National Library of Energy BETA

Sample records for dioxide co2 sulfur

  1. CARBON DIOXIDE -CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    CARBON DIOXIDE - CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: CARBON DIOXIDE - CO2, GASEOUS CARBON DIOXIDE - CO2, CRYOGENIC CARBON DIOXIDE - CO2, SOLID Document Number: 001013 PRODUCT USE: For general analytical

  2. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  3. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...

    Open Energy Info (EERE)

    Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to:...

  4. PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration complex organic molecules being broken down to simpler molecules, such as carbon dioxide and water. Carbon dioxide waste is removed from the body through respiration. Carbon dioxide content in fresh air

  5. Costs to reduce sulfur dioxide emissions

    SciTech Connect (OSTI)

    None

    1982-03-01

    Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

  6. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3)

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2 monoxide (CO), carbon dioxide (CO2), and molecular oxygen (O2) with varying carbon-to-oxygen ratios from 1 and destruction pathways of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3

  7. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year--and are projected to rise another 60 percent by 2030 (see Figure 1).1 Most of the world's emissions come from

  8. October 2004 / Vol. 54 No. 10 BioScience 895 Rising atmospheric carbon dioxide (CO2

    E-Print Network [OSTI]

    October 2004 / Vol. 54 No. 10 · BioScience 895 Articles Rising atmospheric carbon dioxide (CO2 reduce the concen- tration of atmospheric carbon dioxide. Understanding biological and edaphic processes of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration

  9. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  10. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  11. Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the poten-

    E-Print Network [OSTI]

    Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3 gases (greenhouse gases) altered by human activities (IPCC 2007), only carbon dioxide (CO2 vegeta- tion properties affect local and regional climate, as well as how atmospheric forcing

  12. Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer membrane PEM electrolyzer has been investigated as a viable system for the electrolysis step of the electrolyzer and membranes developed to limit SO2 crossover. © 2009 The Electrochemical Society. DOI: 10

  13. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  14. Auction design and the market for sulfur dioxide emissions

    E-Print Network [OSTI]

    Joskow, Paul L.

    1996-01-01

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

  15. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  16. The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath

    E-Print Network [OSTI]

    The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health of the sensor device. Chemical Engineering Doctoral Defense A Novel Handheld Real-time Carbon Dioxide Analyzer

  17. Summary We examined the effects of elevated carbon diox-ide concentration ([CO2]) on the relationship between light-sat-

    E-Print Network [OSTI]

    DeLucia, Evan H.

    carbon dioxide con- centration ([CO2]) increase in complexity, from single plants in pots to intactSummary We examined the effects of elevated carbon diox- ide concentration ([CO2 to showastrongstimulationof photosynthesisbyelevated[CO2]. Keywords: elevated CO2, foliar nitrogen, Free Air Carbon En

  18. Modeling sulfur dioxide capture in a pulverized coal combustor

    SciTech Connect (OSTI)

    Nair, R.B.; Yavuzkurt, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-04-01

    The formation and capture of sulfur dioxide in a pulverized coal combustor is investigated. A two-dimensional, steady, axisymmetric code, PCGC-2 (Pulverized Coal Gasification and Combustion-two Dimensional), originally developed at Brigham Young University, has been used to simulate combustion of the pulverized coal. This paper represents part of a project to investigate simultaneously enhancing sulfur capture and particulate agglomeration in combustor effluents. Results from the code have been compared to experimental data obtained from MTCI`s (Manufacturing Technology and Conversion International) test pulse combustor, which generates sound pressure levels of {approximately}180 dB. The overall goal behind the pulse combustor program at MTCI is to develop combustors for stationary gas turbines that use relatively inexpensive coal-based fuels. This study attempts to model the capture of sulfur dioxide when injected into a pulse combustor firing micronized coal. While this work does not presume to model the complex gas flow-field generated by the pulsating flow, the effects of the acoustic field are expressed by increased heat and mass transfer to the particles (coal/sorbent) in question. A comprehensive calcination-sintering-sulfation model for single particles was used to model the capture of sulfur dioxide by limestone sorbent. Processes controlling sulfation are external heat and mass transfer, pore diffusion, diffusion through the product layer of CaSO{sub 4}, sintering, and calcination. The model was incorporated into the PCGC-2 program. Comparisons of exit concentrations of SO{sub 2} showed a fairly good agreement (within {approximately}10 percent) with the experimental results from MTCI.

  19. KINETICS AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDE ON CARBON IN AQUEOUS SUSPENSIONS

    E-Print Network [OSTI]

    Brodzinsky, R.

    2012-01-01

    AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDEmechanism for the catalytic oxidation of in an aqueous sus1ECHANISf 1 1 FOR TilE CATALYTIC OXIDATION OF SULFUR DIOXIDE

  20. Summary In July 1993, we measured leaf conductance, carbon dioxide (CO2) assimilation, and transpiration in a Larix

    E-Print Network [OSTI]

    Summary In July 1993, we measured leaf conductance, carbon dioxide (CO2) assimilation to the value of 1.45 mm day-1 calculated from the energy balance and soil evaporation, and less than the value of 2.1mmday-1 measured by xylem flux. Daytime canopy carbon assimilation, expressed on a ground area

  1. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

  2. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  3. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  4. Did the Clean Air Act cause the remarkable decline in sulfur dioxide concentrations?

    E-Print Network [OSTI]

    Greenstone, Michael

    2003-01-01

    Over the last three decades, ambient concentrations of sulfur dioxide (SO2) air pollution have declined by approximately 80%. This paper tests whether the 1970 Clean Air Act and its subsequent amendments caused this decline. ...

  5. Explaining low sulfur dioxide allowance prices : the effect of expectation errors and irreversibility

    E-Print Network [OSTI]

    Montero, Juan-Pablo

    1998-01-01

    The low price of allowances has been a frequently noted featured of the implementation of the sulfur dioxide emissions market of the U.S. Acid Rain Program. This paper presents theoretical and numerical analyses that explain ...

  6. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  7. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  8. High-Capacity Sulfur Dioxide Absorbents for Diesel Emissions Control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2005-01-05

    High capacity sulfur dioxide absorbents based on manganese oxide octahedral molecular sieves (OMS) have been identified. These materials are based on MnO6 octahedra sharing faces and edges to form various tunnel structures (2x2, 2x3, 2x4, 3x3) differentiated by the number of octahedra on a side. The SO2 capacities of these materials, measured at 325 C with a feed containing 250 ppmv SO2 in air, are as high as 70wt% (wt/wt), remarkably higher than conventional metal oxide-based SO2 absorbents. Among the OMS materials the 2x2 member, cryptomelane, exhibits the highest capacity and adsorption rate. Its SO2 absorption behavior has been further characterized as a function of temperature, space velocity, and feed composition. The dominant pathway for SO2 absorption is through the oxidation of SO2 to SO3 by Mn4+ followed by SO3 reaction with Mn2+ to form MnSO4. Absorption can occur in the absence of gas phase oxygen, with a moderate loss in overall capacity. The inclusion of reducible gases NO and CO in the feed does not reduce SO2 capacity. The absorption capacity decreases at high space velocity and lower absorption temperature, indicating the important role of diffusion of sulfate from the surface to the bulk of the material in order to reach full capacity. A color change of cryptomelane from black to yellow-brown after SO2 absorption can be used as an indicator of absorption progress. Cryptomelane can be synthesized using MnSO4 as a reagent. Therefore, after full SO2 absorption the product MnSO4 can be re-used as raw material for a subsequent cryptomelane synthesis. Cryptomelane has a similarly high capacity toward SO3, therefore it can be used for removal of all SOx species generated from a variety of combustion sources. Cryptomelane may find application as a replaceable absorbent for the removal of SOx from diesel truck exhaust, protecting downstream emissions control devices such as particulate filters and NOx traps.

  9. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

    E-Print Network [OSTI]

    Lyons, J. R.

    Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

  10. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  11. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  12. A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products

    E-Print Network [OSTI]

    of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide-TiO2 nano-composite for the reduction of carbon dioxide in the presence of water vapor

  13. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  14. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  15. Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.

  16. Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light

    E-Print Network [OSTI]

    Denver, University of

    Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light Duty Vehicles D A N I E L A . B U R by dynamometer (16), remote sensing (17), and recently by a chase vehicle (18). Results from these studies vary

  17. The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct

    E-Print Network [OSTI]

    The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research studies indicate that titanium dioxide (TiO2) containing materials serve as the best photocatalyst for CO2O2 materials allows one to increase the yield of certain products such as carbon monoxide (CO

  18. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    SciTech Connect (OSTI)

    Fang, Zhigang Zak

    2013-11-05

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

  19. Mass-independent sulfur isotope fractionation during photochemistry of sulfur dioxide

    E-Print Network [OSTI]

    Whitehill, Andrew (Andrew Richard)

    2015-01-01

    Mass-independent sulfur isotope signatures are observed in Archean and early Paleoproterozoic sedimentary sulfate and sulfide minerals, and provide the most robust constraints on early atmospheric oxygen levels. Smaller ...

  20. Natural sulfur flux from the Gulf of Mexico: dimethyl sulfide, carbonyl sulfide, and sulfur dioxide. Technical report

    SciTech Connect (OSTI)

    Van Valin, C.C.; Luria, M.; Wellman, D.L.; Gunter, R.L.; Pueschel, R.F.

    1987-06-01

    Atmospheric measurements of natural sulfur compounds were performed over the northern Gulf of Mexico during the late summer months of 1984. Air samples were collected with an instrumented aircraft at elevations of 30-3500 m, during both day and night. Most air samples were representative of the clean maritime atmosphere, although some were from continental contaminated air during periods of offshore flow at the coastline. In all samples, carbonyl sulfide concentrations were within the range of 400-500 pptv. Conversely, the dimethyl sulfide concentrations showed significant variability: during clean atmospheric conditions the average of all measurements was 27 pptv, whereas under polluted conditions the average was 7 pptv. Measureable quantities of dimethyl sulfide (>5 pptv) were not observed above the boundary layer. The average sulfur dioxide concentration measured in the marine (clean) atmosphere was 215 pptv, which is consistent with the oxidation of dimethyl sulfide being its major source.

  1. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    E-Print Network [OSTI]

    Mavrodiev, S Cht; Vachev, B

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  2. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect (OSTI)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  3. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  4. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  5. Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously

    E-Print Network [OSTI]

    Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient

  6. Mapping critical levels of ozone, sulfur dioxide and nitrogen dioxide for crops, forests and natural vegetation in the United States

    SciTech Connect (OSTI)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'Standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. In the paper, the authors present example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. The approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. They present the first stage of an analysis that reports the distribution of exceedances of critical levels for NO2, SO3, and O3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. They conclude that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. (Copyright (c) 1994 Kluwer Academic Publishers.)

  7. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    SciTech Connect (OSTI)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.

  8. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    SciTech Connect (OSTI)

    Gregory, G.L.; Davis, D.D.; Beltz, N.; Bandy, A.R.; Ferek, R.J.; Thornton, D.C. [NASA, Langely Research Center, Hampton, VA (United States)]|[Georgia Institute of Technology, Atlanta, GA (United States)]|[J.W. Goethe Univ., Frankfurt (Germany)]|[Drexel Univ., Philadelphia, PA (United States)]|[Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of `potential` uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  9. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  10. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    E-Print Network [OSTI]

    Dickerson, Russell R.

    carbon and sulfur dioxide from India Gazala Habib,1 Chandra Venkataraman,1 Manish Shrivastava,2 Rangan a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65­760) Gg yrÀ1

  11. Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes

    E-Print Network [OSTI]

    Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

  12. Quantum Alloys Offer Prospects for CO2 Management Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Alloys Offer Prospects for CO2 Mgt. Technologies Utilizing and Storing Carbon Dioxide Emissions Quantum Alloys Offer Unique Prospects for CO2 Management Technologies...

  13. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts Print Researchers have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse...

  14. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Bandy, A.R.; Thornton, D.C.; Driedger, A.R. III [Drexel Univ., Philadelphia, PA (United States)

    1993-12-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  15. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  16. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  17. Carbon dioxide in silica-undersaturated melt Part I: The effect of mixed alkalis (K and Na) on CO2 solubility and speciation.

    E-Print Network [OSTI]

    Boyer, Edmond

    . These low-silica melts can dissolve a large quantity of CO2 and are rich in alkalis. However, the way CO2 experimental results on the CO2 solubility and speciation in synthetic nephelinite in the NKCMAS system, equilibrated at high-pressure (50-300 MPa), high-temperature (1250C) with an excess C-O-H fluid phase

  18. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  19. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  20. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  1. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    the heating rate on biomass gasification. Energ Fuel. 2008;hydrogen yield of biomass gasification using CO 2 sorbent. JA. Catalytic biomass gasification: Simultaneous hydrocarbons

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  3. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    targets and the role of bio-energy with carbon capture andCO 2 emission, such as bio-energy with carbon capture and

  4. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    E-Print Network [OSTI]

    Zhang, W.

    2011-01-01

    capture and compression of CO 2 from industrial waste streams containing small quantities of sulfur and

  5. Prodigious sulfur dioxide emissions from Nyamuragira volcano, Joint Center for Earth Systems Technology (NASA/UMBC), University of Maryland Baltimore County, Baltimore,

    E-Print Network [OSTI]

    Bluth, Gregg

    . Considering the alkaline composition of Virunga lavas, eruptive CO2 fluxes could be seven times the SO2 flux] is subordinate to anthro- pogenic SO2 emissions (134 Tg yrÀ1 ), but differences in source distributions source of sulfur emissions in Africa, and its cumulative total ($9 Tg) is only surpassed by the $20 Tg

  6. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas 

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01

    With the production from mature oil fields declining, the increasing demand of oil urges towards more effective recovery of the available resources. Currently, the CO2 Floods are the second most applied EOR processes in ...

