Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

2

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

3

EIA projections for carbon dioxide emissions reflect changes ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The lowered projections reflect both market and policy developments that have reduced recent and projected ...

4

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

5

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

6

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

7

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

8

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

9

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

10

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

11

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

12

EIA - AEO2010 - Emissions projections  

Gasoline and Diesel Fuel Update (EIA)

Emissions Projections Emissions Projections Annual Energy Outlook 2010 with Projections to 2035 Emissions Projections Figure 93. Carbon dioxide emissions by sector and fuel, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 94. Sulfur dioxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Figure 95. Nitrogen oxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Growth of carbon dioxide emissions slows in the projections Federal and State energy policies recently enacted will stimulate increased use of renewable technologies and efficiency improvements in the future, slowing the growth of energy-related CO2 emissions through 2035. In the Reference case, emissions do not exceed pre-recession 2007 levels until 2025. In 2035, energy-related CO2 emissions total 6,320 million metric tons, about 6 percent higher than in 2007 and 9 percent higher than in 2008 (Figure 93). On average, emissions in the Reference case grow by 0.3 percent per year from 2008 to 2035, compared with 0.7 percent per year from 1980 to 2008.

13

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

14

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

15

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

16

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

17

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

18

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

19

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

20

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

22

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

23

Annual Energy Outlook 2006 with Projections to 2030 - Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2006 with Projections to 2030 Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 107. Carbn dioxide emissions by sector and fuel, 2004 and 2030 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at

24

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

25

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

26

Carbon Dioxide Emissions from Industrialized Countries  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

27

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

28

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

29

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

30

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

31

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

32

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

E-Print Network (OSTI)

PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

Hultman, Nathan E.

33

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. AugustChinas Industrial Carbon Dioxide Emissions in ManufacturingChinas Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

34

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

35

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

36

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

37

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

38

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

39

Energy-related carbon dioxide emissions down in 2011 - Today ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

40

U.S. Energy-Related Carbon Dioxide Emissions, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Energy-Related Carbon Dioxide Emissions, 2012 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2013 U.S. Energy...

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Energy-related carbon dioxide (CO 2) emissions in 2012 were the lowest in the United States since 1994, at 5.3 billion metric tons of CO 2 (see figure above).

42

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

43

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

44

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

45

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

46

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

47

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

48

Carbon Dioxide-Based Heat Pump Water Heater Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to...

49

Do energy taxes decrease carbon dioxide emissions?.  

E-Print Network (OSTI)

?? This paper investigates the environmental effectiveness of the Swedish energy taxes. That is, whether these have decreased the CO2 emissions and how they have (more)

Sundqvist, Patrik

2007-01-01T23:59:59.000Z

50

International Carbon Dioxide Emissions and Carbon Intensity  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

51

OpenEI - sulfur dioxide emissions  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4600 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

52

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

53

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this table. ... non-combustion use of fossil fuels.

54

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. 2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this ... non-combustion use of fossil ...

55

Options for reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

Rosenfeld, A.H.; Price, L.

1991-08-01T23:59:59.000Z

56

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

57

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

58

Marketable permits for controlling sulphur dioxide emissions  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe research sponsored by the Energy Information Administration (EIA) at the Oak Ridge National Laboratory (ORNL) into the nature of the auctions described in the bills. The research was undertaken at the request of the House Committee on Energy and Commerce to assess how various provisions in the bills might affect the workings of the market. Because the project called for the analysis of market mechanisms that do not now exist, a laboratory'' approach was applied in which artificial markets are created using computerized trading, volunteer subjects, and cash incentives to mimic the markets being studied. Dr. Mark Isaac, at the University of Arizona, and Dr. Jamie Kruse, at the University of Colorado, led teams that designed and conducted the laboratory experiments. 4 figs., 5 tabs.

Hale, D.R. (USDOE Energy Information Administration, Washington, DC (United States)); Bjornstad, D.J. (Oak Ridge National Lab., TN (United States))

1991-12-01T23:59:59.000Z

59

Marketable permits for controlling sulphur dioxide emissions  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe research sponsored by the Energy Information Administration (EIA) at the Oak Ridge National Laboratory (ORNL) into the nature of the auctions described in the bills. The research was undertaken at the request of the House Committee on Energy and Commerce to assess how various provisions in the bills might affect the workings of the market. Because the project called for the analysis of market mechanisms that do not now exist, a ``laboratory`` approach was applied in which artificial markets are created using computerized trading, volunteer subjects, and cash incentives to mimic the markets being studied. Dr. Mark Isaac, at the University of Arizona, and Dr. Jamie Kruse, at the University of Colorado, led teams that designed and conducted the laboratory experiments. 4 figs., 5 tabs.

Hale, D.R. [USDOE Energy Information Administration, Washington, DC (United States); Bjornstad, D.J. [Oak Ridge National Lab., TN (United States)

1991-12-01T23:59:59.000Z

60

Global Patterns of Carbon Dioxide Emissions from Soils on a 0...  

NLE Websites -- All DOE Office Websites (Extended Search)

Potter. 1996. Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis. DB-1015. Carbon Dioxide Information Analysis Center, U.S. Department of...

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Uncertainty in emissions projections for climate models  

E-Print Network (OSTI)

Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a ...

Webster, Mort David.; Babiker, Mustafa H.M.; Mayer, Monika.; Reilly, John M.; Harnisch, Jochen.; Hyman, Robert C.; Sarofim, Marcus C.; Wang, Chien.

62

Global warming and global dioxide emission: An empirical study  

Science Conference Proceedings (OSTI)

In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

Linyan Sun [Xian Jiaotong Univ., Shaanxi (China); Wang, M. [Saint Mary`s Univ., Halifax, Nova Scotia (Canada)

1996-04-01T23:59:59.000Z

63

Table 12.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 159 Table 12.1 Carbon Dioxide Emissions From Energy Consumption by Source

64

Livscykelanalys fr koldioxidutslpp frn flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Swedens total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

65

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of ... other biomass. 3 Natural gas, excluding supplemental gaseous fuels.

66

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

67

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 10 Wood and wood-derived fuels.

68

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary. ... 6 Wood and wood-derived fuels.

69

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

6 Wood and wood-derived fuels. ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

70

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

8 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

71

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

72

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Wood 6: Waste 7: Total: ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

73

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Overview. Energy-related carbon dioxide emissions vary significantly across states (Figure 1), whether considered on an absolute or per capita basis.

74

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

75

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

76

Figure 111. Energy-related carbon dioxide emissions in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 111. Energy-related carbon dioxide emissions in three cases with three levels of emissions fees, 2000-2040 (million metric tons)

77

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

78

The carbon dioxide emissions game: Playing the net  

SciTech Connect

Concern about rising concentrations of carbon dioxide in the earth`s atmosphere has led to calls for the United States and other countries to reduce carbon emissions. These concerns resulted in the signing of the Framework Convention on Climate Change at the United Nations Conference on the Environment and Development in Rio de Janeiro in June 1992. The Framework calls for nations to develop action plans for limiting emissions of carbon and other greenhouse gases. In December 1992, in accordance with the Framework, the US Government released for public comment its National Action Plan for Global Climate Change (US Department of State, 1992). The Action Plan detailed steps for reducing carbon emissions by 93 to 130 million metric tons (MMT) by 2000. Some of the steps included in the Action Plan were reforming regulations, setting energy standards, promoting research and development of new energy technologies, expanding the use of alternative-fueled vehicles, and planting trees to sequester carbon. This paper explores the economic implications of implementing a much larger tree-planting program than the one presented in the Action Plan. Whereas the Action Plan estimated that 5 to 9 MMT of carbon (MMTC) could be sequestered in 2000 (with perhaps threefold increases in sequestration in later years when trees are growing the fastest), the program being considered in this analysis annually sequesters as much as 231 MMTC during its peak years. Our analysis focuses on how much the costs of stabilizing US carbon emissions at 1990 levels are reduced when economic criteria alone determine the number of trees that will be used. Our results show that when the focus is shifted from stabilization of gross emissions to net emissions the cost reductions are dramatic, about 20 to 80 percent depending on the assumed cost of trees. Political and institutional obstacles to the formation of such a cost effective response are explored in the conclusions.

Richards, K.R.; Edmonds, J.A.; Rosenthal, D.H.; Wise, M.

1993-06-01T23:59:59.000Z

79

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

DOE Green Energy (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

80

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Six Projects to Convert Captured CO2 Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

82

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

83

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

84

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

85

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

86

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

87

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

88

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network (OSTI)

Cement Industry, An Energy Perspective", U.S. Department ofDioxide Emissions for Energy Use in U.S. Cement Production (3. Primary Energy Consumption in U.S. Cement Production by

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

89

Energy-related carbon dioxide emissions down in 2011 - Today in ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

90

Energy Use and Carbon Dioxide Emissions from Cropland Production in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Carbon Dioxide Emissions from Cropland Production in the Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004 These data represent energy use and fossil-fuel CO2 emissions associated with cropland production in the U.S. Energy use and emissions occurring on the farm are referred to as on-site energy and on-site emissions. Energy use and emissions associated with cropland production that occur off the farm (e.g., use of electricity, energy and emissions associated with fertilizer and pesticide production) are referred to as off-site energy and off-site emissions. The combination of on-site and off-site energy and carbon is referred to as total energy and total carbon, respectively. Data provided here are for on-site and total energy and associated CO2 emissions. Units are Megagram C for CO2 estimates and Gigajoule for energy

91

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two New Projects to Reduce Emissions from Two New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2 emissions from coal-based power plants. These new technologies

92

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Projects to Reduce Emissions from New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2emissions from coal-based power plants. These new technologies will not only help fight climate change, they will also create new jobs and

93

NETL: News Release - Reining in CO2 Emissions....  

NLE Websites -- All DOE Office Websites (Extended Search)

Reining in CO2 Emissions.... DOE Selects Eight Innovative Projects to Capture and Store Carbon Dioxide from Power Plants WASHINGTON, DC - New ways to capture carbon dioxide from...

94

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool |  

Open Energy Info (EERE)

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View& Equivalent URI: cleanenergysolutions.org/content/carben-version-3-multisector-carbon-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The CarBen model enables users to conduct wedge anlayses of scenarios for mitigating U.S. greenhouse gas emissions. The spreadsheet-based tool relies upon expert opinion for scenario formulation and is not intended to be used

95

Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent  

Open Energy Info (EERE)

Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the

96

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

2012a. Analysis & Projections - Models & Documentation. Projections of Full-Fuel-Cycle Energy and Emissions MetricsGovernment purposes. Projections of Full-Fuel-Cycle Energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

97

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

electricity consumption. Car usage and home heating involvesto a population shift. Car Usage and Emissions We begin with

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

98

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

99

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions Supplement to the Annual Energy Outlook 2013 July 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

100

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

102

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...  

Open Energy Info (EERE)

Storage Program of the Carbon Dioxide (CO2) Capture Project (CCP), a coalition of eight oil and gas companies and two associate members that are working together to reduce carbon...

103

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

104

Annual Energy Outlook with Projections to 2025-Market Trends - Carbon  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2004 with Projections to 2025 Market Trends - Carbon Dioxide Emissions Index (click to jump links) Carbon Dioxide Emissions Emissions from Electricity Generation Carbon Dioxide Emissions Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 115. Carbon dioxide emissions by sector and fuel, 1990-2025 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Carbon dioxide emissions from energy use are projected to increase on average by 1.5 percent per year from 2002 to 2025, to 8,142 million metric tons (Figure 115). Emissions per capita are projected to grow by 0.7 percent per year from 2002 to 2025. Carbon dioxide emissions in the residential sector, including emissions

105

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

106

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

107

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provideend-use energy efficiency, or avoid methane emissions...

