Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

2

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

3

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

4

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

5

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

6

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

7

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

8

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

9

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

Science Conference Proceedings (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

10

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

11

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

12

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

13

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

14

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

15

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

16

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

17

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

estimates of motor gasoline sales from tax receipts closelytax receipt data currently provide fairly accurate estimates of statewide use of motor gasoline

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

18

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

Energy Data Report; emissions from imports calculated using U.S.source of energy in the Southwest U.S. Thus, imports from

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

19

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Sales 2006. Office of Oil and Gas, DOE/EIA-0535(06).6 2.3 Oil and Gas Extraction9 Table 6. Oil and Gas Extraction Energy Use as Estimated in

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

20

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

22

How the Carbon Emissions Were Estimated - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

How the Carbon Emissions Were Estimated. Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human ...

23

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

24

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

25

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

26

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

27

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

28

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

29

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

30

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

31

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

32

Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry  

E-Print Network (OSTI)

2002. Estimating Carbon Dioxide Emissions Factors for thein Estimating Carbon Dioxide Emissions Factors for the

Price, Lynn; Murtishaw, Scott; Worrell, Ernst

2003-01-01T23:59:59.000Z

33

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

34

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

35

Carbon Dioxide Emissions from Industrialized Countries  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

36

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

37

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

38

EPA Revises Emissions Estimation Methodology  

U.S. Energy Information Administration (EIA)

The changes to the historical emission estimates are the result of revisions to the data and estimation ... b K.D . Smythe, RAND ... RAND Environmental Science and ...

39

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

40

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

42

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

E-Print Network (OSTI)

PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

Hultman, Nathan E.

43

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. ” AugustChina’s Industrial Carbon Dioxide Emissions in ManufacturingChina’s Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

44

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

45

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for thefactors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

46

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for theemissions factors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

47

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the...

48

Energy Use and Carbon Dioxide Emissions from Cropland Production in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Carbon Dioxide Emissions from Cropland Production in the Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004 These data represent energy use and fossil-fuel CO2 emissions associated with cropland production in the U.S. Energy use and emissions occurring on the farm are referred to as on-site energy and on-site emissions. Energy use and emissions associated with cropland production that occur off the farm (e.g., use of electricity, energy and emissions associated with fertilizer and pesticide production) are referred to as off-site energy and off-site emissions. The combination of on-site and off-site energy and carbon is referred to as total energy and total carbon, respectively. Data provided here are for on-site and total energy and associated CO2 emissions. Units are Megagram C for CO2 estimates and Gigajoule for energy

49

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for thefactors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

50

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for theemissions factors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

51

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

52

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

53

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

54

Energy-related carbon dioxide emissions down in 2011 - Today ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

55

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

56

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

57

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Energy-related carbon dioxide (CO 2) emissions in 2012 were the lowest in the United States since 1994, at 5.3 billion metric tons of CO 2 (see figure above).

58

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

59

U.S. Energy-Related Carbon Dioxide Emissions, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Energy-Related Carbon Dioxide Emissions, 2012 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2013 U.S. Energy...

60

The carbon dioxide emissions game: Playing the net  

SciTech Connect

Concern about rising concentrations of carbon dioxide in the earth`s atmosphere has led to calls for the United States and other countries to reduce carbon emissions. These concerns resulted in the signing of the Framework Convention on Climate Change at the United Nations Conference on the Environment and Development in Rio de Janeiro in June 1992. The Framework calls for nations to develop action plans for limiting emissions of carbon and other greenhouse gases. In December 1992, in accordance with the Framework, the US Government released for public comment its National Action Plan for Global Climate Change (US Department of State, 1992). The Action Plan detailed steps for reducing carbon emissions by 93 to 130 million metric tons (MMT) by 2000. Some of the steps included in the Action Plan were reforming regulations, setting energy standards, promoting research and development of new energy technologies, expanding the use of alternative-fueled vehicles, and planting trees to sequester carbon. This paper explores the economic implications of implementing a much larger tree-planting program than the one presented in the Action Plan. Whereas the Action Plan estimated that 5 to 9 MMT of carbon (MMTC) could be sequestered in 2000 (with perhaps threefold increases in sequestration in later years when trees are growing the fastest), the program being considered in this analysis annually sequesters as much as 231 MMTC during its peak years. Our analysis focuses on how much the costs of stabilizing US carbon emissions at 1990 levels are reduced when economic criteria alone determine the number of trees that will be used. Our results show that when the focus is shifted from stabilization of gross emissions to net emissions the cost reductions are dramatic, about 20 to 80 percent depending on the assumed cost of trees. Political and institutional obstacles to the formation of such a cost effective response are explored in the conclusions.

Richards, K.R.; Edmonds, J.A.; Rosenthal, D.H.; Wise, M.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

DOE Green Energy (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

62

International Carbon Dioxide Emissions and Carbon Intensity  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

63

OpenEI - sulfur dioxide emissions  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4600 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

64

Do energy taxes decrease carbon dioxide emissions?.  

E-Print Network (OSTI)

?? This paper investigates the environmental effectiveness of the Swedish energy taxes. That is, whether these have decreased the CO2 emissions and how they have… (more)

Sundqvist, Patrik

2007-01-01T23:59:59.000Z

65

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

66

Emissions estimation for lignite-fired power plants in Turkey  

SciTech Connect

The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

2010-01-15T23:59:59.000Z

67

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. 2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this ... non-combustion use of fossil ...

68

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this table. ... non-combustion use of fossil fuels.

69

Options for reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

Rosenfeld, A.H.; Price, L.

1991-08-01T23:59:59.000Z

70

The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2)  

Open Energy Info (EERE)

The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics: Market Analysis Website: energyenvironment.pnl.gov/news/pdf/PNNL-19112_Revision_1_Final.pdf Equivalent URI: cleanenergysolutions.org/content/smart-grid-estimation-energy-and-carb Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Resource Integration Planning,Mandates/Targets,Enabling Legislation,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

71

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

Science Conference Proceedings (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

72

Global Patterns of Carbon Dioxide Emissions from Soils on a 0...  

NLE Websites -- All DOE Office Websites (Extended Search)

Potter. 1996. Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis. DB-1015. Carbon Dioxide Information Analysis Center, U.S. Department of...

73

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

74

Global warming and global dioxide emission: An empirical study  

Science Conference Proceedings (OSTI)

In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

Linyan Sun [Xian Jiaotong Univ., Shaanxi (China); Wang, M. [Saint Mary`s Univ., Halifax, Nova Scotia (Canada)

1996-04-01T23:59:59.000Z

75

Estimating Emissions of Other Greenhouse Gases  

U.S. Energy Information Administration (EIA)

Estimating Emissions of Other Greenhouse Gases Presentation to the Department of Energy Republic of the Philippines September 17, 1997 Arthur Rypinski Energy ...

76

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

CHP Emissions Reduction Estimator CHP Emissions Reduction Estimator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CHP Emissions Reduction Estimator Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/chp/basic/calculator.html Country: United States UN Region: Northern America CHP Emissions Reduction Estimator Screenshot References: http://www.epa.gov/chp/basic/calculator.html "This Emissions Estimator provides the amount of reduced emissions in terms of pounds of CO2, SO2, and NOX based on input from the User regarding the CHP technology being used. In turn the User will be provided with

77

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

78

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 10 Wood and wood-derived fuels.

79

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary. ... 6 Wood and wood-derived fuels.

80

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

6 Wood and wood-derived fuels. ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

8 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

82

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

83

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Wood 6: Waste 7: Total: ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

84

Table 12.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 159 Table 12.1 Carbon Dioxide Emissions From Energy Consumption by Source

85

Livscykelanalys för koldioxidutsläpp från flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Sweden’s total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks… (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

86

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Overview. Energy-related carbon dioxide emissions vary significantly across states (Figure 1), whether considered on an absolute or per capita basis.

87

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of ... other biomass. 3 Natural gas, excluding supplemental gaseous fuels.

88

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

89

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

90

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

91

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

92

Figure 111. Energy-related carbon dioxide emissions in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 111. Energy-related carbon dioxide emissions in three cases with three levels of emissions fees, 2000-2040 (million metric tons)

93

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

emissions. In this paper, energy use and CO 2 emissions ofinformation, this paper estimates industrial energy-relatedenergy-intensive products. Emissions from manufacturing of textiles, and paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

94

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

95

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network (OSTI)

Cement Industry, An Energy Perspective", U.S. Department ofDioxide Emissions for Energy Use in U.S. Cement Production (3. Primary Energy Consumption in U.S. Cement Production by

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

96

Energy-related carbon dioxide emissions down in 2011 - Today in ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

97

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",293,304,281,207,217,194...

98

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",2008,2039,2000,1971,1892,109...

99

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",194,205,206,216,200,251,...

100

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",484,494,510,562,511,578,620...

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",343,340,385,429,377,399,...

102

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",99,103,107,108,97,111,10...

103

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",760,723,765,812,770,518...

104

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

United States" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",14281,14240,14060,1...

105

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",165,161,155,177,187,174,...

106

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",57,58,67,67,65,50,73,5...

107

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",1169,1151,1149,1126,...

108

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

109

Bounding estimate of DWPF mercury emissions  

DOE Green Energy (OSTI)

Purges required for H2 flammability control and verification of elevated Formic Acid Vent Condenser (FAVC) exit temperatures due to NO{sub x} reactions have lead to significant changes in Chemical Process Cell (CPC) operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS (Integrated DWPF Melter System) experience, and development of an NO{sub x}/FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. Defense Waste Processing Facility (DWPF) permitted Hg emissions are 175 lbs/yr (0.02 lbs/hr annual average).

Jacobs, R.A.

1992-12-01T23:59:59.000Z

110

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool |  

Open Energy Info (EERE)

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View& Equivalent URI: cleanenergysolutions.org/content/carben-version-3-multisector-carbon-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The CarBen model enables users to conduct wedge anlayses of scenarios for mitigating U.S. greenhouse gas emissions. The spreadsheet-based tool relies upon expert opinion for scenario formulation and is not intended to be used

111

Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent  

Open Energy Info (EERE)

Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the

112

The Smart Grid: An Estimation of the Energy and Carbon Dioxide...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Jump to:...

113

Estimation of CO2 Emissions from China's Cement Production: Methodolog...  

NLE Websites -- All DOE Office Websites (Extended Search)

the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO2 emissions from cement...

114

UK GHG Emissions: Local and Regional Estimates for 2005 - 2008...  

Open Energy Info (EERE)

GHG Emissions: Local and Regional Estimates for 2005 - 2008 The UK Department of Energy and Climate Change (DECC) published National Statistics on greenhouse gas (GHG) emissions in...

