National Library of Energy BETA

Sample records for dioxide cwa clean

  1. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect (OSTI)

    Hale, S.J.

    1991-12-31

    Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

  2. Fabric compatibility and cleaning effectiveness of drycleaning with carbon dioxide

    SciTech Connect (OSTI)

    Williams, S.B.; Laintz, K.E.; Spall, W.D.; bustos, L.; Taylor, C.

    1996-04-01

    Liquid carbon dioxide (CO{sub 2}) offers an environmentally sound replacement solvent to the currently used drycleaning solvent, perchloroethylene (PERC). In addition to the health and safety benefits of a CO{sub 2} based cleaning system, large savings in solvent costs provide an incentive for conversion to the new system. Lower operating costs for the new technology provide further incentive. Experimental studies were conducted using CO{sub 2} in both small scale and pilot scale test systems in order to address fabric compatibility with this alternative cleaning method. Results from these tests show that fabric shrinkage using CO{sub 2} is controlled to the same level as current drycleaning methods. In addition, tests to evaluate the cleaning performance of liquid CO{sub 2} drycleaning were also conducted. These results show the prototype liquid CO{sub 2} cleaning system to be better than PERC at soil removal, and worse than PERC at inorganic salt removal.

  3. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  4. Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow

    SciTech Connect (OSTI)

    Morris, Dylan J. [National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, Maryland 20899-8520 (United States)

    2009-12-15

    Diamond nanoindentation probes may perform thousands of indentations over years of service life. There is a broad agreement that the probes need frequent cleaning, but techniques for doing so are mostly anecdotes shared between experimentalists. In preparation for the measurement of the shape of a nanoindentation probe by a scanning probe microscope, cleaning by carbon dioxide snow jets and oxygen plasma was investigated. Repeated indentation on a thumbprint-contaminated surface formed a compound that was very resistant to removal by solvents, CO{sub 2} snow, and plasma. CO{sub 2} snow cleaning is found to be a generally effective cleaning procedure.

  5. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical Carbon Dioxide Brayton Cycle Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments Introduction The

  6. Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components

    SciTech Connect (OSTI)

    Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

    1998-05-01

    Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

  7. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  8. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  9. Clean Water Act | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Clean Water ActLegal Abstract The Clean Water Act (CWA) establishes the basic structure for...

  10. Clean Water Act and Regulations (EPA)

    Broader source: Energy.gov [DOE]

    The Clean Water Act (CWA; 33 U.S.C. §1251 et seq.) establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters.

  11. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  12. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    SciTech Connect (OSTI)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  13. Consequences of proposed changes to Clean Water Act thermal discharge requirements

    SciTech Connect (OSTI)

    Veil, J.A.; Moses, D.O.

    1995-12-31

    This paper summarizes three studies that examined the economic and environmental impact on the power industry of (1) limiting thermal mixing zones to 1,000 feet, and (2) eliminating the Clean Water Act (CWA) {section}316(1) variance. Both of these proposed changes were included in S. 1081, a 1991 Senate bill to reauthorize the CWA. The bill would not have provided for grandfathering plants already using the variance or mixing zones larger than 1000 feet. Each of the two changes to the existing thermal discharge requirements were independently evaluated. Power companies were asked what they would do if these two changes were imposed. Most plants affected by the proposed changes would retrofit cooling towers and some would retrofit diffusers. Assuming that all affected plants would proportionally follow the same options as the surveyed plants, the estimated capital cost of retrofitting cooling towers or diffusers at all affected plants ranges from $21.4 to 24.4 billion. Both cooling towers and diffusers exert a 1%-5.8% energy penalty on a plant`s output. Consequently, the power companies must generate additional power if they install those technologies. The estimated cost of the additional power ranges from $10 to 18.4 billion over 20 years. Generation of the extra power would emit over 8 million tons per year of additional carbon dioxide. Operation of the new cooling towers would cause more than 1.5 million gallons per minute of additional evaporation. Neither the restricted mixing zone size nor the elimination of the {section}316(1) variance was adopted into law. More recent proposed changes to the Clean Water Act have not included either of these provisions, but in the future, other Congresses might attempt to reintroduce these types of changes.

