles fabricated on TiO{sub 2} film increases the reaction rate of photocatalysis by factors as high as 14 under UV irradiation in the range of 260340?nm. The reaction efficiency has been determined by measuring the decolorization rate of methylene blue applied on the TiO{sub 2} substrate. The enhancement of photocatalysis shows particle size and excitation wavelength dependence, which can be explained by the surface plasmon resonance of Al nanoparticles.

  7. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  8. Recovery Newsletters | Department of Energy

    Energy Savers [EERE]

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  9. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  10. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  11. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  12. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  13. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  14. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  15. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  16. Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery Good ZT can occur in...

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  18. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  19. Geothermal Startup Will Put Carbon Dioxide to Good Use

    Broader source: Energy.gov [DOE]

    Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2).

  20. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  1. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  2. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  4. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  5. Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal

    SciTech Connect (OSTI)

    Smith, D.H.; Jikich, S.; Seshadri, K.

    2007-05-01

    For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a point on the isotherm, the process is repeated until the sample weight reaches a constant value (i.e., typically equilibration times of several weeks). The slope of a plot of sample weight vs. square root of elapsed desorption time gives a measurement for the rate of diffusion. In order to advance all three experimental methods, results from this ambient-pressure gravimetry method were compared with data obtained by conventional manometry and by computer tomography. The isotherm and diffusion rate measured for the core can be directly used in simulators for reservoir engineering studies of coalseam sequestration and enhanced coalbed methane production.

  6. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  7. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  8. Energy recovery ventilator

    DOE Patents [OSTI]

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  9. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  10. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  11. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Environmental Management (EM)

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. PDF icon DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  12. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. Office spreadsheet icon recoveryactfunding.xls More Documents & Publications Recovery Act Awardees June 25, 2010 Reovery Act Awardees July 22, 2011 Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program

  13. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to portablepower, $3.4 million is

  14. EM American Recovery and Reinvestment Act Update

    Office of Environmental Management (EM)

    Recovery Act Program www.em.doe.gov 1 Thomas Johnson, Jr. Recovery Act Program Director PRESENTED TO: Environmental Management Advisory Board (EMAB) December 5, 2011 EM's Mission...

  15. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  16. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  17. Energy Recovery Inc | Open Energy Information

    Open Energy Info (EERE)

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  18. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees...

  19. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

  20. DEVELOPMENT PROGRAM FOR PU-238 AQUEOUS RECOVERY PROCESS

    SciTech Connect (OSTI)

    M. PANSOY-HJELVIK; M. REIMUS; ET AL

    2000-10-01

    Aqueous processing is necessary for the removal of impurities from {sup 238}Pu dioxide ({sup 238}PuO{sub 2}) fuel due to unacceptable levels of {sup 234}U and other non-actinide impurities in the scrap fuel. Impurities at levels above General Purpose Heat Source (GPHS) fuel specifications may impair the performance.of the heat sources. Efforts at Los Alamos have focused on developing the bench scale methodology for the aqueous process steps which includes comminution, dissolution, ion exchange, precipitation, and calcination. Recently, work has been performed to qualify the bench scale methodology, to show that the developed process produces pure {sup 238}PuO{sub 2} meeting GPHS fuel specifications. In addition, this work has enabled us to determine how waste volumes may be minimized during full-scale processing. Results of process qualification for the bench scale aqueous recovery operation and waste minimization efforts are presented.

  1. Enhancement of automotive exhaust heat recovery by thermoelectric...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 30 DIRECT ENERGY CONVERSION; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AUTOMOBILES; EXHAUST SYSTEMS; ...

  2. Hydraulic accumulator-compressor for geopressured enhanced oil recovery

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1988-01-01

    A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

  3. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fascinating things of my job is contemplating questions like: What will the future energy mix look like? This is difficult to predict but it is fair to argue that oil will...