115

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

electricity consumption. Car usage and home heating involvesto a population shift. Car Usage and Emissions We begin with

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

116

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

117

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions Supplement to the Annual Energy Outlook 2013 July 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

118

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

119

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

120

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State energy-related carbon dioxide emissions by year (2000 - 2010)" State energy-related carbon dioxide emissions by year (2000 - 2010)" "million metric tons carbon dioxide" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,," 2000 to 2010 " "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",140.4264977,131.9521389,136.7103146,137.2323195,139.6896437,141.493798,143.9716001,146.076107,139.2224128,119.7962734,132.7462762,-0.05469211069,-7.680221558 "Alaska",44.32104312,43.40375114,43.56121812,43.5078746,46.76217106,48.06229125,45.79367017,44.11576503,39.46205329,37.91867389,38.72718369,-0.1262122693,-5.593859429 "Arizona",85.96984024,88.33838336,87.66914741,89.29026566,96.58329461,96.7032775,100.0087541,102.1950438,103.1458188,94.63481918,95.91303514,0.1156591064,9.943194897

122

AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic |  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 25, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA South Atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

123

AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 23, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions East North Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

124

AEO2011: Carbon Dioxide Emissions by Sector and Source, New England |  

Open Energy Info (EERE)

Source, New England Source, New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 21, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions New England Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source, New England- Reference Case (xls, 73.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

125

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

126

AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 24, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA west north central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

127

AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 27, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA West South Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central- Reference Case (xls, 74.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

128

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

129

AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 26, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions East South Central EIA Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

130

AEO2011: Carbon Dioxide Emissions by Sector and Source - United States |  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 30, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA United States Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - United States- Reference Case (xls, 75.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

131

AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic |  

Open Energy Info (EERE)

Source- Middle Atlantic Source- Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 22, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions middle atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

132

Table 5. Per capita energy-related carbon dioxide emissions by state (2000 - 201  

U.S. Energy Information Administration (EIA) Indexed Site

Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" "metric tons carbon dioxide per person" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",31.54590416,29.56352198,30.5739632,30.56483509,30.96927578,31.14605742,31.33283758,31.52225314,29.78727412,25.44798199,28.06679306,-0.1102872527,-3.479111105 "Alaska",70.60324067,68.51009907,67.8551127,67.17588806,70.92646205,72.04509462,67.81012638,64.8863351,57.56413017,54.58358965,54.63289567,-0.2261984697,-15.97034499 "Arizona",16.64049197,16.65546102,16.08173855,15.97087112,16.77174168,16.18743942,16.15392734,16.06780183,15.87052371,14.3654833,14.36549251,-0.1367146759,-2.274999466

133

AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific | OpenEI  

Open Energy Info (EERE)

Pacific Pacific Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 29, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Pacific Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific- Reference Case (xls, 74.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

134

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

135

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

Science Conference Proceedings (OSTI)

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

136

Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998  

Reports and Publications (EIA)

The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Information Center

1999-10-15T23:59:59.000Z

137

Trends and breaks in per-capita carbon dioxide emissions, 1870-2028  

E-Print Network (OSTI)

We consider per-capita carbon dioxide emission trends in 16 early developed countries over the period 1870-2028. Using a multiple-break time series method we find more evidence for very early downturns in per-capita trends ...

Lanne, Markku

2003-01-01T23:59:59.000Z

138

Carbon Dioxide Emissions of the City Center of Firenze, Italy: Measurement, Evaluation, and Source Partitioning  

Science Conference Proceedings (OSTI)

An eddy covariance station was installed in the city center of Firenze, Italy, to measure carbon fluxes at half-hourly intervals over a mostly homogeneous urban area. Carbon dioxide (CO2) emission observations made over an initial period of 3.5 ...

A. Matese; B. Gioli; F. P. Vaccari; A. Zaldei; F. Miglietta

2009-09-01T23:59:59.000Z

139

Carbon Dioxide Emission Pathways Avoiding Dangerous Ocean Impacts  

Science Conference Proceedings (OSTI)

Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-...

K. Kvale; K. Zickfeld; T. Bruckner; K. J. Meissner; K. Tanaka; A. J. Weaver

2012-07-01T23:59:59.000Z

140

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

Integrated Database (eGRID), and the National Oceanic andProtection Agency’s eGRID, or Emissions & GenerationDatabase data base 21 . The eGRID data base contains the

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

National Transit Database, the 2001 Residential Energy Consumptionuse this energy consumption data to estimate national levelNational Transit Database, the 2001 Residential Energy Consumption

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

142

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

143

Estimating Carbon Dioxide Emissions Factors for the California Electric  

E-Print Network (OSTI)

for 1990. 6 By late 1999, California's CAISO utilities had divested most of their thermal power plants By late 1999, California's CAISO utilities had divested most of their thermal power plants to independent release), processing, and delivery of fuels to the power plant; or by utilities' support services (e

144

Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from  

NLE Websites -- All DOE Office Websites (Extended Search)

Monthly Isotopic (13C/12C) Estimates Monthly Isotopic (13C/12C) Estimates Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A. DOI: 10.3334/CDIAC/ffe.001 Web page graphic Graphics Web page graphic Data (ASCII Fixed Format) Web page graphic Data (ASCII Comma Delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6290, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 Period of Record 1981-2003 Methods The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in

145

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

transportation, home heating (fuel oil and natural gas) andgas and fuel oil to form an estimate of total home heatingfrom home heating. In general, places that use fuel oil have

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

146

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

147

Methodology for Estimating Reductions of GHG Emissions from Mosaic  

Open Energy Info (EERE)

Methodology for Estimating Reductions of GHG Emissions from Mosaic Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Agency/Company /Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits assessment, GHG inventory, Resource assessment Resource Type: Publications Website: wbcarbonfinance.org/docs/REDD_Mosaic_Methodology.pdf Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Screenshot References: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation[1] Overview "This methodology is for project activities that reduce emissions of greenhouse gases (GHG) from mosaic deforestation and, where relevant and

148

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis (DB-1015) DOI: 10.3334/CDIAC/lue.db1015 This data has been updated. Please see NDP-081. Contributed by: James W. Raich 1 and Christopher S. Potter2 1Department of Botany Iowa State University Ames, IA 50011 USA Email: jraich@iastate.edu 2NASA Ames Research Center MS 242-2 Moffett Field, CA 94035 USA Email: cpotter@gaia.arc.nasa.gov Prepared by L.M. Olsen. Carbon Dioxide Information Analysis Center Date Published: March, 1996 (Revised for the web: 2002) The Carbon Dioxide Information Analysis Center is a part of the Environmental Sciences Division of the OAK RIDGE NATIONAL LABORATORY (ORNL) and is located in Oak Ridge, Tennessee 37831-6290. The ORNL is managed by University of Tennessee-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

149

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

150

Estimates of the value of carbon dioxide from the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report develops a framework and methodology for estimating the value of carbon dioxide produced by the Great Plains Coal Gasification Plant. The petroleum industry could use this CO/sub 2/ as a solvent for enhanced oil recovery. The value of CO/sub 2/ is found to be a function of the geological characteristics of the petroleum reservoirs being flooded, the cost of transporting the CO/sub 2/, and the presence or absence of competitors selling CO/sub 2/. Carbon dioxide demand curves for oil fields in Montana and North Dakota are developed for various economic conditions, and sensitivity analyses are performed. 22 refs., 4 figs., 21 tabs.

Wolsky, A.M.; Nelson, S.H.; Jankowski, D.J.

1985-07-28T23:59:59.000Z

151

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. Iron and Steel sector  

E-Print Network (OSTI)

in the U.S. 26 Energy Conservation SupplyDioxide Emissions from Energy For U.S. Steel Production (2 Final Energy Use for U.S. Steel Production (

Worrell, Ernst; Martin, N.; Price, L.

1999-01-01T23:59:59.000Z

152

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network (OSTI)

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

153

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

154

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network (OSTI)

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

155

Estimation of Chinese Inventories for Historical NMVOCs Emissions from Combustion  

Science Conference Proceedings (OSTI)

Based on time-varying statistical data and emission factors, multiyear NMVOCs emission inventories from fossil fuel combustion, biofuel burning, and biomass open burning in China for 1980-2005 were presented by a bottom-up estimate. The contributions ... Keywords: NMVOCs, emission inventory, combustion, China

Y. Bo; H. Cai; S. D. Xie

2008-10-01T23:59:59.000Z

156

Emission estimates for air pollution transport models.  

SciTech Connect

The results of studies of energy consumption and emission inventories in Asia are discussed. These data primarily reflect emissions from fuel combustion (both biofuels and fossil fuels) and were collected to determine emissions of acid-deposition precursors (SO{sub 2} and NO{sub x}) and greenhouse gases (CO{sub 2} CO, CH{sub 4}, and NMHC) appropriate to RAINS-Asia regions. Current work is focusing on black carbon (soot), volatile organic compounds, and ammonia.

Streets, D. G.

1998-10-09T23:59:59.000Z

157

EIA - AEO2011 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

1 Early Release Overview 1 Early Release Overview Release Date: December 16, 2011 | Next Release Date: January 2012 | Report Number: DOE/EIA-0383ER(2011) Energy-Related Carbon Dioxide Emissions Figure DataAfter falling by 3 percent in 2008 and nearly 7 percent in 2009, largely driven by the economic downturn, total U.S. energy-related CO2 emissions do not return to 2005 levels (5,980 million metric tons) until 2027, and then rise by an additional 5 percent from 2027 to 2035, reaching 6,315 million metric tons in 2035 (Figure 13). Energy-related CO2 emissions grow by 0.2 percent per year from 2005 to 2035. Emissions per capita fall by an average of 0.8 percent per year from 2005 to 2035, as growth in demand for electricity and transportation fuels is moderated by higher energy prices, effi ciency standards, State RPS requirements, and Federal

158

Comparison of two U.S. power-plant carbon dioxide emissions data sets  

Science Conference Proceedings (OSTI)

Estimates of fossil-fuel CO{sub 2} emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO{sub 2} emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions. 19 refs., 2 figs., 2 tabs.

Katherine V. Ackerman; Eric T. Sundquist [U.S. Geological Survey, Woods Hole, MA (United States)

2008-08-15T23:59:59.000Z

159

Atmospheric Inverse Estimates of Methane Emissions from Central California  

SciTech Connect

Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

2008-11-21T23:59:59.000Z

160

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

County-level Estimates of Carbon Dioxide Release from Human Expiration...  

NLE Websites -- All DOE Office Websites (Extended Search)

et al. (2009). The method by West et al. (2009) uses food consumption data per age and gender, along with data on human metabolic cycles, to estimate CO2 emissions per age and...

162

Emissions of Greenhouse Gases in the United States, 2004  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2005-12-19T23:59:59.000Z

163

Emissions of Greenhouse Gases in the United States, 2002  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2003-10-01T23:59:59.000Z

164

Emissions of Greenhouse Gases in the United States, 2005  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2006-11-14T23:59:59.000Z

165

Emissions of Greenhouse Gases in the United States, 1996  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1997-10-01T23:59:59.000Z

166

Emissions of Greenhouse Gases in the United States, 1995  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1996-10-01T23:59:59.000Z

167

Emissions of Greenhouse Gases in the United States, 1994  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1995-09-01T23:59:59.000Z

168

Emissions of Greenhouse Gases in the United States, 1999  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2000-10-01T23:59:59.000Z

169

Emissions of Greenhouse Gases in the United States, 2000  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

170

Emissions of Greenhouse Gases in the United States, 1997  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1998-10-01T23:59:59.000Z

171

Emissions of Greenhouse Gases in the United States, 1998  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1999-10-01T23:59:59.000Z

172

Emissions of Greenhouse Gases in the United States, 2001  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2002-12-01T23:59:59.000Z

173

Emissions of Greenhouse Gases in the United States, 2003  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2004-12-01T23:59:59.000Z

174

Estimating Ammonia Emissions from Stationary Power Plants  

Science Conference Proceedings (OSTI)

This report provides a methodology that can be used to estimate ammonia releases from fossil fuel-fired, electrical power generation facilities for the purpose of reporting under the U.S. Environmental Protection Agencys Toxic Release Inventory (TRI) program.

2009-04-15T23:59:59.000Z

175

Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model  

E-Print Network (OSTI)

Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

Chen, Yu-Han, 1973-

2004-01-01T23:59:59.000Z

176

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi, Lynn Price China Energy Group Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Marlene Arens Fraunhofer Institute for Systems and Innovation Research (ISI) January 2013 This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE- AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL-6106E ii Disclaimer This document was prepared as an account of work sponsored by the United States

177

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

178

DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN  

E-Print Network (OSTI)

. Estimation of Greenhouse Gas Emissions....................................... 6 2. Greenhouse Gas Emissions........................................................ 8 C. Carbon Dioxide ­ A Greenhouse Gas................................................ 9 1. Sources............................................................... 3 B. Greenhouse Effect and Climate Change............................................. 4 1

Pike, Ralph W.

179

Livscykelanalys av flerbostadshus – energieffektiviseringsåtgärder för minskade koldioxidutsläpp; Life Cycle Analysis of Residential Buildings - Energy Efficiency Measures for Decreasing Carbon Dioxide Emissions.  

E-Print Network (OSTI)

?? The importance of energy- and environmental issues has increased, and the work towards reducing carbon dioxide emissions plays a major part. The European Union… (more)

Hedin, Hanna

2013-01-01T23:59:59.000Z

180

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbon dioxide emission index as a mean for assessing fuel quality  

Science Conference Proceedings (OSTI)

Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

2008-07-01T23:59:59.000Z

182

Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations  

SciTech Connect

Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

2008-01-01T23:59:59.000Z

183

Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions  

SciTech Connect

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

Huffman, Gerald P.