  14. EPA The Clean Power Plan

    Office of Environmental Management (EM)

    This means carbon and air pollution are already decreasing, improving public health each and every year. The Clean Power Plan 7 Overview * Sets carbon dioxide emissions performance ...

  15. Acid mine drainage: Common law, SMCRA, and the Clean Water Act

    SciTech Connect (OSTI)

    Henrich, C.

    1995-12-31

    Acid mine drainage is a major problem related to coal mining which, if unabated, can severely damage the aquatic environment. Damage resulting from acid mine drainage was first addressed by common law and riparian principles. As societal laws changed, common law principles alone could not effectively control this problem. Preventing and controlling pollution including acid mine drainage are important goals of the Surface Mining Control Reclamation Act (SMCRA) and the Clean Water Act (CWA). This article examines how common law, SMCRA, and the CWA address the acid mine drainage issue independently, and how improvements in the control of acid mine drainage can be achieved.

  16. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  17. Geothermal Startup Will Put Carbon Dioxide to Good Use

    Broader source: Energy.gov [DOE]

    Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2).

  18. Sustainable development with clean coal

    SciTech Connect (OSTI)

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  20. Geothermal Power Plants — Meeting Clean Air Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  1. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  2. Cleaning Up Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleaning Up Coal Cleaning Up Coal August 13, 2010 - 4:57pm Addthis Pete McGrail, a Laboratory Fellow at Pacific Northwest National Laboratory, is part of a team studying basalts to determine how carbon dioxide can be safely and permanently stored in these massive, deep underground rock formations. | Photo courtesy of Pacific Northwest National Laboratory. Pete McGrail, a Laboratory Fellow at Pacific Northwest National Laboratory, is part of a team studying basalts to determine how carbon dioxide

  3. Clean Coal Technology Demonstration Program

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

  4. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  5. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  6. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  7. Healy Clean Coal Project

    SciTech Connect (OSTI)

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  8. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  9. National Clean Energy Business Plan Competition: Living Ink Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins CU Clean Energy Competition Regional Championship | Department of Energy Living Ink Technologies Wins CU Clean Energy Competition Regional Championship National Clean Energy Business Plan Competition: Living Ink Technologies Wins CU Clean Energy Competition Regional Championship May 4, 2015 - 2:51pm Addthis Living Ink Technologies has developed a patent-pending technology that uses algae to transform carbon dioxide into ink that is cheaper, healthier, and more environmentally

  10. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  11. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    Open Energy Info (EERE)

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  12. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  13. What is Clean Cities?; Clean Cities Fact Sheet (September 2008...

    Energy Savers [EERE]

    is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Fact sheet describes the Clean Cities ...

  14. Clean Cities: Ann Arbor Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  15. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  16. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  17. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  18. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  19. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  20. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  1. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  2. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of ...

  3. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  4. Clean Cities: Wisconsin Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  5. Clean Cities Coalition Regions

    Broader source: Energy.gov [DOE]

    Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle...

  6. NCAT Harvesting Clean Energy

    Broader source: Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  7. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  8. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  9. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal News FE Clean Coal News RSS June 3, 2016 U.S., Saudi Arabia Announce International Collaboration on Supercritical CO2 Tech Development The U. S. and the Kingdom of Saudi Arabia have announced the intention to establish an international consortium to promote the research, development, and demonstration (RD&D) of supercritical carbon dioxide (sCO2) power cycles. December 2, 2015 DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal

  10. Fluid dynamic effects on precision cleaning with supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  11. The Office of Fossil Energy's (FE) Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Fossil Energy's (FE) Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO x ) and airborne particulates (PM 10 ). The program forged cost-sharing partnerships between the U.S. Department of Energy, industry, universities and technology suppliers and users. The U.S. General Accounting Office said the program demonstrated "how the

  12. Clean Energy Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2016 2 Welcome to the January 2016 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between January 1, 2016 and January 15, 2016 by Clean Cities coordinators, fuel providers, and other Clean Cities

  13. Hangout with Clean Cities on Thursday, June 20, at 2:30 pm ET...

    Office of Environmental Management (EM)

    Under Spofforth's leadership, Clean Fuels Ohio supports more than 270 alternative fuel and charging stations, and reduced nearly 50,000 tons of carbon dioxide in 2011 alone. Lisa ...

