Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

2

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...  

Open Energy Info (EERE)

Storage Program of the Carbon Dioxide (CO2) Capture Project (CCP), a coalition of eight oil and gas companies and two associate members that are working together to reduce carbon...

3

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

4

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network (OSTI)

sound ways to reduce carbon dioxide (CO 2 ) emissions. Onegeological storage for carbon dioxide. In: Baines SJ, WordenGeological storage of carbon dioxide. Geol Soc Spec Publ

Rutqvist, J.

2013-01-01T23:59:59.000Z

5

Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the Peopleís Republic of China  

SciTech Connect

This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

2009-12-01T23:59:59.000Z

6

NETL: NATCARB - CO2 Storage Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

7

Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stri ngent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

Status: Published Citation: Luckow, P; Wise, M; Dooley, J; and Kim S. 2010. Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios. In International Journal of Greenhouse Gas Control, Volume 4, Issue 5, 2010, pp. 865-877. Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting stringent global climate policy targets by the end of the century....

2010-12-31T23:59:59.000Z

8

AZ CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

9

Increasing CO2 Storage in Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

10

NETL: Carbon Storage - CO2 Utilization Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Utilization CO2 Utilization Carbon Storage CO2 Utilization Focus Area Carbon dioxide (CO2) utilization efforts focus on pathways and novel approaches for reducing CO2 emissions by developing beneficial uses for the CO2 that will mitigate CO2 emissions in areas where geologic storage may not be an optimal solution. CO2 can be used in applications that could generate significant benefits. It is possible to develop alternatives that can use captured CO2 or convert it to useful products such chemicals, cements, or plastics. Revenue generated from the utilized CO2 could also offset a portion of the CO2 capture cost. Processes or concepts must take into account the life cycle of the process to ensure that additional CO2 is not produced beyond what is already being removed from or going into the atmosphere. Furthermore, while the utilization of CO2 has some potential to reduce greenhouse gas emissions to the atmosphere, CO2 has certain disadvantages as a chemical reactant. Carbon dioxide is rather inert and non-reactive. This inertness is the reason why CO2 has broad industrial and technical applications. Each potential use of CO2 has an energy requirement that needs to be determined; and the CO2 produced to create the energy for the specific utilization process must not exceed the CO2 utilized.

11

CO2 Capture and Storage Project, Education and Training Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage. It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired power plants and industrial sources. In Decatur, Illinois, a new carbon capture...

12

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

13

Storage of CO2 in Geologic Formations in the Ohio River Valley...  

NLE Websites -- All DOE Office Websites (Extended Search)

OH 43201 614-424-3820 gupta@battelle.org Storage of Co 2 in geologiC formationS in the ohio river valley region Background The storage of carbon dioxide (CO 2 ) in a dense,...

14

How safe is CO2 storage? Natural analogues for CO2 storage sites  

E-Print Network (OSTI)

How safe is CO2 storage? Natural analogues for CO2 storage sites Johannes Miocic, Stuart Gilfillan. Introduction Carbon Capture and Storage (CCS) is the only technology available to reduce greenhouse gas and analysed a global dataset of natural CO2 reservoirs as analogues for CO2 storage sites. Initial results

15

System-level modeling for geological storage of CO2  

SciTech Connect

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

16

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

17

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

18

Economic Evaluation of CO2 Storage and Sink Enhancement Options  

Science Conference Proceedings (OSTI)

This project developed life-cycle costs for the major technologies and practices under development for carbon dioxide (CO2) storage and sink enhancement. The technologies evaluated included options for storing captured CO2 in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of the carbon sequestration in forests and croplands. The capture costs for a nominal 500 MWe integrated gasification combined cycle plant from an earlier study w...

2002-12-06T23:59:59.000Z

19

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

20

Carbon dioxide storage professor Martin Blunt  

E-Print Network (OSTI)

Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

081001 CA CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

22

Thermophysical Properties of Carbon Dioxide and CO2-Rich Mixtures...  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon dioxide (CO 2 ) emissions; and will help maintain the nation's leader- ship in the export of gas turbine equipment. In this NETL-managed project, the National Institute of...

23

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

E-Print Network (OSTI)

. For the geologic and ocean storage options, CO2 capture costs from another project were added to the costs of CO2 storage estimated in this project to provide combined costs of CO2 capture and storage. Combined costs) cases were used as the basis for the capture component of this project. Costs of CO2 capture were based

24

Alabama Project Testing Potential for Combining CO2 Storage with Enhanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Project Testing Potential for Combining CO2 Storage with Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast Regional Carbon Sequestration Partnership (SECARB) are injecting CO2 into a coalbed methane well in Tuscaloosa County to assess the capability of mature coalbed methane reservoirs to receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the

25

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

26

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

27

The Cost of Carbon Capture and Storage (CCS) Part I: CO2 Pipeline Transport  

E-Print Network (OSTI)

The Cost of Carbon Capture and Storage (CCS) Part I: CO2 Pipeline Transport Nils Johnson and Dr the economics of transporting carbon dioxide via pipeline from the point of capture and compression at large studies identify pipeline transport as the most economical method for moving large volumes of CO2 overland

California at Davis, University of

28

First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Generation Risk Profiles Help Predict CO2 Storage Site First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles September 18, 2012 - 1:00pm Addthis Washington, DC - In support of large-scale carbon capture, utilization and storage (CCUS) projects, a collaboration of five U.S. Department of Energy (DOE) national laboratories has completed first-generation risk profiles that, for the first time, offer a means to predict the probability of complications that could arise from specific carbon dioxide (CO2) storage sites. With their detailed methodology for quantifying risk potential at underground carbon storage sites, the profiles will help support safe, large-scale CCUS projects, an important option in the effort to reduce human-generated CO2 emissions linked by many experts to global climate

29

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

30

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

31

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

32

Carbon Storage Partner Completes First Year of CO2 Injection Operations in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Partner Completes First Year of CO2 Injection Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in Illinois. Led by the Illinois State Geological Survey, the Illinois Basin-Decatur Project is the first demonstration-scale project in the United States to use CO2 from an industrial source and inject it into a saline reservoir. The CO2 is being captured from an ethanol production facility operated by the Archer Daniels Midland Company in Decatur, Ill., and is being injected

33

Update on Utilization or Storage of CO2 Through Chemical, Biological, or Mineral Conversion  

Science Conference Proceedings (OSTI)

If emissions of carbon dioxide to the atmosphere are regulated, carbon capture from fossil-fired power plants is likely to become required. Many options for storing, sequestering, reusing, or converting the captured CO2 have been proposed. While storage or sequestration of the captured CO2 can reduce emissions to the atmosphere, beneficial reuse or conversion of the CO2 can potentially be much more advantageous by not only reducing emissions but also producing a ...

2013-12-16T23:59:59.000Z

34

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

35

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

36

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

37

Proceedings: Workshop on CO2 Transport/Storage Cost Modeling  

Science Conference Proceedings (OSTI)

If reductions in CO2 emissions are needed in the utility industry, one of the potential solutions is application of CO2 capture and storage. In order to make informed decisions on applying CO2 capture and storage to the utility industry, high quality estimates of the costs are needed. While significant efforts have been made to evaluate the costs of CO2 capture from power plants, relatively little has been done to develop costs of transport and storage of CO2. This report presents the results of a worksh...

2009-03-27T23:59:59.000Z

38

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

39

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

40

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

42

DOE Manual Studies 11 Major CO2 Geologic Storage Formations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manual Studies 11 Major CO2 Geologic Storage Formations Manual Studies 11 Major CO2 Geologic Storage Formations DOE Manual Studies 11 Major CO2 Geologic Storage Formations October 5, 2010 - 1:00pm Addthis Washington, DC - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact onCCS Opportunities in the United States [click on imageto link to the publication]Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) developed the manual to better understand the characteristics of geologic formations

43

The Legal Rights and Liabilities of Underground CO2 Storage  

Science Conference Proceedings (OSTI)

This report reviews the legal and regulatory landscape of CO2 storage through an analysis of current rules from state and federal agencies that have jurisdiction now, or may have jurisdiction in the future, and which will impact the planning, construction, management and operation of underground CO2 storage projects.

2009-10-28T23:59:59.000Z

44

DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitor and Evaluate Geologic CO2 Storage Monitor and Evaluate Geologic CO2 Storage DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage August 24, 2009 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today announced the selection of 19 projects to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. The projects' total value is approximately $35.8 million over four years, with $27.6 million of DOE funding and $8.2 million of non-Federal cost sharing. The work will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Coal is the Nation's most abundant energy resource, supplying nearly 50 percent of domestic electricity. In order for low-cost electricity from

45

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network (OSTI)

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study offers a conceptual approach to increasing the storage efficiency of CO2 injection in saline formations and investigates what an actual CO2 storage project might entail using field data for the Woodbine aquifer in East Texas. The study considers three aquifer management strategies for injecting CO2 emissions from nearby coal-fired power plants into the Woodbine aquifer. The aquifer management strategies studied are bulk CO2 injection, and two CO2-brine displacement strategies. A conceptual model performed with homogeneous and average reservoir properties reveals that bulk injection of CO2 pressurizes the aquifer, has a storage efficiency of 0.46% and can only last for 20 years without risk of fracturing the CO2 injection wells. The CO2-brine displacement strategy can continue injecting CO2 for as many as 240 years until CO2 begins to break through in the production wells. This offers 12 times greater CO2 storage efficiency than the bulk injection strategy. A full field simulation with a geological model based on existing aquifer data validates the storage capacity claims made by the conceptual model. A key feature in the geological model is the Mexia-Talco fault system that serves as a likely boundary between the saline aquifer region suitable for CO2 storage and an updip fresh water region. Simulation results show that CO2 does not leak into the fresh water region of the iv aquifer after 1000 years of monitoring if the faults have zero transmissibility, but a negligible volume of brine eventually gets through the mostly sealing fault system as pressure across the faults slowly equilibrates during the monitoring period. However, for fault transmissibilities of 0.1 and 1, both brine and CO2 leak into the fresh water aquifer in increasing amounts for both bulk injection and CO2-brine displacement strategies. In addition, brine production wells draw some fresh water into the saline aquifer if the Mexia-Talco fault system is not sealing. A CO2 storage project in the Woodbine aquifer would impact as many as 15 counties with high-pressure CO2 pipelines stretching as long as 875 km from the CO2 source to the injection site. The required percentage of power plant energy capacity was 7.43% for bulk injection, 7.9% for the external brine disposal case, and 10.2% for the internal saturated brine injection case. The estimated total cost was $0.00132Ė$0.00146/kWh for the bulk injection, $0.00191Ė$0.00211/kWh for the external brine disposal case, and $0.0019Ė$0.00209/kWh for the internal saturated brine injection case.

Akinnikawe, Oyewande

2012-08-01T23:59:59.000Z

46

Pressure Swing Absorption Device and Process for Separating CO2 from Shifted Syngas and its Capture for Subsequent Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Swing Absorption Device and Pressure Swing Absorption Device and Process for Separating CO 2 from Shifted Syngas and its Capture for Subsequent Storage Background Pulverized coal-fired power plants provide more than 50 percent of electricity needs while accounting for a third of the total carbon dioxide (CO 2 ) emissions in the United States. However, capturing CO 2 from the flue gas stream in coal-fired power plants using current commercial CO 2 capture technology could consume up

47

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

48

Regional Partner Announces Plans for Carbon Storage Project Using CO2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partner Announces Plans for Carbon Storage Project Using Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant July 20, 2009 - 1:00pm Addthis Washington, DC - Southern Company and the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the U.S. Department of Energy (DOE) Regional Carbon Sequestration Partnerships program, have announced plans to store carbon dioxide (CO2) captured from an existing coal-fired power plant. The project represents a major step toward demonstrating the viability of integrating carbon capture and storage to mitigate climate change. This storage project, located in the Citronelle Oil Field north of Mobile,

49

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage and Sink Enhancements: Storage and Sink Enhancements: Developing Comparable Economics Richard G. Rhudy (rrhudy@epri.com; 650-855-2421) Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303-0813 Bert R. Bock (brbock@tva.gov; 256-386-3095) David E. Nichols (denichols@tva.gov; 256-386-2489) Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Abstract One of the major difficulties in evaluating CO 2 sequestration technologies and practices, both geologic storage of captured CO 2 and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This paper reports on a project that compares the economics of major technologies and practices under development for CO 2 sequestration, including captured CO 2 storage options, such as active oil reservoirs, depleted oil and gas

50

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

51

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

52

How much carbon dioxide (CO 2 ) is produced per kilowatt-hour ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide (CO 2) is produced per kilowatt-hour when generating electricity with fossil fuels? You can calculate the amount of CO2 produced per kWh for ...

53

NETL: News Release - DOE Manual Studies 11 Major CO2 Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2010 5, 2010 DOE Manual Studies 11 Major CO2 Geologic Storage Formations Information in Comprehensive Report Important to Carbon Capture and Storage Research Washington, D.C. - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States [click on image to link to the publication] Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's

54

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

55

Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the InSalah CO2 Storage Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection and Reservoir Hazard Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the In Salah CO 2 Storage Project Background Safe and permanent storage of carbon dioxide (CO 2 ) in geologic reservoirs is critical to geologic sequestration. The In Salah Project (joint venture of British Petroleum (BP), Sonatrach, and StatoilHydro) has two fundamental goals: (1) 25-30 years of 9 billion cubic feet per year (bcfy) natural gas production from 8 fields in the Algerian

56

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada December 1, 2010 - 12:00pm Addthis Washington, DC - There could be as much as 5,700 years of carbon dioxide (CO2) storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy's (DOE) Carbon Sequestration Atlas (Atlas III). The updated preliminary estimate, based on current emission rates, documents 1,800 billion to more than 20,000 billion metric tons of CO2 storage potential in saline formations, oil and gas reservoirs, and unmineable coal areas. This suggests the availability of approximately

57

DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Assesses Potential for Carbon Dioxide Storage Beneath Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands May 14, 2009 - 1:00pm Addthis Washington, DC - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

58

Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review  

SciTech Connect

Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

2012-07-09T23:59:59.000Z

59

NETL: News Release - DOE/NETL Carbon Dioxide Capture and Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2011 DOENETL Carbon Dioxide Capture and Storage RD&D Roadmap Provides Overview of RD&D Efforts to Provide Cost-Effective Advanced CO2 Capture and Storage Technologies for...