2012-11-13T23:59:59.000Z

184

Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions  

DOE Patents (OSTI)

A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

Huffman, Gerald P

2012-09-18T23:59:59.000Z

185

The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF-CNEAF/2008-04 SR/OIAF-CNEAF/2008-04 The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special

186

An evaluation of the ramp metering effectiveness in reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

In this study, we develop a methodology to estimate the effectiveness of ramp metering in reducing CO2 emissions. Ramp metering is one of several Intelligent Transportation Systems (ITS) applications to control traffic flow. In this paper in order to ... Keywords: CO2 Reduction, Greenhouse Gas, Intelligent Transportation System, Ramp Metering, State Preference Analysis, TSIS Simulation

Sang-Hoon Bae; Tae-Young Heo; Byoung-Yong Ryu

2012-11-01T23:59:59.000Z

187

County-level Estimates of Carbon Dioxide Release from Livestock, 2000-2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Livestock, 2000-2008 Livestock, 2000-2008 Tristram O. West Joint Global Change Research Institute Pacific Northwest National Laboratory and Craig C. Brandt Oak Ridge National Laboratory These data represent carbon dioxide release by livestock in the United States. Emissions are based on livestock population data from the USDA National Agricultural Statistics Service and the Census of Agriculture. Livestock in this analysis include dairy cows, non-dairy cows, swine, poultry, sheep, goats, and horses. Additional details on datasets and methods used in this analysis can be found in the following publication: West, T.O., V. Bandaru, C.C. Brandt, A.E. Schuh, and S.M. Ogle. 2011. Regional uptake and release of crop carbon in the United States. Biogeosciences 8: 2037-2046. DOI: 10.5194/bgd-8-2037-2011.

188

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum","*","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

189

Measuring Sulphur Dioxide (SO2) Emissions in October, 2010 Catastrophic Eruption from Merapi Volcano in Java, Indonesia  

E-Print Network (OSTI)

Volcano in Java, Indonesia with Ozone Monitoring Instrument (OMI) José A. Morales-Collazo Geology This paper discusses sulfur dioxide (SO2) cloud emissions from Merapi Volcano in Java, Indonesia during, Indonesia. In October 26th , 2010, a catastrophic eruption was reported from Merapi causing nearly 386

Gilbes, Fernando

190

Emissions of Greenhouse Gases in the United States, 2000 Executive Summary  

Reports and Publications (EIA)

Executive Summary on the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

191

Challenges to estimating carbon emissions from tropical deforestation  

E-Print Network (OSTI)

An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on ‘committed flux ’ calculations, as used by a few studies, are not comparable with the ‘annual balance ’ calculation method used by other studies.

Holly K. Gibbsw; Frédéric Achardz; Ruth Defries; Jonathan A. Foleyw; R. A. Houghton

2006-01-01T23:59:59.000Z

192

Updated cost estimates of meeting geothermal hydrogen sulfide emission regulations  

DOE Green Energy (OSTI)

A means of estimating the cost of hydrogen sulfide (H/sub 2/S) emission control was investigated. This study was designed to derive H/sub 2/S emission abatement cost functions and illustrate the cost of H/sub 2/S emission abatement at a hydrothermal site. Four tasks were undertaken: document the release of H/sub 2/S associated with geothermal development; review H/sub 2/S environmental standards; develop functional relationships that may be used to estimate the most cose-effective available H/sub 2/S abatement process; and use the cost functions to generate abatement cost estimates for a specific site. The conclusions and recommendations derived from the research are presented. The definition of the term impacts as used in this research is discussed and current estimates of the highest expected H/sub 2/S concentrations of in geothermal reservoirs are provided. Regulations governing H/sub 2/S emissions are reviewed and a review of H/sub 2/S control technology and a summary of the control cost functions are included. A case study is presented to illustrate H/sub 2/S abatement costs at the Baca KGRA in New Mexico.

Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

1981-08-01T23:59:59.000Z

193

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

194

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

195

Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004  

Science Conference Proceedings (OSTI)

Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.

West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; Hellwinckel, Chad M [ORNL; De La Torre Ugarte, Daniel G [ORNL

2009-01-01T23:59:59.000Z

196

Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach  

E-Print Network (OSTI)

9. D. Jones, "Development Cost Estimates for Fuel Economy ofExhaust Emission Control Cost Estimates Using a Part-PricingExhaust Emission Control Cost Estimates Using a Part-Pricing

Wang, Quanlu; Kling, Catherine; Sperling, Daniel

1993-01-01T23:59:59.000Z

197

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

198

Estimates of Global, Regional, and National Annual CO2 Emissions from  

NLE Websites -- All DOE Office Websites (Extended Search)

0 (1995) 0 (1995) (click above to download the data!) Estimates of Global, Regional, and Naitonal Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950-1992 NDP-030/R6 Cover T. A. Boden G. Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee R. J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska Environmental Sciences Division Publication No. 4473 Date Published: December 1995 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research Budget Activity Number KP 05 02 00 0 Prepared by the Carbon Dioxide Information Analysis Center World Data Center-A for Atmospheric Trace Gases OAK RIDGE NATIONAL LABORATORY

199

Examining the Effects of Variability in Average Link Speeds on Estimated Mobile Source Emissions and Air Quality  

E-Print Network (OSTI)

Fine-Grained Regional Emissions Estimation." TransportationA New Mobile Source Emission Inventory Model." AtmosphericData for Mobile Source Emissions Estimates. Transportation

Sogutlugil, Mihriban

2005-01-01T23:59:59.000Z

200

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

202

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

203

Evaluation of Sludge Characteristics and Carbon Dioxide Emissions of Full-scale Wastewater Treatment Plants in China by Mass and Energy Balances  

Science Conference Proceedings (OSTI)

Energy balances were used to evaluate the characteristics of sludge and to calculate the carbon dioxide emissions in the WWTPs in this study. To avoid the errors, mass balances by TP have been used to calibrate the relating data before making energy ... Keywords: Sludge, CEP, mass balance, energy balance, carbon dioxide

Gan Wang; Yongzhen Peng; Shuying Wang; Gan Wang; Hongxun Hou

2012-05-01T23:59:59.000Z

204

Bounding estimate of DWPF mercury emissions. Revision 1  

DOE Green Energy (OSTI)

Two factors which have substantial impact on predicted Mercury emissions are the air flows in the Chemical Process Cell (CPC) and the exit temperature of the Formic Acid Vent Condenser (FAVC). The discovery in the IDMS (Integrated DWPF Melter System) of H{sub 2} generation by noble metal catalyzed formic acid decomposition and the resultant required dilution air flow has increased the expected instantaneous CPC air flow by as much as a factor of four. In addition, IDMS has experienced higher than design (10{degrees}C) FAVC exit temperatures during certain portions of the operating cycle. These temperatures were subsequently attributed to the exothermic reaction of NO to NO{sub 2}. Moreover, evaluation of the DWPF FAVC indicated it was undersized and unless modified or replaced, routine exit temperatures would be in excess of design. Purges required for H{sub 2} flammability control and verification of elevated FAVC exit temperatures due to NO{sub x} reactions have lead to significant changes in CPC operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS experience, and development of an NO{sub x}/FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. The peak emission rate calculated is 0.027 lbs/hr. The estimated DWPF Hg emissions for the construction permit are 175 lbs/yr (0.02 lbs/hr annual average).

Jacobs, R.A.

1993-10-28T23:59:59.000Z

205

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 9 Includes electric power sector use of ...

206

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 8 Fuel ethanol minus denaturant. 2 Carbo ...

207

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard… (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

208

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

209

Estimation of Vehicular Emissions by Capturing Traffic Variations  

E-Print Network (OSTI)

J. , Ross, M. , 1996a. Modal Emissions Modeling: A PhysicalInstantaneous Pollutant Emissions. The Science of the TotalLoad on Motor Vehicle Emissions. Environmental Science &

Nesamani, K S; Chu, L Y; McNally, Michael G.; Jayakrishnan, R.

2005-01-01T23:59:59.000Z

210

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

211

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

212

The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case  

Science Conference Proceedings (OSTI)

The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

Park, Sangwon; Choi, Jun-Ho [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jinwon, E-mail: jwpark@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

2011-08-15T23:59:59.000Z

213

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

214

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

215

Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants  

E-Print Network (OSTI)

Over the past decade increasing concern over the potential environmental impact associated with the emissions of both gaseous and particulate pollutants has resulted in the promulgation of strict regulatory standards governing such emissions. In this regard, particular attention has been placed upon the control of sulfur dioxide (SO2) from major fuel burning installations. The provisions of the 1977 Amendments to the Clean Air Act which relate to the Prevention of Significant Deterioration (PSD) and the New Source Performance Standards (NSPS) have made consideration of this problem of significant additional importance in the context of increased coal utilization. There exist three general methods for the control of sulfur dioxide emissions from pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime or limestone into the firebox, or a spray dryer operated with nonregenerable alkaline sorbents coupled with a fabric filter collector. Equipment requirements, SO2 removal criteria, general economics, and potential applications of these latter two approaches within category (3) will be discussed.

Schwartz, M. H.

1979-01-01T23:59:59.000Z

216

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methane’s global warming potential factor.

217

Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry  

Science Conference Proceedings (OSTI)

The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

Love, Lonnie J [ORNL

2012-12-01T23:59:59.000Z

218

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",113,117,119,122,129,113,113,118,96,72,68,66,64,63,55,48,45,51,44,33,33 " Petroleum","*","*","*","*",1,1,"*","*","*","*","*",1,"*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

219

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",28,30,29,28,30,32,15,24,22,24,13,13,23,11,13,10,11,8,12,11,12 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","*","-","*","-","-","-","-","-","-","-"

220

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",133,172,133,134,139,191,162,162,178,174,139,142,128,128,137,125,119,125,124,121,116 " Petroleum",1,1,1,1,"*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-"

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",7,10,15,14,15,6,6,7,13,16,13,16,11,12,12,11,8,13,10,10,14 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

222

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",98,77,78,74,86,103,96,98,104,97,79,86,93,84,84,87,84,83,83,76,67 " Petroleum","*","*","*","*","*","*",1,1,1,"*",1,21,16,"*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","-","-","*","*","*","*","*"

223

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",54,46,53,52,57,69,71,75,74,67,63,57,46,46,35,28,28,24,20,17,15 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

224

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",29,26,27,30,27,30,30,30,30,28,31,32,30,32,34,31,34,25,22,30,25 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

225

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",93,89,92,90,98,88,86,92,91,84,82,85,83,70,59,58,59,59,55,43,45 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

226

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",6,3,6,6,5,3,3,3,3,3,3,1,3,3,4,2,2,4,3,1,3 " Petroleum","*","*","*","-","-","*","*","*","*","*","*","*","*","-","-","-","-","-","-","-","-" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

227

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum",2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

228

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",48,49,51,47,48,46,48,45,45,44,48,45,45,47,49,48,8,8,8,7,7 " Petroleum",1,1,1,1,1,"*","*","*","*","*","*",4,"*","*","*","*","*","*","*","*","-" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

229

Alignment-dependent fluorescence emission induced by tunnel ionization of carbon dioxide from lower-lying orbitals  

E-Print Network (OSTI)

We show that fluorescence emission induced by strong field tunnel ionization of carbon dioxide from its lower-lying orbitals exhibits a peculiar molecular alignment dependence. The experimentally measured alignment-dependence of the fluorescence agrees with the alignment-dependence of the ionization probability calculated in the framework of the strong field approximation. Our results demonstrate the feasibility of an all-optical approach for shedding more light on the ionization mechanisms of molecules from their lower-lying orbitals in tunnel ionization regime.