108

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

109

AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 26, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions East South Central EIA Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

110

AEO2011: Carbon Dioxide Emissions by Sector and Source - United States |  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 30, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA United States Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - United States- Reference Case (xls, 75.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

111

AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic |  

Open Energy Info (EERE)

Source- Middle Atlantic Source- Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 22, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions middle atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

112

Table 5. Per capita energy-related carbon dioxide emissions by state (2000 - 201  

U.S. Energy Information Administration (EIA) Indexed Site

Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" "metric tons carbon dioxide per person" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",31.54590416,29.56352198,30.5739632,30.56483509,30.96927578,31.14605742,31.33283758,31.52225314,29.78727412,25.44798199,28.06679306,-0.1102872527,-3.479111105 "Alaska",70.60324067,68.51009907,67.8551127,67.17588806,70.92646205,72.04509462,67.81012638,64.8863351,57.56413017,54.58358965,54.63289567,-0.2261984697,-15.97034499 "Arizona",16.64049197,16.65546102,16.08173855,15.97087112,16.77174168,16.18743942,16.15392734,16.06780183,15.87052371,14.3654833,14.36549251,-0.1367146759,-2.274999466

113

Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State energy-related carbon dioxide emissions by year (2000 - 2010)" State energy-related carbon dioxide emissions by year (2000 - 2010)" "million metric tons carbon dioxide" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,," 2000 to 2010 " "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",140.4264977,131.9521389,136.7103146,137.2323195,139.6896437,141.493798,143.9716001,146.076107,139.2224128,119.7962734,132.7462762,-0.05469211069,-7.680221558 "Alaska",44.32104312,43.40375114,43.56121812,43.5078746,46.76217106,48.06229125,45.79367017,44.11576503,39.46205329,37.91867389,38.72718369,-0.1262122693,-5.593859429 "Arizona",85.96984024,88.33838336,87.66914741,89.29026566,96.58329461,96.7032775,100.0087541,102.1950438,103.1458188,94.63481918,95.91303514,0.1156591064,9.943194897

114

AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic |  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 25, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA South Atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

115

AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 23, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions East North Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

116

AEO2011: Carbon Dioxide Emissions by Sector and Source, New England |  

Open Energy Info (EERE)

Source, New England Source, New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 21, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions New England Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source, New England- Reference Case (xls, 73.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

117

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

118

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

119

AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 24, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA west north central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

120

AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 27, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA West South Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central- Reference Case (xls, 74.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

122

AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific | OpenEI  

Open Energy Info (EERE)

Pacific Pacific Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 29, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Pacific Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific- Reference Case (xls, 74.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

123

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

Science Conference Proceedings (OSTI)

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

124

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

125

Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998  

Reports and Publications (EIA)

The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Information Center

1999-10-15T23:59:59.000Z

126

Trends and breaks in per-capita carbon dioxide emissions, 1870-2028  

E-Print Network (OSTI)

We consider per-capita carbon dioxide emission trends in 16 early developed countries over the period 1870-2028. Using a multiple-break time series method we find more evidence for very early downturns in per-capita trends ...

Lanne, Markku

2003-01-01T23:59:59.000Z

127

Carbon Dioxide Emissions of the City Center of Firenze, Italy: Measurement, Evaluation, and Source Partitioning  

Science Conference Proceedings (OSTI)

An eddy covariance station was installed in the city center of Firenze, Italy, to measure carbon fluxes at half-hourly intervals over a mostly homogeneous urban area. Carbon dioxide (CO2) emission observations made over an initial period of 3.5 ...

A. Matese; B. Gioli; F. P. Vaccari; A. Zaldei; F. Miglietta

2009-09-01T23:59:59.000Z

128

Carbon Dioxide Emission Pathways Avoiding Dangerous Ocean Impacts  

Science Conference Proceedings (OSTI)

Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-...

K. Kvale; K. Zickfeld; T. Bruckner; K. J. Meissner; K. Tanaka; A. J. Weaver

2012-07-01T23:59:59.000Z

129

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

Integrated Database (eGRID), and the National Oceanic andProtection Agencys eGRID, or Emissions & GenerationDatabase data base 21 . The eGRID data base contains the

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

130

Research Projects to Convert Captured CO2 Emissions to Useful...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 06, 2010 Research Projects to Convert Captured CO2 Emissions to Useful Products Six Projects Selected by DOE Will Further Important Technologies for Helping Reduce CO2...

131

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Environmental Regulations Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide...

132

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

133

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

134

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

135

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

Science Conference Proceedings (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

136

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis (DB-1015) DOI: 10.3334/CDIAC/lue.db1015 This data has been updated. Please see NDP-081. Contributed by: James W. Raich 1 and Christopher S. Potter2 1Department of Botany Iowa State University Ames, IA 50011 USA Email: jraich@iastate.edu 2NASA Ames Research Center MS 242-2 Moffett Field, CA 94035 USA Email: cpotter@gaia.arc.nasa.gov Prepared by L.M. Olsen. Carbon Dioxide Information Analysis Center Date Published: March, 1996 (Revised for the web: 2002) The Carbon Dioxide Information Analysis Center is a part of the Environmental Sciences Division of the OAK RIDGE NATIONAL LABORATORY (ORNL) and is located in Oak Ridge, Tennessee 37831-6290. The ORNL is managed by University of Tennessee-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

137

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network (OSTI)

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 20052010, a vehicles tax is negatively correlated with its ...

Klier, Thomas

138

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. Iron and Steel sector  

E-Print Network (OSTI)

in the U.S. 26 Energy Conservation SupplyDioxide Emissions from Energy For U.S. Steel Production (2 Final Energy Use for U.S. Steel Production (

Worrell, Ernst; Martin, N.; Price, L.

1999-01-01T23:59:59.000Z

139

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

140

EIA projections for carbon dioxide emissions reflect changes in ...  

U.S. Energy Information Administration (EIA)

... the Mercury and Air Toxics Standards and other policies and measures at local, state, and federal levels ...

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - AEO2011 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

1 Early Release Overview 1 Early Release Overview Release Date: December 16, 2011 | Next Release Date: January 2012 | Report Number: DOE/EIA-0383ER(2011) Energy-Related Carbon Dioxide Emissions Figure DataAfter falling by 3 percent in 2008 and nearly 7 percent in 2009, largely driven by the economic downturn, total U.S. energy-related CO2 emissions do not return to 2005 levels (5,980 million metric tons) until 2027, and then rise by an additional 5 percent from 2027 to 2035, reaching 6,315 million metric tons in 2035 (Figure 13). Energy-related CO2 emissions grow by 0.2 percent per year from 2005 to 2035. Emissions per capita fall by an average of 0.8 percent per year from 2005 to 2035, as growth in demand for electricity and transportation fuels is moderated by higher energy prices, effi ciency standards, State RPS requirements, and Federal

142

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

143

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into useful products. The innovative projects -...

144

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption with Potassium Carbonate Carbon Dioxide Capture by Absorption with Potassium Carbonate Project No.: FC26-02NT41440 Pilot Plant at the University of Texas Pilot Plant at the University of Texas The University of Texas at Austin investigated an improved process for CO2 capture by alkanolamine absorption that uses an alternative solvent, aqueous potassium carbonate (K2CO3) promoted by piperazine (PZ). If successful, this process would use less energy for CO2 capture than the conventional monoethanolamine (MEA) scrubbing process. An improved capture system would mean a relative improvement in overall power plant efficiency. The project developed models to predict the performance of absorption/stripping of CO2 using the improved solvent and perform a pilot plant study to validate the process models and define the range of feasible

145

Annual Energy Outlook with Projections to 2025-Figure 7. Projected...  

Gasoline and Diesel Fuel Update (EIA)

7. Projected U.S. carbon dioxide emissions by sector and fuel, 1990-2025 (million metric tons carbon equivalent). For more detailed information, contact the National Energy...

146

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

147

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related CO2 Emissions Energy-Related CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in demand for transportation fuels is moderated by rising fuel prices and new, stricter federal CAFE standards for model years 2017 to 2025, which reduce transportation emissions from 2018 until they begin to rise near the end of the projection period. Transportation emissions in 2040 are 26 million metric tons below the 2011 level. Largely as a result of the inclusion of the new CAFE standards in AEO2013, transportation-related CO2 emissions in 2035 are 94 million metric tons below their level in the AEO2012 Reference case. State RPS requirements and abundant low-cost natural gas help shift the

148

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi, Lynn Price China Energy Group Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Marlene Arens Fraunhofer Institute for Systems and Innovation Research (ISI) January 2013 This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE- AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL-6106E ii Disclaimer This document was prepared as an account of work sponsored by the United States

149

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

150

Livscykelanalys av flerbostadshus energieffektiviseringstgrder fr minskade koldioxidutslpp; Life Cycle Analysis of Residential Buildings - Energy Efficiency Measures for Decreasing Carbon Dioxide Emissions.  

E-Print Network (OSTI)

?? The importance of energy- and environmental issues has increased, and the work towards reducing carbon dioxide emissions plays a major part. The European Union (more)

Hedin, Hanna

2013-01-01T23:59:59.000Z

151

A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission  

SciTech Connect

The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

Fang, Zhigang Zak [University of Utah] [University of Utah

2013-11-05T23:59:59.000Z

152

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

153

Carbon dioxide emission index as a mean for assessing fuel quality  

Science Conference Proceedings (OSTI)

Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

2008-07-01T23:59:59.000Z

154

Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations  

SciTech Connect

Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

2008-01-01T23:59:59.000Z

155

Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions  

SciTech Connect

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

Huffman, Gerald P.

2012-11-13T23:59:59.000Z

156

Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions  

DOE Patents (OSTI)

A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

Huffman, Gerald P

2012-09-18T23:59:59.000Z

157

Annual Energy Outlook with Projections to 2025 - Market Trends- Carbon  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2005 Market Trends - Carbon Dioxide Emissions Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 110. Carbon dioxide emissions by sector and fuel, 2003 and 2025 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Carbon dioxide emissions from energy use are projected to increase on average by 1.5 percent per year from 2003 to 2025, to 8,062 million metric tons (Figure 110). Emissions per capita are projected to grow by 0.7 percent per year. New carbon dioxide mitigation programs, more rapid improvements in technology, or more rapid adoption of voluntary programs could result in lower emissions levels than projected here.

158

The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF-CNEAF/2008-04 SR/OIAF-CNEAF/2008-04 The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special

159

Measuring Sulphur Dioxide (SO2) Emissions in October, 2010 Catastrophic Eruption from Merapi Volcano in Java, Indonesia  

E-Print Network (OSTI)

Volcano in Java, Indonesia with Ozone Monitoring Instrument (OMI) José A. Morales-Collazo Geology This paper discusses sulfur dioxide (SO2) cloud emissions from Merapi Volcano in Java, Indonesia during, Indonesia. In October 26th , 2010, a catastrophic eruption was reported from Merapi causing nearly 386

Gilbes, Fernando

160

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

162

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

163

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

164

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

165

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA) Indexed Site

Environment - Analysis & Projections - U.S. Energy Information Environment - Analysis & Projections - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable &

166

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

167

Evaluation of Sludge Characteristics and Carbon Dioxide Emissions of Full-scale Wastewater Treatment Plants in China by Mass and Energy Balances  

Science Conference Proceedings (OSTI)

Energy balances were used to evaluate the characteristics of sludge and to calculate the carbon dioxide emissions in the WWTPs in this study. To avoid the errors, mass balances by TP have been used to calibrate the relating data before making energy ... Keywords: Sludge, CEP, mass balance, energy balance, carbon dioxide

Gan Wang; Yongzhen Peng; Shuying Wang; Gan Wang; Hongxun Hou

2012-05-01T23:59:59.000Z

168

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

169

Thermophysical Properties of Carbon Dioxide and CO2-Rich Mixtures...  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon dioxide (CO 2 ) emissions; and will help maintain the nation's leader- ship in the export of gas turbine equipment. In this NETL-managed project, the National Institute of...