60

How much carbon dioxide (CO 2 ) is produced when different ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... (CO 2) is produced per kilowatt-hour when generating electricity with fossil fuels?

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CO2 Capture and Storage Newsletter, Issue 4  

Science Conference Proceedings (OSTI)

This issue of EPRI's CO2 Capture and Storage Newsletter includes highlights of these meetings: The DOE meeting for the Regional Carbon Sequestration Partnerships program, held in Pittsburgh, Pennsylvania, in October 2008 The Ninth Annual MIT Carbon Sequestration Forum, held in Cambridge, Massachusetts, in October 2008 Stanford GCEP meeting held in Stanford, California in October 2008 The Ninth Greenhouse Gas Technology (GHGT9) conference held in Washington, DC in November 2008

2008-12-11T23:59:59.000Z

62

CO2 Capture and Storage Newsletter Issue 5  

Science Conference Proceedings (OSTI)

Issue 5 of EPRI's CO2 Capture and Storage Newsletter includes the highlights of these meetings: The 3rd Annual Algae Energy Summit, held in San Diego, California in October 2009 The 10th Annual MIT Carbon Sequestration Forum, held in Cambridge, Massachusetts in October 2009 Stanford's Global Climate and Energy Project (GCEP), 5th Energy Research Symposium, held in Stanford, California in late September early October 2009 The 36th IEA GHG Executive Committee Meeting, held in Zurich, Switzerland in October...

2009-12-03T23:59:59.000Z

63

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Leveraging regionaL expLoration Leveraging regionaL expLoration to DeveLop geoLogic Framework For co 2 Storage in Deep FormationS Background The Midwestern region encompasses numerous coal-fired power plants that could be adversely impacted by carbon dioxide (CO 2 ) emission control restrictions. Geologic sequestration could be a viable option to mitigate the CO 2 emissions within this region. Unfortunately, the understanding of rock properties within deep forma- tions in the region is poorly understood due to lack of deep well data. Under this project, regional geologic characterization is being refined with new rock property data being collected in collaboration with regional oil and gas drilling companies. Description The project is designed to develop an improved understanding of the geologic frame-

64

Screening and Ranking of Hydrocarbon Reservoirs for CO2 Storage in the Alberta Basin, Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

Screening and Ranking of Hydrocarbon Reservoirs for CO Screening and Ranking of Hydrocarbon Reservoirs for CO 2 Storage in the Alberta Basin, Canada Stefan Bachu (Stefan.Bachu@gov.ab.ca; 780-427-1517) Alberta Energy and Utilities Board 4999-98 Avenue Edmonton, AB, T6B 2X3, Canada Introduction Human activity since the industrial revolution has had the effect of increasing atmospheric concentrations of gases with a greenhouse effect, such as carbon dioxide (CO 2 ) and methane (CH 4 ), leading to climate warming and weather changes (Bryant, 1997; Jepma and Munasinghe, 1998). Because of its relative abundance compared with the other greenhouse gases, CO 2 is by far the most important, being responsible for about 64% of the enhanced "greenhouse effect" (Bryant, 1997). Given their inherent advantages, such as availability, competitive cost, ease of

65

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

66

Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage  

E-Print Network (OSTI)

of caprock minerals by carbon dioxide. Geofluids 7, 112-122.between water and carbon dioxide. Langmuir 15, 419-428. DaYung, K. H. (1995) Carbon dioxideís liquidóvapor coexistence

Nielsen, L.C.

2013-01-01T23:59:59.000Z

67

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

cycle assessment of carbon dioxide capture and storage fromSpecial Report on Carbon Dioxide Capture and Storage. 2005.DM, Smit B, Long JR. Carbon dioxide capture: Prospects for

Sathre, Roger

2013-01-01T23:59:59.000Z

68

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

from hazardous waste injection wells, test wells, and oilthe permitting of CO2 injection wells. PROCEEDINGS, CO2SCand completed CO 2 injection wells and continuous monitoring

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

69

Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) ¬Ľ Ice Cores Carbon Dioxide (CO2) ¬Ľ Ice Cores Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core Record from Law Dome, Antarctica Introduction This page provides an introduction and links to records of atmospheric carbon dioxide (CO2) concentrations over the last 2000 years, emphasizing large data bases each representing many currently active stations. Records since about 1960 (depending on location) have been obtained from samples of ambient-air at remote stations, which represent changing global atmospheric concentrations rather than influences of local sources. The longer (2000-year) record is from the Law Dome ice core in Antarctica. The ice-core record has been merged with modern annual data from Cape Grim, Tasmania to provide a 2000-year record ending with the most recent data. A

70

Building the Cost Curve for CO2 Storage: North American Sector  

Science Conference Proceedings (OSTI)

The study has assessed geological storage opportunities both in on-shore USA and Canada. The Canadian component concentrated on the Western Canadian Sedimentary Basin where the main storage potential for Canada is considered to exist. The CO2 storage options considered in the study included: Storage in depleted/disused oil and gas fields, Enhanced Oil Recovery (EOR) combined with CO2 storage, Enhanced coal bed methane recovery (ECBM) combined with CO2 storage, Storage in deep saline aquifers (open and cl...

2005-12-08T23:59:59.000Z

71

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

response to climate change: capacity of deep saline aquifersO.M. , 2007. CO 2 storage capacity estimation: issues andF. , 2008. CO 2 storage capacity calculations for the Dutch

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

72

New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential December 21, 2012 - 9:58am Addthis Atlas IV was created by the National Energy Technology Laboratory (NETL), and includes input from the more than 400 organizations in 43 states and four Canadian provinces that make up the Department√ʬĬôs seven Regional Carbon Sequestration Partnerships (as shown above). See this map here. Atlas IV was created by the National Energy Technology Laboratory (NETL), and includes input from the more than 400 organizations in 43 states and four Canadian provinces that make up the Department's seven Regional Carbon Sequestration Partnerships (as shown above). See this map here.

73

Hyperspectral Geobotanical Remote Sensing for CO2 Storage Monitoring  

DOE Green Energy (OSTI)

This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant and animal ecologies in our geothermal exploration, remote sensing research program at Mammoth Mountain CA USA. We also know from our geothermal exploration remote sensing programs, that we can map subtle hidden faults by spatial signatures of altered minerals and of plant species and health distributions. Mapping hidden faults is important because in our experience these highly localized (one to several centimeters) spatial pathways are good candidates for potentially significant CO2 leaks from deep underground formations. The detection and discrimination method we are developing uses primarily airborne hyperspectral, high spatial (3 meter) with 128 band wavelength resolution, visible and near infrared reflected light imagery. We also are using the newly available ''Quickbird'' satellite imagery that has high spatial resolution (0.6 meter for panchromatic images, 2.4 meters for multispectral). We have a commercial provider, HyVista Corp of Sydney Australia, of airborne hyperspectral imagery acquisitions and very relevant image data post processing, so that eventually the ongoing surveillance of CO2 storage fields can be contracted for commercially. In this project we have imaged the Rangely Colorado Oil field and surrounding areas with an airborne hyperspectral visible and near infrared reflected light sensor. The images were analyzed by several methods using the suite of tools available in the ENVI commercial hyperspectral image processing software. We have also begun to use the high resolution (0.6 meter) commercial satellite QuickBird in our technology development. This hyperspectral imaging project for CO2 leakage monitoring has focused on using the extensive hyperspectral imagery set that we acquired of the Rangely CO enhanced oil recovery field in August 2002. We have accomplished extensive analysis of this imagery. We have created highly detailed maps of soil types, plant coverages, plant health, local ecologies or habitats, water conditions, and manmade objects throughout the entire Rangely Oil field and surrounding areas. The results were verified during a field trip to Rangely CO in August 2003. These maps establish an environmental and ecological baseline against which any future CO2 leakage effects on the plants, plant habitats, soils and water conditions can be detected and verified. We have also seen signatures that may be subtle hidden faults. If confirmed these faults might provide pathways for upward CO2 migration if that occurred at any time during the future. We have found a result that was unexpected, new to us, and potentially very important to the task of monitoring for CO2 that has leaked to within the plant root depths near the surface. The discovery is that one of our analysis techniques has picked out finely detailed mapping of local ecologies. Some of which are found to extend across the entire Rangely oil field and into the surrounding areas. These ecologies appear to be made up of a fairly narrow range of percentage admixtures of two or three very specific plant types and soil types. It is likely that any large amounts of CO2 reaching the root depth near the surface would begin to modify the shapes of the habitats. These habitat changes will be easy to detect by repeat imaging of the area. The habitat modification signature is probably detectable earlier following the start of CO2 build up in the soil, than looking for individual plant stress. We strongly recommend a long term research effort that will establish what CO2 soil co

Pickles, W; Cover, W

2004-05-14T23:59:59.000Z

74

Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations  

E-Print Network (OSTI)

Water Associated with Carbon Dioxide Capture and Storage,and Detection of Carbon Dioxide in Dilute Aquifers, 9 thGeological Storage of Carbon Dioxide and Amending Council

Birkholzer, J.T.

2013-01-01T23:59:59.000Z

75

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

76

Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2 Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2 Irrigation, and Nitrogen (1992) (NDP-037) DOI: 10.3334/CDIAC/vrc.ndp037 image Data image PDF file Investigators B. A. Kimball, J. R. Mauney, R. L. La Morte, G. Guinn, F. S. Nakayama, J. W. Radin, E. A. Lakatos, S. T. Michell, L. L. Parker, G. J. Peresta, P. E. Nixon III, B. Savoy, S. M. Harris, R. MacDonald, H. Pros, and J. Martinez This NDP presents data on the effects of continuous CO2 enrichment of cotton during five consecutive growing seasons, 1983 to 1987, under both optimal and limiting levels of water and nitrogen. Unlike many prior CO2-enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions with

77

A dynamic model for optimally phasing in CO2 capture and storage infrastructure  

Science Conference Proceedings (OSTI)

CO"2 capture and storage (CCS) is a climate-change mitigation strategy that requires an investment of many billions of dollars and tens of thousands of miles of dedicated CO"2 pipelines. To be effective, scientists, stakeholders, and policy makers will ... Keywords: CO2 capture and storage, Climate-change policy, Infrastructure modeling, Pipeline modeling, SimCCS, Spatiotemporal optimization

Richard S. Middleton; Michael J. Kuby; Ran Wei; Gordon N. Keating; Rajesh J. Pawar

2012-11-01T23:59:59.000Z

78

Best Practice Guidelines for Geologic Storage of Carbon Dioxide: Geologic Storage Options, Site Evaluation, and Monitoring/Mitigatio n  

Science Conference Proceedings (OSTI)

The purpose of this report is to set forth a set of "best practices" that support long-term, secure storage of captured carbon dioxide (CO2). For each of a suite of geologic storage options, the report establishes background and basic concepts, defines site selection criteria and procedures, and sets forth monitoring and mitigation options. The initial suite of geologic CO2 storage options to be addressed includes saline aquifers, depleted oil fields, depleted natural gas fields, and deep unmineable coal...

2004-12-22T23:59:59.000Z

79

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

WITH HETEROGENEITY IN OIL AND GAS RESERVOIRS APPLIED TO CO 2sedimentary basins, oil and gas fields, and industrial CO 2Harr, C.L. , 1996, Paradox oil and gas potential of the Ute

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

80

Lake Nyos and Mammoth Mountain: What Do They Tell Us about the Security of Engineered Storage of CO2 Underground?  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Nyos aNd MaMMoth MouNtaiN: Lake Nyos aNd MaMMoth MouNtaiN: What do they teLL us about the security of eNgiNeered storage of co 2 uNdergrouNd? Introduction Lake Nyos in the Northwest Province of Cameroon in western Africa and Mammoth Mountain in California are the sites of two well-known underground releases of carbon dioxide (CO 2 ) in nature, both with adverse effects. Both Lake Nyos and Mammoth Mountain are atop current or former volcanoes and the released CO 2 is volcanic in origin (sometimes referred to as magmatic origin). Molten rock (magma) far below the Earth's surface contains entrained amounts of water, CO 2 , and other gases. If the magma rises toward the Earth's surface, the pressure it is under is reduced and the entrained gases begin to expand. The expansion of the

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: IEP ¬Ė Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption with Potassium Carbonate Carbon Dioxide Capture by Absorption with Potassium Carbonate Project No.: FC26-02NT41440 Pilot Plant at the University of Texas Pilot Plant at the University of Texas The University of Texas at Austin investigated an improved process for CO2 capture by alkanolamine absorption that uses an alternative solvent, aqueous potassium carbonate (K2CO3) promoted by piperazine (PZ). If successful, this process would use less energy for CO2 capture than the conventional monoethanolamine (MEA) scrubbing process. An improved capture system would mean a relative improvement in overall power plant efficiency. The project developed models to predict the performance of absorption/stripping of CO2 using the improved solvent and perform a pilot plant study to validate the process models and define the range of feasible

82

NETL: IEP ¬Ė Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

83

NETL: IEP ¬Ė Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

84

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

most of which from natural gas storage and groundwaterconducted in the Hudson natural gas storage field in 1969 (storage of carbon dioxide in unused aquifers and in depleted natural gas

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

85

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report  

DOE Green Energy (OSTI)

This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

Sun, Xiaolei; Rink, Nancy T

2011-04-29T23:59:59.000Z

86

Evaluating CO2-EOR and CO2 Storage Capacity in Kansas  

E-Print Network (OSTI)

waterfloods, and likely to be good CO2 EOR candidates · No single field is large enough to justify the capital second well completed in Chester sand 1999-2001 rapid development of entire field 2001 waterflood to injectors) Waterflood 10 injectors 13 producers (2 of which are not "plumbed into flood") Fluid statistics

Peterson, Blake R.