Yao, Jinping; Jia, Xinyan; Hao, Xiaolei; Zeng, Bin; Jing, Chenrui; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xie, Hongqiang; Zhang, Chaojin; Zhao, Zengxiu; Chen, Jing; Liu, Xiaojun; Cheng, Ya; Xu, Zhizhan

2013-01-01T23:59:59.000Z

230

Estimation of landfill emission lifespan using process oriented modeling  

SciTech Connect

Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2006-07-01T23:59:59.000Z

231

A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission  

SciTech Connect

The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

Fang, Zhigang Zak [University of Utah] [University of Utah

2013-11-05T23:59:59.000Z

232

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

233

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

234

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

235

An Analysis of Measures to Reduce the Life-Cycle Energy Consumption and Greenhouse Gas Emissions of California's Personal Computers  

E-Print Network (OSTI)

2002). Estimating Carbon Dioxide Emissions Factors for thefactors for California of 9.2 megajoules per kilowatt-hour (MJ/kWh) and 0.4 kilograms of carbon dioxide

Horvath, A; Masanet, Eric

2007-01-01T23:59:59.000Z

236

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

237

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricit...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Generation Technologies Speaker(s): Garvin Heath Date: April 11, 2011 -...

238

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

239

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",271,264,273,233,222,214,154,241,256,221,223,198,194,187,158,121,100,93,69,47,51 " Petroleum",138,127,76,64,44,40,50,38,...

240

Direct measurements improve estimates of dairy greenhouse-gas emissions  

E-Print Network (OSTI)

small quantity of Greenhouse gases measured enteric nitrousSC, Pain BF. 1994. Greenhouse gas emissions from intensiveE, Brose G. 2001. Greenhouse gas emissions from animal house

Mitloehner, Frank M; Sun, Huawei; Karlik, John F

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption with Potassium Carbonate Carbon Dioxide Capture by Absorption with Potassium Carbonate Project No.: FC26-02NT41440 Pilot Plant at the University of Texas Pilot Plant at the University of Texas The University of Texas at Austin investigated an improved process for CO2 capture by alkanolamine absorption that uses an alternative solvent, aqueous potassium carbonate (K2CO3) promoted by piperazine (PZ). If successful, this process would use less energy for CO2 capture than the conventional monoethanolamine (MEA) scrubbing process. An improved capture system would mean a relative improvement in overall power plant efficiency. The project developed models to predict the performance of absorption/stripping of CO2 using the improved solvent and perform a pilot plant study to validate the process models and define the range of feasible

242

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related CO2 Emissions Energy-Related CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in demand for transportation fuels is moderated by rising fuel prices and new, stricter federal CAFE standards for model years 2017 to 2025, which reduce transportation emissions from 2018 until they begin to rise near the end of the projection period. Transportation emissions in 2040 are 26 million metric tons below the 2011 level. Largely as a result of the inclusion of the new CAFE standards in AEO2013, transportation-related CO2 emissions in 2035 are 94 million metric tons below their level in the AEO2012 Reference case. State RPS requirements and abundant low-cost natural gas help shift the

243

How much of U.S. carbon dioxide emissions are associated with ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ... CO2 emissions from U.S. electricity generation by ...

244

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

245

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

Information Center

2010-05-11T23:59:59.000Z

246

Spatiotemporal modelling in estimation of nitrous oxide emissions from soil.  

E-Print Network (OSTI)

??Nitrous oxide is a major greenhouse gas emission. The aim of this research was to develop and apply statistical models to characterize the complex spatial… (more)

Huang, Xiaodong

2013-01-01T23:59:59.000Z

247

Calculators for Estimating Greenhouse Gas Emissions from Public  

NLE Websites -- All DOE Office Websites (Extended Search)

CALCULATORS Tables 1 and 2 list the GHG emissions calculators found by a literature search of published sources. The literature search for calculators was conducted through...

248

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",845,801,806,777,761,655,751,842,830,732,484,402,367,369,384,351,308,301,344,237,231 " Petroleum",4,6,5,4,11,4,6,2,15,24,15,7,1,4,2,1,"*",1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","-","-","*","*","*","*","*","*","*","*"

249

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",436,474,491,425,416,391,421,465,461,417,379,270,260,240,236,205,197,192,196,160,108 " Petroleum",168,200,182,235,227,194,220,213,325,296,221,265,185,213,193,190,117,116,58,43,32 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

250

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",1273,1330,1136,1155,1138,843,894,936,912,881,818,732,715,741,795,801,757,661,554,383,385 " Petroleum",3,3,1,"*","*",2,6,4,5,3,2,3,2,1,"*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

251

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",95,83,96,114,117,88,92,100,95,98,93,70,83,83,86,82,80,78,76,60,52 " Petroleum","*","*","*","*","*","*","*","*","*","*",15,17,14,27,17,15,10,7,6,"*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

252

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",485,483,488,520,488,503,553,537,543,515,483,435,417,425,385,428,430,423,335,262,194 " Petroleum",1,2,1,1,1,1,2,2,4,3,2,2,1,1,1,1,1,1,1,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

253

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",241,216,221,228,212,208,228,231,247,237,238,235,241,248,261,258,256,252,222,194,43 " Petroleum",26,31,23,30,29,9,10,12,24,30,14,11,8,14,13,16,12,12,1,1,"*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

254

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",16,18,20,18,19,33,18,21,22,23,22,28,18,16,19,18,18,20,18,19,19 " Petroleum","*","*","*","*","*",2,19,2,2,2,24,26,3,2,2,2,2,2,3,3,2 " Natural Gas","*","*","-","-","-","*","*","*","*","*","*","-","-","-","-","-","-","-","-","-","-" " Other Gases","-","-","-","-","-","-","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-"

255

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",91,98,100,106,115,89,86,106,100,102,92,87,89,87,87,82,81,65,62,58,65 " Petroleum",3,"*",40,111,114,61,58,64,66,62,60,79,61,83,20,19,17,13,15,26,48 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

256

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",63,52,50,51,46,53,61,67,56,58,73,45,44,46,47,63,55,45,35,11,14 " Petroleum",9,7,4,4,5,6,5,4,5,4,5,3,2,3,2,2,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

257

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",38,38,31,38,35,35,35,34,35,22,34,30,28,32,33,29,28,32,32,16,13 " Petroleum",41,12,43,43,43,34,33,32,6,6,4,6,4,4,2,2,2,2,"*","*","*" " Natural Gas","*","*","*","*","*","-","*","-","-","-","-","*","*","-","-","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","-","-","*","*","*","*","*","*","*","*","*","*","-"

258

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum",2,1,1,1,2,1,1,"*",1,1,1,1,1,"*","*",1,"*","*","*","*",1 " Other Renewables1","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Total",2,1,1,1,2,1,1,"*",1,1,1,1,1,"*","*",1,"*","*","*","*",1

259

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",32,32,35,33,25,26,28,26,26,24,28,5,2,3,2,3,3,3,1,2,2 " Petroleum",46,17,26,28,47,89,95,98,96,111,94,34,66,13,18,21,21,18,1,1,"*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

260

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",876,970,1000,949,990,572,630,636,631,648,568,618,478,506,446,438,427,353,286,167,105 " Petroleum",1,1,"*","*","*",1,1,1,"*","*",1,3,1,"*","*",1,1,1,"*","*","*" " Natural Gas","*","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","-","-","-"

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",91,95,85,70,64,72,63,72,64,64,63,55,53,48,41,43,36,38,38,30,34 " Petroleum",120,123,105,67,52,48,36,62,83,56,42,40,31,34,35,33,13,13,6,3,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

262

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal","*","*",2,3,3,4,4,4,4,3,11,1,2,1,1,1,1,1,2,2,1 " Petroleum",35,26,26,19,17,35,39,39,42,41,39,24,20,21,22,20,21,21,20,21,15 " Other Gases","-","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

263

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",182,203,190,198,180,166,155,153,173,155,155,139,134,138,135,135,131,134,149,90,104 " Petroleum","*","*","*",6,11,11,5,8,7,5,2,1,1,1,1,1,1,1,5,2,4 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","-","-","-","-","-","-","*","*","*","-","-","-","-","*","*","*"

264

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",818,791,810,892,812,613,583,607,567,597,530,486,428,474,460,445,380,336,307,225,241 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*",16,7,5,9,8,8,7,4,5 " Natural Gas","-","-","-","-","-","-","-","-","-","*","*","*","*","-","-","*","*","*","*","*","*"

265

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",14,9,9,9,10,13,12,13,13,8,11,4,4,2,2,2,2,2,2,2,2 " Petroleum",4,2,"*","*","*",3,4,4,4,4,3,4,3,3,2,2,2,2,1,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",1,1,"*","*","-","-","-","-","-","-","-","-","*","*","*","*"

266

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",363,368,339,356,386,353,372,399,411,369,360,336,325,335,322,329,315,325,329,267,229 " Petroleum",16,14,10,13,15,22,20,19,24,25,21,26,24,24,24,26,6,23,13,15,17 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","*","-","-","-","-","*","*","-","-","*","-","-","-","*","*"

267

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",721,677,620,437,487,316,334,289,274,240,194,218,224,255,265,266,253,251,253,234,232 " Petroleum",3,4,4,5,6,4,1,1,1,6,18,18,11,2,3,7,6,6,"*",1,"*" " Natural Gas","*","*","-","*","*","*","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","-","-","*","-","*","-","-","-","-","-","-","-","-","-","*","-"

268

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",96,89,86,81,70,75,86,70,71,71,80,63,60,62,62,60,69,62,60,36,49 " Petroleum",11,5,6,48,14,2,15,33,67,41,38,64,1,12,16,8,3,2,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","-","-","-","-","-","-","-","*","*","-","*","-","-","-","-"

269

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

In AEO2013, the 2030 values have fallen to 5,523 million metric tons for total energy-related CO 2 emissions, with 1,874 million metric tons (34 percent) ...

270

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

key resources for national energy consumption data in ChinaNBS published 2008 national energy consumption by industrialnational level, carbon emission factors for electricity consumption are calculated based on the energy

Lu, Hongyou

2013-01-01T23:59:59.000Z

271

Sulfur Dioxide Regulations (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

272

Nitrogen trifluoride global emissions estimated from updated atmospheric measurements  

E-Print Network (OSTI)

Nitrogen trifluoride (NF[subscript 3]) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a ...

Ivy, Diane J.

273

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?  

E-Print Network (OSTI)

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

Garrett, Timothy J

2008-01-01T23:59:59.000Z

274

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network (OSTI)

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

275

Microsoft Word - NETL-TRS-1-2013_Geologic Storage Estimates for Carbon Dioxide_20130312.electronic.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Publicly Available Comparison of Publicly Available Methods for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations 12 March 2013 Office of Fossil Energy NETL-TRS-1-2013 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

276

Electricity Load and Carbon Dioxide Emissions: Effects of a Carbon Price in the Short Term  

Science Conference Proceedings (OSTI)

acceptable levels will require a dramatic de-carbonization of the electric generation sector in the U.S. One increasingly discussed way to meet this policy goal is to put an explicit price on carbon emissions, either through a tax or a trading scheme. ...

Adam Newcomer; Seth Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan

2008-01-01T23:59:59.000Z

277

The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

2010-03-01T23:59:59.000Z

278

Regional Estimates of Net Ecosystem-Atmosphere Exchange of Carbon Dioxide over a Heterogeneous Ecosystem.  

E-Print Network (OSTI)

??The net ecosystem-atmosphere exchange of CO2 (NEE) is estimated over a mixed forest ecosystem in the 40×40km2 region centered at the WLEF tall tower in… (more)

Wang, Weiguo

2005-01-01T23:59:59.000Z

279

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

280

An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation  

Science Conference Proceedings (OSTI)

An improved parameterization is presented for estimating effective atmospheric emissivity for use in calculating downwelling longwave radiation based on temperature, humidity, pressure, and solar radiation observations. The first improvement is ...

Todd M. Crawford; Claude E. Duchon

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Uncertainties in Isoprene Emissions from a Mixed Deciduous Forest Estimated Using a Canopy Microclimate Model  

Science Conference Proceedings (OSTI)

Utilizing the concepts of localized near-field diffusion, a modeling system was developed to estimate isoprene emissions from foliage of a mixed deciduous forest. The model determined radiation disposition and foliage temperature inside the ...