170

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 9 Includes electric power sector use of ...

171

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 8 Fuel ethanol minus denaturant. 2 Carbo ...

172

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

173

Bairoil/Dakota Carbon Dioxide Projects, Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect

A draft environmental impact statement (EPA No. 850402D) assesses the impacts of proposed pipelines to carry carbon dioxide (CO/sub 2/) across public lands in Wyoming, Montana, and North and South Dakota. The preferred alternative would be 751.5 miles long and parallel other pipelines or roads for more than half the distance. The study describes ancillary facilities that each of the oil companies participating in the project would use. Increased oil and gas production, a rise in local property taxes, and employment opportunities would be the major benefits. The disturbance of sensitive soils would require extra rehabilitation efforts and degrade some visual resources. There would be a short-term loss of habitat, but no significant loss of animals. Several laws addressing antiquities, water pollution, land management, and mineral leasing require the impact statement.

1985-09-01T23:59:59.000Z

174

EIA - International Energy Outlook 2009-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2009 Chapter 8 - Energy-Related Carbon Dioxide Emissions In 2006, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 14 percent. In 2030, energy-related carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 77 percent. Figure 80. World Energy-Related Carbon Dioxide Emissions, 2006-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 81. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 82. U.S. Energy-Related Carbon Dioxide Emissions by Fuel in IEO2008 and IEO2009, 2006, 2015, and 2030 (billion metric tons). Need help, contact the National Energy Information Center at 202-586-8800.

175

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

emissions. In this paper, energy use and CO 2 emissions ofinformation, this paper estimates industrial energy-relatedenergy-intensive products. Emissions from manufacturing of textiles, and paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

176

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

177

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

178

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

179

Environment - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Carbon/Greenhouse Gas Emissions Carbon/Greenhouse Gas Emissions Change category... Carbon/Greenhouse Gas Emissions International Other Environmental Issues Projections All Reports Filter by: All Data Analysis Projections U.S. Energy-Related Carbon Dioxide Emissions Released: October 21, 2013 U.S. Energy Information Administration releases its online analysis of 2012 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,290 million metric tons carbon dioxide in 2012, a decrease of almost 4 percent from the 2011 level. Energy-related carbon dioxide emissions have declined in five of the last seven years and are the lowest they have been since 1994. (archived versions) Archived Versions U.S. Energy-Related Carbon Dioxide Emissions 2009

180

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants  

E-Print Network (OSTI)

Over the past decade increasing concern over the potential environmental impact associated with the emissions of both gaseous and particulate pollutants has resulted in the promulgation of strict regulatory standards governing such emissions. In this regard, particular attention has been placed upon the control of sulfur dioxide (SO2) from major fuel burning installations. The provisions of the 1977 Amendments to the Clean Air Act which relate to the Prevention of Significant Deterioration (PSD) and the New Source Performance Standards (NSPS) have made consideration of this problem of significant additional importance in the context of increased coal utilization. There exist three general methods for the control of sulfur dioxide emissions from pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime or limestone into the firebox, or a spray dryer operated with nonregenerable alkaline sorbents coupled with a fabric filter collector. Equipment requirements, SO2 removal criteria, general economics, and potential applications of these latter two approaches within category (3) will be discussed.

Schwartz, M. H.

1979-01-01T23:59:59.000Z

182

U.S. energy use projected to grow slowly and become less carbon ...  

U.S. Energy Information Administration (EIA)

Both energy consumption and energy-related carbon dioxide emissions fell during the recent economic recession. Projections contained in the Early Release Reference ...

183

Alignment-dependent fluorescence emission induced by tunnel ionization of carbon dioxide from lower-lying orbitals  

E-Print Network (OSTI)

We show that fluorescence emission induced by strong field tunnel ionization of carbon dioxide from its lower-lying orbitals exhibits a peculiar molecular alignment dependence. The experimentally measured alignment-dependence of the fluorescence agrees with the alignment-dependence of the ionization probability calculated in the framework of the strong field approximation. Our results demonstrate the feasibility of an all-optical approach for shedding more light on the ionization mechanisms of molecules from their lower-lying orbitals in tunnel ionization regime.

Yao, Jinping; Jia, Xinyan; Hao, Xiaolei; Zeng, Bin; Jing, Chenrui; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xie, Hongqiang; Zhang, Chaojin; Zhao, Zengxiu; Chen, Jing; Liu, Xiaojun; Cheng, Ya; Xu, Zhizhan

2013-01-01T23:59:59.000Z

184

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

185

Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.  

Science Conference Proceedings (OSTI)

This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

2011-02-22T23:59:59.000Z

186

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

187

Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry  

E-Print Network (OSTI)

2002. Estimating Carbon Dioxide Emissions Factors for thein Estimating Carbon Dioxide Emissions Factors for the

Price, Lynn; Murtishaw, Scott; Worrell, Ernst

2003-01-01T23:59:59.000Z

188

How much of U.S. carbon dioxide emissions are associated with ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ... CO2 emissions from U.S. electricity generation by ...

189

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

190

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

Energy Data Report; emissions from imports calculated using U.S.source of energy in the Southwest U.S. Thus, imports from

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

191

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

Science Conference Proceedings (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

192

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

Information Center

2010-05-11T23:59:59.000Z

193

Comparison of two U.S. power-plant carbon dioxide emissions data sets  

Science Conference Proceedings (OSTI)

Estimates of fossil-fuel CO{sub 2} emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO{sub 2} emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions. 19 refs., 2 figs., 2 tabs.

Katherine V. Ackerman; Eric T. Sundquist [U.S. Geological Survey, Woods Hole, MA (United States)

2008-08-15T23:59:59.000Z

194

Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004  

Science Conference Proceedings (OSTI)

Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.

West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; Hellwinckel, Chad M [ORNL; De La Torre Ugarte, Daniel G [ORNL

2009-01-01T23:59:59.000Z

195

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

key resources for national energy consumption data in ChinaNBS published 2008 national energy consumption by industrialnational level, carbon emission factors for electricity consumption are calculated based on the energy

Lu, Hongyou

2013-01-01T23:59:59.000Z

196

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

In AEO2013, the 2030 values have fallen to 5,523 million metric tons for total energy-related CO 2 emissions, with 1,874 million metric tons (34 percent) ...

197

Sulfur Dioxide Regulations (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

198

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?  

E-Print Network (OSTI)

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

Garrett, Timothy J

2008-01-01T23:59:59.000Z

199

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network (OSTI)

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

200

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An evaluation of the ramp metering effectiveness in reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

In this study, we develop a methodology to estimate the effectiveness of ramp metering in reducing CO2 emissions. Ramp metering is one of several Intelligent Transportation Systems (ITS) applications to control traffic flow. In this paper in order to ... Keywords: CO2 Reduction, Greenhouse Gas, Intelligent Transportation System, Ramp Metering, State Preference Analysis, TSIS Simulation

Sang-Hoon Bae; Tae-Young Heo; Byoung-Yong Ryu

2012-11-01T23:59:59.000Z

202

Electricity Load and Carbon Dioxide Emissions: Effects of a Carbon Price in the Short Term  

Science Conference Proceedings (OSTI)

acceptable levels will require a dramatic de-carbonization of the electric generation sector in the U.S. One increasingly discussed way to meet this policy goal is to put an explicit price on carbon emissions, either through a tax or a trading scheme. ...

Adam Newcomer; Seth Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan

2008-01-01T23:59:59.000Z

203

Projections  

E-Print Network (OSTI)

Growth in energy production outstrips consumption growth Crude oil production rises sharply over the next decade Motor gasoline consumption reflects more stringent fuel economy standards The U.S. becomes a net exporter of natural gas in the early 2020s U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

204

The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratorys MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

2010-03-01T23:59:59.000Z

205

High Efficiency Low Emission Supermarket Refrigeration Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies.

206

Projecting Insect Voltinism Under High and Low Greenhouse Gas Emission Conditions  

E-Print Network (OSTI)

REVIEW Projecting Insect Voltinism Under High and Low Greenhouse Gas Emission Conditions SHI CHEN,1 change can alter insect voltinism under varying greenhouse gas emissions scenarios by using input climate data until 2099 under both high (A1?) and low (B1) greenhouse gas emission scenarios, we used

207

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

5 Comparison of natural gas supply projections AEO 2006 tothe projection of natural gas supply by source category as5 Comparison of natural gas supply projections AEO 2006 to

Coughlin, Katie

2013-01-01T23:59:59.000Z

208

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Project No.: DE-NT0005287 In this project, the Georgia Tech Research Corporation is using totally novel chemistryto engender the dramatic changes needed for widespread implementation of CO2 capture in a both environmentally benign and economical process. Current methods of CO2 post-combustion recovery from coal-fired power plants focus on such techniques as absorption in aqueous ethanolamine scrubbers - and this is now a mature technology unlikely to achieve a quantum change in either capacity or cost. The objective of this project is to develop a novel class of solvents for post-combustion recovery of CO2 from fossil fuel-fired power plants which will achieve a substantial increase in CO2 carrying capacity with a concomitant plummet in cost. The project team is a combination of chemical engineers and chemists with extensive experience in working with industrial partners to formulate novel solvents and to develop processes that are both environmentally benign and economically viable. Further, the team has already developed solvents called "reversible ionic liquids," essentially "smart" molecules which change properties abruptly in response to some stimulus, and these have quickly found a plethora of applications.

209

Urban and rural energy use and carbon dioxide emissions in Asia Volker Krey a,  

E-Print Network (OSTI)

for electricity and the services it provides in one aggregated category as well as cooking.3 Demand is satisfied then affect the use of electricity to meet demand in these areas. Electricity access is also differentiated of electricity is the projected energy service demand levels. For example, in IMAGE and GCAM the demand for space

210

A Comprehensive Overview of Project-Based Mechanisms to Offset Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This EPRI Technical Update provides senior managers and environmental staff of U.S. electric companies with a comprehensive understanding of the role that greenhouse gas (GHG) emissions offsets can play in their own company's future carbon emissions compliance strategy and how offsets offer a key contribution to meet global GHG emissions reduction targets faster and at comparatively low cost. So-called project-based mechanisms use the power of markets to supply cost-efficient GHG emission reductions to e...