  7. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    2 capture-a review. Energ Fuel. 2012; 26: 2751-7. 14. Yongfor CO 2 sequestration. Fuel Process Technol. 2005; 86:http://en.wikipedia.org/wiki/Synthetic_fuel 20. Phillips J.

  8. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    J. Different types of gasifiers and their integration withCO 2 in a pressurized-gasifier-based process. Energ Fuel.fluidized bed biomass steam gasifier-bed material and fuel

  9. On the formation of carbonyl sulfide in the reduction of sulfur dioxide by carbon monoxide on lanthanum oxysulfide catalyst: A study by XPS and TPR/MS

    SciTech Connect (OSTI)

    Lau, N.T.; Fang, M. [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center] [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center

    1998-10-25

    Both the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reaction, coupled with mass spectrometry (TPR/MS), are used to study the formation of carbonyl sulfide in the reduction of sulfur dioxide on lanthanum oxysulfide catalyst. It was found that the lattice sulfur of the oxysulfide is released and reacts with carbon monoxide to form carbonyl sulfide when the oxysulfide is heated. The oxysulfide is postulated to form sulfur vacancies at a temperature lower than that for the formation of carbonyl sulfide and atomic sulfur is released in the process. The atomic sulfur can either enter the gas phase and leave the oxysulfide catalyst or react with carbon monoxide to form carbonyl sulfide.

  10. The vibrational and rotational structure of the 2400 to 1950 A? absorption spectrum of sulfur dioxide 

    E-Print Network [OSTI]

    Riggs, James Willborn

    1958-01-01

    Over the past century, fossil fuel consumption has added carbon dioxide to the atmosphere at rapidly increasing rates. The prospect of further acceleration of this rate by turning from petroleum to coal has alarmed ...

  11. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01

    1° distribution of carbon dioxide emissions from fossil fuelfossil fuel CO 2 emissions, Carbon Dioxide Inf. Anal.1995 emissions, scaled uniformly based on the Carbon Dioxide

  12. CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . In order to perform a safe and efficient carbon dioxide capture and storage (CCS) project, a comprehensive. Carbon dioxide capture and storage (CCS) is a process including the capture of CO2 from high production, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

  13. High Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline Aquifers

    E-Print Network [OSTI]

    are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper TOUGH2-MP. 1. Introduction Geologic carbon dioxide (CO2) sequestration involves injecting CO2

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  3. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  4. Formation Damage due to CO2 Sequestration in Saline Aquifers 

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25

    Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

  5. The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity

    E-Print Network [OSTI]

    Thomas, David D.

    The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

  6. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    SciTech Connect (OSTI)

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have part or all of the surface in the less sulfur resistant {beta} phase.

  7. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  8. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  9. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01

    of CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost ($of CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost MSA

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  12. Vehicular Sensing System for CO2 Monitoring Applications

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    --We are interested in monitoring the concentration of carbon dioxide (CO2) gas in a large field such as an urban area sensor, vehicular sensing system, wireless sensor network. I. INTRODUCTION Carbon dioxide (CO2) gas has concentration in Hsin-Chu city, Taiwan. The collected data is reported to a remote server, which is integrated

  13. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect (OSTI)

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  14. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01

    dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

  15. Center for By-Products Utilization CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Saldin, Dilano

    climate change, reduced GHGs, improved air quality, CO2 reduction & sequestration, and carbon offsets. #12 for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concreteCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik

  16. CO2 dissolution in water using long serpentine microchannels

    E-Print Network [OSTI]

    Cubaud, Thomas

    CO2 dissolution in water using long serpentine microchannels Thomas Cubaud,a) Martin Sauzade dioxide-water is particularly impor- tant to the environment. When CO2 dissolves in water, it forms a weak shells.2 A method for enriching minute amount of water with CO2 on-chip would facilitate biological

  17. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    E-Print Network [OSTI]

    Harris, E.

    The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

  18. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  19. 10-MW Supercritical-CO2 Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  20. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01

    + Nuclear + Renewable + Hydro Power Sector Total CO 2renewable plus hydro and nuclear power) increase their shareHydro + Renewable + Nuclear Base SO2 Control Accelerated SO2 Control Total Power

  1. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01

    potential of the five mitigation scenarios, expanding hydropower andHydropower Coal Gen Efficiency CCS 5.6.4 Emission Reductions PotentialHydropower in particular has the greatest CO 2 emission reductions potential

  2. Ocean Acidification: The Other CO2 Problem

    E-Print Network [OSTI]

    Childress, Michael J.

    reserved 1941-1405/09/0115-0169$20.00 Key Words biogeochemistry, calcification, carbon dioxide, climate of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well

  3. Aquifer Management for CO2 Sequestration 

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14

    Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

  4. Mineralization of Basalts in the CO2-H2O-SO2-O2 System

    SciTech Connect (OSTI)

    Schaef, Herbert T.; Horner, Jacob A.; Owen, Antionette T.; Thompson, Christopher J.; Loring, John S.; McGrail, B. Peter

    2014-05-01

    Sequestering carbon dioxide (CO2) containing minor amounts of co-contaminants in geologic formations was investigated in the laboratory through the use of high pressure static experiments. Five different basalt samples were immersed in water equilibrated with supercritical CO2 containing 1wt% sulfur dioxide (SO2) and 1wt% oxygen (O2) at reservoir conditions (~100 bar, 90°C) for 49 and 98 days. Gypsum (CaSO4) was a common precipitate, occurred early as elongated blades with striations, and served as substrates for other mineral products. Bimodal pulses of water released during dehydroxylation were key indicators along with X-ray diffraction for verifying the presences of jarosite-alunite group minerals. Well-developed pseudocubic jarosite crystals formed surface coatings, and in some instances mixtures of natrojarosite and natroalunite aggregated into spherically shaped structures measuring 100 ?m in diameter. Reaction products were also characterized using infrared spectroscopy, which indicated OH and Fe-O stretching modes. The presences of jarosite-alunite group minerals were found in the lower wavenumber region from 700–400 cm-1. A strong preferential incorporation of Fe(III) into natrojarosite was attributed to the oxidation potential of O2. Evidence of CO2 was detected during thermal decomposition of precipitates, suggesting the onset of mineral carbonation.

  5. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    SciTech Connect (OSTI)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T. crunogena produces a reasonable return when treating a sour gas stream of 120 million SCFD containing 2.5 percent H2S. In this case, the primary source of revenue is from desulfurization of the gas stream. While the technology has significant application in sequestering carbon dioxide in cell biomass or single cell proten (SCP), perhaps the most immediate application is in desulfurizing LGNG or other gas streams. This biological approach is a viable economical alternative to existing hydrogen sulfide removal technology, and is not sensitive to the presence of hydrocarbons which act as catalyst poisons.

  6. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

  7. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  8. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticle size distributionconcentration ARM Data

  9. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticle size distributionconcentration ARM

  10. Modeling the release of CO2 in the deep ocean

    E-Print Network [OSTI]

    Liro, Christopher R.

    1991-01-01

    The idea of capturing and disposing of carbon dioxide (CO2) from the flue gas of fossil fuel-fired power plants has recently received attention as a possible mitigation strategy to counteract potential global warming due ...

  11. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  12. Climatedependent CO2 emissions from lakes Sarian Kosten,1

    E-Print Network [OSTI]

    Cole, Jonathan J.

    in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South influence lakes' metabolism as well. For instance through its effect on the hydraulic residence time, which

  13. Novel CO2-Thickeners for Improved Mobility Control

    SciTech Connect (OSTI)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2002-01-15

    The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

  14. Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach

    Broader source: Energy.gov [DOE]

    Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

  15. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    for CO2 geological storage, Int. J. Greenhouse Gas Control,1008, DOI Bachu, S. CO2 Storage in Geological Media: Role,R.H. Worden. Geological Storage of Carbon Dioxide, in: S.J.

  16. CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow

    E-Print Network [OSTI]

    MacMinn, Christopher W.

    Injection of carbon dioxide (CO2) into geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. To evaluate injection scenarios, estimate reservoir capacity and assess ...

  17. Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

  18. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  19. Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the CO2 scrubber. The ?30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  20. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  1. Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol

    E-Print Network [OSTI]

    McNicol, Gavin; Silver, Whendee L

    2015-01-01

    Keywords: Soil respiration; methane; carbon dioxide; oxygen;response of carbon dioxide and methane emissions to oxygenof carbon dioxide (CO 2 ) and methane (CH 4 ) greenhouse gas

  2. Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    of the underground carbon dioxide storage to confine and sustain the injected CO2 for very long time. If a leakageSPE 166137 Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage sequestration of carbon dioxide is one of the most fascinating developing technologies in order to reduce

  3. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  4. Equilibrium and transport properties of CO2+N2O and CO2+NO mixtures. A molecular simulation and equation of state modelling study.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    viscosities were determined for CO2+NOx mixtures. Due to the strong similarities between carbon dioxide simulation; Equation of state. 1. Introduction In Carbon dioxide Capture and Storage (CCS) operations to a pure carbon dioxide. This may have impacts on the different stages of the CCS chain: capture

  5. Available online at www.sciencedirect.com Electrochemical conversion of CO2 to useful chemicals: current

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    ://dx.doi.org/10.1016/j.coche.2013.03.005 Introduction Carbon dioxide (CO2) emissions into the atmosphere will needAvailable online at www.sciencedirect.com Electrochemical conversion of CO2 to useful chemicals further undesirable climate change. Electrochemical reduction of CO2 into value-added chemicals using

  6. Carbon Sequestration GeoloGical SequeStration of co2

    E-Print Network [OSTI]

    Pennycook, Steve

    Growing concern over the potential adverse effects of carbon dioxide (CO2 ) buildup in the atmosphere in three world-class CO2 storage projects that are endorsed by the Carbon Sequestration Leadership Forum04/2008 Carbon Sequestration GeoloGical SequeStration of co2 : the Geo-Seq Project Background

  7. emissions: mineral carbonation and Finnish pulp and paper industry (CO2

    E-Print Network [OSTI]

    Zevenhoven, Ron

    CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and Use, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological of serpentinites in energy and metal industry (ECOSERP) Carl-Johan Fogelholm, Project leader, professor Sanni

  8. Soil CO2 production and surface flux at four climate observatories in eastern Canada

    E-Print Network [OSTI]

    Beltrami, Hugo

    Soil CO2 production and surface flux at four climate observatories in eastern Canada David Risk December 2002. [1] Soils constitute the largest terrestrial source of carbon dioxide to the atmosphere the climatic controls on soil respiration. We use subsurface CO2 concentrations, surface CO2 flux and detailed

  9. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-Print Network [OSTI]

    Lu, Ping

    2012-08-31

    Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

  10. Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2 solution temperature (UCST) polymer blend in the presence of supercritical carbon dioxide (scCO2 been examined as a function of temperature in scCO2 by visual inspection, small-angle neutron

  11. CO2 hydrogenation to formic acid on Ni(110) Guowen Peng a

    E-Print Network [OSTI]

    Sibener, Steven

    CO2 hydrogenation to formic acid on Ni(110) Guowen Peng a , S.J. Sibener b , George C. Schatz c of subsurface H for hydrogenating carbon dioxide (CO2) on Ni(110). The energetics of surface and subsurface H reacting with surface CO2 to form for- mate, carboxyl, and formic acid on Ni(110) is systematically studied

  12. The CO2 Content of Consumption Across US Regions: A Multi-Regional Input-Output (MRIO) Approach

    E-Print Network [OSTI]

    Caron, J.

    We improve on existing estimates of the carbon dioxide (CO2) content of consumption across regions of the United States. Using a multi-regional input-output (MRIO) framework, we estimate the direct and indirect CO2 emissions ...

  13. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  14. The Fluid Mechanics of Carbon Dioxide Sequestration

    E-Print Network [OSTI]

    Huppert, Herbert

    with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2The Fluid Mechanics of Carbon Dioxide Sequestration Herbert E. Huppert1-3 and Jerome A. Neufeld4 1 FurtherANNUAL REVIEWS #12;1. INTRODUCTION Undeniably, the average global carbon dioxide (CO2) content

  15. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  16. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    accounting process; evaluate the cost-effectiveness of urban forestry programs with CO2 reduction measures carbon dioxide (CO2 ) reduction. The calculation of CO2 reduction that can be made with the use climate. With these Guidelines, they can: report current and future CO2 reductions through a standardized

  17. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  18. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  19. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  20. Carbonation: An Efficient and Economical Process for CO2 Sequestration

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

  1. Challenges in elevated CO2 experiments on forests

    E-Print Network [OSTI]

    Oren, Ram

    of Illinois, Urbana-Champaign, IL, USA 4 Technical University of Denmark, Roskilde, Denmark 5 University concentrations in future experiments to better predict the effects of climate change? Plantations and natural. Forest ecosystems under climate change Carbon dioxide (CO2) is the most important greenhouse gas emitted

  2. REVIEW ARTICLE Nitrogen cycle responses to elevated CO2 depend

    E-Print Network [OSTI]

    Thomas, David D.

    carbon dioxide (CO2) concentra- tion leads to an increase in the net flux of carbon (C) from sequestration of C (Drigo et al. 2008). Potentially, the additional sequestration of C in SOM will also cause-Liebig-University Giessen, Gießen, Germany 123 Nutr Cycl Agroecosyst DOI 10.1007/s10705-015-9683-8 #12;(N) sequestration

  3. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  4. The unstable CO2 feedback cycle on ocean planets

    E-Print Network [OSTI]

    Kitzmann, D; Godolt, M; Grenfell, J L; Heng, K; Patzer, A B C; Rauer, H; Stracke, B; von Paris, P

    2015-01-01

    Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong...