L. Huber; P. Laville; J. D. Fuentes

1999-07-01T23:59:59.000Z

282

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

the generation. The marginal cost per kWh for each plant wasa value for the marginal cost per kWh. The next step was to

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

283

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

1A5) Nat Gas Petroleum Coal Source: CARB, 2007a Note: CodePetroleum and Coal Products Manufac. Refinery Fuel Sourceand total petroleum products. Data Sources In the CALEB

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

284

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

www.epa.gov/airmarkets/egrid/index.html U.S. Environmentalhttp://www.epa.gov/airmarkets/egrid/index.html G. S TANDARDS

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

285

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

ID=293 U.S. Energy Information Administration (U.S. EIA),DC: EIA. U.S. Energy Information Administration (U.S. EIA),2005b. Energy Information Administration, U.S. Department of

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

286

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

primary source for all natural gas supply data is the U.S.only about 15% of the natural gas supply is from in-stateAnnual Report of Natural and Supplemental Gas Supply and

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

287

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

42 Input actual hydroelectricity production forto replace the loss of hydroelectricity (Table 9). Table 12.years. 3. Input actual hydroelectricity production for 1990

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

288

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

In California, the quantities of energy used for oil and gasfuel oil and kerosene to gather information on quantity soldoil and coal used for electricity production from industrial and commercial CHP facilities are overestimated, as quantities

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

289

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

on natural gas consumption is available from the U.S. EIAConsumption of natural gas data are also available through the U.S.Natural Gas Consumption County. Sacramento, CA: CEC. U.S.

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

290

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Power, and Oil Commission (FERC) Source: http://10,718 Unfinished Oils Source: CEC 2006a The energy sectorIndustries Data Sources Oil and gas extraction energy use

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

291

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

Federal Energy Regulatory Commission (FERC), 2001.FERC Form 714: WSCC 1999. http://www.ferc.gov/Energy Regulatory Commission (FERC). This method was used to

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

292

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

2006. “California Crude Oil Production and Imports” Aprilwww.energy.ca.gov/oil/statistics/crude_oil_receipts.html desector shows inputs of crude oil, unfinished oil and

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

293

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

voltage transmission lines to CAISO. Since their remaining business was dominated by the medium and low

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

294

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

utilities in 1999. Coal prices are from the Coal Quarterlyaverage price to electric utilities of coal by sulfur

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

295

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

912 Weekly Underground Natural Gas Storage Report EIA-914Stored: the storage factor for natural gas (91%) comes fromStorage Factor Fraction Oxidized Unit kgC/MMBtu Natural Gas

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

296

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Gas Liquids and Liquefied Refinery Gases. ” Washington, DC:Input and Output at Refineries, 1995 - 2004. Sacramento, CA:www.energy.ca.gov/oil/refinery_output/index.html California

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

297

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

hydro and nuclear in the baseload, but predominantly gas onall hours, is called the baseload. Ja 15 n -J a 29 n -J a 12generating assets serving the baseload demand than serving

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

298

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Inputs kbbl Crude Oil Butane Isobutane Other Hydrocarbons,674,276 kbbl. Data on butane, isobutene, other hydrocarbons

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

299

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Reporting of Greenhouse Gases FE-746R Import and Export ofrefiners nor gas plant operators; such imports are notImport Data Federal Energy Various Collections of Information on Electricity, Natural Gas,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

300

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

the State of California. California Energy Commission, PIERthe State of California. California Energy Commission, PIER2006, CEC-600-2006-006. California Energy Commission, 2007.

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

whose electricity consumption remains stable over the year,electricity generation and fuel consumption for both the 1990 and 1999 test years,

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

302

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

the EPA for interstate trade of electricity is based on theto the electricity generators, who can then trade credits

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

303

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Natural Gas Production Report EIA-920 Combined Heat and Power Plant906 Power Plant Report EIA-910 Monthly Natural Gas MarketersPower Plant Operations Report EIA-1605 Voluntary Reporting of Greenhouse Gases FE-746R Import and Export of Natural

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

304

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Survey of Domestic Oil and Gas Reserves (Field Version)Survey of Domestic Oil and Gas Reserves (Summary Version)

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

305

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

306

Temporal and spatial blood information estimation using Bayesian ICA in dynamic cerebral positron emission tomography  

Science Conference Proceedings (OSTI)

Positron emission tomography (PET) is a nuclear medicine technique that provides tomographic images of the distribution of positron-emitting radiopharmaceuticals. We have previously proposed a method for estimating an input blood curve based on a standard ... Keywords: Arterial blood sampling, Blood volume image, Ensemble learning, Independent component analysis, Positron emission tomography

Mika Naganawa; Yuichi Kimura; Kenji Ishii; Keiichi Oda; Kiichi Ishiwata

2007-09-01T23:59:59.000Z

307

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA) Indexed Site

Environment - Analysis & Projections - U.S. Energy Information Environment - Analysis & Projections - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable &

308

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

309

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",5,4,4,4,4,4,4,4,3,2,6,1,1,1,2,2,2,2,1,"*","*" " Petroleum",39,34,8,8,7,26,27,30,38,40,25,21,10,9,9,11,7,11,6,4,2 " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",11,11,12,12,12,12,7,10,9,9,9,8,8,19,28,9

310

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",37,30,39,36,34,37,37,45,36,36,42,40,35,30,34,37,35,36,33,29,33 " Petroleum",23,13,12,11,11,11,9,9,16,16,5,5,5,21,17,9,2,3,1,1,1 " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","-","-","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*",1,"*",1,1,"*","*","*","*","*","*"

311

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",77,69,60,64,65,90,105,98,107,105,102,103,113,119,104,112,98,102,85,46,40 " Petroleum",1,"*","*",1,"*",1,1,1,"*",2,3,6,5,9,8,12,3,3,2,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Total",78,69,60,64,65,90,106,99,107,107,106,109,118,128,112,124,101,105,87,47,41

312

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",11,11,9,8,9,10,10,11,6,1,19,11,5,3,3,3,3,2,3,1,1 " Petroleum",40,38,25,20,16,12,26,37,40,39,26,22,6,5,4,5,3,3,1,"*",1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other1",1,1,1,1,"*",4,5,5,5,5,6,"*","*","*","*","*","*","*","*","*","*"

313

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",67,64,64,60,66,76,88,79,70,72,69,68,64,65,71,60,66,65,66,62,61 " Petroleum","*","*","*","*","*",1,1,"*",1,1,2,4,1,2,3,1,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",12,13,13,13,13,13,12,12,13,13,36,15,16,11,12,12

314

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",805,728,719,649,528,462,452,486,497,490,488,479,495,517,524,583,619,617,481,247,211 " Petroleum",13,15,4,6,4,28,31,34,40,38,39,47,36,42,33,35,37,36,29,24,28 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",39,41,34,33,33,32,31,31,27,27,27,29,28,25,24,25

315

ALGORITHMS FOR JOINT ESTIMATION OF ATTENUATION AND EMISSION IMAGES IN PET  

E-Print Network (OSTI)

ALGORITHMS FOR JOINT ESTIMATION OF ATTENUATION AND EMISSION IMAGES IN PET Hakan Erdogan IBM TJ information about the at- tenuating medium. To use all the available information, we propose a joint in these two scans, one can derive a joint objective function based on both scans to jointly estimate attenu

Erdogan, Hakan

316

Joint Estimation of Attenuation and Emission Images from PET Scans Hakan Erdogan and Jeffrey A. Fessler  

E-Print Network (OSTI)

Joint Estimation of Attenuation and Emission Images from PET Scans Hakan Erdogan and Jeffrey A information about the attenuating medium. To use all the available information, we propose a joint estimation optimal use of the information in these two scans, one can derive a joint objective function based on both

Erdogan, Hakan

317

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

318

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

DOE Green Energy (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

319

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

320

Geothermal Electrical Production CO2 Emissions Study  

DOE Green Energy (OSTI)

Emission of ?greenhouse gases? into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize ?green power.? Geothermal power is classed as ?green power? and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.

K. K. Bloomfield (INEEL); J. N. Moore (Energy and Geoscience Institute)

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Emissions of greenhouse gases in the United States 1995  

Science Conference Proceedings (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

322

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

323

CDIAC::Carbon Emission::Time Series USA Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimates of monthly carbon dioxide emissions and associated 13C values from fossil-fuel consumption in the U.S.A. In Trends: A Compendium of Data on Global Change Carbon...

324

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

Energy Efficiency and Carbon Dioxide Emissions Reductionconsumption and related carbon dioxide (CO 2 ) emissions.during Cumulative Carbon Dioxide Emission Reduction (MtCO

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

325

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the… (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

326

Estimation Methodology for Total and Elemental Mercury Emissions from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report provides a tool for estimating total and speciated mercury emissions from coal-fired power plants. The mercury emissions methodology is based on EPRI's analyses of the results from the U.S. Environmental Protection Agency (EPA) Mercury Information Collection Request (ICR). The Mercury ICR required owner/operators of coal-fired electric utility steam generating units to report for calendar year 1999 the quantity of fuel consumed and the mercury content of that fuel. In addition, 84 power plant...

2001-04-18T23:59:59.000Z

327

HFC Emissions Estinating  

Science Conference Proceedings (OSTI)

... Dioxide Emissions Reporting Year: January – December, 200x Agent Type GWP Total Emission by Agent Type, kg Equivalent CO2 Emission by ...

2011-10-13T23:59:59.000Z

328

Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy  

Science Conference Proceedings (OSTI)

This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

Oladosu, Gbadebo A [ORNL

2012-01-01T23:59:59.000Z

329

Review of cost estimates for reducing CO2 emissions. Final report, Task 9  

Science Conference Proceedings (OSTI)

Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

Not Available

1990-10-01T23:59:59.000Z

330

A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions  

DOE Green Energy (OSTI)

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

Hadder, G.R.

1995-11-01T23:59:59.000Z

331

TY RPRT T1 Estimating Policy Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories in Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model A1 J Greenblatt AB p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and other sources Starting from basic drivers such as population numbers

332

Biomass burning in Asia : annual and seasonal estimates and atmospheric emissions.  

DOE Green Energy (OSTI)

Estimates of biomass burning in Asia are developed to facilitate the modeling of Asian and global air quality. A survey of national, regional, and international publications on biomass burning is conducted to yield consensus estimates of 'typical' (i.e., non-year-specific) estimates of open burning (excluding biofuels). We conclude that 730 Tg of biomass are burned in a typical year from both anthropogenic and natural causes. Forest burning comprises 45% of the total, the burning of crop residues in the field comprises 34%, and 20% comes from the burning of grassland and savanna. China contributes 25% of the total, India 18%, Indonesia 13%, and Myanmar 8%. Regionally, forest burning in Southeast Asia dominates. National, annual totals are converted to daily and monthly estimates at 1{sup o} x 1{sup o} spatial resolution using distributions based on AVHRR fire counts for 1999--2000. Several adjustment schemes are applied to correct for the deficiencies of AVHRR data, including the use of moving averages, normalization, TOMS Aerosol Index, and masks for dust, clouds, landcover, and other fire sources. Good agreement between the national estimates of biomass burning and adjusted fire counts is obtained (R{sup 2} = 0.71--0.78). Biomass burning amounts are converted to atmospheric emissions, yielding the following estimates: 0.37 Tg of SO{sub 2}, 2.8 Tg of NO{sub x}, 1100 Tg of CO{sub 2}, 67 Tg of CO, 3.1 Tg of CH{sub 4}, 12 Tg of NMVOC, 0.45 Tg of BC, 3.3 Tg of OC, and 0.92 Tg of NH{sub 3}. Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of {+-}65% for CO{sub 2} emissions in Japan to a high of {+-}700% for BC emissions in India.