2007-12-21T23:59:59.000Z

211

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,of Unconventional Shale-Gas Reservoirs. In Society oftight gas reservoirs, shale gas, tight oil, oil shale, and

Coughlin, Katie

2013-01-01T23:59:59.000Z

212

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions from Conventional Oil Productionand Oil Sands. Environ. Sci. Technol. 44 (22): 87668772.Laboratory. CAPP. 2011. Crude Oil Forecast, Markets &

Coughlin, Katie

2013-01-01T23:59:59.000Z

213

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

et al. 2010). Shale gas production by hydraulic fracturing (anticipated growth in shale gas production is expected toFugitive emissions from shale gas production are the subject

Coughlin, Katie

2013-01-01T23:59:59.000Z

214

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

emissions intensity of unconventional oil production remainof the forecasts of unconventional oil and gas productionassociated with unconventional production of oil and gas;

Coughlin, Katie

2013-01-01T23:59:59.000Z

215

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,Footprint of Natural Gas from Shale Formations. Climaticof Unconventional Shale-Gas Reservoirs. In Society of

Coughlin, Katie

2013-01-01T23:59:59.000Z

216

Project311  

NLE Websites -- All DOE Office Websites (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

217

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

218

Research Projects to Convert Captured CO2 Emissions to Useful Products |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects to Convert Captured CO2 Emissions to Useful Projects to Convert Captured CO2 Emissions to Useful Products Research Projects to Convert Captured CO2 Emissions to Useful Products July 6, 2010 - 1:00pm Addthis Washington, DC - Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy (DOE). The projects are located in North Carolina, New Jersey, Massachusetts, Rhode Island, Georgia, and Quebec, Canada (through collaboration with a company based in Lexington, Ky.) and have a total value of approximately $5.9 million over two-to-three years, with $4.4 million of DOE funding and $1.5 million of non-Federal cost sharing. The work will be managed by the

219

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

220

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Locomotive Emission and Engine Idle Reduction Technology Demonstration Project  

DOE Green Energy (OSTI)

In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

John R. Archer

2005-03-14T23:59:59.000Z

222

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for thefactors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

223

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for theemissions factors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

224

Research Projects to Convert Captured CO2 Emissions to Useful...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The selected projects are described below: Research Triangle Institute (Durham, N.C.)--RTI will assess the feasibility of producing valuable chemicals, such as carbon monoxide,...

225

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

Energy Efficiency and Carbon Dioxide Emissions Reductionconsumption and related carbon dioxide (CO 2 ) emissions.during Cumulative Carbon Dioxide Emission Reduction (MtCO

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

226

Case Studies of Greenhouse Gas Emissions Offset Projects Implemented in the United Nations Clean Development Mechanism  

Science Conference Proceedings (OSTI)

This paper describes case studies of greenhouse gas (GHG) emissions offset project activities undertaken within the United Nations Clean Development Mechanism (CDM) program. This paper is designed to communicate key lessons learned from the implementation of different types of GHG emissions offsets projects in the CDM to policy makers in the U.S. who may be interested in developing national, regional or state-based GHG offsets programs. This paper also is designed to provide important insights to entitie...

2011-12-21T23:59:59.000Z

227

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

228

HFC Emissions Estinating  

Science Conference Proceedings (OSTI)

... Dioxide Emissions Reporting Year: January December, 200x Agent Type GWP Total Emission by Agent Type, kg Equivalent CO2 Emission by ...

2011-10-13T23:59:59.000Z

229

Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)  

SciTech Connect

This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a balance between simplicity of use and the desire for accuracy in granting carbon credits.

Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

2000-07-01T23:59:59.000Z

230

Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Emission Trends and Projections in Europe 2009 Greenhouse Gas Emission Trends and Projections in Europe 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emission Trends and Projections in Europe 2009 Agency/Company /Organization: European Environment Agency Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Maps Website: www.eea.europa.eu/publications/eea_report_2009_9 Country: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Ireland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

231

Emissions and Experiences with E85 Converted Cars in the BEST Project |  

Open Energy Info (EERE)

Emissions and Experiences with E85 Converted Cars in the BEST Project Emissions and Experiences with E85 Converted Cars in the BEST Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Emissions and Experiences with E85 Converted Cars in the BEST Project Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report The BioEthanol for Sustainable Transport (BEST) project converted vehicles from petrol to E85, exploring the possibilities, advantages, and any difficulties. Several suggestions are presented for how converted cars may be incorporated into Swedish government financial incentives. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

232

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

233

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for thefactors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

234

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for theemissions factors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

235

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

236

Project 301  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

237

Building Energy Software Tools Directory: EMISS  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of emission factors are currently included: carbon dioxide, sulfur dioxide, nitrous oxide. Emissions factors are specified separately for six different end-use...

238

Energy and Emissions Savings through Insulation Upgrade Projects  

E-Print Network (OSTI)

The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental benefits are quantified and physical improvements detailed. The presentation will highlight the key components and successful execution of an insulation assessment and upgrade project. This includes: The extent of the problem How the current state happened The stake / reward for plants Specific case studies will be used including Sunoco and Marathon Petroleum

Lettich, M.

2008-01-01T23:59:59.000Z

239

Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 9, 2007 4: April 9, 2007 Carbon Dioxide Emissions to someone by E-mail Share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Facebook Tweet about Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Twitter Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Google Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Delicious Rank Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Digg Find More places to share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on AddThis.com... Fact #464: April 9, 2007 Carbon Dioxide Emissions Carbon dioxide (CO2) emissions from the transportation sector began to

240

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

242

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

Ozawa Meida. 2001. Carbon Dioxide Emissions from the Globalpost-combustion capture of carbon dioxide. InternationalIPCC Special Report on Carbon Dioxide Capture and Storage:

Zhou, Nan

2013-01-01T23:59:59.000Z

243

Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

Burris, S.A.; Thomas, S.P.

1994-02-01T23:59:59.000Z

244

NETL: News Release - DOE Funds Projects Geared Toward Near-Zero Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

27, 2006 27, 2006 DOE Funds Projects Geared Toward Near-Zero Emissions Power Production WASHINGTON, DC - The Department of Energy today announced the selection of five projects totaling nearly $12 million targeting cost-effective technologies to improve the performance and economics of near-zero emission, coal-based power generation systems. Developed for the Office of Fossil Energy's Advanced Research program, the projects focus on identifying technologies that address physical, chemical, biological and thermodynamic constraints in the cross cutting technology areas of instrumentation, sensors and control systems, materials, and computational energy sciences. DOE is providing more than $9.3 million in funding while industry is contributing more than $2.3 million. The projects range from 24 to 36 months in duration.

245

COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.  

DOE Green Energy (OSTI)

Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC emissions were given additional species resolution by allocating the 23 chemical categories to individual chemical species based on factors derived from the speciated emissions of NMVOCs in the U.S. from the U.S. EPA's 1990 Interim Inventory. Ongoing research activities for this project continue to address emissions of both NO{sub x} and NMVOCs. Future tasks include: (a) evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates, (b) derivation of quantitative uncertainty estimates for the emission values, and (c) development of emissions estimates for 1995.

BENKOVITZ,C.M.

1997-09-01T23:59:59.000Z

246

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-?based energy recovery and storage system. This technology is being developed at TDIs facilities to capture and reuse the energy necessary for the companys core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

247

Environment - Analysis & Projections - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Environment Environment Glossary › FAQS › Overview Data Summary Electric Power Plant Environmental International Emissions All Environment Data Reports Analysis & Projections Carbon/Greenhouse Gas Emissions International Other Environmental Issues Projections All Reports U.S. Energy-Related Carbon Dioxide Emissions, 2012 Release Date: October 21, 2013 | Next Release Date: October 2014 | full report Previous Issues: Year: 2011 2010 2009 Go U.S. Energy-related carbon dioxide emissions declined 3.8 percent in 2012 The 2012 downturn means that emissions are at their lowest level since 1994 and over 12 percent below the recent 2007 peak. After 1990, only the recession year of 2009 saw a larger percentage emissions decrease than 2012. Energy-related carbon dioxide emissions have declined in 5 out of the last 7 years.

248

Project 333  

NLE Websites -- All DOE Office Websites (Extended Search)

José D. Figueroa José D. Figueroa Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov C. Jeffrey Brinker Sandia Fellow, Sandia National Laboratories Professor of Chemical & Nuclear Engineering The University of New Mexico Advanced Materials Laboratory 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 505-272-7627 cjbrink@sandia.gov Sequestration NOVEL DUAL FUNCTIONAL MEMBRANE FOR CONTROLLING CARBON DIOXIDE EMISSIONS FROM FOSSIL FUELED POWER PLANTS Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide, in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions

249

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

250

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

251

EIA - Annual Energy Outlook 2008 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2008 with Projections to 2030 Emissions from Energy Use Figure 97. Carbon dioxide emissions by sector and fuel, 2006 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 98. Carbon dioxide emissions, 1990-2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rising Energy Consumption Increases Carbon Dioxide Emissions Without capture and sequestration, CO2 emissions from the combustion of fossil fuels are proportional to the carbon content of the fuel. Coal has the highest carbon content and natural gas the lowest, with petroleum in between. In the AEO2008 reference case, the shares of these fuels change

252

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color...

253

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

254

The US department of Energy's R&D program to reduce greenhouse gas emissions through beneficial uses of carbon dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Perspective Correspondence to: Darin Damiani, National Energy Technology Laboratory, US Department of Energy, 3610 Collins Ferry Road, Morgantown, WV 26507, USA. E-mail: darin.damiani@netl.doe.gov † This article is a US Government work and is in the public domain in the USA. Received June 24, 2011; revised July 26, 2011; accepted July 27, 2011 Published online at Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ghg.35 The US Department of Energy's R&D program to reduce greenhouse gas emissions through benefi cial uses of carbon dioxide † Darin Damiani and John T. Litynski, National Energy Technology Laboratory, US Department of

255

Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening  

Science Conference Proceedings (OSTI)

This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Mota, Leonardo [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany); Goncalves de Oliveira, Jurandi [Laboratorio de Melhoramento Genetico Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Miklos, Andras [Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany)

2011-06-01T23:59:59.000Z

256

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

257

Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

San Martin, Robert L.

1989-01-01T23:59:59.000Z

258

Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

San Martin, Robert L.

1989-04-01T23:59:59.000Z

259

The Future Trajectory of US CO2 Emissions: The Role of State vs. Aggregate Information  

E-Print Network (OSTI)

1998, World carbon dioxide emissions 1950 - 2050, Review ofof us greenhouse gas emissions and sinks:1990 - 2001, EPAper capita carbon dioxide emissions, Harvard Department of

Auffhammer, Maximilian; Steinhauser, Ralf

2006-01-01T23:59:59.000Z

260

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: News Release - DOE Selects Projects to Reduce Mercury Emissions from  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: February 3, 2006 DOE Selects Projects to Reduce Mercury Emissions from Coal-Fired Power Plants Focus is on Cost-Effective Technology to Achieve 90 Percent Mercury Removal WASHINGTON, DC - In a continued effort to promote clean coal technologies, the U.S. Department of Energy has selected 12 projects aimed at reducing mercury emissions from coal-fired power plants. The projects' overall focus is on field-testing advanced post-combustion mercury control technologies that achieve at least 90 percent mercury removal with a cost reduction of 50 percent or more. Other objectives center on field-testing in specific areas of need, and bench-scale through pilot-scale testing of novel mercury control technologies. America's coal-fired power plants emit around 48 tons of mercury each year. In March 2005, the U.S. Environmental Protection Agency issued the Clean Air Mercury Rule to permanently cap and reduce these emissions, requiring an overall average reduction of nearly 70 percent by 2018.

262

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

263

HEEP A Program for Tracking Fire Protection Emissions of ...  

Science Conference Proceedings (OSTI)

... HEEP are as follows: Emission for the ... values to equivalent emissions of carbon dioxide ... used to calculate carbon dioxide (CO2) equivalence for ...

2011-10-13T23:59:59.000Z

264

Environment energy-related emissions. For example, the clearing of ...  