  4. South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of less than 500,000 metric tons of CO 2 per year) to explore various geologic CO 2 storage opportunities within the United States and portions of Canada. DOE's small-scale...

  5. Amino acid treatment enhances protein recovery from sediment...

    Office of Scientific and Technical Information (OSTI)

    necessary to better understand the unique biological pathways that occur within soil microbial communities and the role they play in regulating atmospheric CO2 levels and...

  6. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Office of Scientific and Technical Information (OSTI)

    Foam Mobility Control 1 st Annual Technical Report Reporting Period Start Date: July 2003 Reporting Period End Date: June 2004 Principal Authors: George J. Hirasaki, Rice...

  7. DOE Selects Projects To Enhance Its Research into Recovery of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The funded projects fall under two subtopic areas: (1) development of bench-scale and (2) ... Area of Interest 1: Bench-Scale Technology Development A Pollution-Prevention and ...

  8. Recovery Act: Enhancing State Energy Assurance | Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to plan for energy supply disruption risks and vulnerabilities to lessen the devastating impact that such incidents can have on the economy and the health and safety of the...

  9. Recovery and purification of ethylene

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  10. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  11. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  12. One Woman's Road to Recovery

    Broader source: Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  13. Resource Conservation and Recovery Act

    Broader source: Energy.gov [DOE]

    DOE Headquarters provides technical assistance and guidance on newly promulgated regulations, and coordinates the review and advocates Departmental interests regarding proposed Resource Conservation and Recovery Act (RCRA) regulatory initiatives applicable to DOE operations.

  14. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  16. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  17. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  18. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  19. Recovery Act State Memos New York

    Broader source: Energy.gov (indexed) [DOE]

    ... Funding also provides financial support for energy efficiency and retrofit projects in the ... 300,000 to test and quantify the theory that rapid carbon dioxide capture and ...

  20. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download PDF icon Caustic Recovery Technology PDF icon Summary - Caustic Recovery Technology More Documents & Publications A Ceramic membrane to Recycle Caustic Waste Processing Annual Technology Development Report 2007 System Planning for Low-Activity Waste at Hanford

  1. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  2. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation Citation Details In-Document Search Title: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric

  3. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical

    Office of Scientific and Technical Information (OSTI)

    Membrane Technology (Journal Article) | SciTech Connect Journal Article: A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology Citation Details In-Document Search Title: A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS)

  4. Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Dioxide Capture at a Reduced Cost Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology would allow power plants and the chemical and cement industries to better sequester carbon dioxide and

  5. Haverford College Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon

  6. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures and pressures than

  7. ARM - Lesson Plans: Plant Growth and Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Growth and Carbon Dioxide Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Plant Growth and Carbon Dioxide Objective The objective is to show how carbon dioxide in the air affects plant growth. Materials Each group of students will need the following: Graph paper Pencil

  8. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster

  9. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_nelson.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  10. Haverford College Researchers Create Carbon Dioxide-Separating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon...

  11. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, ...

  12. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in...

    Office of Scientific and Technical Information (OSTI)

    Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: 2012-06-01 OSTI Identifier: 1073284 Report ...

  13. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces...

    Office of Scientific and Technical Information (OSTI)

    Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: 2013-01-01 OSTI Identifier: 1063603 ...

  14. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Comparison of methods for geologic storage of carbon dioxide in saline formations Citation Details In-Document Search Title: Comparison of methods for geologic...

  15. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  16. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  17. CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting...

    Open Energy Info (EERE)

    Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov...

  18. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  19. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. ...

  20. Carbon dioxide absorbent and method of using the same

    SciTech Connect (OSTI)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  1. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  2. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  3. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of ...