87

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network (OSTI)

and interference with other injection wells could occur (above active CO 2 injection wells, with the uplift bulgeskilometers from each injection well (Vasco et al. , 2008a,

Rutqvist, J.

2013-01-01T23:59:59.000Z

88

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network (OSTI)

EOR operations, natural gas storage, and acid gas disposal.on underground storage of natural gas. J Pet Technol (June

Rutqvist, J.

2013-01-01T23:59:59.000Z

89

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

90

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1  

E-Print Network (OSTI)

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1 *, P.D.C. Défossez1 storage of CO2 in unmineable coal seams could be a very interesting option in the sustainable management of coal basins. However, the various chemical and physical parameters that determine the success

Paris-Sud XI, Université de

91

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables  

E-Print Network (OSTI)

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables storage fuel cells CO2 capture photovoltaics ma conversion biofuels batteries conversion biofuels stion CO Stanford University About GCEP #12;Explored novel approaches for enhanced biofuel production, such as

Nur, Amos

92

Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II  

Science Conference Proceedings (OSTI)

This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

2009-06-01T23:59:59.000Z

93

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

containment, then the natural gas storage model would haveApplication of the natural gas storage model for geo-VSP data recorded at a natural gas storage field in Indiana,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

94

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

VSP data recorded at a natural gas storage field in Indiana,and in some locations is used for natural gas storage.These natural gas storage fields have provided significant

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

95

Novel Concepts Research in Geologic Storage of CO2  

Science Conference Proceedings (OSTI)

As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2007 period of the project. As discussed in the report, the main accomplishment was an announcement by AEP to move forward with a {approx}100,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. This decision was the outcome of last several years of research under the current DOE funded project involving the technology, site-specific characterization, modeling, risk assessment, etc. This news marks a significant accomplishment for DOE's research program to translate the theoretical potential for carbon sequestration into tangible measures and approaches for the region. The program includes a 30-megawatt thermal product validation at the Mountaineer Plant where up to 100,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Plans include further steps at Mountaineer with capture and storage at a very expedited pace. Work continued on the design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase of the project has reached a major milestone. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

Neeraj Gupta

2007-03-31T23:59:59.000Z

96

Novel Concepts Research in Geologic Storage of CO2  

Science Conference Proceedings (OSTI)

As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the April-June 2007 period of the project. As discussed in the report, the main accomplishments related to preparation to move forward with a 100,000-300,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. The program includes a 10 to 30-megawatt thermal product validation at the Mountaineer Plant where up to 300,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, reservoir storage simulations, and assessment of monitoring technologies as they apply to the project site were developed for the project. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

Neeraj Gupta

2007-06-30T23:59:59.000Z

97

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

98

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

such as a thermal power plant, and CO 2 sequestration tech-statistics at the thermal power plants in different statesis from eighty one thermal power plants across the country.

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

99

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

the arrival of CO 2 . The drilling fluids were tagged withSeismic survey Drilling phase Fluid loss record, PWD Leak-as fluid path should be investigated during drilling phase.

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

100

Dehydrated Prussian Blues for CO2 Storage and Separation Applications  

Science Conference Proceedings (OSTI)

Adsorption isotherms of pure gases present in flue and natural gas including CO2, N2, CH4 and water were studied using prussian blues of chemical formula M3[Co(CN)6]2 (M = Cu, Ni, Mn). These materials adsorbed 8-12 wt % of CO2 at room temperature and 1 bar of pressure with heats of adsorption ranging from 6 to 16 kcal/mol.

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter; Ghorishi, Behrooz S.

2010-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CO2 as Cushion Gas for Compressed Air Energy Storage - Energy ...  

Carbon sequestration; More Information FOR MORE INFORMATION Curtis M. Oldenburg, Carbon Dioxide as Cushion Gas for Natural Gas Storage, Energy and Fuels, 17, ...

102

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nationís CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

103

The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2)  

Open Energy Info (EERE)

The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics: Market Analysis Website: energyenvironment.pnl.gov/news/pdf/PNNL-19112_Revision_1_Final.pdf Equivalent URI: cleanenergysolutions.org/content/smart-grid-estimation-energy-and-carb Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Resource Integration Planning,Mandates/Targets,Enabling Legislation,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

104

Carbon Dioxide Storage: Geological Security and Environmental Issues Ė Case Study on the Sleipner Gas Field in Norway Summary  

E-Print Network (OSTI)

Carbon dioxide capture and storage (CCS) is one option for mitigatining atmospheric emissions of carbon dioxide and thereby contributes in actions for stabilization of atmospheric greenhouse gas concentrations. Carbon dioxide storage in geological formations has been in practice since early 1970s. Information and experience gained from the injection and/or storage of CO2 from a large number of existing enhanced oil recovery (EOR) projects indicate that it is feasible to safely store CO2 in geological formations as a CO2 mitigation option. Industrial analogues, including underground natural gas storage projects around the world and acid gas injection projects, provide additional indications that CO2 can be safely injected and stored at well-characterized and properly managed sites. Geological storage of CO 2 is in practice today beneath the North Sea, where nearly 1 MtCO2 has been successfully injected annually in the Utsira formation at the Sleipner Gas Field since 1996. The site is well characterized and the CO 2 injection process was monitored using seismic methods and this provided insights into the geometrical distribution of the injected CO 2. The injected CO2 will potentially be trapped geochemically pressure build up as a result of CO2 injection is unlikely to occur. Solubility and density dependence of CO2-water composition will become the controlling fluid parameters at Sleipner. The solubility trapping has the effect of eliminating the buoyant forces that drive CO2 upwards, and through time it can lead to mineral trapping, which is the most permanent and secure form of geological storage. Overall, the study at the Sleipner area demonstrates the geological security of carbon dioxide storage. The monitoring tools strengthen the verification of safe injection of CO2 in the Utsira formation. This proves that CO2 capture and storage is technically feasible and can be an effective method for greenhouse mitigation provided the site is well characterized and monitored properly. 1

Semere Solomon; The Bellona Foundation

2006-01-01T23:59:59.000Z

105

Optimal Geological Enviornments for Carbon Dioxide Storage in Saline Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

susan D. Hovorka susan D. Hovorka Principal Investigator University of Texas at Austin Bureau of Economic Geology 10100 Burnet Road, Bldg. 130 P.O. Box X Austin, TX 78713 512-471-4863 susan.hovorka@beg.utexas.edu Optimal GeOlOGical envirOnments fOr carbOn DiOxiDe stOraGe in saline fOrmatiOns Background For carbon dioxide (CO 2 ) sequestration to be a successful component of the United States emissions reduction strategy, there will have to be a favorable intersection of a number of factors, such as the electricity market, fuel source, power plant design and operation, capture technology, a suitable geologic sequestration site, and a pipeline right-of-way from the plant to the injection site. The concept of CO 2 sequestration in saline water-bearing formations (saline reservoirs), isolated at

106

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network (OSTI)

flow model for carbon dioxide and brine, in Proceedings 9 thGeological Storage of Carbon Dioxide, in: S.J. Baines andGeological Storage of Carbon Dioxide, Geological Society,

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

107

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

108

DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field May 21, 2009 - 1:00pm Addthis Washington, D.C. -- In a newly awarded project, researchers funded by the U.S. Department of Energy (DOE) are partnering with European scientists to track injected carbon dioxide (CO2) in the world's first and longest running carbon storage operation located at the Sleipner gas field in the North Sea. The researchers--from the Scripps Institution of Oceanography at the University of California, San Diego, and the Lamont-Doherty Earth Observatory (LDEO) in New York--will conduct surveys on the seafloor to monitor injected CO2 in the 1 kilometer-deep reservoir, where more than

109

Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth  

SciTech Connect

Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

Pruess, K.

2007-05-31T23:59:59.000Z

110

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

111

NETL: Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Project No.: DE-FE0013687 GE global is constructing and operating a continuous, bench-scale CO2 capture system that employs a phase-changing silicone solvent . Experimental data obtained at the laboratory scale in a previous ARPA-E funded project, including mass transfer and kinetic information, is being used to determine process scalability and perform a techno-economic assessment of the commercial scale process. The manufacturability of the solvent is being examined to obtain the material needed for bench-scale testing. Data obtained from the bench-scale system will include mass transfer parameters, kinetic parameters, heat transfer parameters, solvent stability, effects of flue gas contaminants, and recommended operating conditions. Other data such as absorption/desorption isotherms and solvent regeneration energy will be determined in laboratory testing. The solvent manufacturing cost, the bench-scale engineering data, and the laboratory property data will be used to complete the techno-economic assessment and to develop a scale-up strategy for commercialization.

112

Simulating CO2 storage in saline aquifers with improved code RCB  

Science Conference Proceedings (OSTI)

The geological storage of CO2 in saline aquifers is believed to be one of the most promising ways to reduce the concentration of the greenhouse gas in the atmosphere. Injection of CO2 will, however, lead to dissolution of minerals in regions of lowered ... Keywords: CO2, RCB (retrasocodebright), gas density correction, gas solubility correction, geochemistry, geomechanics, improved Newton-Raphson iteration method, multiphase flow, relaxation factor, saline aquifer, simulation

Shunping Liu; Bjorn Kvamme

2007-11-01T23:59:59.000Z

113

Report TKK-ENY-9 Mineral carbonation for long-term storage of CO2  

E-Print Network (OSTI)

Report TKK-ENY-9 Mineral carbonation for long-term storage of CO2 from flue gases Jens Kohlmann 1 #12;TKK-ENY-9 June 2002 3 Preface This volume contains the two progress reports for the project "CO2 preparation, to be submitted to a technical journal #12;TKK-ENY-9 June 2002 5 Part 1 : Progress report August

Zevenhoven, Ron

114

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2013 Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of...

115

ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS  

Science Conference Proceedings (OSTI)

This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

2003-02-01T23:59:59.000Z

116

NETL: CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Innovations for Existing Plants CO2 Emissions Control RD&D Roadmap Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program Accomplishments DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap 2013 NETL CO2 Capture Technology Meeting Presentations DOE/NETL's Monthly Carbon Sequestration Newsletter Program Goals and Targets Pre-Combustion CO2 Control Post-Combustion CO2 Control Advanced Combustion CO2 Compression Other Systems Analysis Regulatory Drivers Reference Shelf Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. There are commercially available 1st-Generation CO2

117

Nanoporous Materials for Carbon Dioxide Separation and Storage  

E-Print Network (OSTI)

Global climate change is one of the most challenging problems that human beings are facing. The large anthropogenic emission of CO2 in the atmosphere is one of the major causes for the climate change. Coal-fired power plants are the single-largest anthropogenic emission sources globally, accounting for approximately one third of the total CO2 emissions. It is therefore necessary to reduce CO2 emission from coal-fired power plants. Current technologies for the post-combustion CO2 capture from flue gas streams can be broadly classified into the three categories: absorption, adsorption, and membrane processes. Despite challenges, CO2 capture by adsorption using solid sorbents and membranes offers opportunities for energy-efficient capture and storage of CO2. Nanoporous materials have attracted tremendous interest in research and development due to their potential in conventional applications such as catalysis, ion-exchange, and gas separation as well as in advanced applications such as sensors, delivery, and micro-devices. In the first part of this dissertation, we will study the synthesis of membranes using an emerging class of nanoporous materials, metal-organic frameworks (MOFs) for carbon dioxide (CO2) separations. Due to the unique chemistry of MOFs which is very different from that of zeolites, the techniques developed for the synthesis of zeolite membranes cannot be used directly. In order to overcome this challenge, a couple of novel techniques were developed: 1) "thermal seeding" for the secondary growth and 2) "surface modification" for the in situ growth. Membranes of HKUST-1 and ZIF-8, two of the most important MOFs, were prepared on porous ?-alumina supports using thermal seeding and the surface modification techniques, respectively. The second part of this dissertation demonstrates a simple and commercially viable application of nanoporous materials (zeolite 5A and amine-functionalized mesoporus silica), storing CO2 as a micro-fire extinguishers in polymers. Materialist is observed that by dispersing these highly CO2-philic nanoporous materials in polymer matrices, the propagation of flame was greatly retarded and extinguished. This flame retarding behavior is attributed to the fact that CO2 released from the sorbents (zeolite 5A and mesoporous silica), blocks the flow of oxygen, therefore causing the fire to be effectively extinguished. Our results suggest that the binding strength of CO2 on sorbents play an important role. If the binding strength of CO2 is too low, CO2 releases too early, thereby ineffective in retarding the flame.

Varela Guerrero, Victor

2011-05-01T23:59:59.000Z

118

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labís total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

119

CO2 Utilization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. CO2 as Feedstock - Use CO2 as a feedstock to produce chemicals (including fuels and polymers) and find applications for the end products. Non-Geologic Storage of CO2 - Use CO2 from an effluent stream to immobilize the CO2 permanently by producing stable solid material that are either useful products with economic value or a low cost produced material.