Streets, D. G.; Yarber, K. F.; Woo, J.-H.; Carmichael, G. R.; Decision and Information Sciences; Univ. of Iowa

2003-10-15T23:59:59.000Z

333

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

334

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

335

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

336

Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform  

SciTech Connect

Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

1993-09-01T23:59:59.000Z

337

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

338

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Generation Technologies Speaker(s): Garvin Heath Date: April 11, 2011 - 10:00am Location: 90-3075 Seminar Host/Point of Contact: Eric Masanet One barrier to the full support and deployment of alternative energy systems and the development of a sustainable energy policy is the lack of robust conclusions about the life cycle environmental impacts of energy technologies. A significant number of life cycle assessments (LCA) of energy technologies have been published, far greater than many are aware. However, there is a view held by many decision-makers that the state of the science in LCA of energy technologies is inconclusive because of perceived and real variability and uncertainty in published estimates of life cycle

339

Building Energy Software Tools Directory: EMISS  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of emission factors are currently included: carbon dioxide, sulfur dioxide, nitrous oxide. Emissions factors are specified separately for six different end-use...

340

Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 9, 2007 4: April 9, 2007 Carbon Dioxide Emissions to someone by E-mail Share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Facebook Tweet about Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Twitter Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Google Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Delicious Rank Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Digg Find More places to share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on AddThis.com... Fact #464: April 9, 2007 Carbon Dioxide Emissions Carbon dioxide (CO2) emissions from the transportation sector began to

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

342

Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)  

SciTech Connect

This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a balance between simplicity of use and the desire for accuracy in granting carbon credits.

Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

2000-07-01T23:59:59.000Z

343

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

Ozawa Meida. 2001. “Carbon Dioxide Emissions from the Globalpost-combustion capture of carbon dioxide. ” InternationalIPCC Special Report on Carbon Dioxide Capture and Storage:

Zhou, Nan

2013-01-01T23:59:59.000Z

344

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

345

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

346

Modeling CO2 Emissions Impact of Energy Efficiency  

Science Conference Proceedings (OSTI)

This report details EPRI's continued efforts to model the marginal carbon dioxide (CO2) emissions impact of energy efficiency. Though intuitively recognized to reduce emissions, energy efficiency is not universally accepted as an eligible category for emissions credit in most trading or offset markets today. Chief among barriers to eligibility is the lack of precision in emissions reduction estimates based on average emissions factors. This study refines and expands marginal CO2 intensities of energy eff...

2010-12-28T23:59:59.000Z

347

Modeling CO2 Emissions Impact of Energy Efficiency  

Science Conference Proceedings (OSTI)

This report details EPRI's continued efforts to model the marginal carbon dioxide (CO2) emissions impact of energy efficiency. Though intuitively recognized to reduce emissions, energy efficiency is not universally accepted as an eligible category for emissions credit in most trading or offset markets today. Chief among the barriers to eligibility is the lack of precision in emissions reduction estimates based on average emissions factors. This study refines and expands the marginal CO2 intensities of en...

2009-12-22T23:59:59.000Z

348

Modeling CO2 Emissions Impact of Energy Efficiency  

Science Conference Proceedings (OSTI)

This report describes an effort to model the marginal carbon dioxide (CO2) emissions impact of energy efficiency. Though intuitively recognized to reduce emissions, energy efficiency is not universally accepted as an eligible category for emissions credit in most trading or offset markets today. Chief among the barriers to eligibility is the lack of precision in emissions reduction estimates based on average emissions factors. This study establishes a proof-of-concept for quantifying marginal CO2 intensi...

2008-12-23T23:59:59.000Z

349

Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals  

E-Print Network (OSTI)

Increasing the level of energy efficiency in Texas, as proposed by House Bill 3693, an Act related to energy demand, energy load, energy efficiency incentives, energy programs and energy performance measures, would reduce the amount of electricity demanded from Texas utilities. Since approximately eighty-eight percent of electricity generated in Texas is from plants powered by fossil fuels, such as coal and natural gas, this decrease would also reduce the air pollution that would otherwise be associated with burning these fuels. This report presents the potential emission reductions of nitrogen oxides (NOx) that would occur in the Electric Reliability Council of Texas (ERCOT) region if new energy efficiency targets for investor owned utilities are established for 2010 and 2015. These energy efficiency targets are the subject of a feasibility study as prescribed by Texas House Bill 3693. This report describes the details of the methodology, data and assumptions used, and presents the results of the analysis. The total energy savings targets for utilities within ERCOT are 745,710 megawatt-hours (MWh) by 2010 under the 30 percent reduction of growth scenario and 1,788,953 MWh by 2015 under the 50 percent reduction of growth scenario. The total projected annual NOx emissions reductions from these electricity savings are 191 tons in 2010 and 453 tons in 2015, or converting the annual totals into average daily avoided emissions totals, 0.5 tons per day by 2010 and 1.25 tons per day by 2015. The average avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution benefits that could positively affect air quality and human health. The emissions reductions projected to result in 2010 and 2015 are comparable to the Texas Emission Reduction Program (TERP) Energy-Efficiency Grants Program, which does target emission reductions and estimated 2005 annual NOx emissions reductions of about 89 tons. While the projected emissions reductions are small compared to the total emission reductions needed to bring the state’s non-attainment areas into attainment of the national ambient air quality standards for ozone, they can be a part of an overall strategy to reduce emissions and improve human health in Texas.

Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

2008-12-01T23:59:59.000Z

350

Parameters of the prompt gamma-ray burst emission estimated with the opening angle of jets  

E-Print Network (OSTI)

We present in this paper an approach to estimate the initial Lorentz factor of gamma-ray bursts (GRBs) without referring to the delayed emission of the early afterglow. Under the assumption that the afterglow of the bursts concerned occurs well before the prompt emission dies away, the Lorentz factor measured at the time when the duration of the prompt emission is ended could be estimated by applying the well-known relations of GRB jets. With the concept of the efficiency for converting the explosion energy to radiation, this Lorentz factor can be related to the initial Lorentz factor of the source. The corresponding rest frame peak energy can accordingly be calculated. Applying this method, we estimate the initial Lorentz factor of the bulk motion and the corresponding rest frame spectral peak energy of GRBs for a new sample where the redshift and the break time in the afterglow are known. Our analysis shows that, in the circumstances, the initial Lorentz factor of the sample would peak at 200 and would be distributed mainly within $(100,400)$, and the peak of the distribution of the corresponding rest frame peak energy would be $0.8keV$ and its main region would be $(0.3keV,3keV)$.

B. -B. Zhang; Y. -P. Qin

2005-04-04T23:59:59.000Z

351

Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics  

SciTech Connect

Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81% to 870% for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

2013-06-04T23:59:59.000Z

352

Estimating the marginal cost of reducing global fossil fuel CO[sub 2] emissions  

Science Conference Proceedings (OSTI)

This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20[percent] reduction from 1988 levels, and 50[percent] reduction from 1988 levels. For the global cooperation case, carbon tax rates of [dollar sign]32, [dollar sign]113, [dollar sign]161, and [dollar sign]517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively [dollar sign]40, [dollar sign]178, [dollar sign]253, and [dollar sign]848 billions of 1990 US dollars per year in the year 2025. Average costs were [dollar sign]32, [dollar sign]55, [dollar sign]59, and [dollar sign]135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50[percent] or 20[percent] relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth.

Edmonds, J.; Barns, D.W.; McDonald, S. (Pacific Northwest Lab., Washington, DC (United States))

1992-01-01T23:59:59.000Z

353

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

354

The US department of Energy's R&D program to reduce greenhouse gas emissions through beneficial uses of carbon dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Perspective Correspondence to: Darin Damiani, National Energy Technology Laboratory, US Department of Energy, 3610 Collins Ferry Road, Morgantown, WV 26507, USA. E-mail: darin.damiani@netl.doe.gov † This article is a US Government work and is in the public domain in the USA. Received June 24, 2011; revised July 26, 2011; accepted July 27, 2011 Published online at Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ghg.35 The US Department of Energy's R&D program to reduce greenhouse gas emissions through benefi cial uses of carbon dioxide † Darin Damiani and John T. Litynski, National Energy Technology Laboratory, US Department of

355

Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening  

Science Conference Proceedings (OSTI)

This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Mota, Leonardo [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany); Goncalves de Oliveira, Jurandi [Laboratorio de Melhoramento Genetico Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Miklos, Andras [Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany)

2011-06-01T23:59:59.000Z

356

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

357

The Future Trajectory of US CO2 Emissions: The Role of State vs. Aggregate Information  

E-Print Network (OSTI)

1998, World carbon dioxide emissions 1950 - 2050, Review ofof us greenhouse gas emissions and sinks:1990 - 2001, EPAper capita carbon dioxide emissions, Harvard Department of

Auffhammer, Maximilian; Steinhauser, Ralf

2006-01-01T23:59:59.000Z

358

HEEP – A Program for Tracking Fire Protection Emissions of ...  

Science Conference Proceedings (OSTI)

... HEEP are as follows: • “Emission” for the ... values to equivalent emissions of carbon dioxide ... used to calculate carbon dioxide (CO2) equivalence for ...

2011-10-13T23:59:59.000Z

359

Environment energy-related emissions. For example, the clearing of ...  

U.S. Energy Information Administration (EIA)

Environment Note. Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion. Carbon dioxide (CO 2) emissions from the combustion of biomass to

360

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

Carbon dioxide Table 2-4 Overall Weighted Average Emission FactorsCarbon dioxide .. 18 Figure 2-4 PM 2.5 Mass Emission Factors

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

362

electricity emission factors | OpenEI  

Open Energy Info (EERE)

emission factors emission factors Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

363

8 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org730 n 2006, China's carbon dioxide emission  

E-Print Network (OSTI)

year over the last 27 years, while its CO2 emissions have increased by only 5.4% per year (1­3), corre)--a remarkable achievement, as energy consumption generally grows faster thanGDPduringtheearlystagesofindustrial- ization. One important reason for this was the government's emphasis on energy efficiency. China's per

364

Translating Energy Efficiency into CO2 Emissions Reduction: A Modeling Approach  

Science Conference Proceedings (OSTI)

This paper describes a methodology that EPRI has developed to model the marginal carbon dioxide (CO2) emissions impact of energy efficiency. Though energy efficiency is intuitively recognized to reduce carbon emissions, one barrier to its broader application is the lack of precision in attributing emissions reductions to specific program activities. Coarse estimates based on utilities' average emissions factors, while straightforward to calculate, do not provide enough specificity on emissions reductions...

2011-12-30T23:59:59.000Z

365

Bayesian Estimator for Angle Recovery: Event Classification and Reconstruction in Positron Emission Tomography  

SciTech Connect

PET at the highest level is an inverse problem: reconstruct the location of the emission (which localize biological function) from detected photons. Ideally, one would like to directly measure an annihilation photon's incident direction on the detector. In the developed algorithm, Bayesian Estimation for Angle Recovery (BEAR), we utilized the increased information gathered from localizing photon interactions in the detector and developed a Bayesian estimator for a photon's incident direction. Probability distribution functions (PDFs) were filled using an interaction energy weighted mean or center of mass (COM) reference space, which had the following computational advantages: (1) a significant reduction in the size of the data in measurement space, making further manipulation and searches faster (2) the construction of COM space does not depend on measurement location, it takes advantage of measurement symmetries, and data can be added to the training set without knowledge and recalculation of prior training data, (3) calculation of posterior probability map is fully parallelizable, it can scale to any number of processors. These PDFs were used to estimate the point spread function (PSF) in incident angle space for (i) algorithm assessment and (ii) to provide probability selection criteria for classification. The algorithm calculates both the incident {theta} and {phi} angle, with {approx}16 degrees RMS in both angles, limiting the incoming direction to a narrow cone. Feature size did not improve using the BEAR algorithm as an angle filter, but the contrast ratio improved 40% on average.

Foudray, Angela M K [Stanford University Molecular Imaging Program at Stanford Department of Radiology Palo Alto, CA (United States); University of California, San Diego Department of Physics La Jolla, CA (United States); Levin, Craig S [Stanford University Molecular Imaging Program at Stanford Department of Radiology Palo Alto, CA (United States)

2007-11-13T23:59:59.000Z

366

EIA - 2010 International Energy Outlook - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2010 Energy-Related Carbon Dioxide Emissions In 2007, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 17 percent. In the IEO2010 Reference case, energy-related carbon dioxide emissions from non-OECD countries in 2035 are about double those from OECD countries. Overview Because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels, world energy use continues to be at the center of the climate change debate. In the IEO2010 Reference case, world energy-related carbon dioxide emissions29 grow from 29.7 billion metric tons in 2007 to 33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 (Table 18).30

367

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

368

TY Generic T1 Estimation of CO2 Emissions from China s Cement...  