  14. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  15. Clean Cities: Norwich Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  16. Case History of a Clean Water Act Compliance Agreement at the Rocky Flats Environmental Technology Site near Golden, Colorado

    SciTech Connect (OSTI)

    Thompson, J.S.

    1995-08-01

    A major Clean Water Act (CWA) Federal Facilities Compliance Agreement was signed on March 25, 1991 by the US Department of Energy, Rocky Flats Field Office (DOE, RFFO) and the Water Enforcement Division of the Environmental Protection Agency (EPA), Region VIII. The agreement revised the Rocky Flats Plant`s National Pollutant Discharge Elimination System (NPDES) permit and arose from pemittee-requested changes in effluent monitoring points and permit violations, most notably the February 22, 1989 Chromic Acid Incident. The Rocky Flats Plant, now called the Rocky Flats Environmental Technology Site (Site) near Golden Colorado was operated at that time by Rockwell International Corporation, who later plead guilty to six misdemeanor and felony counts of the CWA (the aforementioned NPDES permit violations) and paid a $4 million fine on March 26, 1992. The Compliance Agreement, hereafter referred to as the NPDES FFCA, called for three separate remedial action plans and contained a schedule for their submittal to the EPA. The compliance plans focussed on: (1) Waste Water Treatment Plant (WWTP) performance upgrades, (2) source control and surface water protection, and (3) characterization of the impacts from past sludge disposal practices. Projects that implemented the compliance plans were initiated soon after submittal to the EPA and are forecast to complete in 1997 at a total cost of over $35 million. This paper presents a case history of NPDES FFCA compliance projects and highlights the successes, failures, and lessons learned.

  17. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  18. What We Clean Up & Why

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup What We Clean Up & Why What We Clean Up & Why We clean up legacy waste sites and contaminated areas for return to the public. ...

  19. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  20. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  1. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  2. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  3. Clean the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean the Past Image of MDA B excavation with text overlay of 'How does LANL protect human ... Clean the Past Home Google Earth Tour: Environmental Cleanup Protections: Cleanup What ...

  4. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  5. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  6. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  7. Clean Cities: Clean Cities-Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  8. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  9. South Carolina Clean Energy Summit

    Broader source: Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  10. The clean water act -- (Federal Water Pollution Control Act), what it means to utilities

    SciTech Connect (OSTI)

    Talt, L.A.

    1996-10-01

    Departing from previous policy, in August 1993 the USEPA`s Water Office recommended that the agency regulate a proposed electric power plant`s cooling pond as a water of the US. At issue was a proposal by Florida Power corp. to build a new electric power plant in Polk County, Florida. A 2,600 acre cooling pond to collect heated and discharged water was included in the proposal. Region 4 USEPA staff asked USEPA Headquarters in Washington, DC to decide whether the pond was exempt from the CWA or a water of the US. The pond could be a habitat for migratory birds according to a memo prepared by Region 4 staff. The USEPA Water Office used the presence of migratory birds to claim a nexus to interstate commerce and therefore concluded that the pond should be regulated under the CWA. Electric power industry proponents have argued that an overly expansive definition of waters of the US may result in any new power plant being required to construct cooling towers. Cooling towers are said to be a more expensive and wasteful method to cool heated water. Region 4 ultimately recanted its earlier position after considerable discussions with various other Environmental Protection Agency offices and, no doubt industry pressure. Florida Power Corp. was not required to obtain an NPDES permit for the cooling pond. The lesson of Florida Power Corp. is that the regulatory environment for utilities can be uncertain under the Clean Water Act even in the face of a relatively straightforward exemption from regulation.

  11. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Options for the Hawaii Clean Energy Initiative | Department of Energy Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy

  12. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  13. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-01-01

    Fact sheet describes the Clean Cities program, outlines its resources, and lists the contact information for its almost 90 coalition coordinators.