U.S. Energy Information Administration (EIA)

Environment Note. Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion. Carbon dioxide (CO 2) emissions from the combustion of biomass to

265

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

Carbon dioxide Table 2-4 Overall Weighted Average Emission FactorsCarbon dioxide .. 18 Figure 2-4 PM 2.5 Mass Emission Factors

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

266

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

267

EIA - Annual Energy Outlook 2009 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2009 with Projections to 2030 Emissions from Energy Use Figure 81. Carbon diioxide emissions by sector and fuel, 2007 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 82. Sulfur dioxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 83. Nitrogen oxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rate of Increase in Carbon Dioxide Emissions Slows in the Projections Even with rising energy prices, growth in energy use leads to increasing

268

8 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org730 n 2006, China's carbon dioxide emission  

E-Print Network (OSTI)

year over the last 27 years, while its CO2 emissions have increased by only 5.4% per year (1­3), corre)--a remarkable achievement, as energy consumption generally grows faster thanGDPduringtheearlystagesofindustrial- ization. One important reason for this was the government's emphasis on energy efficiency. China's per

269

EIA - 2010 International Energy Outlook - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2010 Energy-Related Carbon Dioxide Emissions In 2007, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 17 percent. In the IEO2010 Reference case, energy-related carbon dioxide emissions from non-OECD countries in 2035 are about double those from OECD countries. Overview Because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels, world energy use continues to be at the center of the climate change debate. In the IEO2010 Reference case, world energy-related carbon dioxide emissions29 grow from 29.7 billion metric tons in 2007 to 33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 (Table 18).30

270

DOE to Provide $36 Million to Advance Carbon Dioxide Capture | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$36 Million to Advance Carbon Dioxide Capture $36 Million to Advance Carbon Dioxide Capture DOE to Provide $36 Million to Advance Carbon Dioxide Capture July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that it will provide $36 million for 15 projects aimed at furthering the development of new and cost-effective technologies for the capture of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the existing U.S. coal fleet accounts for over half of all electricity generated in this country," U.S. Secretary of Energy Samuel W. Bodman said. "The projects announced today will combat climate change and help meet current and future energy needs by curbing CO2 emissions from existing coal-fired plants."

271

How the Carbon Emissions Were Estimated - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

How the Carbon Emissions Were Estimated. Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human ...

272

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

273

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

274

Emissions of Greenhouse Gases in the United States 2001  

U.S. Energy Information Administration (EIA)

carbon dioxide emissions, total greenhouse gas emissions, sector-specific emissions, and emissions by fuel type. Nonfuel uses of fossil fuels, principally petroleum,

275

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

276

Dynamics of nitrogen and greenhouse gas emission under elevated carbon dioxide in semi-arid cropping systems in Australia and China.  

E-Print Network (OSTI)

??Within less than 50 years, atmospheric carbon dioxide concentration [CO2] will likely be double that observed in 1950. In this higher [CO2] world the sustainability (more)

Lam, Shu Kee

2012-01-01T23:59:59.000Z

277

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

278

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

279

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

280

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO2 with HIPPO and SGP aircraft profile measurements  

E-Print Network (OSTI)

Aircraft observation of carbon dioxide at 8-13km altitudedecade, measurements of carbon dioxide (CO ) from space haveEmission Spectrome- ter (TES) carbon dioxide (CO ) satellite

Kulawik, S.S.

2013-01-01T23:59:59.000Z

282

The Value of Post-Combustion Carbon Dioxide Capture and Storage Technologies in a World with Uncertain Greenhouse Gas Emissions Constraints  

Science Conference Proceedings (OSTI)

By analyzing how the largest CO2 emitting electricity generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post combustion CO2 capture technologies. The utilization of pulverized coal with carbon dioxide capture and storage (PC+CCS) technologies is particularly significant in a world where there is significant uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The papers analysis shows that within this one large, heavily coal-dominated electricity generating region, as much as 20-40 GW of PC+CCS could be in operation before the middle of this century. Depending upon the state of PC+CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either already existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC+CCS generation units are compliments to a much larger deployment of CCS-enabled coal-fired integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC+CCS and IGCC+CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 billion tones of CO2 before the middle of this century in the regions deep geologic storage formations.

Wise, Marshall A.; Dooley, James J.

2009-01-01T23:59:59.000Z

283

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

284

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

285

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network (OSTI)

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources ­ Project for the Houston-Galveston Area Council This project addresses greenhouse gas

286

CARINA Data Synthesis Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Synthesis Project By The CARINA Group The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP...

287

A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon  

SciTech Connect

This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

Sathaye, J.; Norgaard, R.; Makundi, W.

1993-07-01T23:59:59.000Z

288

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

289

Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature  

Science Conference Proceedings (OSTI)

Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

2011-09-17T23:59:59.000Z

290

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

291

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emissionfactorsforcarbonmonoxide,nitrogenoxides, nitrogendioxide,emissionfactorsweredeterminedforcarbonmonoxide,nitrogenoxides,nitrogendioxide,

Singer, Brett C.

2010-01-01T23:59:59.000Z

292

EIA - Greenhouse Gas Emissions Overview  

U.S. Energy Information Administration (EIA)

Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps : 35: Emissions of carbon dioxide from biofuel/bioenergy use by sector and fuel

293

Mitigating greenhouse gas emissions: Voluntary reporting  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

294

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

E-Print Network (OSTI)

of Carbon Dioxide Emissions on GNP Growth: Interpretation ofMcNeil et al Enduse Global Emissions Mitigation Scenarios (Keywords Greenhouse gas emissions, emissions scenarios,

McNeil, Michael A.

2010-01-01T23:59:59.000Z

295

Project Brief: Purdue University  

Science Conference Proceedings (OSTI)

... aims to develop, improve, and assess the accuracy of measurements of the total greenhouse gas (carbon dioxide and methane) emissions from ...

2010-10-05T23:59:59.000Z

296

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

carbon dioxide emissions. The model uses generation dispatch algorithms, efficiency levels, and capacity factors

G. Fridley, David

2010-01-01T23:59:59.000Z

297

Potential Impact of Carbon Dioxide on Potable Groundwater: A Controlled Release Experiment: 2013 Final Report  

Science Conference Proceedings (OSTI)

Separating carbon dioxide (CO2) from flue gases emitted by power stations that burn fossil fuels and injecting the CO2 deep underground is one method being considered on a commercial-scale to prevent emissions from reaching the atmosphere. Although full-scale commercial deployment of CO2 capture and storage (CCS) from a power station has not been performed to date, small-scale pilot projects have demonstrated that CCS is technically feasible. The high cost of ...

2013-12-19T23:59:59.000Z

298

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

299

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

300

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon reduction emissions in South Africa  

SciTech Connect

This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

Temchin, Jerome

2002-02-28T23:59:59.000Z

302

NETL: News Release - Secretary Chu Announces Six Projects to Convert  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2010 2, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products $106 Million Recovery Act Investment Will Reduce CO2 Emissions and Mitigate Climate Change Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans can use.

303

DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN  

E-Print Network (OSTI)

. Estimation of Greenhouse Gas Emissions....................................... 6 2. Greenhouse Gas Emissions........................................................ 8 C. Carbon Dioxide ­ A Greenhouse Gas................................................ 9 1. Sources............................................................... 3 B. Greenhouse Effect and Climate Change............................................. 4 1

Pike, Ralph W.

304

Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 16, 2007 8: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector to someone by E-mail Share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Facebook Tweet about Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Twitter Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Google Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Delicious Rank Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Digg Find More places to share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on AddThis.com...

305

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

306

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

sorbents sorbents B-14 Pre-Combustion sorbents u.s. DePartment of energy aDvanCeD Carbon DioxiDe CaPture r&D Program: teChnology uPDate, may 2013 aDvanCeD Carbon DioxiDe CaPture teChnology for low-rank Coal integrateD gasifiCation CombineD CyCle (igCC) systems primary project goals TDA will investigate the technical and economic advantages of using an integrated carbon dioxide (CO 2 ) sorbent and water-gas shift (WGS) catalyst system in an integrated gasifi- cation combined cycle (IGCC) power plant, fueled with low-rank coal, and designed to capture more than 90% of the CO 2 emissions. technical goals * TDA will evaluate the physical mix of the sorbent and catalyst pellets within the same

307

The effect of elevated atmospheric carbon dioxide mixing ratios on the emission of Volatile organic compounds from Corymbia citriodora and Tristaniopsis laurina.  

E-Print Network (OSTI)

??Bibliography: p. 120-124. Introduction Environmental factors affecting the emission of biogenic Volatile organic compounds Materials and experimental procedures Quantification using sold-phase microextraction (more)

Camenzuli, Michelle

2008-01-01T23:59:59.000Z

308

Reduction of NOx Emissions in Alamo Area Council of Government Projects  

E-Print Network (OSTI)

This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy and Sustainability Laboratory (BESL), and reported to the Energy Systems Laboratory (ESL). The ESL then assembled these data for processing by eGRID. The results from BESLs data collection efforts and the eGRID analysis are contained in this report.

Haberl, J. S.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

309

Global emissions inventories  

SciTech Connect

Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions.

Dignon, J.

1995-07-01T23:59:59.000Z

310

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

311

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

312

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

SAF. 1958. The strength of coal in triaxial compression.Geomechanical Risks in Coal Bed Carbon Dioxide Sequestrationof leakage of CO 2 from coal bed sequestration projects. The

Myer, Larry R.

2003-01-01T23:59:59.000Z

313

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

314

Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Nano-Enabled Titanium Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project to someone by E-mail Share Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Facebook Tweet about Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Twitter Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Google Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Delicious Rank Building Technologies Office: Nano-Enabled Titanium Dioxide

315

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network (OSTI)

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

316

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

317

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Sequestration and Enhanced Oil Recovery Project Could Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be

318

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

319

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

320

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

322

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

323

Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report  

Science Conference Proceedings (OSTI)

Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called ?¢????an open path device?¢??? to measure CO2 concentrations near the ground above a CO2 storage area.

Sheng Wu

2012-10-02T23:59:59.000Z

324

NETL: IEP – Post-Combustion CO2 Emissions Control - Near-Zero Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Near-Zero Emissions Oxy-Combustion Flue Gas Purification Project No.: DE-NT0005341 Praxair oxy-combustion test equipment Praxair oxy-combustion test equipment. Praxair Inc. will develop a near-zero emissions flue gas purification technology for existing coal-fired power plants retrofit with oxy-combustion technology. Emissions of sulfur dioxide (SO2) and mercury (Hg) will be reduced by at least 99 percent, and nitrogen oxide (NOx) emissions will be reduced by greater than 90 percent without the need for wet flue gas desulfurization and selective catalytic reduction (SCR). Two separate processes are proposed depending on the sulfur content of the coal. For high-sulfur coal, SO2 and NOx will be recovered as product sulfuric acid and nitric acid, respectively, and Hg will be recovered as

325

Annual Energy Outlook 2010 with Projections to 2035-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 Graphic Data Figure 1. U.S. primary energy consumption, 1980-2035 Figure 1 Data Figure 2. U.S. liquid fuels supply, 1970-2035 Figure 2 Data Figure 3. U.S. natural gas supply, 1990-2035 Figure 3 Data Figure 4. U.S. energy-related carbon dioxide emissions, 2008 and 2035 Figure 4 Data Figure 5. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for passenger cars, model year 2016 Figure 5 Data Figure 6. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for light trucks, model year 2016 Figure 6 Data Figure 7. Total energy consumption in three cases, 2005-2035 Figure 7 Data

326

Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

9: July 23, 2007 9: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 to someone by E-mail Share Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Facebook Tweet about Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Twitter Bookmark Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Google Bookmark Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Delicious Rank Vehicle Technologies Office: Fact #479: July 23, 2007 U.S. Carbon Dioxide Emissions by Sector, 1990-2006 on Digg Find More places to share Vehicle Technologies Office: Fact #479:

327

IGCC Design and RAM Analysis for Near Zero Emissions  

Science Conference Proceedings (OSTI)

Concern over the continued availability of natural gas at competitive prices has led many power companies to initiate studies and projects on clean coal technologies as a strategic hedge against over-reliance on natural gas alone to provide future power needs. Integrated gasification combined cycle (IGCC) plants can meet very stringent emissions targets including those for mercury and carbon dioxide. Several years of commercial operation have been accumulated on coal-based IGCC plants in the United State...