120

The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test  

SciTech Connect

WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

2006-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

122

CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study  

E-Print Network (OSTI)

1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation for storage and enhanced gas recovery may be organic-rich shales, which CO2 is preferentially adsorbed comprehensive simulation studies to better understand CO2 injection process in shale gas reservoir. This paper

Mohaghegh, Shahab

123

Comparison of Numerical Simulators for Greenhouse Gas Storage in Coalbeds, Part I: Pure Carbon Dioxide Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Numerical Simulators for Greenhouse Gas Storage Comparison of Numerical Simulators for Greenhouse Gas Storage in Coalbeds, Part I: Pure Carbon Dioxide Injection David H.-S. Law (law@arc.ab.ca; 780-450-5034) Alberta Research Council (ARC) Inc. 250 Karl Clark Road, Edmonton, Alberta, Canada T6N 1E4 L.H.G. (Bert) van der Meer (l.vandermeer@nitg.tno.nl; +31-30-256-4635) Netherlands Institute of Applied Geoscience TNO P.O. Box 80015, 3508 TA Utrecht, The Netherlands W.D. (Bill) Gunter (gunter@arc.ab.ca; 780-450-5467) Alberta Research Council (ARC) Inc. 250 Karl Clark Road, Edmonton, Alberta, Canada T6N 1E4 Abstract The injection of carbon dioxide (CO 2 ) in deep, unmineable coalbeds is a very attractive option for geologic CO 2 storage: the CO 2 is stored and at the same time the recovery of

124

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the...

125

ENVIRONMENTAL ASSESSMENT OF GEOLOGIC STORAGE OF CO2 Jason J. Heinrich, Howard J. Herzog, David M. Reiner  

E-Print Network (OSTI)

analogs: acid gas injection (AGI), enhanced oil recovery (EOR), natural gas storage, and CO2 transport. Seismic Events EOR, AGI and natural gas storage operators are not overly concerned with inducing seismic have chosen four analogs ­ acid gas injection, enhanced oil recovery, natural gas storage and CO2

126

Integrated Gasification Combined Cycle (IGCC) Design Considerations for CO2 Capture and Storage (CCS)  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated gasification combined cycle (IGCC) power plants with Greenfield and retrofitted carbon dioxide (CO2) capture. The study is part of the CoalFleet Program, a collaborative research and development program that promotes deployment of advanced coal technologies, including IGCC, ultrasupercritical pulverized, oxy-fuel combustion, and supercritical circulating fluidized bed technologies. Two types of coalPittsburg...

2010-10-01T23:59:59.000Z

127

CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

2012-03-30T23:59:59.000Z

128

Geochemical Implications of Gas Leakage Associated with Geologic CO2 Storage - A Qualitative Review  

SciTech Connect

Leakage from deep storage reservoirs is considered the major risk factor associated with geologic sequestration of CO2. Different schools of thought exist concerning the potential implications of such leakage for near-surface environments. We reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of overlying potable aquifers. Results from experimental and modeling studies point to the potential for both beneficial (e.g. contaminant immobilization) and deleterious (e.g. contaminant mobilization) consequences of CO2 intrusion into potable groundwater. However, there are significant discrepancies between studies particularly concerning, what contaminants are of concern and the geochemical processes involved. These discrepancies reflected the lack of a consensus on CO2-induced changes in subsurface geochemical processes and subsequent effects on groundwater chemistry. The development of consistent experimental protocols and the identification of pertinent factors driving CO2-induced geochemical changes in the subsurface were identified as key research needs. Geochemical modeling was used to systematically highlight why a standardization of experimental protocols and the consideration of experimental factors such as gas leakage rates, redox status and the influence of co-transported gases are pertinent. The role of analog studies, reactions occurring in the vadose zone, and the influence of organic contaminants are also discussed.

Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Lee, Gie Hyeon; Amonette, James E.; Brown, Christopher F.

2013-01-01T23:59:59.000Z

129

Exploratory Simulation Studies of Caprock Alteration Induced byStorage of CO2 in Depleted Gas Reservoirs  

Science Conference Proceedings (OSTI)

This report presents numerical simulations of isothermalreactive flows which might be induced in the caprock of an Italiandepleted gas reservoir by the geological sequestration of carbon dioxide.Our objective is to verify that CO2 geological disposal activitiesalready planned for the study area are safe and do not induce anyundesired environmental impact.Gas-water-rock interactions have beenmodelled under two different intial conditions, i.e., assuming that i)caprock is perfectly sealed, or ii) partially fractured. Field conditionsare better approximated in terms of the "sealed caprock model". Thefractured caprock model has been implemented because it permits toexplore the geochemical beahvior of the system under particularly severeconditions which are not currently encountered in the field, and then todelineate a sort of hypothetical maximum risk scenario.Major evidencessupporting the assumption of a sealed caprock stem from the fact that nogas leakages have been detected during the exploitation phase, subsequentreservoir repressurization due to the ingression of a lateral aquifer,and during several cycles of gas storage in the latest life of reservoirmanagement.An extensive program of multidisciplinary laboratory tests onrock properties, geochemical and microseismic monitoring, and reservoirsimulation studies is underway to better characterize the reservoir andcap-rock behavior before the performance of a planned CO2 sequestrationpilot test.In our models, fluid flow and mineral alteration are inducedin the caprock by penetration of high CO2 concentrations from theunderlying reservoir, i.e., it was assumed that large amounts of CO2 havebeen already injected at depth. The main focus is on the potential effectof these geochemical transformations on the sealing efficiency of caprockformations. Batch and multi-dimensional 1D and 2D modeling has been usedto investigate multicomponent geochemical processes. Our simulationsaccount for fracture-matrix interactions, gas phase participation inmultiphase fluid flow and geochemical reactions, and kinetics offluid-rock interactions.The main objectives of the modeling are torecognize the geochemical processes or parameters to which theadvancement of high CO2 concentrations in the caprock is most sensitive,and to describe the most relevant mineralogical transformations occurringin the caprock as a consequence of such CO2 storage in the underlyingreservoir. We also examine the feedback of these geochemical processes onphysical properties such as porosity, and evaluate how the sealingcapacity of the caprock evolves in time.

Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

2005-11-23T23:59:59.000Z

130

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network (OSTI)

are rapidly changing as fossil-fuel costs soar and changesgas emissions from current fossil-fuel combustion practices.dioxide (CO 2 ) from fossil-fuel combustion (Raupach et

Oldenburg, C.

2010-01-01T23:59:59.000Z

131

System Design and Optimization of CO2 Storage in Deep Saline Aquifers  

E-Print Network (OSTI)

Optimization of waterflooding sweep efficiency has been widely applied in reservoir engineering to improve hydrocarbon recovery while delaying water breakthrough and minimizing the bypassed oil in reservoirs. We develop a new framework to optimize flooding sweep efficiency in geologic formations with heterogeneous properties and demonstrate its application to waterflooding and geological CO2 sequestration problems. The new method focuses on equalizing and delaying (under constant total injected volume) the breakthrough time of the injected fluid at production wells. For application to CO2 sequestration where producers may not be present, we introduce the concept of pseudo production wells that have insignificant production rates (with negligible effect on the overall flow regime) for quantification of hypothetical breakthrough curves that can be used for optimization purpose. We apply the new method to waterflooding and CO2 sequestration optimization using two heterogeneous reservoir models. We show that in water flooding experiments, the proposed method improves the sweep efficiency by delaying the field breakthrough and equalizing breakthrough times in all production wells. In this case, the optimization results in increased oil recovery and decreased water production. We apply a modified version of the proposed algorithm to geologic CO2 sequestration problems to maximize the storage capacity of aquifers by enhancing the residual and dissolution trapping. The results from applying the proposed approach to optimization of geologic CO2 storage problems illustrate the effectiveness of the algorithm in improving residual and solubility trapping by increasing the contact between available fresh brine and the injected CO2 plume through a more uniform distribution of CO2 in the aquifer.

Shamshiri, Hossein

2010-12-01T23:59:59.000Z

132

CO2 Health Effects in Wildlife Species  

Science Conference Proceedings (OSTI)

The impetus for this project is the possible development of large-scale carbon dioxide (CO2) capture, transport, and storage (CCS) sites that have the potential to release CO2 into the environment and cause adverse health effects. The purpose of this project is to obtain information from the scientific literature on the effects of CO2 exposure in wildlife animal species. This report, along with previously documented information on the effects of CO2 in humans, laboratory animals, and domesticated animals...

2008-12-09T23:59:59.000Z

133

American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

American Electric Power (AEP): American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1) Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture, utilization and storage (CCUS) technologies offer great potential for reducing CO

134

CO2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE & ENHANCED OIL RECOVERY STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld demonstra- tions. RMOTC completed a scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) CO 2 enhanced oil recovery potential. More recent character- ization studies indicate geologic carbon storage would also be an excellent use of NPR-3 resources beyond their economic life in conventional production. Geologic Storage Fossil fuels will remain the mainstay of energy production well into the 21st century. Availability of these fuels to provide clean, affordable energy is es- sential for the prosperity and security of the United States. However, increased atmospheric concentrations

135

Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Rift Basin for Source Proximal CO 2 Storage Michael G. Waddell and John M. Shafer Earth Sciences and Resources Institute University of South Carolina - Columbia Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 15-17, 2011 Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 Research Team Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 John Shafer and Michael Waddell James Knapp and Camelia Knapp Lee Kurtzweil and Phil VanHollebeke C.W. "Bill" Clendenin Richard Berg James Rine Integrated Services Contract for Drilling/Coring/Logging - TBD Study Area Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011

136

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

137

The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs  

E-Print Network (OSTI)

Description Date 0 Original document 1/29/2008 1 Estimate for carbon content of crude oil was incorrect (see pThe Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs Sean T for this work was provided by the US Department of Energy under contract numbers DE-FC26-00NT40935 and DE-AC26

138

In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide  

Science Conference Proceedings (OSTI)

The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 įC and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

2012-04-25T23:59:59.000Z

139

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

Science Conference Proceedings (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regionís deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regionís large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

140

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Changeís (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

Science Conference Proceedings (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects Ė Sleipner, SnÝhvit, In Salah and Weyburn Ė are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the publicís willingness to incur costs to avoid dangerous anthropogenic interference with the Earthís climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

142

Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.  

E-Print Network (OSTI)

certify startup and decommissioning of geologic CO 2 storageIf necessary, full decommissioning should be carried out atIf necessary, full decommissioning should be carried out at

Oldenburg, C.M.

2011-01-01T23:59:59.000Z

143

Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.  

E-Print Network (OSTI)

storage project assessed here, five wells at Krechba produce natural gasstorage project in Algeria has been injecting CO 2 stripped from produced natural gasstorage region will be the lease boundary all around the reservoir because the natural gas

Oldenburg, C.M.

2011-01-01T23:59:59.000Z

144

NETL: IEP ¬Ė Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Project No.: DE-NT0005287 In this project, the Georgia Tech Research Corporation is using totally novel chemistryto engender the dramatic changes needed for widespread implementation of CO2 capture in a both environmentally benign and economical process. Current methods of CO2 post-combustion recovery from coal-fired power plants focus on such techniques as absorption in aqueous ethanolamine scrubbers - and this is now a mature technology unlikely to achieve a quantum change in either capacity or cost. The objective of this project is to develop a novel class of solvents for post-combustion recovery of CO2 from fossil fuel-fired power plants which will achieve a substantial increase in CO2 carrying capacity with a concomitant plummet in cost. The project team is a combination of chemical engineers and chemists with extensive experience in working with industrial partners to formulate novel solvents and to develop processes that are both environmentally benign and economically viable. Further, the team has already developed solvents called "reversible ionic liquids," essentially "smart" molecules which change properties abruptly in response to some stimulus, and these have quickly found a plethora of applications.

145

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

146

NETL: Carbon Storage - Monitoring, Verification, and Accounting...  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Carbon Storage Monitoring, Verification, and Accounting (MVA) Focus Area An MVA program is designed to confirm permanent storage of carbon dioxide (CO2) in geologic formations...

147

Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA  

SciTech Connect

FutureGen 2.0 site will be the first near-zero emission power plant with fully integrated long-term storage in a deep, non-potable saline aquifer in the United States. The proposed FutureGen 2.0 CO2 storage site is located in northeast Morgan County, Illinois, U.S.A., forty-eight kilometres from the Meredosia Energy Center where a large-scale oxy-combustion demonstration will be conducted. The demonstration will involve > 90% carbon capture, which will produce more than one million metric tons (MMT) of CO2 per year. The CO2 will be compressed at the power plant and transported via pipeline to the storage site. To examine CO2 storage potential of the site, a 1,467m characterization well (FGA#1) was completed in December 2011. The target reservoir for CO2 storage is the Mt. Simon Sandstone and Elmhurst Sandstone Member of the lower Eau Claire Formation for a combined thickness of 176 m. Confining beds of the overlying Lombard and Proviso Members (upper Eau Claire Formation) reach a thickness of 126 m. Characterization of the target injection zone and the overlying confining zone was based on wellbore data, cores, and geophysical logs, along with surface geophysical (2-D seismic profiles, magnetic and gravity), and structural data collected during the initial stage of the project . Based on this geological model, 3D simulations of CO2 injection and redistribution were conducted using STOMP-CO2, a multiphase flow and transport simulator. After this characterization stage, it appears that the injection site is a suitable geologic system for CO2 sequestration and that the injection zone is sufficient to receive up to 33 MMT of CO2 at a rate of 1.1 MMT/yr. GHGT-11 conference

Bonneville, Alain HR; Gilmore, Tyler J.; Sullivan, E. C.; Vermeul, Vincent R.; Kelley, Mark E.; White, Signe K.; Appriou, Delphine; Bjornstad, Bruce N.; Gerst, Jacqueline L.; Gupta, Neeraj; Horner, Jacob A.; McNeil, Caitlin; Moody, Mark A.; Rike, William M.; Spane, Frank A.; Thorne, Paul D.; Zeller, Evan R.; Zhang, Z. F.; Hoffman, Jeffrey; Humphreys, Kenneth K.