  14. Clean Energy Development Fund

    Broader source: Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  15. Clean Cities & Transportation Tools

    Broader source: Energy.gov [DOE]

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  16. Clean Energy Works Oregon Final Technical Report

    SciTech Connect (OSTI)

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  17. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  18. Environmental Compliance Guide. Guidance manual for Department of Energy compliance with the Clean Water Act: National Pollutant Discharge Elimination System (NPDES)

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    This manual provides general guidance for Department of Energy (DOE) officials for complying with Sect. 402 of the Clean Water Act (CWA) of 1977 and amendments. Section 402 authorizes the US Environmental Protection Agency (EPA) or states with EPA approved programs to issue National Pollutant Discharge Elimination System (NPDES) permits for the direct discharge of waste from a point source into waters of the United States. Although the nature of a project dictates the exact information requirements, every project has similar information requirements on the environmental setting, type of discharge(s), characterization of effluent, and description of operations and wastewater treatment. Additional information requirements for projects with ocean discharges, thermal discharges, and cooling water intakes are discussed. Guidance is provided in this manual on general methods for collecting, analyzing, and presenting information for an NPDES permit application. The NPDES program interacts with many sections of the CWA; therefore, background material on pertinent areas such as effluent limitations, water quality standards, toxic substances, and nonpoint source pollutants is included in this manual. Modifications, variances, and extensions applicable to NPDES permits are also discussed.

  19. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  20. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  1. The NOXSO clean coal project

    SciTech Connect (OSTI)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  2. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  3. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  4. Clean Cities: Yellowstone-Teton Clean Energy coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  5. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  6. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  7. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  8. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  9. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  10. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  11. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  12. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  13. Clean Currents | Open Energy Information

    Open Energy Info (EERE)

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  14. Clean Fractionation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Clean ... Using a single-phase mixture digestion process followed by a phase separation, Clean ...

  15. EIS-0186: Proposed Healy Clean Coal Project, Healy, AK

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

  16. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  17. Clean Energy Procurement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  18. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  19. Enhanced Chemical Cleaning

    SciTech Connect (OSTI)

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  20. Clean Energy Fund (CEF)

    Broader source: Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  1. Clean Energy Ministerial

    Broader source: Energy.gov [DOE]

    The United States will host the seventh Clean Energy Ministerial (CEM7) in San Francisco, California, on June 1–2, 2016. The annual meeting of energy ministers and other high-level delegates from...

  2. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  3. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a

  4. #CleanTechNow

    ScienceCinema (OSTI)

    Moniz, Ernest

    2014-01-10

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  5. #CleanTechNow

    SciTech Connect (OSTI)

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  6. What is Clean Cities? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  7. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  8. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  9. Chapter 4: Advancing Clean Electric Power Technologies | Fast-Spectrum Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4:

  10. Chapter 4: Advancing Clean Electric Power Technologies | Solar Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Solar Power Technologies Chapter 4: Technology Assessments Introduction Solar energy

  11. Chapter 4: Advancing Clean Electric Power Technologies | Stationary Fuel Cells Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Stationary Fuel Cells Chapter 4: Technology Assessments Introduction to

  12. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  13. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  14. East Germany struggles to clean its air and water

    SciTech Connect (OSTI)

    Cherfas, J.

    1990-04-20

    East Germans are working hard on a strategy to improve their polluted environment. Industrial plants are largely responsible for this pollution. A shroud of haze veils the suburbs of East Berlin. Far to the south the giant power plants around Leipzig pour more dust and sulfur dioxide into the air than in any other country in Europe. More than 90% of the country's electricity comes from brown coal, accompanied by prodigious quantities of dust and sulfur dioxide: almost 6 million tones of sulfur dioxide and more than 2 million tones of dust in 1988. East Germany enjoys some of the cheapest energy in the world, and the world's third highest energy consumption per capita, behind the United States, and Canada. Naturally, is also suffers air quality and health problems. The country is trying to cut down on consumption and clean up on generation. Actually, water quality is the number one priority, which unlike air is in very short supply.

  15. Launching the Next Wave of Clean Fossil Energy Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's <a href="http://energy.gov/articles/potential-path-emissions-free-fossil-energy">chemical looping reactor</a>. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. |

  16. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  17. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coordinators Each Clean Cities coalition is led by a coordinator. Contact a coordinator to find out more about Clean Cities activities in your area. AL-Alabama Mark Bentley 205-402-2755 mark@alabamacleanfuels.org AR-Arkansas Patti Springs 501-682-8065 psprings@arkansasedc.com AZ-Valley of the Sun (Phoenix) Bill Sheaffer 480-314-0360 bill@cleanairaz.org AZ-Tucson Colleen Crowninshield 520-792-1093, x426 ccrowninshield@pagregion.com CA-Central Coast (San Luis Obispo) Melissa Guise 805-305-5491

  18. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  19. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  20. Clean Cities Tools

    SciTech Connect (OSTI)

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  1. Clean Air Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation’s air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources.