2004-12-13T23:59:59.000Z

328

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

Not Available

2008-10-01T23:59:59.000Z

329

Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study  

E-Print Network (OSTI)

(active travel) substitutes for at least some motorised travel and thereby reduces CO2 emissions [e.g. 12]. This assump- tion is supported by the finding that energy expenditure from walking is negatively correlated with fossil fuel use from car driving... About your local pedestrian and cycling routes Continued 11 About your work or place of study S E C T I O N E Sedentary occupation You spend most of your time sitting (e.g. in an office, driving a vehicle). Standing occupation You spend most of your time...

Goodman, Anna; Brand, Christian; Ogilvie, David; on behalf of the iConnect consortium

2012-08-03T23:59:59.000Z

330

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

Not Available

2008-06-01T23:59:59.000Z

331

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

Not Available

2008-06-01T23:59:59.000Z

332

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

Not Available

2008-06-01T23:59:59.000Z

333

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

Not Available

2008-10-01T23:59:59.000Z

334

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

Not Available

2008-06-01T23:59:59.000Z

335

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

Lantz, E.; Tegen, S.

2008-05-01T23:59:59.000Z

336

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

337

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

Not Available

2008-06-01T23:59:59.000Z

338

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

Not Available

2008-10-01T23:59:59.000Z

339

Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

Not Available

2008-06-01T23:59:59.000Z

340

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

Not Available

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

Not Available

2008-06-01T23:59:59.000Z

342

Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

Not Available

2008-06-01T23:59:59.000Z

343

NETL: News Release - Successful Sequestration Project Could Mean More Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

November 15, 2005 November 15, 2005 Successful Sequestration Project Could Mean More Oil and Less Carbon Dioxide Emissions Weyburn Project Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be recovered. "The success of the Weyburn Project could have incredible implications for reducing CO2 emissions and increasing America's oil production. Just by applying this technique to the oil fields of Western Canada we would see billions of additional barrels of oil and a reduction in CO2 emissions equivalent to pulling more than 200 million cars off the road for a year," Secretary of Energy Bodman said. "The Weyburn Project will provide policymakers, the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery."

344

Emission Cuts Realities Electricity Generation Cost and CO2 emissions projections for different electricity generation options for Australia to 2050 By  

E-Print Network (OSTI)

Five options for cutting CO2 emissions from electricity generation in Australia are compared with a Business as Usual ? option over the period 2010 to 2050. The six options comprise combinations of coal, gas, nuclear, wind and solar thermal technologies. The conclusions: The nuclear option reduces CO2 emissions the most, is the only option that can be built quickly enough to make the deep emissions cuts required, and is the least cost of the options that can cut emissions sustainably. Solar thermal and wind power are the highest cost of the options considered. The cost of avoiding emissions is lowest with nuclear and highest with solar and wind power.

Peter Lang

2010-01-01T23:59:59.000Z

345

Report on NOx Emissions Reduction from Voluntary Energy Efficiency Projects within the Alamo Area Council of Governments to the Texas Commission on Environmental Quality, August 2003  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at the Texas Engineering Experiment Station, Texas A&M University System was contacted by Mr. Peter Bella of the Alamo Area Council of Governments (AACOG) to help document large-scale, energy efficiency projects for credit within their 2004 Clean Air Plan. The purpose of this study is two-fold: 1) estimate the creditable emissions reductions from energy efficiency actions in AACOG regions, and 2) serve as a pilot project for documenting and calculating emissions reductions for TCEQ. The survey was conducted from February through March 2004.

Haberl, J. S.; Verdict, M.; Yazdani, B.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

346

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

347

Experimental investigation of carbon dioxide trapping due to capillary retention in deep saline aquifers.  

E-Print Network (OSTI)

??Carbon dioxide (CO2) is by far the most significant greenhouse gas released by human activities through fossil fuel combustion. In order to minimize CO2 emissions (more)

Li, Xinqian

2013-01-01T23:59:59.000Z

348

Development of a Carbon Dioxide Micro Gas Sensor with Integrated AgCl Reference Electrode.  

E-Print Network (OSTI)

??In recent years, high carbon dioxide emissions not only result in serious air pollution and greenhouse effect, but also cause water acidification and decrease the (more)

Hung, Wei-Che

2013-01-01T23:59:59.000Z

349

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 1. Project summaries. Final report  

SciTech Connect

The objectives of the Phase II research project on emission of potentially toxic organic compounds (PTOCs) from wastewater treatment plants were fivefold: (1) assessment of the importance of gaseous emissions from municipal wastewater collection systems; (2) resolution of the discrepancy between the measured and estimated emissions (Phase I), from the Joint Water Pollution Control Plant (JWPCP) operated by the County Sanitation Districts of Los Angeles County (CSDLAC); (3) determination of airborne concentrations of PTOCS immediately downwind of an activated sludge aeration process at the City of Los Angeles' Hyperion Treatment Plant (HTP); (4) a modeling assessment of the effects of transient loading on emissions during preliminary and primary treatment at a typical municipal wastewater treatment plant (MWTP); (5) a preliminary investigation of effects of chlorination practices on haloform production. Volume 1, for which the abstract was prepared, contains a summary of results from each project; Volume 2 contains the discussion regarding the modeling of collection system emissions; Volume 3 addresses methods development and field sampling efforts at the JWPCP and HTP, data on emissions from a mechanically ventilated sewer and results of some preliminary haloform formation studies in wastewaters; and Volume 4 discusses aspects of the emissions modeling problem.

Chang, D.P.Y.; Schroeder, E.D.; Corsi, R.L.; Guensler, R.; Meyerhofer, J.A.

1991-08-01T23:59:59.000Z

350

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

351

Fuel Cell Applied Research Project  

DOE Green Energy (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

352

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

353

Canada, carbon dioxide and the greenhouse effect  

SciTech Connect

One of the major contributors to the greenhouse effect is carbon dioxide from the combustion of fossil fuels such as coal, oil, and natural gas. Even with its low population density, Canada, on a per capita basis, has the dubious distinction of being the world's fourth largest producer of carbon from carbon dioxide. This paper considers the impact of Canadian carbon dioxide emissions on the greenhouse effect in light of the 1988 Conference on the Changing Atmosphere's recommendations. A computer model has been developed that, when using anticipated Canadian fossil fuel demands, shows that unless steps are taken immediately, Canada will not be able to meet the conference's proposed carbon dioxide reduction of 20 percent of 1988 levels by the year 2005, let alone meet any more substantial cuts that may be required in the future.

Hughes, L.; Scott, S. (Dept. of Mathematics and Computing Science, Saint Mary' s Univ., Halifax, Nova Scotia B3H 3C3 (CA))

1991-01-01T23:59:59.000Z

354

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

355

Characterization of Emissions and Occupational Exposure ... - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Topic Summary: Study conducted to evaluate the GHG emissions and ... supplied by Polycontrols Inc.), and frozen carbon dioxide (CO2) and...

356

REPORT: Characterization of Emissions and Occupational ...  

Science Conference Proceedings (OSTI)

Oct 23, 2007 ... carbon dioxide (CO2) and SF6 (both provided by Lunt ... under similar parameters to characterize emissions and byproducts as the cover gases...

357

NETL: Emissions Characterization - TVA Cumberland Plant Plume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumberland Power Plant Plume Study Sulfur dioxide (SO2) emission reductions at the Tennessee Valley Authority (TVA) Cumberland fossil plant (CUF) at Cumberland City, Tennessee will...

358

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. C opyright 2009 Carbon Dioxide Compression DOE EPRI NIST ... Greenhouse gas sequestration Page 5. 5 C opyright 2009 ...

2013-04-22T23:59:59.000Z

359

Industrial Combustion Emissions (ICE) model, Version 6. 0. Model-Simulation  

SciTech Connect

The Industrial Combustion Emissions (ICE) Model was developed by the Environmental Protection Agency for use by the National Acid Precipitation Assessment Program (NAPAP) in preparing future assessments of industrial-boiler emissions. The ICE Model user's manual includes a summary of user options and software characteristics, a description of the input data files, and a description of the procedures for operation of the ICE Model. Proper formatting of files and creation of job-control language are discussed. The ICE Model projects for each State the sulfur dioxide, sulfates, and nitrogen oxides emissions from fossil fuel combustion in industrial boilers. Projections of emissions and costs of boiler generation, including emission-control costs, are projected for the years 1985, 1990, 1995, 2000, 2010, 2020, and 2030.

Elliott, D.J.; Hogan, T.

1987-12-01T23:59:59.000Z

360

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

362

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

Not Available

2009-03-01T23:59:59.000Z

363

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

364

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

365

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

Not Available

2008-10-01T23:59:59.000Z

366

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

Not Available

2008-10-01T23:59:59.000Z

367

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

Not Available

2008-10-01T23:59:59.000Z

368

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

Not Available

2008-10-01T23:59:59.000Z

369

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

Not Available

2008-10-01T23:59:59.000Z

370

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

371

Emissions estimation for lignite-fired power plants in Turkey  

SciTech Connect

The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

2010-01-15T23:59:59.000Z

372

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

373

Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase feasibility study that will examine beneficial uses in a variety of ways, including mineralization to carbonates directly through conversion of CO2 in flue gas; the use of CO2 from power plants or industrial applications to grow algae/biomass; and conversion of CO2 to fuels and chemicals. Each project will be subject to

374

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

AEO Graphic Data AEO Graphic Data Annual Energy Outlook 2006 with Projections to 2030 Figure 1. Energy Prices, 1980-2030 Figure 1 Data Figure 2. Delivered Energy Consumption by Sector Figure 2 Data Figure 3. Energy Consumption by Fuel, 1980-2030 Figure 3 Data Figure 4. Energy Use Per Capita and Per Dollar of Gross Domestic Product, 1980-2030 Figure 4 Data Figure 5. Electricity Generation by Fuel, 1980-2030 Figure 5 Data Figure 6. Total Energy Production and Consumption, 1980-2030 Figure 6 Data Figure 7. Energy Production by Fuel, 1980-2030 Figure 7 Data Figure 8. Projected U.S. Carbon Dioxide Emissions by Sector and Fuel, 1990-2030 Figure 8 Data Figure 9. Sulfur Dioxide Emissions in Selected States, 1980-2003 Figure 9 Data Figure 10. World Oil Prices in the AEO2005 and AEO 2006 Reference Cases Figure 10 Data

375

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

376

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

carbon dioxide emissions. The model uses generation dispatch algorithms, efficiency levels, and capacity factorsemissions factors for fuel and electricity. Table A-3.3.2 Energy Savings, Costs, and Carbon Dioxide

Zhou, Nan

2013-01-01T23:59:59.000Z

377

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

378

Department of Energy Announces 15 Projects Aimed at Secure Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure 15 Projects Aimed at Secure Underground Storage of CO2 Department of Energy Announces 15 Projects Aimed at Secure Underground Storage of CO2 August 11, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide (CO2) in geologic formations. Funded at $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies, and making the U.S. a leader in

379

Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... municipal solid waste, landfill gas, nuclear, coal-fired plants with carbon capture and sequestration, ... Carbon dioxide emissions in the electric power ...