2013-08-05T23:59:59.000Z

148

Why we need the and in CO2 utilization and storage.  

E-Print Network (OSTI)

beneficial uses of carbon dioxide. Greenhouse Gases Sci2009). 5. Oldenburg CM, Carbon dioxide as cushion gas for

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

149

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

150

The Cost of Carbon Dioxide Capture and Storage in Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CosT of Carbon DioxiDe CapTure CosT of Carbon DioxiDe CapTure anD sTorage in geologiC formaTions The sequestration of carbon dioxide (CO 2 ) in geologic formations is a viable option for achieving deep reductions in greenhouse gas emissions without hindering economic prosperity. Due to the abundance of fossil fuels in the United States and around the globe as compared to other energy sources, there is strong interest in geologic sequestration, but cost is a key issue. The volume of CO 2 emitted from power plants and other energy systems is enormous compared to other emissions of concern. For example, a pulverized coal (PC) boiler operating on Illinois #6 coal (2.5 percent sulfur) may generate 0.03 pounds of sulfur dioxide per kilowatt hour (kWh) and emit CO 2 at a rate of 1.7 pounds per kWh.

151

Why we need the and in CO2 utilization and storage.  

E-Print Network (OSTI)

resource extraction, the oil industry injects millions ofCO 2 per year for enhanced oil recovery ( CO 2 - EOR). While

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

152

On CO2 Behavior in the Subsurface, Following Leakage from a Geologic Storage Reservoir  

E-Print Network (OSTI)

CO2 Sequestration on Oil Well Cements, paper 123, presentedprevious oil and gas exploration and production are wellproduction wells in CO 2 flooding projects for enhanced oil

Pruess, Karsten

2006-01-01T23:59:59.000Z

153

Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America  

SciTech Connect

The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

Jerry Fairley; Robert Podgorney

2012-11-01T23:59:59.000Z

154

Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model  

Science Conference Proceedings (OSTI)

Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ... Keywords: CCS, CHP, CO2 capture transport and storage, Energy systems model, Ft, GIS, IGCC, Linear optimization, MARKAL, NGCC, O&M&M, PC

Machteld van den Broek; Evelien Brederode; Andrea RamŪrez; Leslie Kramers; Muriel van der Kuip; Ton Wildenborg; Wim Turkenburg; Andrť Faaij

2010-12-01T23:59:59.000Z

155

Carbon Dioxide Capture and Storage Demonstration in Developing Countries:  

Open Energy Info (EERE)

Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: cdn.globalccsinstitute.com/sites/default/files/publications/15536/carb Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-capture-and-storage-de Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance This report discusses the value of carbon capture and storage (CCS)

156

Task Force on CO2 Storage Capacity Estimation for the Technical Group (TG) of the Carbon Sequestration Leadership Forum (CSLF)  

E-Print Network (OSTI)

Force has previously issued a Phase I report (in August 2005) which served to document the nature of the problem such as the relationship between assessment scale and the level of detail and resolution of the storage capacity. This report of the Task Forceís Phase II activities summarizes the Phase I findings and provides suggested methodologies for the estimation of CO2 storage capacity in three types of geologic structures: uneconomic coal beds, oil and gas reservoirs, and deep saline aquifers. Estimation of CO2 Storage Capacity in Geological Media

Stefan Bachu (canada; Didier Bonijoly (france; John Bradshaw (australia; Robert Burruss (usa; Niels Peter Christensen (ec; Sam Holloway (uk

2007-01-01T23:59:59.000Z

157

MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand  

E-Print Network (OSTI)

and Environmental Engineering, Yale University, New Haven, CT 06511, USA World Energy Demand Global energy demand from fossil fuels is expected to remain over 70% in 2035 [1]. Society must balance its high demand, CA, USA). Carbon Dioxide Injection for Improved Hydrocarbon Recovery Simulation of diffusion

Firoozabadi, Abbas

158

Natural Analogs for Geologic Storage of CO2: An Integrated Global Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

JAF21006.DOC JAF21006.DOC First National Conference on Carbon Sequestration U.S. Department of Energy National Energy Technology Laboratory May 15-17, 2001 Washington, D.C. Natural Analogs for Geologic Storage of CO 2 : An Integrated Global Research Program S. H. Stevens (sstevens@adv-res.com, (703) 528 8420) Advanced Resources International, Inc. 1110 N. Glebe Road, Suite 600 Arlington, VA USA 22201 703-528-8420 J. M. Pearce (jmpe@bgs.ac.uk, (0)115 9363 222) British Geological Survey Nottingham, NG12 5GG, United Kingdom. A. A. J. Rigg (a.rigg@petroleum.crc.org.au, 61-2-9490 8225) Australian Petroleum Cooperative Research Centre Sydney, NSW Australia ABSTRACT Coordinated research efforts are underway on three continents (North America, Europe,

159

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

160

NETL: News Release - DOE Study Monitors Carbon Dioxide Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2009 DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field U.S. World-Acclaimed Marine Institutes Partner with Europeans in North Sea Washington,...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

162

The low cost of geological assessment for underground CO2 storage: Policy and economic implications  

SciTech Connect

The costs for carbon dioxide (CO{sub 2}) capture and storage (CCS) in geologic formations is estimated to be $6-75/t CO{sub 2}. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning-by-doing until these disincentives for the free venting of CO{sub 2} are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25-60/t CO{sub 2} for power plant applications followed by CO{sub 2} transport and storage, estimated at $0-15/t CO{sub 2}. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one-time costs are probably on the order of $0.1/t CO{sub 2} or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals, and development facilities engineering. Since assessment costs are roughly 2 orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private/public funding of major assessment initiatives should underpin early policy choices regarding CO{sub 2} storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.d

Friedmann, S J; Dooley, J; Held, H; Edenhofer, O

2005-01-31T23:59:59.000Z

163

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

Science Conference Proceedings (OSTI)

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

164

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

165

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

of CO 2 in an enhanced oil recovery system. Environ Sciwhich coal, natural gas, and oil contribute about 41%, 21%,of CO 2 emissions. Natural gas- and oil-fired power plants

Sathre, Roger

2013-01-01T23:59:59.000Z

166

CO2 | OpenEI  

Open Energy Info (EERE)

CO2 CO2 Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

167

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia  

Science Conference Proceedings (OSTI)

This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

Neeraj Gupta

2009-01-07T23:59:59.000Z

168

Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment  

E-Print Network (OSTI)

investigations on natural gas storage fields in the basin (using data from natural gas storage fields and large-scalefrom the nearest natural gas storage fields in operation,

Zhou, Q.

2010-01-01T23:59:59.000Z

169

Why we need the and in CO2 utilization and storage.  

E-Print Network (OSTI)

output of a 750 MW coal- fired power plant. CO 2 -EOR withinoutput of six 1-GW coal-fired power plants. Urea production

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

170

Thermal Effects During CO2 Leakage from a Geologic Storage Reservoir  

E-Print Network (OSTI)

of the fluid flow and heat transfer processes that wouldflow and associated heat transfer processes that operate onheat transfer effects on CO2 migration and multiphase processes

Pruess, Karsten

2004-01-01T23:59:59.000Z

171

Managing Environmental and Human Safety Risks Associated with Geologic Storage of CO2  

E-Print Network (OSTI)

.0 Natural Gas Storage.0 Yaggy Natural Gas Storage Field: A Case Study................................................. 41 7 storage can be learned from other functionally similar activities such as underground natural gas storage

172

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

most of which from natural gas storage and groundwaterconducted in the Hudson natural gas storage field in 1969 (

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

173

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

174

Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy  

E-Print Network (OSTI)

carbon dioxide (CO 2 ) will become an important climate change mitigation strategy will depend on a number of factors,

Hepple, Robert P.; Benson, Sally M.

2002-01-01T23:59:59.000Z

175

Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2  

Science Conference Proceedings (OSTI)

Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime ecosystem respiration

Gu, Lianhong [ORNL; Van Gorsel, Eva [CSIRO Marine and Atmospheric Research; Leuning, Ray [CSIRO Marine and Atmospheric Research; Delpierre, Nicolas [Universite Paris XI, Orsay, France; Black, Andy [University of British Columbia, Vancouver; Chen, Baozhang [University of British Columbia, Vancouver; Munger, J. William [Harvard University; Wofsy, Steve [Harvard University; Aubinet, M. [Faculte Universitaire des Sciences Agronomiques de Gembloux

2009-11-01T23:59:59.000Z

176

A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission  

SciTech Connect

The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

Fang, Zhigang Zak [University of Utah] [University of Utah

2013-11-05T23:59:59.000Z

177

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

be removed in the steam condensate prior to CO 2 compressionremoved in the steam condensate prior to CO 2 compression.CdS and precipitate with steam condensate. B Calculated to

Apps, J.A.

2006-01-01T23:59:59.000Z

178

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

active. Note that produced water should be disposed of, not36.5 years, the water content in produced CO 2 is 0.012 %.when CO 2 -water mixtures are produced. After the production

Pruess, K.

2010-01-01T23:59:59.000Z

179

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

180

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

capture of CO 2 from gasifier process producing electricalPlaquemine, Louisiana. The gasifier is a proprietary designGasifier .

Apps, J.A.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO2 geological storage  

Science Conference Proceedings (OSTI)

This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO"2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that ... Keywords: 3D visualization, CO2 geological storage, Multiphase flow, Pre and post processing, Reactive transport modeling, TOUGH2

Pascal Audigane; Christophe Chiaberge; Frťdťric Mathurin; Julie Lions; Gťraldine Picot-Colbeaux

2011-04-01T23:59:59.000Z

182

Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth  

E-Print Network (OSTI)

1.4x10 7 s. CO 2 outflow rates increase with time, and at tperiods during which rate increases almost level off in thereduces the rate of flow rate increase, again dramatizing

Pruess, K.

2008-01-01T23:59:59.000Z

183

New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2  

Science Conference Proceedings (OSTI)

Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energyís National Energy Technology Laboratory and Fugro Airborne Surveys.

Hammack, R.W.; Veloski, G.A.

2007-09-01T23:59:59.000Z

184

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

assessment of natural gas combined cycle power plant withAnalysis: Natural Gas Combined Cycle (NGCC) Power Plant.of CO 2 emissions. Natural gas- and oil-fired power plants

Sathre, Roger

2013-01-01T23:59:59.000Z

185

Synthetic Catalysts for CO2 Storage: Catalytic Improvement of Solvent Capture Systems  

Science Conference Proceedings (OSTI)

IMPACCT Project: LLNL is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.

None

2010-08-15T23:59:59.000Z

186

Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean  

E-Print Network (OSTI)

2 inventory of the Indian Ocean, Global Biogeochem. Cycles,of carbon dioxide: Key ocean/atmosphere/land ana- lyses,in the upper Pacific Ocean, Nature, 415, 603 Ė 608. Mikaloff

2006-01-01T23:59:59.000Z

187

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

Pruess, K.

2010-01-01T23:59:59.000Z

188

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

189

Catalytic Transformation of Waste Carbon Dioxide into Valuable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Transformation of Waste Catalytic Transformation of Waste Carbon Dioxide into Valuable Products Background Many industrial processes contribute large amounts of carbon dioxide (CO 2 ) to the earth's atmosphere. In an effort to reduce the amount of CO 2 released to the atmosphere, the U.S. Department of Energy (DOE) is funding efforts to develop CO 2 capture and storage technologies. In addition to permanent storage of CO 2 in underground reservoirs, some

190

An Integrated Approach for Oxy-fuel Combustion with CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ottawa The capture and storage or reuse of carbon dioxide (CO 2 ) from the combustion of fossil fuels as well as industrial off gases represents an opportunity to achieve a...

191

CO2 Capture and Storage Project, Education and Training Center Launched in Decatur, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

One of the nationís largest carbon capture and storage endeavors includes an education center for students and local residents.

192

CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities  

Science Conference Proceedings (OSTI)

The looming global energy and environmental crises underscore a pressing need for the revision of current energy policies. The dominating albeit somewhat optimistic public perception is that hundreds of years worth of coal available for power generation will offset the decline of oil and gas reserves. Although use of coal accounts for half of U.S. electricity generation and for a quarter of world energy consumption, it has been perceived until recently as unwelcomed by environmentalists and legislators. For coal power generation to be properly considered, CO2 and other greenhouse gas (GHG) generation and deposition must be addressed to assuage global climate change concerns. Capturing and sequestering CO2 emissions is one of the principal modes of carbon management. Herein we will suggest a novel process that includes capturing GHG in abundant materials, which can be facilitated by controlled sequential heating and cooling of these solids. By taking advantage of the properties of waste materials generated during coal production and the exhaust heat generated by the power plants, such an approach permits the integration of the entire CO2 cycle, from generation to deposition. Coupling coal extraction/preparation with power generation facilities would improve the economics of ďzero-emissionĒ power plants due to the proximity of all the involved facilities.

Romanov, V.N.; Ackman, T.E.; Soong, Yee; Kleinmann, R.L.

2009-02-01T23:59:59.000Z

193

A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage  

Science Conference Proceedings (OSTI)

Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture environmental pollutants in the gaseous state and co-inject them with the CO2, in order to mitigate problems associated with solid waste disposal in surface impoundments. Under such conditions, the injected pollutant concentrations could be roughly equivalent to their concentrations in the coal feed. The fate of the injected contaminants can only be determined through further testing and geochemical modeling. However, the concentrations of inadvertent contaminants in the injected CO2 would probably be comparable to their ambient concentrations in confining shales of the injection zone. In general, the aqueous concentrations of hazardous constituents in distal parts of the injection zone, regardless of source, are likely to be limited by equilibrium with respect to coexisting solid phases under the acid conditions induced by the dissolved high pressure CO2, rather than by the initial concentrations of injected contaminants. Therefore, even if a deliberate policy of contaminant recovery and injection were to be pursued, water quality in USDWs would more likely depend on thermodynamic controls governing aqueous contaminant concentrations in the presence of high pressure CO2 rather than in the injected CO2. The conclusions reached in this report are preliminary, and should be confirmed through more comprehensive data evaluation and supporting geochemical modeling.