  2. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  3. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  4. Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sparking a Revolution in Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches Energy Materials Network Volume 2, No. 1, January/February 2016 What's Happening @ EERE 2 A Message from Dave............................................ 3 ENERGY MATERIALS NETWORK Accelerating Materials Innovation & Advanced Manufacturing .......................................................... 4 Sparking a Revolution in Clean Energy Materials

  5. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  6. clean energy | OpenEI Community

    Open Energy Info (EERE)

    Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  7. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  8. Leaf Clean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  9. Category:CLEAN Webinar | Open Energy Information

    Open Energy Info (EERE)

    CLEAN Webinar Jump to: navigation, search This page contains webinars hosted by the Coordinated Low Emissions Assistance Network (CLEAN). Pages in category "CLEAN Webinar" The...

  10. Clean Energy Solutions Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  11. The Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  12. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  13. Turkey Clean Energy Partnership | Open Energy Information

    Open Energy Info (EERE)

    Turkey Clean Energy Partnership Jump to: navigation, search Logo: Turkey Clean Energy Partnership Name Turkey Clean Energy Partnership AgencyCompany Organization Argonne National...

  14. Twenty Years of Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  15. Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative July 9, 2010 - 1:00pm Addthis Washington, DC - Three clean energy technology projects resulting from a 2009 agreement between the United States and China are kicking off a new collaborative research effort that will focus on managing carbon dioxide emissions and reducing the environmental impact of energy production. The

  16. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: ...

  17. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  18. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  19. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  20. Clean room wiping cloths

    SciTech Connect (OSTI)

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  1. Separations Technology for Clean Water and Energy

    SciTech Connect (OSTI)

    Jarvinen, Gordon D

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  2. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  3. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  4. DOE - Fossil Energy: Clean Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  5. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  6. INFOGRAPHIC | Made in America: Clean Energy Jobs

    Broader source: Energy.gov [DOE]

    As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country.

  7. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  8. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Continuum Magazine | NREL A photo of colorful, light- colored buildings in Ghana. Solutions Center assistance will help develop policies to support renewable energy deployment in Ghana. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries combat barriers to pave the way for policies and programs that advance clean energy technology deployment. Many countries are looking to grow their renewable energy and energy efficiency portfolios to

  9. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  10. Clean Cities: San Diego Regional Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  11. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge...

    Office of Environmental Management (EM)

    ... hours, which lowers both energy costs and the risk of food spoiling during power outages. | Courtesy of Axiom Exergy National Clean Energy Business Plan ...

  12. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  13. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  14. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  15. Advancing Women in Clean Energy

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  16. NREL: Technology Deployment - Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Clean Cities program in supporting local ... advanced vehicles, and energy efficiency in ... in thousands of communities across the country, ...

  17. Self-Cleaning CSP Collectors

    Broader source: Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  18. CLEAN Reports | Open Energy Information

    Open Energy Info (EERE)

    methodologies and tools International Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends National Renewable Energy...

  19. Clean Markets | Open Energy Information

    Open Energy Info (EERE)

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  20. EPA Clean Power Plan Seminar

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting an informational seminar addressing the opportunities and challenges presented by EPA's Clean Power Plan.

  1. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    This fact sheet provides an update of Clean Cities International news, including successful activities, notable accomplishments, and plans for the future. It also includes background information.

  2. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  3. Connecting with Clean Tech CEO's

    Broader source: Energy.gov [DOE]

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  4. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  5. Local Option- Clean Energy Financing

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money through their local government to pay for energy improvements. The amount borrowed is typically...