  4. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  5. High Performance Composite Membranes for Separation of Carbon Dioxide from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High Performance Composite Membranes for Separation of Carbon Dioxide from Methane

  6. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  7. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J. (El Cerrito, CA)

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  8. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect (OSTI)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called SPI) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided proof of concept that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a dual use opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  9. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  10. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  11. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  12. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  13. An integrated process for simultaneous desulfurization, dehydration, and recovery of hydrocarbon liquids from natural gas streams

    SciTech Connect (OSTI)

    Sciamanna, S.F. ); ))

    1988-01-01

    Conventional processing schemes for desulfurizing, drying, and separation of natural gas liquids from natural gas streams require treating the gas by a different process for each separation step. In a simpler process, based on the University of California, Berkeley Sulfur Recovery Process (UCBSRP) technology, hydrogen sulfide, propane and heavier hydrocarbons, and water are absorbed simultaneously by a polyglycol ether solvent containing a homogenous liquid phase catalyst. The catalyst promotes the subsequent reaction of hydrogen sulfide with added sulfur dioxide to produce a high quality sulfur product. Hydrocarbons are separated as two product streams with the split between propane and butane. This new process offers an overall reduction in both capital and energy costs.

  14. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  15. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  16. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  17. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  18. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  19. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  20. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  1. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  2. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  3. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  4. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  5. Department of Energy Recovery Act Investment in Biomass Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

  6. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  7. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  8. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  10. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  11. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  12. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  13. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  14. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  15. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  16. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  17. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  18. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  19. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  20. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  1. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in ...

  2. WIPP Update and Status of Recovery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  3. EM Recovery Act Top Line Messages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Line Messages EM Recovery Act Top Line Messages The lastest Recovery Act performance related information and metrics. PDF icon EM Recovery Act Top Line Messages - April, 2013...

  4. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act Here is one compliance agreement for EM's American Recovery and Reinvestment Act Program on...

  5. NREL: Technology Deployment - Disaster Resiliency and Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster...

  6. EM Recovery Act Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM

  7. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office April 14, 2014 Special Report: OAS-RA-L-14-01 Allegations Regarding the Department of Energy's State Energy Program

  8. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  9. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  10. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  11. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  12. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors PDF icon deer09_nelson_1.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. PDF icon fleurial.pdf More Documents & Publications High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

  14. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  15. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  16. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  17. State Agency Recovery Act Funding

    Energy Savers [EERE]

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  18. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » Recovery Act » Recovery Act SGDP Recovery Act SGDP View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act) - which President Obama signed

  19. Analysis of energy recovery potential using innovative technologies of waste gasification

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

  20. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov (indexed) [DOE]

    INTERIM GUIDANCE May 12, 2010 TO: Program Office Leadership FROM: [Matt Rogers] SUBJECT: DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage This memorandum clarifies the U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. The appropriate use of the logo will serve to highlight the Recovery Act's positive impact while preventing potential misrepresentations. Signs and websites are a useful

  1. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  2. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  3. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon dioxide turbo-expander and heat exchangers project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Southwest Research Institute, is working to develop a megawatt-scale s-CO2 hot-gas turbo-expander optimized for the highly transient solar

  4. Drain-Water Heat Recovery | Department of Energy

    Office of Environmental Management (EM)

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system....

  5. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drain-Water Heat Recovery Drain-Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How...

  6. Weatherization Formula Grants - American Recovery and Reinvestment Act

    Broader source: Energy.gov (indexed) [DOE]

    (ARRA) | Department of Energy recovery_act

  7. Coal liquefaction process with enhanced process solvent

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Kang, Dohee (Macungie, PA)

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  8. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  9. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  10. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY); Willson, Patrick Daniel (Latham, NY); Gao, Yan (Niskayuna, NY)

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  11. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X

    SciTech Connect (OSTI)

    Konduru, N.; Lindner, P.; Assaf-Anad, N.M.