  5. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  6. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  7. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Hu, Zhicheng (Somerville, MA)

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  8. CO2 interaction with geomaterials.

    SciTech Connect (OSTI)

    Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

    2010-09-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

  9. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

    E-Print Network [OSTI]

    Zhou, Quanlin

    the fraction of total pore space available for CO2 storage, limited by heterogeneity, buoyancy effectsA method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations, USA 1. Introduction Geological carbon dioxide (CO2) sequestration in deep forma- tions (e.g., saline

  10. A Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate Fluids and Numerical Modeling

    E-Print Network [OSTI]

    , H. A., and Huppert H. E., 2010, Convective dissolution of carbon dioxide in saline aquifers, GeophysA Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate mechanisms contributing to storage of supercritical CO2 (scCO2) in deep saline geologic formations. When

  11. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration

    E-Print Network [OSTI]

    atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial-effective and environmentally friendly method for CO2 sequestration. INTRODUCTION Carbon dioxide concentrations and CO2 Sequestration Xiuping Zhu,* Marta C. Hatzell, and Bruce E. Logan Department of Civil

  12. Physical and chemical effects of CO2 storage in saline aquifers of the southern North Sea 

    E-Print Network [OSTI]

    Heinemann, Niklas

    2013-07-01

    One of the most promising mitigation strategies for greenhouse gas accumulation in the atmosphere is carbon capture and storage (CCS). Deep saline aquifers are seen as the most efficient carbon dioxide (CO2) storage sites, ...

  13. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  14. Transport properties of CO2-expanded acetonitrile from molecular dynamics simulations

    E-Print Network [OSTI]

    Houndonougbo, Yao; Laird, Brian Bostian; Kuczera, Krzysztof

    2007-02-21

    Carbon-dioxide-expanded liquids, which are mixtures of organic liquids and compressed CO2, are novel media used in chemical processing. The authors present a molecular simulation study of the transport properties of liquid mixtures formed...

  15. Interpretation of observed atmospheric variations of CO2 and CH4. 

    E-Print Network [OSTI]

    Barlow, James Mathew

    2015-06-30

    The overarching theme of my thesis is understanding observed variations of northern hemisphere atmospheric carbon dioxide (CO2) and methane (CH4) concentrations. I focus my analysis on high-latitude observations of these gases, as there are large...

  16. Does elevated CO2 alter silica uptake in trees?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; Finzi, Adrien C.

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, longterm free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwoodmore »species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less

  17. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  18. How much CO2 is too much? Nobody knows for sure, but sophisticated

    E-Print Network [OSTI]

    Haszeldine, Stuart

    the next 30 to 60 years than by capturing and storing CO2. Carbon capture and storage (CCS) is no panacea. Carbon capture and storage(CCS)offersoneofthemostdirectandrapidwaysofreducing CO2 emissions right now fuels provides most of the world's electrical energy. It also produces large amounts of carbon dioxide

  19. Monitoring CO2 Intrusion and Associated Geochemical Transformations in a Shallow Groundwater System Using Complex

    E-Print Network [OSTI]

    Hubbard, Susan

    Geologic carbon sequestration, which aims to capture and inject carbon dioxide (CO2) into deep subsurface Using Complex Electrical Methods Baptiste Dafflon,, * Yuxin Wu, Susan S. Hubbard, Jens T. Birkholzer: The risk of CO2 leakage from a properly permitted deep geologic storage facility is expected to be very low

  20. EQUILIBRIUM DATA OF CO2-BASED SEMI-CLATHRATES FROM QUATERNARY AMMONIUM SOLUTIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    challenge of this century, therefore CO2 capture and sequestration is a route to solve a part of the problem technologies. The capture and sequestration is an interesting route to solve part of the problem. The capture of Carbone dioxide by gas hydrate formation is a new process for separating CO2 from flue gases

  1. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats

    E-Print Network [OSTI]

    Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats C . C . T R E poorly under- stood despite the potential for a significant positive feedback to climate change. Our dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost

  2. Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth

    E-Print Network [OSTI]

    ). For example, some include elevated [CO2] effects on photosynthesis to estimate the fraction of anthropo- genicInterannual climatic variation mediates elevated CO2 and O3 effects on forest growth M A R K E . K carbon dioxide ([CO2]; 518 lL LÀ1 ) and ozone concentrations ([O3]; 1.5 Â background of 30­40 nL LÀ1

  3. Quantifying CO2 removal by living walls: a case study of the Center for Design Research

    E-Print Network [OSTI]

    Rivera, Eric

    2014-04-01

    20 | JOURNAL OF UNDERGRADUATE RESEARCH Quantifying CO2 removal by living walls: a case study of the Center for Design Research Eric Rivera Q&A How did you become involved in doing research? I became interested in research through the Mc... to improve IAQ, located at the University of Kansas. This study investigated the effectiveness of the living wall in reducing carbon dioxide (CO2) concentration levels indoors, as well as the impact the mechanical system has in reducing CO2 concentration...

  4. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect (OSTI)

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

  5. Electrostatic Stabilization of Colloids in Carbon Dioxide: Electrophoresis and Dielectrophoresis

    E-Print Network [OSTI]

    Electrostatic Stabilization of Colloids in Carbon Dioxide: Electrophoresis and Dielectrophoresis in supercritical fluid carbon dioxide (scCO2). Herein we demonstrate that colloids may also be stabilized in CO2 the behavior of steric stabilization in compressed supercritical fluids1-3 including carbon dioxide,4

  6. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-Print Network [OSTI]

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  7. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  8. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wan -Hui; Himeda, Yuichiro; Muckerman, James T.; Manbeck, Gerald F.; Fujita, Etsuko

    2015-09-03

    In this study, carbon dioxide is one of the end products of combustion, and is not a benign component of the atmosphere. The concentration of CO2 in the atmosphere has reached unprecedented levels and continues to increase owing to an escalating rate of fossil fuel combustion, causing concern about climate change and rising sea levels. In view of the inevitable depletion of fossil fuels, a possible solution to this problem is the recycling of carbon dioxide, possibly captured at its point of generation, to fuels. Researchers in this field are using solar energy for CO2 activation and utilization in severalmore »ways: (i) so-called artificial photosynthesis using photo-induced electrons; (ii) bulk electrolysis of a CO2 saturated solution using electricity produced by photovoltaics; (iii) CO2 hydrogenation using solar-produced H2; and (iv) the thermochemical reaction of metal oxides at extremely high temperature reached by solar collectors. Since the thermodynamics of CO2 at high temperature (> 1000 ºC) are quite different from those near room temperature, only chemistry below 200 ºC is discussed in this review.« less

  9. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Week Since 1990, China shows the greatest increase of carbon dioxide (CO2) emissions. The Americas, Europe and Eurasia have about the same CO2 emissions in 2012 as in...

  10. Summary IsotoperatioanalysesofatmosphericCO2 atnatu-ral abundance have significant potential for contributing to our

    E-Print Network [OSTI]

    Ehleringer, Jim

    dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approxi- mately 50 levels. Among the immediate applications are the carbon and oxygen isotope ratio analyses of carbon to sample CO2 extensively in remote forest locations. The air-sampling system was used to measure

  11. CO2 Sequestration in Chrysotile Mining ResiduesImplication of Watering and Passivation under Environmental Conditions

    E-Print Network [OSTI]

    , Canada G1V 0A6 ABSTRACT: Factors affecting carbon dioxide fixation in chrysotile mining residues (CMR of carbon dioxide as stable solid carbonates by reacting it with magnesium silicates is one among several carbonation reactors for the capture of CO2 produced at its source.5-8 In most available direct carbonation

  12. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  13. An Investigation of CO2 Sequestration

    E-Print Network [OSTI]

    Saldin, Dilano

    An Investigation of CO2 Sequestration through Mineralization Conference on Sustainable Construction area and increased availability of CO2 for rapid carbonation. The hardened and carbonated materials Slag #12;Carbonation Chemistry Dissolution of CO2 in water. CO2(g) CO2(aq) Formation of carbonic acid

  14. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  15. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    E-Print Network [OSTI]

    Maddalena, Randy

    2012-01-01

    sulfide (H 2 S), carbonyl sulfide (OCS), sulfur dioxide (SOof hydrogen sulfide, carbonyl sulfide, methyl mercaptan,associated with the carbonyl sulfide that typically had very

  16. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01

    and transport properties of carbon dioxide for molecularinterfacial properties of binary carbon dioxide – waterCarbon dioxide’s liquid—vapor coexistence curve and critical properties

  17. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    E-Print Network [OSTI]

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

  18. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1 1 Department of Mathematics, Purdue University, USA Purdue University, March 1rst, 2013 SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12 (North Sea). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated

  19. Commitment accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, SJ; Socolow, RH

    2014-01-01

    us My IOPscience Commitment accounting of CO2 emissions This9326/9/8/084018 Commitment accounting of CO 2 emissionsthe potential for ‘commitment accounting’ to inform public

  20. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  1. Multimodal Integration of Carbon Dioxide and Other Sensory Cues

    E-Print Network [OSTI]

    Multimodal Integration of Carbon Dioxide and Other Sensory Cues Drives Mosquito Attraction of carbon dioxide (CO2) detection to mosquito host- seeking behavior, we mutated the AaegGr3 gene, a subunit

  2. Reactions of Sulfur Dioxide with Neutral Vanadium Oxide Clusters in the Gas Phase. II. Experimental Study Employing Single-Photon Ionization

    E-Print Network [OSTI]

    Rocca, Jorge J.

    presented in part I (J. Phys. Chem. A 2007, 111, 13339). A weak feature at the SO3 mass channel (80 amu to SO3 facilitated by condensed-phase vanadium oxides as catalysts are suggested. I. Introduction for oxidation of SO2 to SO3 (sulfuric acid production, SO2 removal), selective reduction of NOx with NH3

  3. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01

    E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

  4. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    Reports and Publications (EIA)

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  5. Semiclassical calculations of half-widths and line shifts for transitions in the 30012'00001 and 30013'00001 bands of CO2 II

    E-Print Network [OSTI]

    Gamache, Robert R.

    a r t i c l e i n f o Available online 18 February 2012 Keywords: Carbon dioxide CO2­O2 CO2-air Half to measure and better understand the carbon dioxide variations in the Earth's atmosphere. This region.6 mm spectral region, which is extensively used for remote sensing of the Earth's atmo- sphere

  6. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect (OSTI)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  7. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher; Hankin, S.; Koyuk, H; Bakker, D C E; Pfeil, B; Olsen, A; Metzl, N; Fassbender, A; Manke, A; Malczyk, J; Akl, J; Alin, S R; Bellerby, R G J; Borges, A; Boutin, J; Cai, W-J; Chavez, F P; Chen, A; Cosa, C; Feely, R A; Gonzalez-Davila, M; Goyet, C; Hardman-Mountford, N; Heinze, C; Hoppema, M; Hunt, C W; Hydes, D; Ishii, M; Johannessen, T; Key, R M; Kortzinger, A; Landschutzer, P; Lauvset, S K; Lefevre, N; Lourantou, A; Mintrop, L; Miyazaki, C; Murata, A; Nakadate, A; Nakano, Y; Nakaoka, S; Nojiri, Y; et al.

    2013-01-01

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  8. The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin 

    E-Print Network [OSTI]

    Agrawal, Angeni

    2007-09-17

    , due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

  9. 1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal aquifers

    E-Print Network [OSTI]

    Neufeld, Jerome A.

    1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal] Injection of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing 6 anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative 7 to the ambient groundwater

  10. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers

    E-Print Network [OSTI]

    Huppert, Herbert

    Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative to the ambient groundwater. The buoyant plume

  11. Highly efficient separation of carbon dioxide by a metal-organic framework replete with

    E-Print Network [OSTI]

    Yaghi, Omar M.

    media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 fromHighly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported

  12. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) Carbon dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissions of the separation of CO2 from the emissions stream from fossil-fuel combustion, transporting it to a storage

  13. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  14. Fluid flow and CO2fluidmineral interactions during CO2-storage in sedimentary basins

    E-Print Network [OSTI]

    Cambridge, University of

    mineral dissolution rates. Observations from CO2-EOR exper- iments and natural analogues suggestFluid flow and CO2­fluid­mineral interactions during CO2-storage in sedimentary basins Niko Kampman Natural CO2 analogues Modelling the progress of geochemical processes in CO2 storage sites is frustrated

  15. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra

    E-Print Network [OSTI]

    Gamache, Robert R.

    for the space-borne detection of carbon dioxide sources and sinks. & 2010 Elsevier Ltd. All rights reserved. 1 March 2010 Keywords: CO2 Line mixing Infrared spectra Remote sensing a b s t r a c t In a previous, temperature and pressure pro- files, CO2 atmospheric amount, see Sec. VII.4 of Ref. [1]). For such remote

  16. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production 

    E-Print Network [OSTI]

    Hasanbeigi, A.; Price, L.; Lin, E.

    2012-01-01

    Globally, the cement industry accounts for approximately 5 percent of current man-made carbon dioxide (CO2) emissions. Development of new energy-efficiency and CO2 emission-reduction technologies and their deployment in the market will be key...