Apps, J.A.

2006-02-23T23:59:59.000Z

194

A quantitative comparison of the cost of employing EOR-coupled CSS supplemented with secondary DSF storage for two large CO2 point sources  

SciTech Connect

This paper explores the impact of the temporally dynamic demand for CO2 for enhanced hydrocarbon recovery with CO2 storage. Previous evaluations of economy-wide CO2 capture and geologic storage (CCS) deployment have typically applied a simplifying assumption that 100% of the potential storage capacity for a given formation is available on the first day of the analysis, and that the injection rate impacts only the number of wells required to inject a given volume of fluid per year, making it a cost driver rather than a technical one. However, as discussed by Dahowski and Bachu [1], storing CO2 in a field undergoing CO2 flooding for enhanced oil recovery (EOR) is subject to a set of constraints to which storage in DSFs is not, and these constraints combined with variable demand for CO2 may strongly influence the ability of an EOR field to serve as a baseload storage formation for commercial scale CCS projects undertaken as a means of addressing climate change mitigation targets. This analysis assumes that CCS is being undertaken in order to reduce CO2 emissions from the industrial sources evaluated and that there is enough of a disincentive associated with venting CO2 to the atmosphere that any CO2 not used within the EOR field will be stored in a suitable nearby deep saline formation (DSF). The authors have applied a CO2 demand profile to two cases chosen to illustrate the differences in cost impacts of employing EOR-based CCS as a part of a given sourceís CCS portfolio. The first scenario is a less-than-ideal case in which a single EOR field is used for storage and all CO2 not demanded by the EOR project is stored in a DSF; the second scenario is designed to optimize costs by minimizing storage in the DSF and maximizing lower-cost EOR-based storage. Both scenarios are evaluated for two facilities emitting 3 and 6 MtCO2/y, corresponding to a natural gas processing facility and an IGCC electric power plant, respectively. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.

Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.

2011-04-18T23:59:59.000Z

195

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

and related Natural Gas Combined Cycle (NGCC) power plantspower plants, petroleum refining, chemical processing industries, and natural gasnatural gas. If CO 2 capture and geologic sequestration from coal-fired power plants

Apps, J.A.

2006-01-01T23:59:59.000Z

196

Spatiotemporal Imaging for Monitoring CO2 Storage in Coal Jerry M. Harris, Youli Quan, Eduardo Santos, Jolene Robin-McCaskill, Tope Akinbehinje, Yemi Arogunmati, Evan Um  

E-Print Network (OSTI)

Spatiotemporal Imaging for Monitoring CO2 Storage in Coal Jerry M. Harris, Youli Quan, Eduardo, Stanford University Work Flow Summary References Measurement of Acoustic Properties of Coal (a) CO2 the stationary SIRT for partial surveys. Flow Simulation Porofluid Porofluid Confining fluid Pump Coal Sample

Harris, Jerry M.

197

Nanoporous Metal-Inorganic Materials for Storage and Capture ...  

Nanoporous Metal-Inorganic Materials for Storage and Capture of Hydrogen, Carbon Dioxide (CO2) and Other Gases Lawrence Berkeley National Laboratory

198

The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships between NDVI and Carbon Dioxide  

Science Conference Proceedings (OSTI)

Two hypotheses are tested: 1) monitoring stations (e.g., Mauna Loa) are not able to measure changes in atmospheric concentrations of CO2 that are generated by changes in terrestrial vegetation at distant locations; 2) changes in the atmospheric ...

R. K. Kaufmann; L. F. Paletta; H. Q. Tian; R. B. Myneni; R. D. DíArrigo

2008-07-01T23:59:59.000Z

199

ARM - Measurement - CO2 flux  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 flux The rate of flow for carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is...

200

ARM - Measurement - CO2 concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Health Effects of CO2 in Animals of Economic Importance  

Science Conference Proceedings (OSTI)

The impetus for this project is the possible development of large-scale carbon dioxide (CO2) capture, transport, and storage (CT&S) sites that have the potential to release CO2 into the environment and cause adverse health effects. The purpose of this project is to obtain information from the scientific literature on the effects of CO2 exposure in animals of economic importance. This report, along with previously documented information on the effects of CO2 in humans and selected animals, primarily labor...

2007-03-13T23:59:59.000Z

202

A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations  

SciTech Connect

Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

2008-02-10T23:59:59.000Z

203

Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.  

E-Print Network (OSTI)

production, and CO 2 injection wells (newest) penetrate thewells and three CO 2 injection wells have long horizontal3. (a) Production and injection wells, (b) appraisal wells,

Oldenburg, C.M.

2011-01-01T23:59:59.000Z

204

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

205

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

Science Conference Proceedings (OSTI)

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

2005-12-07T23:59:59.000Z

206

Evaluating Potential for Large Releases from CO2 StorageReservoirs: Analogs, Scenarios, and Modeling Needs  

SciTech Connect

While the purpose of geologic storage of CO{sub 2} in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO{sub 2} is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO{sub 2} were to occur at the land surface, especially where CO{sub 2} could accumulate. In this paper, we develop possible scenarios for large CO{sub 2} fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies.

Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang,Chin-Fu; Karimjee, Anhar

2005-09-19T23:59:59.000Z

207

A Framework for viewing theoretical, technological, economic and market potential of carbon dioxide capture and storage  

SciTech Connect

Paper presents an intelectual framework for viewing how the theoretical, technological, economic and market potentials of carbon dioxide capture and storage are related to each other.

Dooley, James J.

2004-10-04T23:59:59.000Z

208

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

209

PRELIMINARY CHARACTERIZATION OF CO2 SEPARATION AND STORAGE PROPERTIES OF COAL GAS RESERVOIRS  

SciTech Connect

An attractive alternative of sequestering CO{sub 2} is to inject it into coalbed methane reservoirs, particularly since it has been shown to enhance the production of methane during near depletion stages. The basis for enhanced coalbed methane recovery and simultaneous sequestration of carbon dioxide in deep coals is the preferential sorption property of coal, with its affinity for carbon dioxide being significantly higher than that for methane. Yet, the sorption behavior of coal under competitive sorptive environment is not fully understood. Hence, the original objective of this research study was to carry out a laboratory study to investigate the effect of studying the sorption behavior of coal in the presence of multiple gases, primarily methane, CO{sub 2} and nitrogen, in order to understand the mechanisms involved in displacement of methane and its movement in coal. This had to be modified slightly since the PVT property of gas mixtures is still not well understood, and any laboratory work in the area of sorption of gases requires a definite equation of state to calculate the volumes of different gases in free and adsorbed forms. This research study started with establishing gas adsorption isotherms for pure methane and CO{sub 2}. The standard gas expansion technique based on volumetric analysis was used for the experimental work with the additional feature of incorporating a gas chromatograph for analysis of gas composition. The results were analyzed first using the Langmuir theory. As expected, the Langmuir analysis indicated that CO{sub 2} is more than three times as sorptive as methane. This was followed by carrying out a partial desorption isotherm for methane, and then injecting CO{sub 2} to displace methane. The results indicated that CO{sub 2} injection at low pressure displaced all of the sorbed methane, even when the total pressure continued to be high. However, the displacement appeared to be occurring due to a combination of the preferential sorption property of coal and reduction in the partial pressure of methane. As a final step, the Extended Langmuir (EL) model was used to model the coal-methane-CO{sub 2} binary adsorption system. The EL model was found to be very accurate in predicting adsorption of CO{sub 2}, but not so in predicting desorption of methane. The selectivity of CO{sub 2} over methane was calculated to be 4.3:1. This is, of course, not in very good agreement with the measured values which showed the ratio to be 3.5:1. However, the measured results are in good agreement with the field observation at one of the CO{sub 2} injection sites. Based on the findings of this study, it was concluded that low pressure injection of CO{sub 2} can be fairly effective in displacing methane in coalbed reservoirs although this might be difficult to achieve in field conditions. Furthermore, the displacement of methane appears to be not only due to the preferential sorption of methane, but reduction in partial pressure as well. Hence, using a highly adsorbing gas, such as CO{sub 2}, has the advantages of inert gas stripping and non-mixing since the injected gas does not mix with the recovered methane.

John Kemeny; Satya Harpalani

2004-03-01T23:59:59.000Z

210

Storage of Captured Carbon Dioxide Beneath Federal Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage of Captured Carbon Storage of Captured Carbon Dioxide Beneath Federal Lands May 8, 2009 DOE/NETL-2009/1358 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

211

Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada  

Science Conference Proceedings (OSTI)

A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

2011-05-01T23:59:59.000Z

212

Aquifer Management for CO2 Sequestration  

E-Print Network (OSTI)

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers is estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the potential for sequestration fail to address the necessity of storing CO2 in a closed system. This work addresses issues related to sequestration of CO2 in closed aquifers and the risk associated with aquifer pressurization. Through analytical modeling we show that the required volume for storage and the number of injection wells required are more than what has been envisioned, which renders geologic sequestration of CO2 a profoundly nonfeasible option for the management of CO2 emissions unless brine is produced to create voidage and pressure relief. The results from our analytical model match well with a numerical reservoir simulator including the multiphase physics of CO2 sequestration. Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a critical aspect for making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Verification of long-term CO2 residence in receptor formations and quantification of possible CO2 leaks are required for developing a risk assessment framework. Important aspects of pressure falloff tests for CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring and leakage detection. The importance of taking regular pressure falloffs for a commercial sequestration project and how this can help in diagnosing an aquifer leak will be discussed. The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak if a breach happens in the top seal. Consequently, another objective of this research is to propose a way to engineer the CO2 injection system in order to accelerate CO2 dissolution and trapping. The engineered system eliminates the buoyancy-driven accumulation of free gas and avoids aquifer pressurization by producing brine out of the system. Simulations for 30 years of CO2 injection followed by 1,000 years of natural gradient show how CO2 can be securely and safely stored in a relatively smaller closed aquifer volume and with a greater storage potential. The engineered system increases CO2 dissolution and capillary trapping over what occurs under the bulk phase injection of CO2. This thesis revolves around identification, monitoring and mitigation of the risks associated with geological CO2 sequestration.

Anchliya, Abhishek

2009-12-01T23:59:59.000Z

213

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

214

A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions  

Science Conference Proceedings (OSTI)

Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 įC. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-HŁckel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0įC to 300 įC and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.

Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

2012-09-05T23:59:59.000Z

215

CO2 Blast Cleaning Process  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO2) (dry ice) cleaning is a process in which dry ice particles, accelerated by compressed air or nitrogen, are propelled at high velocities to impact and clean a surface. Because CO2 technology produces no secondary waste, the CO2 blast cleaning process has many applications for the cleaning of electrical equipment.

2002-02-01T23:59:59.000Z

216

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

217

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

218

Geological Sequestration of CO2: The GEO-SEQ Project  

NLE Websites -- All DOE Office Websites (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

219

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network (OSTI)

power generation. Large coal-fired power plants will requireof CO 2 from coal- fired power plants. Aside from economics,of CO 2 from coal-fired power plants (the largest stationary

Oldenburg, C.

2010-01-01T23:59:59.000Z

220

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO2 transport & storage cost curves  

Science Conference Proceedings (OSTI)

The United States and China are the two largest emitters of greenhouse gases in the world and their projected continued growth and reliance on fossil fuels, especially coal, make them strong candidates for CCS. Previous work has revealed that both nations have over 1600 large electric utility and other industrial point CO2 sources as well as very large CO2 storage resources on the order of 2,000 billion metric tons (Gt) of onshore storage capacity. In each case, the vast majority of this capacity is found in deep saline formations. In both the USA and China, candidate storage reservoirs are likely to be accessible by most sources with over 80% of these large industrial CO2 sources having a CO2 storage option within just 80 km. This suggests a strong potential for CCS deployment as a meaningful option to efforts to reduce CO2 emissions from these large, vibrant economies. However, while the USA and China possess many similarities with regards to the potential value that CCS might provide, including the range of costs at which CCS may be available to most large CO2 sources in each nation, there are a number of more subtle differences that may help us to understand the ways in which CCS deployment may differ between these two countries in order for the USA and China to work together - and in step with the rest of the world - to most efficiently reduce greenhouse gas emissions. This paper details the first ever analysis of CCS deployment costs in these two countries based on methodologically comparable CO2 source and sink inventories, economic analysis, geospatial source-sink matching and cost curve modeling. This type of analysis provides a valuable insight into the degree to which early and sustained opportunities for climate change mitigation via commercial-scale CCS are available to the two countries, and could facilitate greater collaboration in areas where those opportunities overlap.

Dahowski, Robert T.; Davidson, Casie L.; Dooley, James J.

2011-04-18T23:59:59.000Z

222

A technical and economic analysis of a natural gas combined cycle power plant with carbon dioxide capture using membrane separation technology.  