  6. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  7. Hawaii Clean Energy Final PEIS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A 1 2 Public Notices 3 Notices about the Draft Programmatic EIS Appendix A Hawai i Clean Energy Final PEIS A-1 September 2015 DOE/EIS-0459 The following Notice of Availability appeared in the Federal Register on April 18, 2014. Appendix A Hawai i Clean Energy Final PEIS A-2 September 2015 DOE/EIS-0459 Appendix A Hawai i Clean Energy Final PEIS A-3 September 2015 DOE/EIS-0459 DOE-Hawaii placed the following advertisement in The Garden Island on May 5 and 9, 2014. Appendix A Hawai i Clean Energy

  8. Clean Vita | Open Energy Information

    Open Energy Info (EERE)

    Provider of products and services to the building trade. Involved in a distribution joint venture with Solco International. References: Clean Vita1 This article is a stub....

  9. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  10. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  13. Pay for Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pay for Clean Energy Pay for Clean Energy PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean energy financing

  14. Self-Scrubbing Coal -- an integrated approach to clean air

    SciTech Connect (OSTI)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  15. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  16. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  17. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  18. Clean Energy Business Plan Competition

    ScienceCinema (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

    2013-05-29

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  19. Clean Energy Business Plan Competition

    SciTech Connect (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    2012-01-01

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  20. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  1. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  2. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  3. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  5. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  6. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  7. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of ...

  8. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions ...

  9. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  10. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect (OSTI)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  11. Clean Energy Fuels | OpenEI Community

    Open Energy Info (EERE)

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  12. E5 Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    E5 Clean Energy Jump to: navigation, search Name: e5 Clean Energy Place: Agoura Hills, California Zip: 91301 Sector: Solar Product: Sells solar energy systems. References: e5 Clean...

  13. Clean Fleets Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domain | Clean Fleets Announcement 4 of 14 4 of 14 Clean Fleets Announcement 4 of 14 Martha Johnson, General Services Administrator, speaks at a Clean Fleets event held at the...

  14. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Environmental Management (EM)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to ...

  15. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  16. Uranium dioxide electrolysis

    SciTech Connect (OSTI)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  17. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 Acknowledgements 5 Indexes of Federal Financing Programs for Clean Energy 6 * Federal Financing Programs for Clean Energy by Administering Agency * Federal Financing Programs for Clean Energy by Program Type Profiles of Federal Financing Programs 11 for Clean Energy by Agency * United States Department of Energy (DOE) *

  18. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  19. Clean Cities: Eastern Pennsylvania Alliance for Clean Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resides. In 2006, Bandiero was elected to the Board of Directors of the Greater Philadelphia Clean Cities (GPCC) Coalition, where he served for over 2-12 years. In 2009, he...

  20. Clean Cities: Silicon Valley Clean Cities (San Jose) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various programs at Breathe California of the Bay Area the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight lung disease and...

  1. METHOD OF CLEANING METAL SURFACES

    DOE Patents [OSTI]

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  2. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  3. Sandia National Laboratories: Clean leap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean leap By Nancy Salem Thursday, September 01, 2016 5 energy companies get technology-to-market help from Sandia 5 energy companies get technology-to-market help from Sandia DOE has announced that five more small, clean-energy businesses were chosen to work with Sandia to bring next-generation technologies to market faster. "These are innovative companies working to build the clean-energy economy," says Mary Monson, senior manager of Industrial Partnerships Dept. 1930. "Many of

  4. Clean Transportation Education Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities ...

  5. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  6. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy Demonstration ...

  7. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  8. Clean Cites Now, Vol. 11, No. 4

    SciTech Connect (OSTI)

    Not Available

    2007-10-01

    Clean Cities Now is the official publication of the Clean Cities program. It features articles on alternative fuels and vehicles, idle reduction, fuel economy, and hybrid vehicles.

  9. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  10. DOE - NNSA/NFO -- Operation Clean Desert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZONE > Operation Clean Desert NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Operation Clean Desert FUN FOR ALL AGES Dr. Proton Graphic Adam - Smiling Operation ...

  11. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  12. Clean Power Research | Open Energy Information

    Open Energy Info (EERE)

    search Name: Clean Power Research Place: Napa, California Product: California-based clean energy consulting and research company. Coordinates: 38.298855, -122.285194 Show...

  13. Hudson Clean Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  14. Evergreen Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Jump to: navigation, search Name: Evergreen Clean Energy Place: Provo, Utah Zip: 84604 Sector: Geothermal energy Product: Utah-based private equity fund targeting...