  17. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground

    SciTech Connect (OSTI)

    Oldenburg

    2009-07-30

    July 21, 2009 Berkeley Lab summer lecture: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  18. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  19. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  20. CO2-Brine Surface Dissolution and Injection: CO2 Storage Enhancement Paul Emeka Eke, SPE, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage,

    E-Print Network [OSTI]

    . The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract Carbon capture and storage (CCS, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage, School of Geo. The upward buoyancy of dense phase carbon dioxide (CO2) in deep reservoirs means that sites need to be chosen

  1. 24/02/2012 12:49SPE Projects, Facilities & Construction -CO2/Brine Surface Dissolution and Injection: CO2 Storage Enhancement Page 1 of 1http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=EFC&pdfChronicleId=090147628022501b&mid=SPE-12471

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Strategies, Climate Change, Leakage Risk Mitigation Summary Carbon capture and storage (CCS) is capable.1.5 Processing Equipment Keywords CO2 Capture and Storage, Process Design and Simulation, CO2 Injection of dense-phase carbon dioxide (CO2) in deep reservoirs means that sites need to be chosen

  2. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    E-Print Network [OSTI]

    Lisal, Martin

    and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based properties of CO2 at supercritical conditions. The molecular simulation results are compared to an analytical on Monte Carlo simu- lations in the isothermal­isobaric ensemble. We model CO2 as a quadrupolar two

  3. Kinetics of the Homogeneous Catalytic Hydrogenation of Olefins in Supercritical Carbon Dioxide Using a Fluoroacrylate Copolymer

    E-Print Network [OSTI]

    Abdou, Hanan E.

    Kinetics of the Homogeneous Catalytic Hydrogenation of Olefins in Supercritical Carbon Dioxide a fluoroacrylate copolymer grafted rhodium catalyst in supercritical carbon dioxide (scCO2) are reported field of chemical reaction engineering.3-8 Specifically, supercritical carbon dioxide (scCO2

  4. Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems at stripper conditions

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems) with piperazine (PZ) have shown potential for use in carbon dioxide (CO2) capture [1]. This work was initiated at low loadings. Keywords: vapor-liquid, equilibrium, piperazine, carbon dioxide Introduction CO2

  5. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular

    E-Print Network [OSTI]

    Thomas, David D.

    Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant. Increasing atmospheric carbon dioxide (CO2) influences plant water relations and often pref- erentially

  6. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  7. Engineered yeast for enhanced CO2 mineralization

    E-Print Network [OSTI]

    Barbero, Roberto Juan

    2013-01-01

    In this work, a biologically catalysed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was ...

  8. CO2 Cycle du Fiche dtaille

    E-Print Network [OSTI]

    Dintrans, Boris

    CO2 ­ Cycle du Carbone Polluants Fiche détaillée Niveau (A partir de la 2nd) #12;I. Introduction Les origines du CO2 atmosphérique dépendent de l'échelle de temps que l'on considère. A l, ce cycle commence avec la dissolution du CO2 dans l'eau de pluie pour former de l'acide carbonique

  9. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  10. Pi-CO2 Aqueous Post-combustion CO2 Capture: Proof of Concept Through Thermodynamic, Hydrodynamic, and Gas-Lift Pump Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M.-H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO2) capture system (Pi-CO2) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO2 has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO2 from local industrial sources.

  11. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01

    dioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emissionP. P. : Linking emissions of fossil fuel CO 2 and other

  12. 5, 14211443, 2008 Anthropogenic CO2

    E-Print Network [OSTI]

    dioxide, an important green-15 house gas, is being increasingly produced by human activities, adding

  13. Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  14. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  15. Using CO2 spatial variability to quantify representation errors of satellite CO2 retrievals

    E-Print Network [OSTI]

    Michalak, Anna M.

    global data of column- averaged CO2 dry-air mole fraction (XCO2) at high spatial resolutions. These dataUsing CO2 spatial variability to quantify representation errors of satellite CO2 retrievals A. A 2008; published 29 August 2008. [1] Satellite measurements of column-averaged CO2 dry- air mole

  16. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  17. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  18. Modeling of CO2 Reduction Impacts on Energy Prices with Modelica Philip Machanick1

    E-Print Network [OSTI]

    Machanick, Philip

    at an increasing rate as technologies such as wind, solar and carbon capture and storage mature ­ hence the need.machanick@gmail.com, petfr@ida.liu.se Abstract There is growing evidence that anthropogenic carbon dioxide (CO2) emissions will then grow at an increas- ing rate as technologies such as wind, solar and car- bon capture and storage

  19. Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

  20. FOSSIL ENERGY, CO2, CLIMATE CHANGE, AND THE AEROSOL PROBLEM Stephen E. Schwartz

    E-Print Network [OSTI]

    (energy penalty). Consequently, until alternative energy sources are developed or a practical meansFOSSIL ENERGY, CO2, CLIMATE CHANGE, AND THE AEROSOL PROBLEM Stephen E. Schwartz For presentation of Energy Office of Science ABSTRACT Climate change due to increasing atmospheric carbon dioxide differs

  1. Economic and energetic analysis of capturing CO2 from ambient air

    E-Print Network [OSTI]

    competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide the energy requirements and costs of these air cap- ture systems. Our empirical analyses of operating. To examine these claims, we have undertaken a series of analyses of the costs and energy requirements of air

  2. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect (OSTI)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  3. Final Progress Report: Direct Experiments on the Ocean Disposal of Fossil Fuel CO2.

    SciTech Connect (OSTI)

    James P. Barry; Peter G. Brewer

    2004-05-25

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life. Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.

  4. Paleoclimatic warming increased carbon dioxide concentrations D. M. Lemoine1

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Paleoclimatic warming increased carbon dioxide concentrations D. M. Lemoine1 Received 6 July 2010 feedbacks are positive, then warming causes changes in carbon dioxide (CO2) sources and sinks that increase increased carbon dioxide concentrations, J. Geophys. Res., 115, D22122, doi:10.1029/2010JD014725. 1

  5. Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations

    E-Print Network [OSTI]

    - 1 - Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations by Michael C Students #12;- 2 - Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations by Michael This thesis describes a new strategy for carbon dioxide (CO2) separations based on amine sorbents, which

  6. CO2 Adsorption to Sub-Single Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction

    SciTech Connect (OSTI)

    Rother, Gernot [ORNL; Ilton, Eugene [Pacific Northwest National Laboratory (PNNL); Wallacher, Dirk [Helmholtz-Zentrum Berlin; Hauss, Thomas [Helmholtz-Zentrum Berlin; Schaef, Herbert [Pacific Northwest National Laboratory (PNNL); Qafoku, Odeta [Pacific Northwest National Laboratory (PNNL); Rosso, Kevin M. [Pacific Northwest National Laboratory (PNNL); Felmy, Andrew [Pacific Northwest National Laboratory (PNNL); Krukowski, Elizabeth G [ORNL; Stack, Andrew G [ORNL; Bodnar, Robert J [ORNL

    2013-01-01

    Geologic storage of CO2 requires that the caprock sealing the storage rock is highly impermeable by CO2. Swelling clays, which are important components of caprocks, may react with CO2 under volume change, potentially impacting the seal quality. The interactions of scCO2 with Na saturated montmorillonite clay containing a sub-single layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of 0.15 g/cm3, followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 . The density of CO2 in the clay pores is relatively stable over a wide range of CO2 pressures at a given temperature, indicating the formation of a clay-CO2 phase. At low pressure increasing CO2 adsorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak or no temperature dependence. Supercritical fluids, sorption phenomena, carbon dioxide, carbon sequestration, caprock integrity

  7. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01

    emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

  8. CO2 Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  9. CO2 Conference Presentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CO2 Conference Presentation More Documents & Publications POWER-GEN Conference Presentation U.S. Energy Association Presentation EEI Environment Meetings Presentation...

  10. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    SciTech Connect (OSTI)

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

  11. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a

    E-Print Network [OSTI]

    Thomas, David D.

    Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N evaluated how elevated atmospheric carbon dioxide (CO2), N fertilization, and plant species richness alter can limit the response of plant productivity to both elevated atmo- spheric carbon dioxide (CO2

  12. CO2watermineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test

    E-Print Network [OSTI]

    to be addressed during the selection and characterization of suitable CO2 storage sites (IEA-GHG, 2011; Lemieux., 2007; IEA-GHG, 2011). Considering a sce- nario where CO2 ­ or brine or both ­ escapes from the storage., 2010; Kharaka et al., 2010; Humez et al., 2011a, 2011b; IEA-GHG, 2011; Lemieux, 2011; Keating et al

  13. An Integrated Framework for CO2 Accounting and Risk Analysis...

    Office of Scientific and Technical Information (OSTI)

    for CO2 Accounting and Risk Analysis in CO2-EOR Sites An integrated framework for CO2 accounting and risk analysis of CO2-EOR Authors: Dai, Zhenxue 1 ; Viswanathan, Hari S....

  14. SecuestrodeCO2enestructurasgeolgicas Modelacin numrica de

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Inyección CO2 en medio carbonatado #12;SecuestrodeCO2enestructurasgeológicas Gases de efecto invernadero #12

  15. The Outlook for CO2 Capture Costs

    E-Print Network [OSTI]

    Common Measures of CCS Cost · Capital cost · Increased cost of electricity · Cost of CO2 avoided · Cost of CO2 captured E.S. Rubin, Carnegie Mellon Elements of Capital Cost Note: · Nomenclature and cost items construction Total Capital Requirement (TCR) E.S. Rubin, Carnegie Mellon Cost of Electricity (COE) COE ($/MWh

  16. Capturing CO2 via reactions in nanopores.

    SciTech Connect (OSTI)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  17. 2, 711743, 2006 Glacial CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacialCPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction

  18. CASSEMCHAPTER 5 HOW DOWE KNOWWHERETHE CO2

    E-Print Network [OSTI]

    where some minimum threshold volume or saturation of CO2 has been exceeded within a subsurface reservoir reservoir engineering by repeated or continuous assessment that informs on the evolving physical conditions to a large amount of injected CO2 are only viable (1) for onshore reservoirs and (2) where the target

  19. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  20. 4, 23852405, 2007 CO2 and climate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 2385­2405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

  1. Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents 

    E-Print Network [OSTI]

    Al Yousef, Zuhair

    2012-10-19

    CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

  2. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  3. OPERATIONAL NOTE A SIMPLIFIED TRIPOD SUPPORT FOR USE WITH CARBON DIOXIDE

    E-Print Network [OSTI]

    OPERATIONAL NOTE A SIMPLIFIED TRIPOD SUPPORT FOR USE WITH CARBON DIOXIDE­ BAITED VECTOR surveillance trap support was designed as a tripod of polyvinyl chloride pipes to suspend carbon dioxide, vector surveillance, hanging traps, carbon dioxide, mosquito trap Carbon dioxide (CO2) emission is common

  4. meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both

    E-Print Network [OSTI]

    George, Edward I.

    meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate

  5. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach 

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  6. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    SciTech Connect (OSTI)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  7. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  8. Biomass torrefaction and CO2 capture using mining wastes A new approach for reducing greenhouse gas emissions of co-firing plants

    E-Print Network [OSTI]

    Biomass torrefaction and CO2 capture using mining wastes ­ A new approach for reducing greenhouse: Biomass Torrefaction Carbon dioxide Sequestration Mining residues a b s t r a c t A novel combination. Torrefaction was combined with ultramafic mining residues to capture emitted CO2. Presence of CH4 and CO

  9. Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2

    SciTech Connect (OSTI)

    Hungate, Bruce

    2014-11-07

    This report summarizes a synthesis project of a long-term global change experiment conducted at the Kennedy Space Center, Florida, investigating how increasing concentrations of atmospheric carbon dioxide (CO2) influences the functioning of a fire-dominated scrub-oak ecosystem. The experiment began in 1996 and ended in 2007. Results presented here summarize the effects of elevated CO2 on plant growth, soil processes, carbon and nutrient cycling, and other responses. Products include archived data from the experiment, as well as six publications in the peer-reviewed literature.

  10. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  11. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  12. Early Opportunities of CO2 Geological Storage Deployment in Coal Chemical Industry in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R.T.; Davidson, C.L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO2more »per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 20USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  13. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

  14. Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford

    E-Print Network [OSTI]

    Keller, Klaus

    Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

  15. Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide

    E-Print Network [OSTI]

    Zeebe, Richard E.

    Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide Richard E the inorganic hydration of carbon dioxide (CO2) in aqueous solution cause reduced stable carbon and oxygen of the carbon and oxygen kinetic isotope fractionation (KIF) during hydration of CO2. Here I use transition

  16. MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes

    E-Print Network [OSTI]

    Uppsala Universitet

    MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical

  17. Heterogenised Molecular Catalysts for CO2 Conversion

    E-Print Network [OSTI]

    Windle, Christopher D.; Reisner, Erwin

    2015-08-01

    perspective, these systems do not utilise solar light directly but could be powered by photovoltaics. 2) No electrode is required in photocatalysis and the energy for the reaction is obtained through light absorption. Electrons are typically supplied by a... cluster.[3a] 2. Photocatalytic CO2 reduction Photocatalytic CO2 reduction cuts out the electrolytic middleman in solar fuels synthesis. Instead of relying on a photovoltaic panel for providing the electricity to drive electrolysis, photocatalysis...

  18. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  19. Trends in the sources and sinks of carbon dioxide

    E-Print Network [OSTI]

    2009-01-01

    for updating global fossil fuel carbon dioxide emissions.in accounting for CO 2 from fossil fuels. J. Ind. Ecol. 12,budget. G.M. estimated the fossil fuel emissions and G.P.P.

  20. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing a supercritical carbon dioxide (s-CO2) power cycle that combines high efficiencies and low...

  1. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation 10-Megawatt Supercritical Carbon Dioxide Turbine - FY13 Q2...

  2. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    E-Print Network [OSTI]

    Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation of C­O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 lm

  3. Structural and mechanistic studies into the copolymerization of carbon dioxide and epoxides catalyzed by chromium salen complexes 

    E-Print Network [OSTI]

    Mackiewicz, Ryan Michael

    2006-08-16

    . For over a decade now the Darensbourg Research Laboratories have focused on utilizing another simple molecule: carbon dioxide. Carbon dioxide is a cheap, inert, nontoxic starting material that appears to be an ideal monomer. Although simplistic, CO2 is also...