E-Print Network (OSTI)

?? Carbon dioxide (CO2) capture and storage (CCS) is a key technology to reduce anthropogenic greenhouse gas emissions and mitigate the potential effects of climateÖ (more)

Ducker, Michael Jay

2012-01-01T23:59:59.000Z

223

storage of several million tonnes of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

of several million tonnes of carbon dioxide (CO of several million tonnes of carbon dioxide (CO 2 ). The three recipients of the award are: the In Salah CO 2 Storage Project in Algeria; the Sleipner CO 2 Project in the North Sea; and the Weyburn-Midale CO 2 Project in Canada. In addition to providing scientific research opportunities, the projects are also being recognized as exemplary global models for their willingness to share their experiences in

224

Fundamental analysis of relative permeability and heterogeneity on carbon dioxide storage and plume migration.  

E-Print Network (OSTI)

??A critical aspect of geologic carbon storage, a carbon-emissions reduction methodunder extensive review and testing, is the ability to simulate multiphase CO2 flow andtransport. RelativeÖ (more)

Moodie, Nathan David

2013-01-01T23:59:59.000Z

225

Carbon Dioxide Compression and Transportation  

Science Conference Proceedings (OSTI)

This report summarizes the state of the art regarding carbon dioxide CO2 compression and transportation in the United States and Canada. The primary focus of the report was on CO2 compression because it is a significant cost and energy penalty in carbon capture and storage CCS. The secondary focus of the report was to document the state of the art of CO2 pipeline transportation in the United States and Canada.

2008-12-23T23:59:59.000Z

226

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

227

Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2  

SciTech Connect

Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

Pruess, K.

2011-05-15T23:59:59.000Z

228

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

recovery (EOR) and natural gas storage. Keywords: geologicalactivities such as natural gas storage, EOR, and deepstorage, such as natural gas storage and CO 2 -enhanced oil

Jordan, Preston D.

2008-01-01T23:59:59.000Z

229

Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater  

SciTech Connect

One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

2008-10-01T23:59:59.000Z

230

Cooling Requirements and Water Use Impacts of Advanced Coal-fired Power Plants with CO2 Capture and Storage  

Science Conference Proceedings (OSTI)

In addition to the large cost impact that comes with including CO2 capture in coal power plants, the consumption of water also increases. The increase in water consumption could represent a significant barrier to the implementation of CO2 capture. Although it is assumed that technology improvements might reduce the cost and power consumption of future CO2 capture systems, it might not be feasible to implement CO2 capture if additional water is not available at a site. In addition, because many regions of...

2011-12-20T23:59:59.000Z

231

Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations  

E-Print Network (OSTI)

kilometers away from the injection wells. Buscheck et al. (pattern around the CO 2 injection wells just outside theaquifer system. Five injection wells are planned in the

Birkholzer, J.T.

2013-01-01T23:59:59.000Z

232

ARM - Instrument - co2flx  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsco2flx govInstrumentsco2flx Documentation CO2FLX : Handbook CO2FLX : Instrument Mentor Monthly Summary (IMMS) reports CO2FLX : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Dioxide Flux Measurement Systems (CO2FLX) Instrument Categories Atmospheric Carbon General Overview The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind

233

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk  

DOE Green Energy (OSTI)

We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

2012-02-02T23:59:59.000Z

234

Reactive transport modeling for CO2 geological sequestration  

E-Print Network (OSTI)

Geochemical detection of carbon dioxide in dilute aquifers.geological storage of carbon dioxide. Int. J. Greenhouse GasIPCC special report on carbon dioxide capture and storage.

Xu, T.

2013-01-01T23:59:59.000Z

235

Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment  

Science Conference Proceedings (OSTI)

Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-Air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted 13C) into root-derived particulate organic matter (POM) pools to 90-cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N content increased over time, and were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. However, greater C inputs under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long-term laboratory incubations, and did not appear to prime the decomposition of older SOM. The 13CO2 of the C mineralized from the incubated soil closely tracked the 13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate the decomposition of older (i.e., pre-experiment) SOM. While potential C mineralization rates were positively and linearly related to total soil organic matter (SOM) C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may have increased potential for long-term storage. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].

Iversen, Colleen M [ORNL; Keller, Dr. Jason K. [Chapman University; Garten Jr, Charles T [ORNL; Norby, Richard J [ORNL

2012-01-01T23:59:59.000Z

236

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

237

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

238

Table H.1co2  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table H.1co2 World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil ...

239

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

240

Reactor Design for CO2 Capture Using Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Design for CO 2 Capture Using Sorbents Background Carbon Sequestration is rapidly becoming accepted as a viable option to reduce the amount of carbon dioxide (CO 2 )...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electricity Without CO2 Emissions: Assessing the Costs of Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson and Keith: Electricity without CO 2 ... 1 ELECTRICITY FROM FOSSIL FUELS WITHOUT CO 2 EMISSIONS: ASSESSING THE COSTS OF CARBON DIOXIDE CAPTURE AND SEQUESTRATION IN US...

242

Archer Daniels Midland Company: CO2 Capture from Biofuels Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Company: CO 2 Capture from Biofuels Production and Sequestration into the Mt. Simon Sandstone Background Carbon dioxide (CO 2 ) emissions from industrial processes, among other...

243

Combining Geothermal Energy Capture with CO2 Sequestration  

E-Print Network (OSTI)

Combining Geothermal Energy Capture with CO2 Sequestration Cold CO2 from emitter CO2 compressor geothermal heat hot CO2 permanent CO2 storage Martin O. Saar Dept. of Earth Sciences University of Minnesota saar@umn.edu CO2-Plume Geothermal (CPG) #12;Cold CO2 from emitter CO2 compressor geothermal heat hot CO

Reich, Peter B.

244

NETL: Solvents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability,...

245

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

246

Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"  

SciTech Connect

The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO2 effect to diminish, with consequences for change in soil elevation.

J. Patrick Megonigal; Bert G. Drake

2010-08-27T23:59:59.000Z

247

Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"  

Science Conference Proceedings (OSTI)

The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO2 effect to diminish, with consequences for change in soil elevation.

J. Patrick Megonigal; Bert G. Drake

2010-08-27T23:59:59.000Z

248

Nonlinear model identification and adaptive control of CO2 sequestration process in saline aquifers using artificial neural networks  

Science Conference Proceedings (OSTI)

In recent years, storage of carbon dioxide (CO"2) in saline aquifers has gained intensive research interest. The implementation, however, requires further research studies to ensure it is safe and secure operation. The primary objective is to secure ... Keywords: Carbon dioxide sequestration, Extended Kalman filter (EKF), GAP-RBF neural network, Nonlinear model predictive control (NMPC), System identification, Unscented Kalman filter (UKF)

Karim Salahshoor; Mohammad Hasan Hajisalehi; Morteza Haghighat Sefat

2012-11-01T23:59:59.000Z

249

Underground Storage of Carbon Dioxide-as a Solid | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground Storage of Carbon Dioxide-as a Solid Underground Storage of Carbon Dioxide-as a Solid Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information ¬Ľ July 2012 Underground Storage of Carbon Dioxide-as a Solid Nanoscale features in rocks enable more carbon dioxide to be trapped as a solid carbonate material underground. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Lawrence Berkeley National Laboratory

250

Carbon Dioxide Transport and Storage Costs in NETL Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering and Economic Assessment. 2 This study utilized a similar basis for pipeline costs (Oil and Gas Journal's pipeline cost data up to the year 2000) but added a CO 2...

251

NETL: News Release - Reining in CO2 Emissions....  

NLE Websites -- All DOE Office Websites (Extended Search)

Reining in CO2 Emissions.... DOE Selects Eight Innovative Projects to Capture and Store Carbon Dioxide from Power Plants WASHINGTON, DC - New ways to capture carbon dioxide from...

252

DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Completes Successful CO2 Injection Test in the Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone October 21, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership (MRCSP), one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest. Preliminary results indicate that the formation has good CO2 storage potential and could possibly serve as a repository for CO2 emissions captured from stationary sources in the region. Carbon capture and storage

253

DOE Regional Partner Initiates CO2 Injection Study in Virginia | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Initiates CO2 Injection Study in Virginia Partner Initiates CO2 Injection Study in Virginia DOE Regional Partner Initiates CO2 Injection Study in Virginia February 11, 2009 - 12:00pm Addthis Washington, D.C. -- A U.S. Department of Energy (DOE) team of regional partners has begun injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced coalbed methane recovery. The results of the study will be vital in assessing the potential of carbon storage in coal seams as a safe and permanent method to mitigate greenhouse gas emissions while enhancing production of natural gas. DOE's Southeast Regional Carbon Sequestration Partnership (SECARB) began injecting CO2 at the test site in Russell County, Virginia, in mid January.

254

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network (OSTI)

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks projects aimed at using hydrogen as a clean fuel for automobiles and producing clean energy by designing achieve higher storage capacities for hydrogen, (1) (a) Leaf, D.; Verolmec, H. J. H.; Hunt, W. F., Jr. En

Yaghi, Omar M.

255

Potential Impact of Carbon Dioxide on Potable Groundwater: A Controlled Release Experiment  

Science Conference Proceedings (OSTI)

Capturing carbon dioxide (CO2) emissions from industrial sources and injecting them deep underground in geologic formations is one of several options being considered to offset the effects of CO2 emissions. To provide information about geologic storage of CO2 to the public and regulators, industry needs to carefully study all potential environmental risks, including the potential for CO2 movement from deep storage sites into shallow aquifers containing ...

2012-12-21T23:59:59.000Z

256

Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009  

Science Conference Proceedings (OSTI)

Google Earth Pro has been employed to create an interactive flyover of the worldís largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

Dooley, James J.

2009-07-09T23:59:59.000Z

257

Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale  

E-Print Network (OSTI)

in Marcellus Shale Amirmasoud Kalantari-Dahaghi, SPE, West Virginia University, Shahab D. Mohaghegh, SPE Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible of how much carbon dioxide or methane can be stored in shale at a given pressure. In this paper, a shale

Mohaghegh, Shahab

258

Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration  

Science Conference Proceedings (OSTI)

This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

Dooley, James J.

2011-06-08T23:59:59.000Z

259

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

Histories Summary Conclusions and Remarks i UNDERGROUND NATURAL GASnatural gases in the Permian Basin, West Texas: Identifying the regional source and filling history,Natural Gas Storage Summary Conclusions and Remarks NUCLEAR WASTE DISPOSAL: LESSONS LEARNED FOR CO 2 SEQUESTRATION Introduction History

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

260

Program on Technology Innovation: Oxy-Fired CFB with CO2 Capture and Storage at Jamestown (NY) Board of Public Utilities  

Science Conference Proceedings (OSTI)

Oxy-combustion of coal has been proposed as a way of reducing the costs of capturing CO2 (at a purity sufficient for geological storage) from coal-fired steam-electric power plants. To date, only lab and test-stand studies have been conducted, focusing primarily on the combustion process. The next major development step is to field an integrated oxy-coal power plant. Such a project has been proposed and is being developed for deployment at the Jamestown (NY) Board of Public Utilities (BPU) Carlson Genera...

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon Dioxide Capture and Storage Demonstration in Developing...  

Open Energy Info (EERE)

and Barriers Abstract This report discusses the value of carbon capture and storage (CCS) technologies for developing countries and identifies financial approaches for CCS...

262

Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report  

Science Conference Proceedings (OSTI)

Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called √?¬Ę√?¬?√?¬?an open path device√?¬Ę√?¬?√?¬Ě to measure CO2 concentrations near the ground above a CO2 storage area.

Sheng Wu

2012-10-02T23:59:59.000Z

263

In-Situ MVA of CO2 Sequestration Using Smart Field Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

In-Situ MVA of CO In-Situ MVA of CO 2 Sequestration Using Smart Field Technology Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing

264

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

265

Health Effects of CO2  

Science Conference Proceedings (OSTI)

This report documents results of a project to identify and quantify toxic effects of carbon dioxide (CO2) in living organisms. The overall goal is to develop concentration and time-dependent profiles of CO2 toxicity in a variety of organisms. This project phase was designed to develop exposure-effect profiles for humans and nonhuman mammals and to identify the availability of information for other species.

2004-11-30T23:59:59.000Z

266

NETL: CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Emissions Control - Program Goals and Targets The Clean Coal Research Program (CCRP) is currently pursuing the demonstration of 1st-Generation Carbon Capture and Storage (CCS)...

267

Modeling Basin-and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment  

E-Print Network (OSTI)

, Lawrence Berkeley National Laboratory, University of California, MS 90- 1116, One Cyclotron Rd., Berkeley of Illinois, southwestern Indiana, and western Kentucky (Figure 1). The estimated total storage capacity Iowa Missouri Kentucky Illinois CincinnatiArch Kankakee Arch MississippiRiverArch Wisconsin Arch O zark

Zhou, Quanlin

268

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions November 16, 2011 - 12:00pm Addthis Washington, DC - Geologic capacity exists to permanently store hundreds of years of regional carbon dioxide (CO2) emissions in nine states stretching from Indiana to New Jersey, according to injection field tests conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP). MRCSP's just-released Phase II final report indicates the region has likely total storage of 245.5 billion metric tons of CO2, mostly in deep saline rock formations, a large capacity compared to present day emissions. While distributed sources such as agriculture, transportation, and home heating account for a significant amount of CO2 emissions in the MRCSP

269

Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure CO2 15 Projects Aimed at Secure CO2 Underground Storage Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground Storage August 11, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide in geologic formations. Funded with $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies and making the U.S. a leader in

270

Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2  

Science Conference Proceedings (OSTI)

Carbon dioxide chemistry is increasingly relevant to real-world issues, thanks to global warming. Key chemistry issues currently being studied are the capture, storage, and utilization of CO2. While the relevance of capture and storage are obvious, the relevance of CO2 utilization is less clear. Although CO2 utilization is unlikely to consume significant quantities of CO2, it can be an significant strategy for the development of sustainable processes. As part of our research efforts towards CO2 utilization, some of us invented switchable solvents, meaning solvents that can switch reversibly from one version to another.1Our original version was a mixture of an amidine and an alcohol (equation 1, where B is a liquid amidine), but since then we and others have developed others such as guanidine/alcohol mixtures (equation 1, where B is a liquid guanidine),2 amidine/primary amine mixtures,3 and secondary amines (equation 2).4Switchable solvents of these types all convert from a low-polarity to a high-polarity ionic liquid form upon exposure to an atmosphere of CO2 and revert back to the low polarity form when the CO2 is removed by heat or flushing with inert gas. We also demonstrated that these switchable solvents can be used as reversible CO2-binding organic liquids (CO2BOLs) for CO2 capture, and are more energy-efficient in that role than aqueous solutions of ethanolamine.