NLE Websites -- All DOE Office Websites (Extended Search)

from the calcination process for clinker production direct emissions from fossil fuel combustion and indirect emissions from electricity consumption This paper examines in...

369

Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.  

SciTech Connect

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin, Ireland

2013-09-01T23:59:59.000Z

370

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

371

Emissions of Greenhouse Gases in the United States 2001  

U.S. Energy Information Administration (EIA)

carbon dioxide emissions, total greenhouse gas emissions, sector-specific emissions, and emissions by fuel type. Nonfuel uses of fossil fuels, principally petroleum,

372

Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public  

E-Print Network (OSTI)

electricity emissions, inventory calculators utilize data from the U.S. EPA's eGRID database of electrical power generation emission factors (32). The eGRID emission factors include neither upstream fuel power generation emission factors (lbs GHGs/MWh) from the EPA's eGRID database (32). Regional electric

373

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

1. Greenhouse Gas Emissions Overview 1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a small increase of 7 MMTCO2e (0.9 percent) in methane (CH4) emissions, and an increase of 8 MMTCO2e (4.9 percent), based on partial data, in emissions of man-made gases with high global warming potentials (high-GWP gases). (Draft estimates for emissions of HFC and PFC

374

Dynamics of nitrogen and greenhouse gas emission under elevated carbon dioxide in semi-arid cropping systems in Australia and China.  

E-Print Network (OSTI)

??Within less than 50 years, atmospheric carbon dioxide concentration [CO2] will likely be double that observed in 1950. In this higher [CO2] world the sustainability… (more)

Lam, Shu Kee

2012-01-01T23:59:59.000Z

375

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

Not Available

2008-10-01T23:59:59.000Z

376

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

Not Available

2008-06-01T23:59:59.000Z

377

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

Not Available

2008-06-01T23:59:59.000Z

378

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

Not Available

2008-06-01T23:59:59.000Z

379

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

Not Available

2008-10-01T23:59:59.000Z

380

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

Not Available

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

Lantz, E.; Tegen, S.

2008-05-01T23:59:59.000Z

382

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

383

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

Not Available

2008-06-01T23:59:59.000Z

384

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

Not Available

2008-10-01T23:59:59.000Z

385

Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

Not Available

2008-06-01T23:59:59.000Z

386

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

Not Available

2008-10-01T23:59:59.000Z

387

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

Not Available

2008-06-01T23:59:59.000Z

388

Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

Not Available

2008-06-01T23:59:59.000Z

389

Review of BEIS3 Formulation and Consequences Relative to Air Quality Standards: Estimation of Uncertainties in BEIS3 Emission Output s  

Science Conference Proceedings (OSTI)

This report describes estimates of uncertainties for outputs of the Biogenics Emissions Inventory System, Version 3 (BEIS3) model due to uncertainties in model parameters and input variables.

2002-05-29T23:59:59.000Z

390

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

391

Development of a rapid global aircraft emissions estimation tool with uncertainty quantification  

E-Print Network (OSTI)

Aircraft emissions impact the environment by changing the radiative balance of the atmosphere and impact human health by adversely affecting air quality. Many tools used to quantify aircraft emissions are not open source ...

Simone, Nicholas W. (Nicholas William)

2013-01-01T23:59:59.000Z

392

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

393

Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO2 with HIPPO and SGP aircraft profile measurements  

E-Print Network (OSTI)

Aircraft observation of carbon dioxide at 8-13km altitudedecade, measurements of carbon dioxide (CO ) from space haveEmission Spectrome- ter (TES) carbon dioxide (CO ) satellite

Kulawik, S.S.

2013-01-01T23:59:59.000Z

394

The Value of Post-Combustion Carbon Dioxide Capture and Storage Technologies in a World with Uncertain Greenhouse Gas Emissions Constraints  

Science Conference Proceedings (OSTI)

By analyzing how the largest CO2 emitting electricity generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post combustion CO2 capture technologies. The utilization of pulverized coal with carbon dioxide capture and storage (PC+CCS) technologies is particularly significant in a world where there is significant uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper’s analysis shows that within this one large, heavily coal-dominated electricity generating region, as much as 20-40 GW of PC+CCS could be in operation before the middle of this century. Depending upon the state of PC+CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either already existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC+CCS generation units are compliments to a much larger deployment of CCS-enabled coal-fired integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC+CCS and IGCC+CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 billion tones of CO2 before the middle of this century in the region’s deep geologic storage formations.

Wise, Marshall A.; Dooley, James J.

2009-01-01T23:59:59.000Z

395

Estimating monthly and state-level NO sub x , SO sub 2 , VOC and CO sub 2 emissions using the MSCET database  

SciTech Connect

This paper describes the Month and State Current Emission Trends (MSCET) database. It describes the methodology used to estimate NO{sub x}, SO{sub 2}, VOC, and CO{sub 2} emissions and the data sources used by the methodology. Selected emissions results from the database are presented. 2 refs., 6 figs.

Cilek, C.M.; Kohout, E.

1992-01-01T23:59:59.000Z

396

Estimating monthly and state-level NO{sub x}, SO{sub 2}, VOC and CO{sub 2} emissions using the MSCET database  

SciTech Connect

This paper describes the Month and State Current Emission Trends (MSCET) database. It describes the methodology used to estimate NO{sub x}, SO{sub 2}, VOC, and CO{sub 2} emissions and the data sources used by the methodology. Selected emissions results from the database are presented. 2 refs., 6 figs.

Cilek, C.M.; Kohout, E.

1992-07-01T23:59:59.000Z

397

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is… (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

398

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

399

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

400

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

Not Available

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

402

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

403

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

Not Available

2008-10-01T23:59:59.000Z

404

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

Not Available

2008-10-01T23:59:59.000Z

405

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

Not Available

2008-10-01T23:59:59.000Z

406

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

Not Available

2008-10-01T23:59:59.000Z

407

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

Not Available

2008-10-01T23:59:59.000Z

408

Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases  

E-Print Network (OSTI)

2002. Estimating Carbon Dioxide Emissions Factors for the2002). Estimating Carbon Dioxide Emissions Factors for the

2008-01-01T23:59:59.000Z

409

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

410

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

411

NETL: News Release - Reining in CO2 Emissions....  

NLE Websites -- All DOE Office Websites (Extended Search)

Reining in CO2 Emissions.... DOE Selects Eight Innovative Projects to Capture and Store Carbon Dioxide from Power Plants WASHINGTON, DC - New ways to capture carbon dioxide from...

412

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emission factors for carbon monoxide, nitrogen oxides,  nitrogen dioxideemission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide

Singer, Brett C.

2010-01-01T23:59:59.000Z

413

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of… (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

414

EIA - Greenhouse Gas Emissions Overview  

U.S. Energy Information Administration (EIA)

Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps : 35: Emissions of carbon dioxide from biofuel/bioenergy use by sector and fuel

415

Global emissions inventories  

SciTech Connect

Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions.

Dignon, J.

1995-07-01T23:59:59.000Z

416

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

E-Print Network (OSTI)

of Carbon Dioxide Emissions on GNP Growth: Interpretation ofMcNeil et al Enduse Global Emissions Mitigation Scenarios (Keywords Greenhouse gas emissions, emissions scenarios,

McNeil, Michael A.

2010-01-01T23:59:59.000Z

417

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

418

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

carbon dioxide emissions. The model uses generation dispatch algorithms, efficiency levels, and capacity factors

G. Fridley, David

2010-01-01T23:59:59.000Z

419

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

420

EIA - International Energy Outlook 2009-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2009 Chapter 8 - Energy-Related Carbon Dioxide Emissions In 2006, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 14 percent. In 2030, energy-related carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 77 percent. Figure 80. World Energy-Related Carbon Dioxide Emissions, 2006-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 81. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 82. U.S. Energy-Related Carbon Dioxide Emissions by Fuel in IEO2008 and IEO2009, 2006, 2015, and 2030 (billion metric tons). Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

422

Carbon reduction emissions in South Africa  

SciTech Connect

This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

Temchin, Jerome

2002-02-28T23:59:59.000Z

423

Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 16, 2007 8: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector to someone by E-mail Share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Facebook Tweet about Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Twitter Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Google Bookmark Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Delicious Rank Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on Digg Find More places to share Vehicle Technologies Office: Fact #478: July 16, 2007 U.S. Carbon Dioxide Emissions by Sector on AddThis.com...

424

Integrated Emissions Control Cost Estimating Workbook (IECCOST) Version 3.1  

Science Conference Proceedings (OSTI)

The IECCOST economic analysis workbook produces rough-order-of-magnitude cost estimates of the installed capital and levelized annual operating costs for standalone and integrated environmental control systems installed on coal-fired power plants. The model allows for the comparison ...

2012-12-03T23:59:59.000Z

425

The effect of elevated atmospheric carbon dioxide mixing ratios on the emission of Volatile organic compounds from Corymbia citriodora and Tristaniopsis laurina.  

E-Print Network (OSTI)

??Bibliography: p. 120-124. Introduction  – Environmental factors affecting the emission of biogenic Volatile organic compounds  – Materials and experimental procedures  – Quantification using sold-phase microextraction… (more)

Camenzuli, Michelle

2008-01-01T23:59:59.000Z

426

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

427

Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions  

DOE Green Energy (OSTI)

Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

Wang, M.Q.

1993-12-31T23:59:59.000Z

428

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

429

CO2 Emissions - Gibraltar  

NLE Websites -- All DOE Office Websites (Extended Search)

Gibraltar CO2 Emissions from Gibraltar Data graphic Data CO2 Emissions from Gibraltar image Per capita CO2 Emission Estimates for Gibraltar...

430

CO2 Emissions - Mozambique  

NLE Websites -- All DOE Office Websites (Extended Search)

Mozambique Graphics CO2 Emissions from Mozambique Data graphic Data CO2 Emissions from Mozambique image Per capita CO2 Emission Estimates for Mozambique...

431

CO2 Emissions - Macau  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Macau CO2 Emissions from Macau Data graphic Data CO2 Emissions from Macau image Per capita CO2 Emission Estimates for Macau...

432

CO2 Emissions - Guadeloupe  

NLE Websites -- All DOE Office Websites (Extended Search)

Guadeloupe Graphics CO2 Emissions from Guadeloupe Data graphic Data CO2 Emissions from Guadeloupe image Per capita CO2 Emission Estimates for Guadeloupe...

433

CO2 Emissions - Ghana  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Ghana Graphics CO2 Emissions from Ghana Data graphic Data CO2 Emissions from Ghana image Per capita CO2 Emission Estimates for Ghana...

434

CO2 Emissions - Ireland  

NLE Websites -- All DOE Office Websites (Extended Search)

Ireland CO2 Emissions from Ireland Data graphic Data CO2 Emissions from Ireland image Per capita CO2 Emission Estimates for Ireland...

435

CO2 Emissions - Malta  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Malta CO2 Emissions from Malta Data graphic Data CO2 Emissions from Malta image Per capita CO2 Emission Estimates for Malta...

436

CO2 Emissions - Kyrgyzstan  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Kyrgyzstan CO2 Emissions from Kyrgyzstan Data graphic Data CO2 Emissions from Kyrgyzstan image Per capita CO2 Emission Estimates for Kyrgyzstan...

437

CO2 Emissions - Mali  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mali Graphics CO2 Emissions from Mali Data graphic Data CO2 Emissions from Mali image Per capita CO2 Emission Estimates for Mali...

438

CO2 Emissions - Portugal  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Portugal CO2 Emissions from Portugal Data graphic Data CO2 Emissions from Portugal image Per capita CO2 Emission Estimates for Portugal...

439

CO2 Emissions - Paraguay  

NLE Websites -- All DOE Office Websites (Extended Search)

Paraguay Graphics CO2 Emissions from Paraguay Data graphic Data CO2 Emissions from Paraguay image Per capita CO2 Emission Estimates for Paraguay...