  4. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  5. Version 3.0 SOP 4 --p(CO2) October 12, 2007 (p(CO2))

    E-Print Network [OSTI]

    Version 3.0 SOP 4 -- p(CO2) October 12, 2007 91 SOP 4 (p(CO2)) - 1. . microatmospheres . (20°C 250-2000 µatm) (mole fraction) . 2. CO2 (mole fraction) . 2 2(CO ) (CO( ) . . Frit . #12;October 12, 2007 SOP 4 -- p(CO2) Version 3.0 92 CO2 CO2 2 . p(CO2) (1) . 4. 3

  6. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Robert Dilmore, Peng Lu, Douglas Allen, Yee Soong,*, Sheila Hedges, Jaw K. Fu,4

    E-Print Network [OSTI]

    Zhu, Chen

    carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide change and its link to growing atmospheric concentrations of carbon dioxide (CO2). Researchers have noted) increasing the efficiency of energy conversion; (ii) using low-carbon or carbon-free energy sources; and (iii

  7. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Keywords: Carbon dioxide Electrochemical reduction Dilute feed Carbon monoxide Electrolyte pH A B S T R A C reduction of CO2 to CO. ã 2015 Elsevier Ltd. All rights reserved. 1. Introduction Excessive carbon dioxide energy resources, and carbon capture and sequestration (CCS) [3]. For example, carbon capture

  8. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  9. The Influence of Temperature on the Sorption and Permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes

    SciTech Connect (OSTI)

    Mayur Ostwal; JOshua M. Lau; Christopher J. Orme; Frederick F. Stewart; J. Douglas Way

    2009-11-01

    This paper reports the transport and sorption properties of poly(fluoroalkoxyphosphazene) (PFAP) membranes for carbon dioxide and nitrogen in both pure and mixed gas experiments. The CO2 permeability decreased from 336 to 142 Barrers with an increase in the CO2/N2 ideal separation factor from 12 to 21 as the membrane temperature was decreased from 303 K to 258 K at feed pressure of 2.9 bars. At lower feed pressure (1.5 bars) the CO2 permeability decreased from 327 to 140 Barrers, while the CO2/N2 ideal separation factor increased from 13 to 22 over the same temperature range. CO2 sorption isotherms were measured using the pressure decay equilibrium method. Solubility of CO2 was determined using the sorption isotherms and the diffusion coefficients were calculated from CO2 permeabilities and solubilities. Sorption isotherms were linear at each temperature for the pressure range studied and the enthalpy of sorption was -5.8 kcal/mol. The solubility coefficient values for CO2 increased from 0.95 to 5.43 cm3 CO2(STP)/cm3 polymer.atm whereas the diffusion coefficient decreased from 2.71 X 10-6 to 0.19 X 10-6 cm2/sec as the temperature decreased from 303 K to 258 K.

  10. Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

    2013-03-01

    Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

  11. Preparation of Inclusion Complex of Piroxicam with Cyclodextrin by Using Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    or the temperature. Moreover, additional advantages lie in the use of carbon dioxide (CO2) which properties of non with CO2 at 150°C and 15 MPa. Keywords: piroxicam; cyclodextrin; complex; ternary agent; supercritical-toxicity and mild critical conditions make it an ideal substitute to organic solvents. CO2 is gaseous at ambient

  12. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  13. Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach

    SciTech Connect (OSTI)

    Schoonen, Martin A. [Stony Brook University

    2014-12-22

    The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO2 (scCO2) and scCO2 with commingled aqueous solutions containing H2S and/or SO2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO2 with commingled aqueous solutions containing H2S and/or SO2 under conditions simulating the environment near the injection point (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.

  14. SOOT-CATALYZED OXIDATION OF SULFUR DIOXIDE

    E-Print Network [OSTI]

    Chang, S.G.

    2010-01-01

    and T. Novakov, "Catalytic oxidation of S02 on carbon inThe mechanism of catalytic oxidation on activated carbon;of water in the catalytic oxidation of S02 on carbonaceous

  15. Intertemporal pricing of sulfur dioxide allowances

    E-Print Network [OSTI]

    Bailey, Elizabeth M.

    1998-01-01

    The Clean Air Act Amendments of 1990 initiated the first large-scale use of the tradable permit approach to pollution control. The theoretical case for this approach rests on the assumption of an efficient market for ...

  16. Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations

    E-Print Network [OSTI]

    Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

    2008-01-01

    Phase Medium Irradiance ? H2 ? CO2 Maximum Reported Ratesa) Specific CO 2 uptake rate, ? CO2 (kg CO 2 /kg dry cell/h)

  17. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  18. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  19. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    WITH SITE SCREENING AND SELECTION FOR CO 2 STORAGE D. A.77 ASSESSING AND EXPANDING CO 2 STORAGE CAPACITY IN DEPLETEDFOR CO 2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN

  20. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    20-22, 2006 End of CO2 injection Fraction Variation 5E-05 -point. End of CO2 injection Fraction Variation Figure 3.poin Y (m (m X End of CO2 storage Fraction Variation Y (m (m

  1. Uncertainty analyses of CO2 plume expansion subsequent to wellbore...

    Office of Scientific and Technical Information (OSTI)

    The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we...

  2. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    of the buoyancy of supercritical CO2 in the presence ofindividual pock- ets of supercritical CO2 to form, therebydomain. Injection of supercritical CO2 occurs at a depth of

  3. Feasibility of CO2 Capture from Mobile Sources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 Capture from Mobile Sources Feasibility of CO2 Capture from Mobile Sources Presents integrated system for post-combustion CO2 capture from mobile sources p-16davis.pdf More...

  4. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel—making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they’re pumped out of the tank.

  5. Impacts of Elevated Atmospheric CO2and O3on Paper Birch (Betula papyrifera): Reproductive Fitness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F.

    2007-01-01

    Atmospheric CO2and tropospheric O3are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3and O3for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2increased both male and female flower production, while elevated O3increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2had significant positive effect on birchmore »catkin size, weight, and germination success rate (elevated CO2increased germination rate of birch by 110% compared to ambient CO2concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3(elevated O3decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2and O3can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less

  6. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  7. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  8. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  9. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  10. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G. (Charleston, WV)

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  11. Variations in 13 C discrimination during CO2 exchange by

    E-Print Network [OSTI]

    as to differential diffusivities of 13 CO2 and 12 CO2 in air (Farquhar, O'Leary & Berry 1982; O'Leary 1984

  12. Carbon Storage Partner Completes First Year of CO2 Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19,...

  13. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  14. Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Chemistry of CO2 Interaction with Swelling Clays Quantum Chemistry of CO2 Interaction with Swelling Clays Ubiquitous clay minerals can play an important role in assessing...

  15. Meeting the CO2 Challenge DEER 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the CO2 Challenge DEER 2002 Meeting the CO2 Challenge DEER 2002 2002 DEER Conference Presentation: Ricardo 2002deergraham.pdf More Documents & Publications Application of...

  16. Theoretical Synthesis of Mixed Materials for CO2 Capture Applications...

    Office of Scientific and Technical Information (OSTI)

    Theoretical Synthesis of Mixed Materials for CO2 Capture Applications Citation Details In-Document Search Title: Theoretical Synthesis of Mixed Materials for CO2 Capture...

  17. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

  18. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    Texas •? Over 30 years of CO2-EOR •? Sampled outside ofF Monitoring studies above EOR-CO2 fields Weyburn-Midale

  19. Buildings, Commissioning, Efficiency, Comfort, and CO2 

    E-Print Network [OSTI]

    Claridge, D. E.

    2006-01-01

    .6% of world CO2 emissions)? US commercial sector use ~50% of world commercial use? Asia today 10-20% of world commercial use 2055200514 7 Billion of Tons of Carbon Emitted per Year 1955 0 C Flat path Historicalemissions 1.9 ?Æ?Æ 2105 14 GtC/y7 GtC/y Seven..., Commissioning, Efficiency, Comfort, and CO2 Asian Pacific Building Commissioning Conference ICEBONovember 8, 2006Shenzhen, ChinaPresented ByDavid E. ClaridgeEnergy Systems LaboratoryTexas A&M University Commissioning New Buildings Beginnings Building Handover...

  20. Regression-based estimates of the rate of accumulation of anthropogenic CO2 in the ocean: A fresh look

    E-Print Network [OSTI]

    Regression-based estimates of the rate of accumulation of anthropogenic CO2 in the ocean: A fresh February 2012 Available online 23 February 2012 Keywords: Carbon dioxide Regression MLR eMLR Regression and guidelines for improvement are presented. Following these guidelines leads to a local two- regression method

  1. Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis

    E-Print Network [OSTI]

    Jardim, Wilson de Figueiredo

    measurements. The use of flow analysis for the determination of dissolved carbon dioxide by membrane separation a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional the processes related to the carbon cycle within the aquatic environment. The direction of CO2 gas exchange

  2. Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W. Keith

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W. Keith Abstract Fossil fuels can be used with minimal atmo- spheric emissions of carbon dioxide, the cost of sequestration and the energy penalty (the energy necessary to capture, transport and inject

  3. The impacts of direct seeding into mulch on the CO2 mitigation MR KHALEDIAN1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    such as direct seeding into mulch (DSM). Conservation tillage can both reduce diesel consumption and sequestrate combustion and organic carbon variations in soil during the field trial. The results showed that using DSM that the quantity of fossil energy input is closely related to the release of carbon dioxide (CO2) from a specific

  4. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions into the atmosphere2

    E-Print Network [OSTI]

    Boyer, Edmond

    dioxide sequestration process. The overall carbonation reaction includes the following steps: (1)23 CaCarbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions change.20 This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper

  5. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro-mechanical properties of the materials modelled are chosen to be representative of a potential injection site. For high on the injection process, and on site and rock properties. Rutqvist et al. (2008) showed through a coupled

  6. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  7. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  8. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  9. EFFICIENT THEORETICAL SCREENING OF SOLID SORBENTS FOR CO2 CAPTURE APPLICATIONS

    SciTech Connect (OSTI)

    Duan, Yuhua; Sorescu, Dan C; Luebke, David

    2011-01-01

    Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.

  10. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect (OSTI)

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

  11. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  12. Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Zimmer, Uwe

    Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCS

  13. Carbon Dioxide Capture DOI: 10.1002/anie.200902836

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Carbon Dioxide Capture DOI: 10.1002/anie.200902836 Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks** Hye-Sun Choi and Myunghyun Paik Suh* Carbon dioxide capture has been capture, storage, and sensing. Compounds 1 and 2 are the first 3D pillared networks assembled from Ni

  14. FRONTIERS ARTICLE On the hydration and hydrolysis of carbon dioxide

    E-Print Network [OSTI]

    Cohen, Ronald C.

    FRONTIERS ARTICLE On the hydration and hydrolysis of carbon dioxide Alice H. England a,b , Andrew M August 2011 a b s t r a c t The dissolution of carbon dioxide in water and the ensuing hydrolysis, carbonic acid and dissolved CO2. The cor- responding carbon K-edge core-level spectra were calculated using

  15. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    #12;The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on Electricity Prices the impact of proposed federal regulations aimed at reductions in carbon dioxide (CO2) emissions gas emissions; however, it does not attempt to model the full details of the proposed legislation

  16. Carbon dioxide sequestration in concrete in different curing environments

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

  17. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains

    E-Print Network [OSTI]

    Angenent, Lars T.

    Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte p losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO2) gas to the cathode and sustainable energy from wastewaters, replace energy intensive wastewater treatment processes, and produce

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    sulfur dioxide smelting reduction smelting reduction iron three-dimensional tonne top-gas recycling blast furnace tonnes per day ultra-low-

  19. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01

    impose a price on the carbon in their own fossil fuels forprice A nthropogenic climate change is driven by CO 2 emissions from the burning of fossil fuels (fossil fuel resources are suf?ciently concentrated such that, if the relatively few countries that extract the most fuels imposed a price

  20. BUILDING A CO2 STORAGE HUB IN

    E-Print Network [OSTI]

    Painter, Kevin

    , once at the forefront of this innovative technology that can give us clean energy from abundant fossil technology we have in the battle to reduce CO2 emissions from power and industrial sources. Without it we and global reliance on low-cost energy from coal and gas shows no sign of diminishing, the time has come

  1. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  2. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

  3. Decarbonization and the time-delay between peak CO2 emissions and concentrations

    E-Print Network [OSTI]

    Seshadri, Ashwin K

    2015-01-01

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

  4. Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane

    E-Print Network [OSTI]

    andaresignificantsourcesofgreenhousegases,including carbon dioxide (CO2) and methane (CH4) emissions. The traditional approachTransport of oxygen in soil pore-water systems: implications for modeling emissions of carbon of CH4 is 24 times greater than that of carbon dioxide (CO2) over a 100-year time scale (Ramaswamy et al

  5. The millennial atmospheric lifetime of anthropogenic CO2

    E-Print Network [OSTI]

    Cambridge, University of

    /ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, rangingThe millennial atmospheric lifetime of anthropogenic CO2 David Archer & Victor Brovkin Received: 19

  6. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine transfer area as IMTP#40 dumped packing. Independent measurements of CO2 solubility give a CO2 loading

  7. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  8. Non-isothermal CO2 flow through an injection well

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    production - superheated steam injection The CO2 phase, whether gas, liquid or supercritical, is determined

  9. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide ................................................................................................................................ 7 1.1 APPROACHES TO REDUCING CARBON DIOXIDE EMISSIONS1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy

  10. ontinuing the legacy of Dr. Charles D. Keeling in monitoring carbon dioxide, NOAA's Office

    E-Print Network [OSTI]

    C ontinuing the legacy of Dr. Charles D. Keeling in monitoring carbon dioxide, NOAA's Office provides funding to Charles D. Keeling to begin monitoring carbon dioxide (CO2) at the South Pole and Mauna-seasonal data on carbon dioxide, methane, carbon monoxide, and other gases in a region where rapid climate

  11. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog

    E-Print Network [OSTI]

    Roulet, Nigel T.

    Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog covariance measurements of net ecosystem carbon dioxide (CO2) exchange (NEE) were taken at an ombrotrophic covariance, carbon dioxide Citation: Lafleur, P. M., N. T. Roulet, J. L. Bubier, S. Frolking, and T. R. Moore

  12. Convective dissolution of carbon dioxide in saline aquifers Jerome A. Neufeld,1

    E-Print Network [OSTI]

    Huppert, Herbert

    Convective dissolution of carbon dioxide in saline aquifers Jerome A. Neufeld,1 Marc A. Hesse,2 of carbon dioxide in saline aquifers, Geophys. Res. Lett., 37, L22404, doi:10.1029/2010GL044728. [2] The storage of carbon dioxide (CO2) in geological formations has been proposed as a technological means

  13. CARBON DIOXIDE IN XYLEM OF TREES: SOURCES AND FATES MARY ANNE McGUIRE

    E-Print Network [OSTI]

    Teskey, Robert O.

    CARBON DIOXIDE IN XYLEM OF TREES: SOURCES AND FATES by MARY ANNE McGUIRE (Under the Direction of Robert O. Teskey) ABSTRACT The importance of carbon dioxide in the xylem of trees was examined, stem respiration, xylem CO2 concentration #12;CARBON DIOXIDE IN XYLEM OF TREES: SOURCES AND FATES

  14. Rate Determination of the CO2* Chemiluminescence Reaction CO + O + M = CO2* + M 

    E-Print Network [OSTI]

    Kopp, Madeleine Marissa, 1987-

    2012-10-15

    numerous works have monitored CO2* chemiluminescence, a full kinetic scheme for the species has yet to be developed. A series of shock-tube experiments was performed in H2-N2O-CO mixtures highly diluted in argon at conditions where emission from CO2... for eleven common collision partners. The final mechanism developed for CO2* consisted of 14 reactions and 13 species. The rate for R1 was determined based on low-pressure experiments performed in two different H2-N2O-CO-Ar mixtures. Final mechanism...

  15. Modeling Hydrogeological and Geomenchanical Processes Related to CO2 Injection in a Faulted Multilayer System

    E-Print Network [OSTI]

    Rutqvist, Jonny; Birkholzer, Jens; Tsang, Chin-Fu

    2006-01-01

    underground injection of supercritical CO2 in a hypotheticalthe CO2-rich phase (supercritical CO2 with small amounts of

  16. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  17. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  18. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  19. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  20. 14 April 2001 tmospheric carbon dioxide

    E-Print Network [OSTI]

    Teskey, Robert O.

    14 April 2001 A tmospheric carbon dioxide (CO2) concentration is increas- ing at approximately 1. Annual anthropogenic carbon emissions in the United States total ap- proximately 1.7 billion tons emissions in the United States and around the world. One potential mechanism for re- ducing net carbon

  1. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  2. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2 D. J. Erickson III,1,2 R. T. Mills,1 J. Gregg,3 T. J. Blasing,4 F. M. Hoffman,1 R. J. Andres,4 of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series

  3. Spatial Disaggregation of CO2 Emissions for the State of California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

  4. House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    and sequestration (CCS) is the critical enabling technology that would reduce CO2 emissions significantly while also at a large industrial source, such as a coal-fired power plant. By capture, it is meant isolating the CO2, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

  5. CO2-H2O mixtures in the geological sequestration of CO2. II ...

    E-Print Network [OSTI]

    2005-07-01

    experimental and field data. ... In all studies discussed above, the solubility of CO2 in water ...... Li Y., and Nghiem L. X. (1986) Phase equilibria of oil, gas and.

  6. Free Air CO2 Enrichment (FACE) Data from the Duke Forest FACE Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEÆs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The Duke University FACE website actually presents information on several FACE experiments. The Forest-Atmosphere Carbon Transfer and Storage (FACTS-I) facility is located in the Blackwood Division of the Duke Forest. It consists of four free-air CO2 enrichment (FACE) plots that provide elevated atmospheric CO2 concentration and four plots that provide ambient CO2 control. The system has been in operation since June, 1994 in the prototype plot, and since August, 1996 in the three additional plots. The prototype plot and its reference were halved with a barrier inserted in the soil in 1998 to conduct, together with five additional plot pairs, CO2 X soil nutrient enrichment experiments. The rest of the plots were partitioned in early 2005 and incorporated into the CO2 X nutrient experiment. To increase statistical power, four additional ambient plots were established in January, 2005, halved, and one half of each fertilized. [copied from http://face.env.duke.edu/description.cfm] The Duke FACE home page makes information available from both completed and ongoing projects, provides a searchable database of publications and presentations, and data, images, and links to related websites.

  7. Continuous CO2 extractor and methods

    SciTech Connect (OSTI)

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  8. Sulfur dioxide gas detection with Na/sub 2/SO/sub 4/-Li/sub 2/SO/sub 4/-Y/sub 2/(SO/sub 4/)/sub 3/-SiO/sub 2/ solid electrolyte by a solid reference electrode method

    SciTech Connect (OSTI)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1987-03-01

    The electromotive force (EMF) measurement for a Na/sub 2/SO/sub 4/Li/sub 2/SO/sub 4/-Y/sub 2/(SO/sub 4/)/sub 3/-SiO/sub 2/ solid electrolyte was performed both with NiSO/sub 4/-NiO and CoSO/sub 4/-Co/sub 3/O/sub 4/ solid reference SO/sub 2/ electrodes. The measured EMF coincided well with the calculated EMF for a sulfur dioxide gas concentration from 30 ppm to 1% at 973 K. Good agreement between the measured and calculated EMF was also obtained for the SO/sub 2/ gas content from 100 ppm to 1%, at 923 K with the NiSO/sub 4/-NiO electrode.

  9. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  10. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  11. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  12. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    SciTech Connect (OSTI)

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the effects of high CO2 waters on marine animals (Barry et al. 2008). This system is capable of controlling oxygen, pH, and temperature of seawater for use in studies of the physiological responses of animals under acidified conditions. We have investigated the tolerance of deep- and shallow-living crabs to high CO2 levels (Pane and Barry 2007; Pane et al. 2008), and are now working on brachiopods (Barry et al. in prep.) and a comparison of deep and shallow living sea urchins. This research program, supported in part by DoE has contributed to a number of other publications authored or co-authored by Barry (Caldeira et al. 2005; Brewer and Barry 2008; Barry et al. 2006, 2010a,b,c; National Research Council, in press; Hoffman et al. in press) as well as over 40 invited talks since 2004, including Congressional briefings and testimony at U.S. Senate Hearings on Ocean Acidification. Through the grant period, the research emphasis shifted from studies of the effects of direct deep-sea carbon dioxide sequestration on deep-sea animals, to a broader conceptual framework of the effects of ocean acidification (whether purposeful or passive) on the physiology and survival of deep and shallow living marine animals. We feel that this has been a very productive program and are grateful to DoE for its support.

  13. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  14. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  15. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

  16. Drivers of the US CO2 emissions 1997-2013

    E-Print Network [OSTI]

    2015-01-01

    drivers of regional carbon dioxide emissions for China. J.D. & Rose, A. Carbon dioxide emissions in the U.S. economy.Analysis of Carbon Dioxide Emission Changes in Germany -

  17. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    SciTech Connect (OSTI)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C tagged NH4HCO3 (ABC) was used. Products of ammonium bicarbonate (ABC) or long-term effect ammonium bicarbonate (LEABC) were tagged with 14C when they were synthesized in the laboratory. An indoor greenhouse was built and wheat was chosen as the plant to study in this ecosystem. The investigated ecosystem consists of plant (wheat), soils with three different pH values (alkaline, neutral and acid), and three types of underground water (different Ca2+ and Mg2+ concentrations). After biological assimilation and metabolism in wheat receiving ABC or LEABC, it was found that a considerable amount (up to 10%) of the carbon source is absorbed by the wheat with increased biomass production. The majority of the unused carbon source (up to 76%) percolated into the soil as carbonates, such as environmentally benign calcium carbonate (CaCO3). Generally speaking, alkaline soil has a higher capability to capture and store carbon. For the same soil, there is no apparent difference in carbon capturing capability between ABC fertilizer and LEABC fertilizer. These findings answer the question how carbon is distributed after synthesized fertilizer is applied into the ecosystem. In addition, a separate post-experiment on fertilizer carbon forms that exist in the soil was made. It was found that the up to 88% of the trapped carbon exists in the form of insoluble salts (i.e., CaCO3) in alkaline soils. This indicates that alkaline soil has a greater potential for storing carbon after the use of the synthesized fertilizer from exhausted CO2.

  18. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect (OSTI)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  19. NETL CO2 Storage Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncriefB NESEA Newsletter ContentCO2

  20. CO2 Compression | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury ScienceComplex earning FPEComplex CNS,CO2

  1. CO2 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEATCNAA Jump to:Emissions fromCO2

  2. CO2 Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office ofCERTIFIED2,May 4, 2011CO2

  3. Process for CO2 Capture Using Ionic Liquid That Exhibits Phase Change

    SciTech Connect (OSTI)

    Eisinger, RS; Keller, GE

    2014-11-01

    A novel process for capturing carbon dioxide from the flue gas of a coal-fired power plant has been shown to reduce parasitic power consumption substantially. The process employs an ionic liquid created at the University of Notre Dame that has a high capacity for absorbing CO2 by chemical reaction. A distinguishing property of this ionic liquid is that it changes phase from solid to liquid upon reaction with CO2. The process uses heat generated by this phase transition to lower parasitic power consumption. The driving force for CO2 separation is a combination of temperature and pressure differences; the process could even work without the addition of heat. A realistic process was created to capture CO2 efficiently. Computer simulation of the process enabled calculation of viable process conditions and power usage. The main concepts of the process were shown to work using a lab-scale apparatus. Parasitic power consumes 23% of net power generation, 55% lower than that of the monoethanolamine (MEA) process. However, capital cost is higher. The cost of electricity (COE) is 28% lower than that of the MEA process.

  4. Conductivity measurements on H2O-bearing CO2-rich fluids

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University; Rimstidt, J. Donald [Virginia Polytechnic Institute and State University

    2015-01-01

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H2O to CO2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H2O concentrations up to ~1600 ppmw (xH2O 3.9 10-3), corresponding to the H2O solubility limit in liquid CO2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. This observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.

  5. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  6. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    E-Print Network [OSTI]

    Chakib Bouallou

    2010-08-12

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  7. Rhombohedral calcite precipitation from CO2-H2O-Ca(OH)2 slurry under supercritical and gas CO2 media

    E-Print Network [OSTI]

    Montes-Hernandez, German; Geoffroy, Nicolas; Charlet, Laurent; Pironon, Jacques

    2008-01-01

    The formation of solid calcium carbonate (CaCO3) from aqueous solutions or slurries containing calcium and carbon dioxide (CO2) is a complex process of considerable importance in the ecological, geochemical and biological areas. Moreover, the demand for powdered CaCO3 has increased considerably recently in various fields of industry. The aim of this study was therefore to synthesize fine particles of calcite with controlled morphology by hydrothermal carbonation of calcium hydroxide at high CO2 pressure (initial PCO2=55 bar) and at moderate and high temperature (30 and 90 degrees C). The morphology of precipitated particles was identified by transmission electron microscopy (TEM/EDS) and scanning electron microscopy (SEM/EDS). In addition, an X-ray diffraction analysis was performed to investigate the carbonation efficiency and purity of the solid product. Carbonation of dispersed calcium hydroxide in the presence of supercritical (PT=90 bar, T=90 degrees C) or gaseous (PT=55 bar, T=30 degrees C) CO2 led to t...

  8. Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-10-02

    Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called �¢����an open path device�¢��� to measure CO2 concentrations near the ground above a CO2 storage area.

  9. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CO2 Heat Pump Water Heater Prototype
    Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National...

  10. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01

    emission and resource accounting. Ecol Econ 69:211–222. 12.Consumption-based accounting of CO 2 emissions Steven J.Consump- tion-based accounting of CO 2 emissions differs

  11. UPDATE ON THE INTERNATIONAL EXPERIMENT ON CO2 OCEAN SEQUESTRATION

    E-Print Network [OSTI]

    discussed strategies for ocean carbon sequestration are direct injection of CO2 into the deep ocean and iron effort is solely focused on the direct injection approach. In this method, liquid CO2 is injected

  12. HYDROMECHANICAL CHARACTERIZATION FOR SITE SELECTION IN CO2 PERMANENT

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    of info and lack of info Arguments against: - It increases electricity cost + extra CO2 (CO2 market Sleipner In Salah Weyburn Snohvit #12;Uplift of 5 mm/yr in In Salah (Rutqvist et al., 2010, IJGGC

  13. North America's net terrestrial CO2 exchange with the atmosphere...

    Office of Scientific and Technical Information (OSTI)

    a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or...