380

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Agency (IEA), 2004c. CO2 emissions from fuel combustion,of Carbon Dioxide Emissions on GNP Growth: Interpretation ofD. , 2000. Special Report on Emissions Scenarios: Report of

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Emissions of Greenhouse Gases in the United States, 2004  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2005-12-19T23:59:59.000Z

382

Emissions of Greenhouse Gases in the United States, 2002  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2003-10-01T23:59:59.000Z

383

Emissions of Greenhouse Gases in the United States, 2005  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2006-11-14T23:59:59.000Z

384

Emissions of Greenhouse Gases in the United States, 1996  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1997-10-01T23:59:59.000Z

385

Emissions of Greenhouse Gases in the United States, 1995  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1996-10-01T23:59:59.000Z

386

Emissions of Greenhouse Gases in the United States, 1994  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1995-09-01T23:59:59.000Z

387

Emissions of Greenhouse Gases in the United States, 1999  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2000-10-01T23:59:59.000Z

388

Emissions of Greenhouse Gases in the United States, 2000  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

389

Emissions of Greenhouse Gases in the United States, 1997  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1998-10-01T23:59:59.000Z

390

Emissions of Greenhouse Gases in the United States, 1998  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1999-10-01T23:59:59.000Z

391

Emissions of Greenhouse Gases in the United States, 2001  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2002-12-01T23:59:59.000Z

392

Emissions of Greenhouse Gases in the United States, 2003  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2004-12-01T23:59:59.000Z

393

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

394

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

395

Demonstration Development Project: Oxy-Fired Circulating Fluidized Bed with Carbon Dioxide Capture and Storage at Holland Board of P ublic Works  

Science Conference Proceedings (OSTI)

Oxy-combustion of coal has been proposed as a way of reducing costs of capturing CO2 from coal-fired steam-electric power plants at a purity adequate for geological storage. To date only laboratory and test-stand studies have been conducted, primarily focusing on the combustion process. The next major development step is to field an integrated oxy-coal power plant. Such a project has been proposed and is being developed for deployment at the Holland (MI) Board of Public Works James De Young Power Station...

2009-12-11T23:59:59.000Z

396

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

397

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving July 23, 2010 - 5:17pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs On Thursday, Secretary Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into useful products. The innovative projects - funded with $106 million from the American Recovery and Reinvestment Act and matched with $156 million in private cost-share - will seek to use CO2 emissions from industrial sources to create useful products such as fuel, plastics, cement, and fertilizers. Find out more here.

398

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

399

Guidance for Electric Companies on the Use of Forest Carbon Sequestration Projects to Offset Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

The earth8217s climate is warming and the majority of scientists believe that human-caused emissions of greenhouse gases (GHGs) are contributing significantly to the warming of our atmosphere. Mandatory limits of GHG emissions now exist in most industrialized nations and are being developed in individual states and regions within the United States. It appears increasingly likely that a national mandatory program to limit GHG emissions could be implemented in the U.S. sometime in the next few years. Fores...

2006-12-07T23:59:59.000Z

400

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methanes global warming potential factor.

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Annual Energy Outlook with Projections to 2025-Issues in Focus - U.S.  

Gasoline and Diesel Fuel Update (EIA)

U.S. Greenhouse Gas Intensity U.S. Greenhouse Gas Intensity Issues in Focus U.S. Greenhouse Gas Intensity On February 14, 2002, President Bush announced the Administration’s Global Climate Change Initiative [99]. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18 percent over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output. AEO2004 projects energy-related carbon dioxide emissions, which represented approximately 83 percent of total U.S. greenhouse gas emissions in 2002. Projections for other greenhouse gases are based on projected rates of growth in their emissions, published in the U.S. Department of State’s Climate Action Report 2002 [100]. Table 19 combines the AEO2004 reference case projections for energy-related carbon dioxide emissions with the projections for other greenhouse gases.

402

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

403

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

404

NETL: Electrochemical Membranes for Carbon Dioxide Capture and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane. The proposed membrane has its genesis from the company's patented Direct FuelCell® (DFC®) technology. The prominent feature of the DFC membrane is its capability to produce power while capturing CO2 from the flue gas from a pulverized coal (PC) plant. The DFC membrane does not require flue gas compression as it operates on the principles of electrochemistry, resulting in net efficiency gains. The membrane utilizes a fuel (different from the plant flue gas, such as coal-derived syngas, natural gas, or a renewable resource) as the driver for the combined carbon capture and electric power generation. The electrochemical membrane consists of ceramic-based layers filled with carbonate salts, separating CO2 from the flue gas. Because of the electrode's high reaction rates, the membrane does not require a high CO2 concentration in its feed gas. The planar geometry of the membrane offers ease of scalability to large sizes suitable for deployment in PC plants, which is an important attribute in membrane design. The membrane has been tested at the laboratory scale, verifying the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Fuel Cell Energy, Inc. is advancing the technology to a maturity level suitable for adaption by industry for pilot-scale demonstration and subsequent commercial deployment.

405

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

406

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

407

OpenEI - carbon dioxide emissions  

Open Energy Info (EERE)

http:www.eia.govforecastsaeoindex.cfm
...

408

Carbon Dioxide Emission Factors for Coal  

U.S. Energy Information Administration (EIA)

by B.D. Hong and E. R. Slatick. Note: This article was originally published in Energy Information Administration, Quarterly Coal Report, January-April 1994, DOE/EIA ...

409

Green IS for GHG emission reporting on product-level? an action design research project in the meat industry  

Science Conference Proceedings (OSTI)

Greenhouse gas emission reporting gained importance in the last years, due to societal and governmental pressure. However, this task is highly complex, especially in interdependent batch production processes and for reporting on the product-level. Green ... Keywords: GHG emissions, Green IS, PCF, action design research, design science, meat industry, product carbon footprint

Hendrik Hilpert, Christoph Beckers, Lutz M. Kolbe, Matthias Schumann

2013-06-01T23:59:59.000Z

410

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project  

E-Print Network (OSTI)

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Photon Enhanced Thermionic Emission (PETE) is a newly proposed form of solar energy harvesting which have inherently lower efficiency limits but take advantage of energy throughout the entire solar

Nur, Amos

411

The Mississippi CCS Project  

Science Conference Proceedings (OSTI)

The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

412

NETL: News Release - DOE to Provide $36 Million to Advance Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2008 1, 2008 DOE to Provide $36 Million to Advance Carbon Dioxide Capture WASHINGTON, D.C. - The U.S. Department of Energy (DOE) announced today that it will provide $36 million for 15 projects aimed at furthering the development of new and cost-effective technologies for the capture of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the existing U.S. coal fleet accounts for over half of all electricity generated in this country," U.S. Secretary of Energy Samuel W. Bodman said. "The projects announced today will combat climate change and help meet current and future energy needs by curbing CO2 emissions from existing coal-fired plants." Capture and storage of CO2 is a key component of President Bush's vision for a cleaner, more secure energy future. Since 2001, the Administration has invested more than $2.5 billion in clean coal research and development. Today's 15 projects will focus on five areas of interest for CO2 capture: membranes, solvents, sorbents, oxycombustion (flue gas purification and boiler development), and chemical looping. Projects and research areas are detailed below.

413

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - 6:29pm Addthis The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. Project Benefits Produce approximately 35,000 kilowatt-hours of clean electricity annually Reduce carbon dioxide emissions by an estimated 41 tons per year Preserve and increase local jobs for tribal members and others

414

Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide  

SciTech Connect

The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

Siriwardane, H.J.; Gondle, R.; Smith, D.H.

2007-05-01T23:59:59.000Z

415

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

416

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

417

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

418

EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii 1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii Summary This EA evaluates the environmental impacts of a proposal, through a cooperative agreement with Phycal, Inc. to partially fund implementing and evaluating new technology for the reuse of Carbon dioxide (CO2) emissions from industrial sources for green energy products. This project would use CO2 to grow algae for the production of algal oil and subsequent conversion to fuel. The project would generate reliable cost information and test data to access its viability for implementation at a future commercial scale. If approved, DOE would provide approximately 80 percent of the funding for the project. Public Comment Opportunities

419

Hexion CHP Project  

E-Print Network (OSTI)

Built in 1998 in South Glens Falls, New York, the Hexion Chemical plant can produce up to 200 million pounds of formaldehyde per year. The formaldehyde is produced by combining methanol with air in the presence of a catalyst. Heat is recovered from the exothermic reaction through a heat transfer fluid jacket around the reactor vessel that controls reaction temperature and transfers heat to a secondary water/steam loop. Until 2004, most of the heat entrained in the steam was vented to the atmosphere via a condenser. Since that time, a turbine-generator system, designed by Turbosteam recovers this waste heat to produce up to 451 kilowatts of electricity. This innovative combined heat and power (CHP) system uses no fuel and produces zero emissions. The CHP system is equivalent to annually reducing carbon dioxide emissions by more than 2,700 tons. The EPA and DOE have recognized the project with an EPA CHP Certificate of Recognition. The project has been operating successfully since early 2004.

Bullock, B.

2008-01-01T23:59:59.000Z

420

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project 371  

NLE Websites -- All DOE Office Websites (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

422

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

1 Expenditures include taxes where data are available. 5 In chained (2005) dollars. See "Chained Dollars" in Glossary. 2 Carbon dioxide emissions from energy consumption.

423

EPA rule requires SO 2 emissions reduction from Texas coal ...  

U.S. Energy Information Administration (EIA)

Starting in 2012, power plants in 23 states must meet new sulfur dioxide (SO 2) emissions caps in order to comply with the Cross State Air Pollution ...

424

Electricity Without CO2 Emissions: Assessing the Costs of Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson and Keith: Electricity without CO 2 ... 1 ELECTRICITY FROM FOSSIL FUELS WITHOUT CO 2 EMISSIONS: ASSESSING THE COSTS OF CARBON DIOXIDE CAPTURE AND SEQUESTRATION IN US...

425

A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report  

Science Conference Proceedings (OSTI)

The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

Not Available

1994-06-16T23:59:59.000Z

426

State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441  

SciTech Connect

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

427

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project The Department of Energy (DOE) is currently undertaking research into nano-enabled titanium dioxide (TiO2) ultraviolet (UV) protective layers for cool-color roofing applications. Project Description This project entails optimizing and scaling up silicon dioxide-coated TiO2 nanocrystal synthesis and functionalization in aqueous solution in order to formulate a 10 gallon waterborne clear UV protective nanocomposite coating material. Project Partners This project is being undertaken between DOE and Nanotrons, a Massachusetts-based company that uses nano-engineering technologies to

428

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

429

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

430

Beyond Tailpipe Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond Tailpipe Emissions Beyond Tailpipe Emissions Greenhouse Gas Emissions for Electric and Plug-In Hybrid Electric Vehicles Driving your vehicle can yield both greenhouse gas (GHG) emissions from your vehicle's tailpipe and GHG emissions related to the production of the fuel used to power your vehicle. For example, activities associated with fuel production such as feedstock extraction, feedstock transport to a processing plant, and conversion of feedstock to motor fuel, as well as distribution of the motor fuel, can all produce GHG emissions. The Fuel Economy and Environment Label provides a Greenhouse Gas Rating, from 1 (worst) to 10 (best), based on the vehicle's tailpipe carbon dioxide emissions only, and this rating does not reflect any GHG emissions associated with fuel production.