  15. Connecticut Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  16. Clean Pacific Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Clean Pacific Ventures Name: Clean Pacific Ventures Address: 425 California Street, Suite 2450 Place: San Francisco, California Zip:...

  17. Clean Diesel Technologies | Open Energy Information

    Open Energy Info (EERE)

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  18. Suncatcher Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Suncatcher Clean Energy Jump to: navigation, search Name: Suncatcher Clean Energy Place: Corinth, New Jersey Zip: 5039 Sector: Renewable Energy Product: Sun Catcher, is dedicated...

  19. Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Name: Clean Energy Incubator Place: Austin, Texas Zip: Texas 78759 Sector: Renewable Energy Product: The Clean Energy Incubator is a program...

  20. Clean Energy Group Virginia | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  1. Austin Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Logo: Austin Clean Energy Incubator Name: Austin Clean Energy Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region:...

  2. Clean Edge Inc | Open Energy Information

    Open Energy Info (EERE)

    Edge Inc Jump to: navigation, search Logo: Clean Edge Inc Name: Clean Edge Inc Place: Portland, Oregon Zip: 97213 Region: Pacific Northwest Area Website: www.cleanedge.com...

  3. FE Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  4. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  5. Clean Energy Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewables Portfolio Standard Summary In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean...

  6. Clean Energy Economy | Open Energy Information

    Open Energy Info (EERE)

    Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN) MIT Club of Northern California CleanTech Renewable Energy Business...

  7. New England Clean Fuels | Open Energy Information

    Open Energy Info (EERE)

    New England Clean Fuels Place: MA, Massachusetts Zip: 2420 Product: New England Clean Fuels, Inc (NECF) is a startup based on the concept of using photosynthetic microorganisms as...

  8. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 ...

  9. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  10. #CleanTechNow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  11. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create ...

  12. Clean Energy Manufacturing Funding Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy ...

  13. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  14. Clean Energy Manufacturing Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy ... Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing ...

  15. clean cities | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities (Technology Integration, Outreach and Deployment) Clean Cities advances the nation's economic, environmental, and energy security by supporting local actions to reduce ...

  16. Clean Coal Technology Programs: Program Update 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean ... Control on Three 90-MW Coal-Fired Boilers CCPI-1 Wisconsin ...

  17. Introduction of clean coal technology in Japan

    SciTech Connect (OSTI)

    Takashi Kiga

    2008-01-15

    Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

  18. A Holistic Look at Minimizing Adverse Environmental Impact Under Section 316(b) of the Clean Water Act

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veil, John A.; Puder, Markus G.; Littleton, Debra J.; Johnson, Nancy

    2002-01-01

    Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the coolingmore » water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions. However, within the context of the broader scope of the CWA mandate, this focus seems too narrow. Therefore, this article examines the phrase “minimizing adverse environmental impact” in a holistic light. Emphasis is placed on the analysis of the terms “environmental” and “minimizing.” Congress chose “environmental” in lieu of other more narrowly focused terms like “impingement and entrainment,” “water quality,” or “aquatic life.” In this light, BTA for cooling-water intake structures must minimize the entire suite of environmental impacts, as opposed to just those associated with impingement and entrainment. Wet and dry cooling tower systems work well to minimize entrainment and impingement, but they introduce other equally important impacts because they impose an energy penalty on the power output of the generating unit. The energy penalty results from a reduction in plant operating efficiency and an increase in internal power consumption. As a consequence of the energy penalty, power companies must generate additional

  19. Property Assessed Clean Energy Financing

    Broader source: Energy.gov [DOE]

    The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. PACE financing allows commercial and mulitfamily property owners in the district to borrow money to pay...

  20. Alternative and Clean Energy Program

    Broader source: Energy.gov [DOE]

    NOTE: It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean ...

  1. Clean Energy Solutions Center (Presentation)

    SciTech Connect (OSTI)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  2. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  3. Chapter 4: Advancing Clean Electric Power Technologies | Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Carbon Dioxide Storage Technologies Carbon Dioxide Capture for Natural Gas and Industrial Applications Crosscutting Technologies in Carbon Dioxide Capture and...

  4. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  5. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  7. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOE Patents [OSTI]

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  8. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  9. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  10. Clean Cities Now, Vol. 10, No. 4

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4