  14. Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they’ve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

  15. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  16. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  17. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    phase dispersivity test (BTC) Porosity-thickness product oftest Two-phase tracer BTC Evolution of CO 2 saturation

  18. CO2 stabilization, climate change and the terrestrial carbon sink

    E-Print Network [OSTI]

    White, Andrew

    CO2 stabilization, climate change and the terrestrial carbon sink A N D R E W W H I T E , * M E L V, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225

  19. Variability of primary production and air-sea CO 2 flux in the Southern Ocean

    E-Print Network [OSTI]

    Wang, Shanlin; Moore, J. Keith

    2012-01-01

    Lima (2007), Enhanced CO 2 outgassing in the Southern OceanCO 2 run, there is a CO 2 outgassing trend of 0.07 PgC/yr/sink and a natural CO 2 outgassing. The anthropogenic CO 2

  20. Post-Combustion CO2 Capture 11 -13 July 2010

    E-Print Network [OSTI]

    Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

  1. Aquatic primary production in a high-CO2 world

    E-Print Network [OSTI]

    Fussman, Gregor

    Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

  2. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing% inlet CO2. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast

  3. Widespread foliage d15 N depletion under elevated CO2

    E-Print Network [OSTI]

    Thomas, David D.

    Widespread foliage d15 N depletion under elevated CO2: inferences for the nitrogen cycle H O R M O an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage d15 N in a wide range

  4. he leading technology under development for management of CO2

    E-Print Network [OSTI]

    Aydilek, Ahmet

    T he leading technology under development for management of CO2 separated and captured from large assessment in relation to deploy- ment of the technology. Potential mechanisms for leakage from CO2 storage Series*sponsored by John J. Kirlin Lecture funds Geologic Sequestration of CO2 : Evaluating

  5. Cimpor inventa nova frmula para reduzir pegada de CO2

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Cimpor inventa nova fórmula para reduzir pegada de CO2 CIMENTO. A Cimpor descobriu uma nova fórmula para produzir ci- mento que lhe permitirá reduzir a pegada de CO 2 em 25%. Segundo as contas da as fábricas do grupo, seriam emitidos menos quatro milhões de toneladas de CO 2 por ano, o que permitiria uma

  6. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing, requires equivalent work of 31.8 kJ/mole CO2 when used with a double matrix stripper and an intercooled

  7. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous. Uninhibited 5 m KHCO3/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO2/mol MEA. #12

  8. Central serotonin neurons are required for arousal to CO2

    E-Print Network [OSTI]

    Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

  9. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing use. Extensive measurements of CO2 solubility in 7 m MEA at 40 and 60o C have confirmed the work

  10. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing 20% of the power output from a 500 MW power plant with 90% CO2 removal. The stripper rate model shows

  11. Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage

    E-Print Network [OSTI]

    Otto, Vincent M.

    This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

  12. Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media 

    E-Print Network [OSTI]

    Cai, Shuzong

    2011-10-21

    CO2 has been widely used as a displacement fluid in both immiscible and miscible displacement processes to obtain tertiary recovery from the field. There are several problems associated with the application of CO2 flooding, especially when...

  13. Potentials of Mean Force and Permeabilities for Carbon Dioxide, Ammonia, and Water Flux across a Rhesus Protein

    E-Print Network [OSTI]

    de Groot, Bert

    Potentials of Mean Force and Permeabilities for Carbon Dioxide, Ammonia, and Water Flux across events of ammonia and carbon dioxide across Rh50 from Nitrosomonas europaea. The simulations show that Rh proteins facilitate carbon dioxide (CO2) transport, and indeed this has been speculated to be their genuine

  14. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    E-Print Network [OSTI]

    Thomas, David D.

    Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from: Brandt, L. A., C. Bohnet, and J. Y. King (2009), Photochemically induced carbon dioxide production

  15. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Energy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmissionsupercritical CO 2 and rock minerals. Studies of geochemical interactions in EGS-CO2

  16. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    E-Print Network [OSTI]

    Birkholzer, Jens

    2008-01-01

    Changes in Response to CO2 Leakage from Deep Geologicalstudy mineral trapping for CO2 disposal in deep arenaceousconstituents as function of P(CO2)? function of P(CO2)? – –

  17. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.

  18. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title:...

  19. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document...

  20. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy...

  1. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Broader source: Energy.gov [DOE]

    Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer...

  2. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  3. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-Print Network [OSTI]

    Sekar, Ram Chandra

    2005-01-01

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  4. Surface controls on the characteristics of natural CO2 seeps: implications for engineered CO2 stores

    E-Print Network [OSTI]

    Haszeldine, Stuart

    be characterized to design the most effective monitoring strategy. Key words: carbon capture and storage, carbon are considering adoption of carbon capture and storage technology to meet carbon emission reduction targets of Edinburgh, Edinburgh, UK ABSTRACT Long-term security of performance of engineered CO2 storage is a principle

  5. INTEGRATING MEA REGENERATION WITH CO2 COMPRESSION AND PEAKING TO REDUCE CO2 CAPTURE COSTS

    E-Print Network [OSTI]

    Rochelle, Gary T.

    by combining use of the heat integration configurations evaluated in this study and for the support and guidance of the DOE/NETL project manager, Jose D. Figueroa. Platte River Power Authority's insight on integrating a CO2 capture system into a full-scale power plant was also of great value

  6. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  7. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.

  8. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore »control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  9. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  10. A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Nael N State University, Raleigh, North Carolina 27695-7905 CO2 was used to break several water-in-crude oil density and mole fraction. The proposed mechanism by which CO2 destabilizes water-in-crude oil emulsions

  11. Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas 

    E-Print Network [OSTI]

    Werner, Nicholas D

    2013-04-29

    the development of a correction for latent heat and carbon dioxide (CO2) fluxes due to a low-pass filtering of the true water vapor and CO2 atmospheric signals. A method of spectral analysis was used to develop a correction scheme for this flux underestimation...

  12. Comprehensive study of carbon dioxide adsorption in the metalorganic frameworks M2(dobdc)

    E-Print Network [OSTI]

    Comprehensive study of carbon dioxide adsorption in the metal­organic frameworks M2(dobdc) (M ¼ Mg and Craig M. Brown*bl Analysis of the CO2 adsorption properties of a well-known series of metal and single crystal X-ray di raction experiments are used to unveil the site-speci c binding properties of CO2

  13. Carbon Dioxide Information Analysis Center (CDIAC) PRINCIPAL INVESTIGATOR: Thomas A Boden (CDIAC Di-

    E-Print Network [OSTI]

    ; oceanic trace gases; solar and atmospheric radiation; trace gas emissions; vegetation response to CO2 PROJECT START DATE: January 1, 1982 PROJECT END DATE: Ongoing SPONSOR: US DOE, Office of Science, Office of the atmospheric concentrations of carbon dioxide (CO2) and other radiatively active gases; the role of the terres

  14. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  15. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    be separated using the sorbent processes currently used to remove sulfur compounds from the synthesis gas is capable of separating up to 90 percent of the carbon dioxide content of raw synthesis gas. The carbon-intensive and would lower the thermal efficiency of coal gasification power plants. Selective separation membrane

  16. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  17. Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7

    E-Print Network [OSTI]

    Boyer, Edmond

    Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

  18. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope

    E-Print Network [OSTI]

    biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation., 1998). The main com- ponents of biogas are CH4 (50­60%) and carbon dioxide (CO2; 40­50%). A major

  19. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  20. Does carbon dioxide pool or stream in the subsurface?

    E-Print Network [OSTI]

    Cardoso, Silvana S S

    2014-01-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...

  1. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Interactions at the Supercritical CO2–liquid InterfaceEnergy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmission

  2. Optical Probing of CO2 Laser-Plasma Interactions at Near Critical Density

    E-Print Network [OSTI]

    Gong, Chao

    2015-01-01

    351. Tsung, F. , et al. , CO2 Laser acceleration of forwardJoshi, Fifteen terawatt picosecond CO2 laser system. Opticspicosecond, multiwavelength CO2 laser pulse. Applied Optics,

  3. Commerical-Scale CO2 Capture and Sequestration for the Cement Industry

    SciTech Connect (OSTI)

    Adolfo Garza

    2010-07-28

    On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

  4. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    SciTech Connect (OSTI)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.

  5. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  6. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, Lye Meng; Tucker, Abigail E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice; Taylor, Ronald C.

    2014-09-01

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  7. How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs

    E-Print Network [OSTI]

    and Petroleum Geology, v. 16, no. 6, p. 489-494. 1. Introduction Carbon Capture and Storage (CCS) is the only.miocic@ed.ac.uk blog jojomio.wordpress.com Scan me! References 1 IPCC, 2005, IPCC Special report on Carbon Dioxide Capture and Storage: Cambridge University Press. 2 Wycherley, H., Fleet, A., and Shaw, H., 1999, Some

  8. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect (OSTI)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  9. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine from 0.06 to 0.01 mol/(m3 .s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO2/ mol MEA

  10. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  11. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    Efforts Investigating Water Extraction •! LLNL –! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios –! Technical

  12. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01

    COAL MODEL Significant potential exists for carbon sequestration and enhanced methane recoverycoal zones within the Lower Pennsylvanian Pottsville Formation. Assessment of the CO 2 sequestration and enhanced recovery

  13. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01

    The geomechanics of CO 2 storage in deep sedimentaryThis paper provides a review of the geomechanics andmodeling of geomechanics associated with geologic carbon

  14. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    and performance of oil well cement with 30 years of CO 2cement –? Carbonation –? Sulfate attack –? Acid attack State of Alaska Oil and Gas Division Old Wells

  15. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers have discovered that nanoparticles of cerium oxide (ceria) in contact with copper will form metal-oxide interfaces that allow the adsorption and activation of CO2,...

  16. North America's net terrestrial CO2 exchange with the atmosphere...

    Office of Scientific and Technical Information (OSTI)

    of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward...

  17. Advanced Post-Combustion CO2 Capture Prepared for the

    E-Print Network [OSTI]

    Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

  18. Evaluating a new approach to CO2 capture and storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 capture and storage In a perspective paper published in Greenhouse Gases: Science and Technology, researchers examined a new approach that could potentially overcome many...

  19. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    by well/VSP (Vertical Seismic Profile) data. Fractures andat the Frio site, a vertical seismic profile ficult due towells VSP (vertical seismic profile) CO 2 distribution updip

  20. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced...

  1. Monitoring CO2 intrusion and associated geochemical transformations...

    Office of Scientific and Technical Information (OSTI)

    Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods Citation Details In-Document Search Title:...

  2. Direct s-CO2 Reciever Development | Department of Energy

    Office of Environmental Management (EM)

    Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Temperature Solar Thermoelectric Generators (STEG) Near-Blackbody Enclosed Particle Receiver...

  3. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01

    implications for CO 2 storage risk. Energy Procedia 4:3699–storage events and putting risk into perspective with other areas of the energy

  4. The Influence of deep-sea bed CO2 sequestration on small metazoan (meiofaunal) community structure and function

    SciTech Connect (OSTI)

    Carman, Kevin R; Fleeger, John W; Thistle, David

    2013-02-17

    We conducted a series of experiments in Monterey Submarine Canyon to examine potential ecological impacts of deep-ocean CO2 sequestration. Our focus was on responses of meiofaunal invertebrates (< 1 mm body length) living within the sediment at depths ranging between 3000-3600 m. Our particular emphasis was on harpacticoid copepods and nematodes. In the first phase of our DOE funding, we reported findings that suggest substantial (~80%) mortality to harpacticoid copepods. In the second phase of our funding we published additional findings from phase one and conducted follow-up experiments in the Monterey Canyon and in the laboratory. In one experiment we looked for evidence that meiofauna seek to escape areas where CO2 concentrations are elevated. �Emergence traps� near the source of the CO2-rich seawater caught significantly more harpacticoids than those far from it. The harpacticoids apparently attempted to escape from the advancing front of carbon dioxide-rich seawater and therefore presumably found exposure to it to be stressful. Although most were adversely affected, species differed significantly in the degree of their susceptibility. Unexpectedly, six species showed no effect and may be resistant. The hypothesis that harpacticoids could escape the effects of carbon dioxide-rich seawater by moving deeper into the seabed was not supported. Exposure to carbon dioxide-rich seawater created partially defaunated areas, but we found no evidence that disturbance-exploiting harpacticoid species invaded during the recovery of the affected area. Based on a detailed analysis of nematode biovolumes, we postulated that the nematode community in Monterey Canyon throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that �moderate� CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods). While we found evidence for negative impacts on deep-sea benthos, we also observed that small-scale experiments with CO2 releases were difficult to replicate in the deep sea. Specifically, in one CO2-release experiment in the Monterey Canyon we did not detect an adverse impacts on benthic meiofauan. In laboratory experiments, we manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepod species were both more sensitive to increased acidity when generated by CO2. Copepods living in environments more prone to hypercapnia, such as mudflats, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion. This interaction could be due to a competition for H+ and metals for binding sites.

  5. Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    SciTech Connect (OSTI)

    Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming

    2013-10-01

    The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 °C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals’ surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO3•3H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.

  6. Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao

    E-Print Network [OSTI]

    Barthelat, Francois

    Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

  7. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  8. DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO Core/Shell Catalysts Yangchun Lan,[a, b] Chao Gai,[c] Paul J. A. Kenis,*[b] and Jiaxing Lu*[a] 1. Introduction Carbon dioxide (CO2) is the most notorious greenhouse gas, which is released by both natural and artificial

  9. January 2, 2008 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

  10. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide

    E-Print Network [OSTI]

    Fletcher, Sara E. Mikaloff

    A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results Andrew atmospheric CO2 gradients and transport simulations are combined with observations of ocean interior carbon (2007), A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results

  11. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01

    is the largest source of NEU-CO2 emissions (233 Mt CO 2 ),black (another key source of NEU-CO2 emissions reported bysource and geographical distributions of NEU-CO2 emissions.