    2007-12-15

    The removal of carbon dioxide (CO{sub 2}) from industrial emissions has become essential in the fight against climate change. In this study, we employed Zeolite 13X for the capture and recovery of CO{sub 2} in a flow through system where the adsorbent was subjected to five adsorption-desorption cycles. The influent stream contained 1.5% CO{sub 2} at standard conditions. The adsorbent bed was 1 in. in length and 1 in.3/8 in dia., and was packed with 10 g of the zeolite. Temperature swing adsorption (TSA) was employed as the regeneration method through heating to approximately 135{sup o}C with helium as the purge gas. The adsorbent capacity at 90% saturation was found to decrease from 78 to 60g CO{sub 2}/kg{sub Zeolite13X} after the fifth cycle. The CO{sub 2} capture ratio or the mass of CO{sub 2} adsorbed to the total mass that entered the system decreased from 63% to only 61% after the fifth cycle. The CO{sub 2} recovery efficiency ranged from 82 to 93% during desorption, and the CO{sub 2} relative recovery, i.e., CO{sub 2} desorbed for the nth cycle to CO{sub 2} adsorbed for the first cycle, ranged from 88 to 68%. The service life of the adsorbent was determined to be equal to eleven cycles at a useful capacity of 40g CO{sub 2}/kg{sub Zeolite13X}.

  12. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  13. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  14. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  15. U.S. Energy-Related Carbon Dioxide Emissions, 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-Related Carbon Dioxide Emissions, 2013 October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2014 U.S. Energy...

  16. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  17. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  19. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  20. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  1. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  2. The Hanford Story: Recovery Act

    Broader source: Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  3. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using supercritical carbon dioxide as a fracturing fluid Using supercritical carbon dioxide as a fracturing fluid The Laboratory team used a combination of experiments and modeling for the investigation. June 25, 2015 Simulation of a selection of the particle trajectories toward the well. Simulation of a selection of the particle trajectories toward the well. Communications Office (505) 667-7000 The Laboratory research is part of an ongoing project to make the necessary measurements and develop

  4. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions

    Office of Scientific and Technical Information (OSTI)

    and Determination of Contact Angles. (Journal Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, Randall T. Publication Date: 2013-08-01 OSTI Identifier: 1106710 Report Number(s):

  5. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic

    Office of Scientific and Technical Information (OSTI)

    Leakage into an Unconfined, Oxidizing Limestone Aquifer (Journal Article) | SciTech Connect Journal Article: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer An important risk at CO2 storage sites is the potential for groundwater quality impacts. As

  6. First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface Researchers Link Rising CO₂ Levels from Fossil Fuels to Radiative Forcing February 25, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 ARM Alaska Caption: The scientists used incredibly precise spectroscopic instruments at two sites operated by the Department of Energy's

  7. Carbon Dioxide Sequestering Using Microalgal Systems (Technical Report) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Carbon Dioxide Sequestering Using Microalgal Systems Citation Details In-Document Search Title: Carbon Dioxide Sequestering Using Microalgal Systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  8. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  11. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  12. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Environmental Management (EM)

    Sequestration Program | Department of Energy Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2

  13. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  14. Tapping America's Energy Potential Through R&D | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil reservoirs amenable to carbon dioxide enhanced oil recovery (CO2 EOR), heavy oil, oil shale, shale oil, and natural gas resources including methane hydrates. Studies have shown...

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    for carbon capture utilisation and storage Carter L D FOSSIL FUELED POWER PLANTS COAL GASIFICATION POWER GENERATION CARBON DIOXIDE CAPTURE STORAGE USA ENHANCED RECOVERY...

  16. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration...

    Office of Scientific and Technical Information (OSTI)

    must reduce its dependence on imported oil and reduce its emissions of carbon dioxide ... future, especially when coupled with COsub 2-enhanced oil recovery (COsub 2-EOR). ...

  17. Method to enhance the concentration of valuable minerals in froth flotation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process used in mining - Energy Innovation Portal Find More Like This Return to Search Method to enhance the concentration of valuable minerals in froth flotation process used in mining Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles

  18. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  19. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  20. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.