440

CO2 Emissions - Macedonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Macedonia CO2 Emissions from Macedonia Data graphic Data CO2 Emissions from Macedonia image Per capita CO2 Emission Estimates for Macedonia...

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CO2 Emissions - Malawi  

NLE Websites -- All DOE Office Websites (Extended Search)

Malawi Graphics CO2 Emissions from Malawi Data graphic Data CO2 Emissions from Malawi image Per capita CO2 Emission Estimates for Malawi...

442

CO2 Emissions - Gabon  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Gabon Graphics CO2 Emissions from Gabon Data graphic Data CO2 Emissions from Gabon image Per capita CO2 Emission Estimates for Gabon...

443

CO2 Emissions - Grenada  

NLE Websites -- All DOE Office Websites (Extended Search)

Grenada Graphics CO2 Emissions from Grenada Data graphic Data CO2 Emissions from Grenada image Per capita CO2 Emission Estimates for Grenada...

444

CO2 Emissions - Kiribati  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Kiribati Graphics CO2 Emissions from Kiribati Data graphic Data CO2 Emissions from Kiribati image Per capita CO2 Emission Estimates for Kiribati...

445

CO2 Emissions - Israel  

NLE Websites -- All DOE Office Websites (Extended Search)

Israel Graphics CO2 Emissions from Israel Data graphic Data CO2 Emissions from Israel image Per capita CO2 Emission Estimates for Israel...

446

CO2 Emissions - Phillippines  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Phillippines CO2 Emissions from Phillippines Data graphic Data CO2 Emissions from Phillippines image Per capita CO2 Emission Estimates for Phillippines...

447

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

448

CO2 Emissions - Mauritius  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritius Graphics CO2 Emissions from Mauritius Data graphic Data CO2 Emissions from Mauritius image Per capita CO2 Emission Estimates for Mauritius...

449

CO2 Emissions - Malaysia  

NLE Websites -- All DOE Office Websites (Extended Search)

Malaysia CO2 Emissions from Malaysia Data graphic Data CO2 Emissions from Malaysia image Per capita CO2 Emission Estimates for Malaysia...

450

CO2 Emissions - Reunion  

NLE Websites -- All DOE Office Websites (Extended Search)

Reunion Graphics CO2 Emissions from Reunion Data graphic Data CO2 Emissions from Reunion image Per capita CO2 Emission Estimates for Reunion...

451

CO2 Emissions - Guatemala  

NLE Websites -- All DOE Office Websites (Extended Search)

Guatemala Graphics CO2 Emissions from Guatemala Data graphic Data CO2 Emissions from Guatemala image Per capita CO2 Emission Estimates for Guatemala...

452

CO2 Emissions - Iceland  

NLE Websites -- All DOE Office Websites (Extended Search)

Iceland CO2 Emissions from Iceland Data graphic Data CO2 Emissions from Iceland image Per capita CO2 Emission Estimates for Iceland...

453

CO2 Emissions - Mongolia  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Mongolia CO2 Emissions from Mongolia Data graphic Data CO2 Emissions from Mongolia image Per capita CO2 Emission Estimates for Mongolia...

454

CO2 Emissions - Romania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Romania CO2 Emissions from Romania Data graphic Data CO2 Emissions from Romania image Per capita CO2 Emission Estimates for Romania...

455

CO2 Emissions - Panama  

NLE Websites -- All DOE Office Websites (Extended Search)

Panama Graphics CO2 Emissions from Panama Data graphic Data CO2 Emissions from Panama image Per capita CO2 Emission Estimates for Panama...

456

CO2 Emissions - Madagascar  

NLE Websites -- All DOE Office Websites (Extended Search)

Madagascar Graphics CO2 Emissions from Madagascar Data graphic Data CO2 Emissions from Madagascar image Per capita CO2 Emission Estimates for Madagascar...

457

CO2 Emissions - Netherlands  

NLE Websites -- All DOE Office Websites (Extended Search)

Netherlands CO2 Emissions from Netherlands Data graphic Data CO2 Emissions from Netherlands image Per capita CO2 Emission Estimates for Netherlands...

458

CO2 Emissions - Greenland  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenland Graphics CO2 Emissions from Greenland Data graphic Data CO2 Emissions from Greenland image Per capita CO2 Emission Estimates for Greenland...

459

CO2 Emissions - Norway  

NLE Websites -- All DOE Office Websites (Extended Search)

Norway CO2 Emissions from Norway Data graphic Data CO2 Emissions from Norway image Per capita CO2 Emission Estimates for Norway...

460

CO2 Emissions - Guyana  

NLE Websites -- All DOE Office Websites (Extended Search)

Guyana Graphics CO2 Emissions from Guyana Data graphic Data CO2 Emissions from Guyana image Per capita CO2 Emission Estimates for Guyana...

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CO2 Emissions - Mauritania  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritania Graphics CO2 Emissions from Mauritania Data graphic Data CO2 Emissions from Mauritania image Per capita CO2 Emission Estimates for Mauritania...

462

CO2 Emissions - Lithuania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Lithuania CO2 Emissions from Lithuania Data graphic Data CO2 Emissions from Lithuania image Per capita CO2 Emission Estimates for Lithuania...

463

CO2 Emissions - Kenya  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Kenya Graphics CO2 Emissions from Kenya Data graphic Data CO2 Emissions from Kenya image Per capita CO2 Emission Estimates for Kenya...

464

CO2 Emissions - Latvia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Latvia CO2 Emissions from Latvia Data graphic Data CO2 Emissions from Latvia image Per capita CO2 Emission Estimates for Latvia...

465

CO2 Emissions - Georgia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Georgia CO2 Emissions from Georgia Data graphic Data CO2 Emissions from Georgia image Per capita CO2 Emission Estimates for Georgia...

466

CO2 Emissions - Gambia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gambia Graphics CO2 Emissions from Gambia Data graphic Data CO2 Emissions from Gambia image Per capita CO2 Emission Estimates for Gambia...

467

CO2 Emissions - Montenegro  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Montenegro CO2 Emissions from Montenegro Data graphic Data CO2 Emissions from Montenegro image Per capita CO2 Emission Estimates for Montenegro...

468

CO2 Emissions - Oman  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Oman Graphics CO2 Emissions from Oman Data graphic Data CO2 Emissions from Oman image Per capita CO2 Emission Estimates for Oman...

469

CO2 Emissions - Kuwait  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Kuwait Graphics CO2 Emissions from Kuwait Data graphic Data CO2 Emissions from Kuwait image Per capita CO2 Emission Estimates for Kuwait...

470

CO2 Emissions - Lebanon  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Lebanon Graphics CO2 Emissions from Lebanon Data graphic Data CO2 Emissions from Lebanon image Per capita CO2 Emission Estimates for Lebanon...

471

CO2 Emissions - Nigeria  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Nigeria Graphics CO2 Emissions from Nigeria Data graphic Data CO2 Emissions from Nigeria image Per capita CO2 Emission Estimates for Nigeria...

472

CO2 Emissions - Maldives  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Maldives CO2 Emissions from Maldives Data graphic Data CO2 Emissions from Maldives image Per capita CO2 Emission Estimates for Maldives...

473

CO2 Emissions - Morocco  

NLE Websites -- All DOE Office Websites (Extended Search)

Morocco Graphics CO2 Emissions from Morocco Data graphic Data CO2 Emissions from Morocco image Per capita CO2 Emission Estimates for Morocco...

474

CO2 Emissions - Pakistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Pakistan CO2 Emissions from Pakistan Data graphic Data CO2 Emissions from Pakistan image Per capita CO2 Emission Estimates for Pakistan...

475

CO2 Emissions - Palau  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Palau CO2 Emissions from Palau Data graphic Data CO2 Emissions from Palau image Per capita CO2 Emission Estimates for Palau...

476

CO2 Emissions - Qatar  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Qatar Graphics CO2 Emissions from Qatar Data graphic Data CO2 Emissions from Qatar image Per capita CO2 Emission Estimates for Qatar...

477

CO2 Emissions - Guam  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Guam Graphics CO2 Emissions from Guam Data graphic Data CO2 Emissions from Guam image Per capita CO2 Emission Estimates for Guam...

478

CO2 Emissions - Rwanda  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Rwanda Graphics CO2 Emissions from Rwanda Data graphic Data CO2 Emissions from Rwanda image Per capita CO2 Emission Estimates for Rwanda...

479

CO2 Emissions - Guinea  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Guinea Graphics CO2 Emissions from Guinea Data graphic Data CO2 Emissions from Guinea image Per capita CO2 Emission Estimates for Guinea...

480

CO2 Emissions - Luxembourg  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Luxembourg CO2 Emissions from Luxembourg Data graphic Data CO2 Emissions from Luxembourg image Per capita CO2 Emission Estimates for Luxembourg...

Note: This page contains sample records for the topic "dioxide emission estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CO2 Emissions - Liberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Liberia Graphics CO2 Emissions from Liberia Data graphic Data CO2 Emissions from Liberia image Per capita CO2 Emission Estimates for Liberia...

482

CO2 Emissions - Haiti  

NLE Websites -- All DOE Office Websites (Extended Search)

Haiti Graphics CO2 Emissions from Haiti Data graphic Data CO2 Emissions from Haiti image Per capita CO2 Emission Estimates for Haiti...

483

CO2 Emissions - Iraq  

NLE Websites -- All DOE Office Websites (Extended Search)

Iraq Graphics CO2 Emissions from Iraq Data graphic Data CO2 Emissions from Iraq image Per capita CO2 Emission Estimates for Iraq...

484

CO2 Emissions - Hungary  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Hungary CO2 Emissions from Hungary Data graphic Data CO2 Emissions from Hungary image Per capita CO2 Emission Estimates for Hungary...

485

CO2 Emissions - Nepal  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Nepal CO2 Emissions from Nepal Data graphic Data CO2 Emissions from Nepal image Per capita CO2 Emission Estimates for Nepal...

486

CO2 Emissions - Nauru  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Graphics CO2 Emissions from Nauru Data graphic Data CO2 Emissions from Nauru image Per capita CO2 Emission Estimates for Nauru...

487

CO2 Emissions - Myanmar  

NLE Websites -- All DOE Office Websites (Extended Search)

Myanmar CO2 Emissions from Myanmar Data graphic Data CO2 Emissions from Myanmar image Per capita CO2 Emission Estimates for Myanmar...

488

CO2 Emissions - Greece  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Greece CO2 Emissions from Greece Data graphic Data CO2 Emissions from Greece image Per capita CO2 Emission Estimates for Greece...

489

CO2 Emissions - Jordan  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Jordan Graphics CO2 Emissions from Jordan Data graphic Data CO2 Emissions from Jordan image Per capita CO2 Emission Estimates for Jordan...

490

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

491

CDIAC::Carbon Emission::Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Each year the Carbon Dioxide Information Analysis Center (CDIAC) generates estimates of carbon releases from fossil-fuel consumption and cement production. Emissions from fossil-fuel burning represent the largest anthropogenic source of carbon to the atmosphere and are an important contributor to elevated atmospheric CO2 levels. CDIAC produces annual fossil-fuel CO2 emission time series at global and national scales and these time series serve as building blocks for other data products including gridded (1 x 1) emission time series. Details regarding the methods used to produce these time series and data products may be found on the CDIAC website. This new interface allows users to query, visualize, and download the latest CDIAC fossil-fuel CO2 emission estimates. In the future, additional

492

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network (OSTI)

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

493

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

SciTech Connect

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-04-01T23:59:59.000Z

494

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

495

Emissions of greenhouse gases in the United States 1996  

Science Conference Proceedings (OSTI)

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

NONE

1997-10-01T23:59:59.000Z

496

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

497

Mitigating greenhouse gas emissions: Voluntary reporting  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

498

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

Riley, W.J.

2008-01-01T23:59:59.000Z

499

CO sub 2 emissions from coal-fired and solar electric power plants  

DOE Green Energy (OSTI)

This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

Keith, F.; Norton, P.; Brown, D.

1990-05-01T23:59:59.000Z

500

Annual Energy Outlook 2006 with Projections to 2030 - Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2006 with Projections to 2030 Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 107. Carbn dioxide emissions by sector and fuel, 2004 and 2030 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at