  12. Solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration at ambient conditions

    SciTech Connect (OSTI)

    Wang, Xiaoxing [Pennsylvania State University; Ma, Xiaoliang [Pennsylvania State University; Schwartz, Viviane [ORNL; Clark, Jason C [ORNL; Overbury, Steven {Steve} H [ORNL; Zhao, Shuqi [Pennsylvania State University, University Park, PA; Xu, Xiaochun [Pennsylvania State University; Song, Chunshan [Pennsylvania State University

    2012-01-01

    In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15 was studied for CO2 capture from gas streams with low CO2 concentration at ambient conditions. The sorbent was able to effectively and selectively capture CO2 from a gas stream containing 1% CO2 at 75 C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg/g, respectively, and a selectivity of 14 for CO2/CO and 185 for CO2/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO2-TPD study showed that the sorbent could be regenerated at mild conditions (50-110 C) and was stable in the cyclical operations for at least 20 cycles. Furthermore, the possibility for CO2 capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg/g was attained at 75 C via TPD method using a simulated air with 400 ppmv CO2 in N2.

  13. Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    E-Print Network [OSTI]

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

  14. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  15. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting Host Site: City ofNovel CO 2

  16. Version 3.0 SOP 5 --Underway p(CO2) October 12, 2007 Determination of p(CO2) in air that is in

    E-Print Network [OSTI]

    as the product of the mole fraction of CO2, x(CO2), in the equilibrated gas phase and the total pressure (p . The analyzer is calibrated using gases of known CO2 concentration (mole fraction). The partial pressure, p(CO2 in sea water, it is necessary to convert the mole fraction to fugacity, (CO2), to account for the fact

  17. Greener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from the flue gases of coal-fired power plants would alleviate concerns

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    to remove CO2 from dilute gas streams because they have very high affinity for CO2. Unfortunately high solvents that balance high affinity for CO2 with ease of solvent recovery and reuse. Because the numberGreener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from

  18. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

  19. Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

    E-Print Network [OSTI]

    Zhang, Da

    2012-09-01

    To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity

  20. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    Interactions at the Supercritical CO2–liquid InterfaceProperties of the Supercritical CO2–Water Pure Interface, J.

  1. Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow

    E-Print Network [OSTI]

    Yamamoto, H.

    2010-01-01

    displaces. In situ, the supercritical CO2 partitions betweenprocess, CO2 is injected in a supercritical state that has a

  2. Intercomparison of simulation models for CO2 disposal in underground storage reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Tsang, Chin-Fu; Law, David; Oldenburg, Curt

    2001-01-01

    experience with using CO2 for EOR projects (SPE, 1999), andoil recovery (EOR) using CO2 requires an understanding of

  3. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  4. Influence of C4 vegetation on 13 CO2 discrimination

    E-Print Network [OSTI]

    Minnesota, University of

    Influence of C4 vegetation on 13 CO2 discrimination and isoforcing in the upper Midwest, United vegetation on the 13 CO2 photosynthetic discrimination and atmospheric isotopic forcing in the upper Midwest discrimination within this heterogeneous landscape? (3) To what extent does land use change (i.e., a change in C4

  5. CO2 Injection in the Subsurface Kjetil Haugen

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    (1015 BTU) Year Oil Coal Gas Hydro Nuclear Other Figure 1: World energy consumption by energy type. Thus, replacing oil and coal with less carbon-intensive natural gas, is probably the fastest way of achieving a significant reduction in CO2 emissions. CO2 Capture Natural gas is the most clean burning fossil

  6. Variations in 13 C discrimination during CO2 exchange1

    E-Print Network [OSTI]

    exchange. Observed 13 were described well by the classical model of5 Farquhar, O'Leary & Berry (1982 enzymes, as well as to differential diffusivities of 13 CO2 and 12 CO2 in air9 (O'Leary, 1984; Farquhar, O'Leary

  7. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01

    gross world product, E is global energy consumption, Authorglobal consumption-based CO 2 emissions inventory and calcula- tions of associated consumption-based energyenergy consumption, and combustion-based CO 2 emissions of each region sector were all taken from Version 7 of the Global

  8. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-Print Network [OSTI]

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

  9. The Energy and CO2 Emissions Impact of

    E-Print Network [OSTI]

    The Energy and CO2 Emissions Impact of Renewable Energy Development in China Xiliang Zhang, Tianyu://globalchange.mit.edu/ Printed on recycled paper #12;1 The Energy and CO2 Emissions Impact of Renewable Energy Development Qi, and Valerie J. Karplus Report No. 242 April 2013 China Energy & Climate Project TSINGHUA - MIT

  10. Distribution of anthropogenic CO2 in the Pacific Ocean

    E-Print Network [OSTI]

    Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

  11. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology, by itself, the scope or quantity of greenhouse gas emissions reductions needed to achiev

  12. ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang Song1, Igor Razlivano1, Kevin R. Gurney1, and Preeti Rao2

    E-Print Network [OSTI]

    Hall, Sharon J.

    ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang University, 2Jet Propulsion Laboratory Introduction Carbon dioxide (CO2) emissions, a primary greenhouse gas emissions from natural gas, coal, and petroleum sources. We use a `bottom-up' approach in which CO2

  13. Universitt StuttgartInstitut fr Wasserbau, Lehrstuhl fr Hydromechanik und Hydrosystemmodellierung Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Hydrosystemmodellierung Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations 1/16 Modelling April 2008 Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations #12 on Numerical Models for Carbon Dioxide Storage in Geological Formations 2/16 CO2 leakage mitigation using

  14. A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during

    E-Print Network [OSTI]

    Fortunat, Joos

    in controlling carbon dioxide fluctuations during Antarctic warm events Payal Parekh,1 Fortunat Joos,1 between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during decreasing atmospheric carbon dioxide (CO2). This is consistent with evidence of an increase in the aeolian

  15. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    E-Print Network [OSTI]

    carbon dioxide and elevated ozone concentration Justin M. McGrath a , David F. Karnosky b , Elizabeth A. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide growth and produc- tivity are increasing atmospheric carbon dioxide concentration ([CO2]) and increasing

  16. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  17. Relationships between daytime carbon dioxide uptake and absorbed photosynthetically active radiation for three different mountain/plains

    E-Print Network [OSTI]

    Hunt Jr., E. Raymond

    Relationships between daytime carbon dioxide uptake and absorbed photosynthetically active and Atmospheric Dynamics: Boundary layer processes; KEYWORDS: CO2 flux, absorbed PAR, carbon cycle, remote sensing Change: Biogeochemical processes (4805); 1640 Global Change: Remote sensing; 3307 Meteorology

  18. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  19. EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas (Methane) Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Moridis, George J.; Spycher, Nicholas; Pruess, Karsten

    2004-01-01

    as cushion gas for natural gas storage, Energy&Fuels ,of CO 2 injection into natural gas reservoirs for carbonDioxide or Nitrogen in Natural Gas (Methane) Reservoirs

  20. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  1. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  2. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    SciTech Connect (OSTI)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  3. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in anEGS) with CO 2 as Heat Transmission Fluid - A Scheme for

  4. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Could Sequestration of CO2 be Combined with the DevelopmentTOUGH2 Code for Studies of CO2 Storage in Saline Aquifers,and J. Ennis- King. CO2-H2O Mixtures in the Geological

  5. Odors that Modify CO2 Receptor Activity in Insects and Their Effect on Innate CO2-Mediated Behavior and Neuronal Plasticity

    E-Print Network [OSTI]

    Turner, Stephanie

    2010-01-01

    Intermediates in Insect CO2 Sensory Systems. Science Certel,2007). The molecular basis of CO2 reception in Drosophila.J. (2004). Floral CO2 Reveals Flower Profitability to Moths.

  6. "Target CO2" publication, "Obstruction" clarification, Paterson letter 1. "Target Atmospheric CO2: Where Should Humanity Aim?" will appear in 3-4 days in The

    E-Print Network [OSTI]

    Hansen, James E.

    "Target CO2" publication, "Obstruction" clarification, Paterson letter 1. "Target Atmospheric CO2 the Australian position, but their subsequently stated goals of 450-550 ppm CO2 does. That plan appears to have

  7. Corrosion of various engineering alloys in supercritical carbon dioxide

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2010-01-01

    The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610°C and 20MPa. The purpose of this work was to evaluate each alloy as a potential ...

  8. www.sciam.com SCIENTIFIC AMERICAN 49 Pumping carbon dioxide

    E-Print Network [OSTI]

    O'Donnell, Tom

    . A new, large (1,000-mega- watt-generating) coal-fired power plant produces six million tons of the gas the CO2 output of a stationary coal-burning power plant. It is little wonder, then, that today's capture-and-storage efforts focus on those power plants, the source of one quarter of the world's carbon dioxide emissions

  9. MODELING POTENTIAL IMPACTS OF SO2 CO-INJECTED WITH CO2 ON THE KNOX GROUP, WESTERN KENTUCKY

    SciTech Connect (OSTI)

    Zhu, Junfeng; Harris, David; Leetaru, Hannes

    2014-09-30

    Understanding potential long-term impacts of CO2 impurities, such as sulfur and nitrogen compounds, on deep carbon storage reservoirs is of considerable interest because co-injection of the impurities with CO2 can bring significant economic and environmental benefits. The Cambrian–Ordovician Knox Group, a thick sequence of dolostone (Beekmantown Dolomite) with minor dolomitic sandstone (Gunter Sandstone), in western Kentucky, USA, has been evaluated as a prospective CO2 sequestration target. In this study, TOUGHREACT was used to build 1-D radial models to simulate the potential impacts of co-injected CO2 and SO2 on minerals, pore fluids, and porosity and permeability in the Beekmantown Dolomite and the Gunter Sandstone. Co-injection of a mass ratio of 2.5 percent SO2 and 97.5 percent CO2, representative of flue gas from coal-fired plants, was simulated and the co-injection simulations were compared to models with CO2 only injections. The model results suggest that the major impacts of added SO2 for both the Beekmantown and the Gunter rocks were significant enhancement of dissolution of dolomite and precipitation of anhydrite, leading to noticeable increases in porosity and permeability. The Gunter Sandstone appeared to be more active with SO2 than the Beekmantown Dolomite. More dolomite was dissolved in the Gunter than in the Beekmantown with the same SO2 impurity. Consequently, porosity was raised more in the Gunter than in the Beekmantown. On the other hand, the impacts on aluminosilicate minerals appeared to be insignificant in both reservoirs, slightly changing the rates of precipitation/dissolution but the overall reaction paths remained the same.

  10. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core

    E-Print Network [OSTI]

    Raggio Parkway, Reno, Nevada 89512-1095, USA ABSTRACT. One common assumption in interpreting ice-core CO2 records is that diffusion in the ice does not affect the concentration profile. However, this assumption/Ar and Kr/Ar), electrical conductivity and Ca2+ ion concentrations to show that substantial CO2 diffusion

  11. PVTx properties of the CO2H2O and CO2H2ONaCl systems below 647 K: Assessment of experimental data

    E-Print Network [OSTI]

    Polly, David

    PVTx properties of the CO2­H2O and CO2­H2O­NaCl systems below 647 K: Assessment of experimental-composition (PVTx) properties for the CO2­H2O and CO2­H2O­NaCl systems. This paper presents a comprehensive review. Keywords: CO2 sequestration; PVTx properties; Volume; Density; Thermodynamic modeling 1. Introduction CO2­H

  12. CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents

    SciTech Connect (OSTI)

    2010-10-01

    IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

  13. Please cite this article in press as: Birkholzer, J.T., et al., CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenhouse Gas Control (2015), http://dx.doi.org/10.1016/j.ijggc.2015.03.022

    E-Print Network [OSTI]

    Zhou, Quanlin

    2015-01-01

    (SRCCS) summarized the state of knowledge about CCS as an emerging technology for reducing CO2 emissions dioxide capture and storage (SRCCS) summarized the state of knowledge about CCS as an emerging technology for reducing CO2 emissions to the atmosphere (IPCC (Intergovernmental Panel on Climate Change), 2005

  14. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick,CalendarForkInformation

  15. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick,CalendarForkInformationSources |

  16. The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgram JumpOpusBenefits | Open

  17. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  18. Evaluating Impacts of CO2 and CH4 Gas Intrusion into an Unconsolidated Aquifer: Fate of As and Cd

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Shao, Hongbo; Bacon, Diana H.; Brown, Christopher F.

    2015-07-10

    Abstract The sequestration of carbon dioxide (CO2) in deep underground reservoirs has been identified as an important strategy to decrease atmospheric CO2 levels and mitigate global warming, but potential risks on overlying aquifers currently lack a complete evaluation. In addition to CO2, other gases such as methane (CH4) may be present in storage reservoirs. This paper explores for the first time the combined effect of leaking CO2 and CH4 gasses on the fate of major, minor and trace elements in an aquifer overlying a potential sequestration site. Emphasis is placed on the fate of arsenic (As) and cadmium (Cd) released from the sediments or present as soluble constituents in the leaking brine. Results from macroscopic batch and column experiments show that the presence of CH4 (at a concentration of 1 % in the mixture CO2/CH4) does not have a significant effect on solution pH or the concentrations of most major elements (such as Ca, Ba, and Mg). However, the concentrations of Mn, Mo, Si and Na are inconsistently affected by the presence of CH4 (i.e., in at least one sediment tested in this study). Cd is not released from the sediments and spiked Cd is mostly removed from the aqueous phase most likely via adsorption. The fate of sediment associated As [mainly sorbed arsenite or As(III) in minerals] and spiked As [i.e., As5+] is complex. Possible mechanisms that control the As behavior in this system are discussed in this paper. Results are significant for CO2 sequestration risk evaluation and site selection and demonstrate the importance of evaluating reservoir brine and gas stream composition during site selection to ensure the safest site is being chosen.

  19. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  20. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.