431

NETL: IEP – Oxy-Combustion CO2 Emissions Control - Oxygen-Based PC Boiler  

NLE Websites -- All DOE Office Websites (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control Oxygen-Based PC Boiler Project No.: FC26-04NT42207 & FC26-03NT41736 Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Foster Wheeler North America Corporation will conduct to two projects to improve carbon dioxide (CO2) capture technology by developing a conceptual pulverized coal-fired boiler system design using oxygen as the combustion medium. Using oxygen instead of air produces a flue gas with a high CO2 concentration, which will facilitate CO2 capture for subsequent sequestration. The first project will develop modeling simulations that will lead to a conceptual design that addresses costs, performance, and emissions, and

432

The Carbon Emission Analysis System Design of Coal-Fired Unit  

Science Conference Proceedings (OSTI)

Carbon dioxide is the main cause of global warming, that emission has been the world's attention. and the power industry is an important source of carbon dioxide emissions, this paper try to design the system of power plants for carbon emissions coal-fired ... Keywords: Analysis system, Carbon emissions, Energy saving

Han Jieping; Zhang Chengzhen

2011-08-01T23:59:59.000Z

433

Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report  

SciTech Connect

This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

Dismukes, E.B.

1994-10-20T23:59:59.000Z

434

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

Science Conference Proceedings (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

435

Capture of Carbon Dioxide Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Utah Massachusetts Institute of Technology University of Connecticut University of Kentucky 9151995 Toxic Substances From Coal Combustion Forms of Occurrence...

436

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

437

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

438

Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure CO2 15 Projects Aimed at Secure CO2 Underground Storage Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground Storage August 11, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide in geologic formations. Funded with $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies and making the U.S. a leader in

439

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

440

State of Washington Department of Health radioactive air emission notice of construction phase 1 for spent nuclear fuel project - hot conditioning system annex, project W-484  

Science Conference Proceedings (OSTI)

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from the operation of the Hot Conditioning System Annex (HCSA). This information will be discussed again in the Phase II NOC, providing additional details on emissions generated by the operation of the HCSA. This Phase I NOC is defined as construct in the substructure, including but limited to, pouring the concrete for the floor; construction of the process pits and exterior walls; making necessary interface connections to the Canister Storage Building (CSB) ventilation and utility systems for personnel comfort; and extending the multi-canister over-pack (MCO) handling machine rails into the HCSA. A Phase II NOC will be submitted for approval prior to installation and is defined as the completion of the HCSA, which will consist of installation of Hot Conditioning System Equipment (HCSA), air emissions control equipment, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allow free release of corrosion products to the K East Basin water. Storage in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2,300 MT (2,530 tons) of N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCSA will be constructed as an addition to the CSB and will contain the HCSA. The hot conditioning system (HCS) will remove chemically-bound water and will passivate the exposed uranium surfaces associated,with the SNF. The HCSA will house seven hot conditioning process stations, six operational and one auxiliary pit, which could be used as a welding area for final sealing of the vessel containing the SNF, or for neutron interrogation of the vessel containing the SNF to determine residual water content. Figures 1 and 2 contain map locations of the Hanford Site and the HCSA. `Response to Requirement` subtitle under each of the following sections identifies the corresponding Appendix A NOC application requirement listed under WAC 246-247-1 10.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: IEP – Post-Combustion CO2 Emissions Control - Development of  

NLE Websites -- All DOE Office Websites (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Development of Oxygen-Fired Circulating Fluidized Bed Boilers for Greenhouse Gas Control Project No.: FC26-04NT42205 & FC26-01NT41146 CLICK ON IMAGE TO ENLARGE Alstom's Multi-Use Test Facility (MTF). Alstom Power Inc. will conduct two projects using a circulating fluidized bed (CFB) combustor for economic evaluations of the recovery of carbon dioxide (CO2). The projects will involve preparation of the facility and test equipment, conducting the comprehensive pilot-scale testing and analysis, and application of test results in re-evaluation and refinement of commercial oxygen-fired CFB designs. The project goal is to determine if CO2 can be recovered at an avoided cost of no more than $10 per ton of carbon avoided, using a CFB combustor that burns coal with a mixture of

442

Emissions Benefits of Distributed Generation in the Texas Market  

Science Conference Proceedings (OSTI)

One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

Hadley, SW

2005-06-16T23:59:59.000Z

443

Carbon Dioxide Storage: Geological Security and Environmental Issues Case Study on the Sleipner Gas Field in Norway Summary  

E-Print Network (OSTI)

Carbon dioxide capture and storage (CCS) is one option for mitigatining atmospheric emissions of carbon dioxide and thereby contributes in actions for stabilization of atmospheric greenhouse gas concentrations. Carbon dioxide storage in geological formations has been in practice since early 1970s. Information and experience gained from the injection and/or storage of CO2 from a large number of existing enhanced oil recovery (EOR) projects indicate that it is feasible to safely store CO2 in geological formations as a CO2 mitigation option. Industrial analogues, including underground natural gas storage projects around the world and acid gas injection projects, provide additional indications that CO2 can be safely injected and stored at well-characterized and properly managed sites. Geological storage of CO 2 is in practice today beneath the North Sea, where nearly 1 MtCO2 has been successfully injected annually in the Utsira formation at the Sleipner Gas Field since 1996. The site is well characterized and the CO 2 injection process was monitored using seismic methods and this provided insights into the geometrical distribution of the injected CO 2. The injected CO2 will potentially be trapped geochemically pressure build up as a result of CO2 injection is unlikely to occur. Solubility and density dependence of CO2-water composition will become the controlling fluid parameters at Sleipner. The solubility trapping has the effect of eliminating the buoyant forces that drive CO2 upwards, and through time it can lead to mineral trapping, which is the most permanent and secure form of geological storage. Overall, the study at the Sleipner area demonstrates the geological security of carbon dioxide storage. The monitoring tools strengthen the verification of safe injection of CO2 in the Utsira formation. This proves that CO2 capture and storage is technically feasible and can be an effective method for greenhouse mitigation provided the site is well characterized and monitored properly. 1

Semere Solomon; The Bellona Foundation

2006-01-01T23:59:59.000Z

444

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

445

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

446

Bold, Transformational Energy Research Projects Win $151 Million...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

make it affordable to capture the carbon dioxide emissions from coal and natural gas power plants around the world. Low Cost Crystals for LED Lighting: Developed by Momentive...

447

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

8 8 Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 Figure 75 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 Figure 76 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 Figure 77 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 78. U.S. Energy-Related Carbon Dioide Emissions in IEO2007 and IEO2008, 2005-2030 Figure 78 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 79. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the Non-OECD Economies, 2005-2030 Figure 79 Data. Need help, contact the National Energy Information Center at 202-586-8800.

448

EIA - International Energy Outlook 2007-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 Figure 77 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 78. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 Figure 78 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 79. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2004-2030 Figure 79 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 80. Average Annual Growth in Energy-Related Carbon Dioide Emissions in the Non-OECD Economies, 2004-2030 Figure 80 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 81. World Carbon Dioxide Emissions from Liquids Combustion by Region, 1990-2030 Figure 81 Data. Need help, contact the National Energy Information Center at 202-586-8800.

449

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network (OSTI)

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

450

A technical and economic analysis of a natural gas combined cycle power plant with carbon dioxide capture using membrane separation technology.  

E-Print Network (OSTI)

?? Carbon dioxide (CO2) capture and storage (CCS) is a key technology to reduce anthropogenic greenhouse gas emissions and mitigate the potential effects of climate (more)

Ducker, Michael Jay

2012-01-01T23:59:59.000Z

451

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao  

E-Print Network (OSTI)

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce. Early age carbonation curing of concrete is an effective measure to sequester recovered CO2 in lime

Barthelat, Francois

452

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

453

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

454

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

455

Emissions & Emission Controls - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions and Emission Controls In conjunction with the research efforts at FEERC to improve fuel efficiency and reduce petroleum use, research on emissions is conducted with two...

456

Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations  

Science Conference Proceedings (OSTI)

The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenarios and directly relates emissions to temperature. It is therefore a potentially important tool for climate ...

Nathan P. Gillett; Vivek K. Arora; Damon Matthews; Myles R. Allen

2013-09-01T23:59:59.000Z

457

Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations  

Science Conference Proceedings (OSTI)

The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenario, and directly relates emissions to temperature. It is therefore a potentially important tool for climate ...

Nathan P. Gillett; Vivek K. Arora; Damon Matthews; Myles R. Allen

458

Emissions of Greenhouse Gases in the United States, 2000 Executive Summary  

Reports and Publications (EIA)

Executive Summary on the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

459

Kemper County IGCC (tm) Project Preliminary Public Design Report  

SciTech Connect

The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facilitys carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

2012-07-01T23:59:59.000Z

460

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

Note: This page contains sample records for the topic "dioxide emissions projected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

462

Harmful Exhaust Emissions Monitoring of Road Vehicle Engine  

Science Conference Proceedings (OSTI)

Road vehicle improve the quality of people's life, however harmful vehicle exhaust emissions, such as carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbon (HC), and sulphur dioxide (SO2), have become more and more unacceptable ... Keywords: optic absorption spectroscopy based gas sensor, harmful exhaust emission monitoring, engine vibration

Chuliang Wei; Zhemin Zhuang; H. Ewald; A. I. Al-Shamma'a

2012-01-01T23:59:59.000Z

463

Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

Szpunar, C.B.

1993-08-01T23:59:59.000Z

464

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

465

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

466

Geothermal Electrical Production CO2 Emissions Study  

DOE Green Energy (OSTI)

Emission of ?greenhouse gases? into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize ?green power.? Geothermal power is classed as ?green power? and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.

K. K. Bloomfield (INEEL); J. N. Moore (Energy and Geoscience Institute)

1999-10-01T23:59:59.000Z

467

NETL: IEP-In-House Post Combustion CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - In-House Post-Combustion CO2 Emissions Control IEP - In-House Post-Combustion CO2 Emissions Control CO2 Capture Chemical Sorbents Chemical Solvents Membranes Miscellaneous The objective of this National Energy Technology Laboratory Office of Research and Development (ORD) multi-faceted project is to develop carbon dioxide (CO2) capture systems for coal-based power plants that lower the costs and energy penalty associated with those systems. Research and development in the capture area is aimed at developing systems that are low in capital cost, have low parasitic load, can significantly reduce CO2 emissions, and can be integrated within the power generation system. A majority of the research will occur on laboratory- and bench-scale reactors. Further information on ORD's CO2 capture projects can be found by using the links found in the adjacent blue box.

468

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

469

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

470

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

471

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

472

Project 320  

NLE Websites -- All DOE Office Websites (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

473

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

474

Caithness Shephards Flat: The Largest Wind Farm Project in the World |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caithness Shephards Flat: The Largest Wind Farm Project in the Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes. It will directly avoid 1,215,991 tons of carbon dioxide per year, roughly equivalent to the annual greenhouse gas emissions from 212,141 passenger vehicles. "One step at a time" This is a mantra that has been used in countless situations - trying to express the scale of a great challenge that may lie ahead, but emphasizing

475

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

SciTech Connect

Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

Garcia, Julio Enrique

2003-12-18T23:59:59.000Z

476