Heldebrant, David J.; Koech, Phillip K.; Ang, Trisha; Liang, Chen; Rainbolt, James E.; Yonker, Clement R.; Jessop, Philip G.

2010-04-01T23:59:59.000Z

271

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

Science Conference Proceedings (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

272

Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage  

SciTech Connect

Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

2011-01-01T23:59:59.000Z

273

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

274

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

275

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

CO 2 Source Thermal decomposition of metasedimentary rocks,fractured rock under caprock CO 2 Source Event triggeringrocks, with a minor contribution from magmatic sources [

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

276

Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations  

DOE Green Energy (OSTI)

This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

Dahowski, Robert T.; Dooley, James J.

2008-09-18T23:59:59.000Z

277

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

278

Storage of Pressuirzed Carbon Dioxide in Coal Observed Using X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

OF PRESSURIZED CARBON DIOXIDE IN COAL OBSERVED USING X-RAY OF PRESSURIZED CARBON DIOXIDE IN COAL OBSERVED USING X-RAY TOMOGRAPHY Jonathan P. Mathews (jpm10@psu.edu; 814 863 6213) Ozgen Karacan, (karacan@pnge.psu.edu; 814 865 9570) Phillip Halleck (phil@pnge.psu.edu; 814 863 1701) Gareth D. Mitchell (n8h@psu.edu; 814 863 6543) Abraham Grader (grader@pnge.psu.edu; 814 863 5813) The Energy Institute & Department of Energy & GeoEnvironmental Engineering 151 Holser Building, The Pennsylvania State University University Park, PA 16802 Introduction The sequestration of CO 2 in coal seams has been proposed as a mitigation strategy for climate change. To maximize sorption potential it is essential that the heterogeneity of the coal seam be represented in the computational models used to predict the complex flow and sorption within

279

NETL: IEP ¬Ė CO2 Compression - Novel Concepts for the Compression of Large  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Project No.: FC26-05NT42650 The Southwest Research Institute (SwRI) will design an efficient and cost-effective compression system to reduce the overall cost of carbon dioxide (CO2) capture and storage for coal-based power plants. SwRI will develop two novel concepts that have the potential to reduce CO2 compression power requirements by 35 percent compared to conventional compressor designs. The first concept is a semi-isothermal compression process where the CO2 is continually cooled using an internal cooling jacket rather than using conventional interstage cooling. This concept can potentially reduce power requirements because less energy is required to boost the pressure of a cool gas. The second concept involves the use of refrigeration to liquefy the CO2 so that its pressure can be increased using a pump, rather than a compressor. The primary power requirements are the initial compression required to boost the CO2 to approximately 250 pounds per square inch absolute and the refrigeration power required to liquefy the gaseous CO2. Once the CO2 is liquefied, the pumping power to boost the pressure to pipeline supply pressure is minimal. Prototype testing of each concept will be conducted.

280

Distributed Optical Sensor for CO2 Leak Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biomimetric Membrane for CO2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

282

Guidelines for carbon dioxide capture, transport and storage  

Science Conference Proceedings (OSTI)

The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

Hanson, S.

2008-07-01T23:59:59.000Z

283

Deflagration in stainless steel storage containers containing plutonium dioxide  

DOE Green Energy (OSTI)

Detonation of hydrogen and oxygen in stainless steel storage containers produces maximum pressures of 68.5 psia and 426.7 psia. The cylinders contain 3,000 g of PuO{sub 2} with 0.05 wt% and 0.5 wt% water respectively. The hydrogen and oxygen are produced by the alpha decomposition of the water. Work was performed for the Savannah River Site.

Kleinschmidt, P.D.

1996-02-01T23:59:59.000Z

284

CO2 Emissions - Gibraltar  

NLE Websites -- All DOE Office Websites (Extended Search)

Gibraltar CO2 Emissions from Gibraltar Data graphic Data CO2 Emissions from Gibraltar image Per capita CO2 Emission Estimates for Gibraltar...

285

CO2 Emissions - Mozambique  

NLE Websites -- All DOE Office Websites (Extended Search)

Mozambique Graphics CO2 Emissions from Mozambique Data graphic Data CO2 Emissions from Mozambique image Per capita CO2 Emission Estimates for Mozambique...

286

CO2 Emissions - Macau  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Macau CO2 Emissions from Macau Data graphic Data CO2 Emissions from Macau image Per capita CO2 Emission Estimates for Macau...

287

CO2 Emissions - Guadeloupe  

NLE Websites -- All DOE Office Websites (Extended Search)

Guadeloupe Graphics CO2 Emissions from Guadeloupe Data graphic Data CO2 Emissions from Guadeloupe image Per capita CO2 Emission Estimates for Guadeloupe...

288

CO2 Emissions - Ghana  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Ghana Graphics CO2 Emissions from Ghana Data graphic Data CO2 Emissions from Ghana image Per capita CO2 Emission Estimates for Ghana...

289

CO2 Emissions - Ireland  

NLE Websites -- All DOE Office Websites (Extended Search)

Ireland CO2 Emissions from Ireland Data graphic Data CO2 Emissions from Ireland image Per capita CO2 Emission Estimates for Ireland...

290

CO2 Emissions - Malta  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Malta CO2 Emissions from Malta Data graphic Data CO2 Emissions from Malta image Per capita CO2 Emission Estimates for Malta...

291

CO2 Emissions - Montserrat  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Montserrat Graphics CO2 Emissions from Montserrat Data graphic Data CO2 Emissions from Montserrat image Per capita CO2...

292

CO2 Emissions - Kyrgyzstan  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Kyrgyzstan CO2 Emissions from Kyrgyzstan Data graphic Data CO2 Emissions from Kyrgyzstan image Per capita CO2 Emission Estimates for Kyrgyzstan...

293

CO2 Emissions - Mali  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mali Graphics CO2 Emissions from Mali Data graphic Data CO2 Emissions from Mali image Per capita CO2 Emission Estimates for Mali...

294

CO2 Emissions - Martinique  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Martinique Graphics CO2 Emissions from Martinique Data graphic Data CO2 Emissions from Martinique image Per capita CO2...

295

CO2 Emissions - Portugal  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Portugal CO2 Emissions from Portugal Data graphic Data CO2 Emissions from Portugal image Per capita CO2 Emission Estimates for Portugal...

296

CO2 Emissions - Honduras  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Honduras Graphics CO2 Emissions from Honduras Data graphic Data CO2 Emissions from Honduras image Per capita CO2...

297

CO2 Emissions - Paraguay  

NLE Websites -- All DOE Office Websites (Extended Search)

Paraguay Graphics CO2 Emissions from Paraguay Data graphic Data CO2 Emissions from Paraguay image Per capita CO2 Emission Estimates for Paraguay...

298

CO2 Emissions - Macedonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Macedonia CO2 Emissions from Macedonia Data graphic Data CO2 Emissions from Macedonia image Per capita CO2 Emission Estimates for Macedonia...

299

CO2 Emissions - Malawi  

NLE Websites -- All DOE Office Websites (Extended Search)

Malawi Graphics CO2 Emissions from Malawi Data graphic Data CO2 Emissions from Malawi image Per capita CO2 Emission Estimates for Malawi...

300

CO2 Emissions - Gabon  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Gabon Graphics CO2 Emissions from Gabon Data graphic Data CO2 Emissions from Gabon image Per capita CO2 Emission Estimates for Gabon...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CO2 Emissions - Grenada  

NLE Websites -- All DOE Office Websites (Extended Search)

Grenada Graphics CO2 Emissions from Grenada Data graphic Data CO2 Emissions from Grenada image Per capita CO2 Emission Estimates for Grenada...

302

CO2 Emissions - Kiribati  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Kiribati Graphics CO2 Emissions from Kiribati Data graphic Data CO2 Emissions from Kiribati image Per capita CO2 Emission Estimates for Kiribati...

303

CO2 Emissions - Israel  

NLE Websites -- All DOE Office Websites (Extended Search)

Israel Graphics CO2 Emissions from Israel Data graphic Data CO2 Emissions from Israel image Per capita CO2 Emission Estimates for Israel...

304

CO2 Emissions - Phillippines  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Phillippines CO2 Emissions from Phillippines Data graphic Data CO2 Emissions from Phillippines image Per capita CO2 Emission Estimates for Phillippines...

305

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

306

CO2 Emissions - Mauritius  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritius Graphics CO2 Emissions from Mauritius Data graphic Data CO2 Emissions from Mauritius image Per capita CO2 Emission Estimates for Mauritius...

307

CO2 Emissions - Malaysia  

NLE Websites -- All DOE Office Websites (Extended Search)

Malaysia CO2 Emissions from Malaysia Data graphic Data CO2 Emissions from Malaysia image Per capita CO2 Emission Estimates for Malaysia...

308

CO2 Emissions - Reunion  

NLE Websites -- All DOE Office Websites (Extended Search)

Reunion Graphics CO2 Emissions from Reunion Data graphic Data CO2 Emissions from Reunion image Per capita CO2 Emission Estimates for Reunion...

309

CO2 Emissions - Guatemala  

NLE Websites -- All DOE Office Websites (Extended Search)

Guatemala Graphics CO2 Emissions from Guatemala Data graphic Data CO2 Emissions from Guatemala image Per capita CO2 Emission Estimates for Guatemala...

310

CO2 Emissions - Iceland  

NLE Websites -- All DOE Office Websites (Extended Search)

Iceland CO2 Emissions from Iceland Data graphic Data CO2 Emissions from Iceland image Per capita CO2 Emission Estimates for Iceland...

311

CO2 Emissions - Mongolia  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Mongolia CO2 Emissions from Mongolia Data graphic Data CO2 Emissions from Mongolia image Per capita CO2 Emission Estimates for Mongolia...

312

CO2 Emissions - Romania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Romania CO2 Emissions from Romania Data graphic Data CO2 Emissions from Romania image Per capita CO2 Emission Estimates for Romania...

313

CO2 Emissions - Panama  

NLE Websites -- All DOE Office Websites (Extended Search)

Panama Graphics CO2 Emissions from Panama Data graphic Data CO2 Emissions from Panama image Per capita CO2 Emission Estimates for Panama...

314

CO2 Emissions - Madagascar  

NLE Websites -- All DOE Office Websites (Extended Search)

Madagascar Graphics CO2 Emissions from Madagascar Data graphic Data CO2 Emissions from Madagascar image Per capita CO2 Emission Estimates for Madagascar...

315

CO2 Emissions - Netherlands  

NLE Websites -- All DOE Office Websites (Extended Search)

Netherlands CO2 Emissions from Netherlands Data graphic Data CO2 Emissions from Netherlands image Per capita CO2 Emission Estimates for Netherlands...

316

CO2 Emissions - Greenland  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenland Graphics CO2 Emissions from Greenland Data graphic Data CO2 Emissions from Greenland image Per capita CO2 Emission Estimates for Greenland...

317

CO2 Emissions - Nicaragua  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Nicaragua Graphics CO2 Emissions from Nicaragua Data graphic Data CO2 Emissions from Nicaragua image Per capita CO2...

318

CO2 Emissions - Norway  

NLE Websites -- All DOE Office Websites (Extended Search)

Norway CO2 Emissions from Norway Data graphic Data CO2 Emissions from Norway image Per capita CO2 Emission Estimates for Norway...

319

CO2 Emissions - Guyana  

NLE Websites -- All DOE Office Websites (Extended Search)

Guyana Graphics CO2 Emissions from Guyana Data graphic Data CO2 Emissions from Guyana image Per capita CO2 Emission Estimates for Guyana...

320

CO2 Emissions - Mauritania  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritania Graphics CO2 Emissions from Mauritania Data graphic Data CO2 Emissions from Mauritania image Per capita CO2 Emission Estimates for Mauritania...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CO2 Emissions - Lithuania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Lithuania CO2 Emissions from Lithuania Data graphic Data CO2 Emissions from Lithuania image Per capita CO2 Emission Estimates for Lithuania...

322

CO2 Emissions - Kenya  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Kenya Graphics CO2 Emissions from Kenya Data graphic Data CO2 Emissions from Kenya image Per capita CO2 Emission Estimates for Kenya...

323

CO2 Emissions - Latvia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Latvia CO2 Emissions from Latvia Data graphic Data CO2 Emissions from Latvia image Per capita CO2 Emission Estimates for Latvia...

324

CO2 Emissions - Georgia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Georgia CO2 Emissions from Georgia Data graphic Data CO2 Emissions from Georgia image Per capita CO2 Emission Estimates for Georgia...

325

CO2 Emissions - Gambia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gambia Graphics CO2 Emissions from Gambia Data graphic Data CO2 Emissions from Gambia image Per capita CO2 Emission Estimates for Gambia...

326

CO2 Emissions - Montenegro  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Montenegro CO2 Emissions from Montenegro Data graphic Data CO2 Emissions from Montenegro image Per capita CO2 Emission Estimates for Montenegro...

327

CO2 Emissions - Oman  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Oman Graphics CO2 Emissions from Oman Data graphic Data CO2 Emissions from Oman image Per capita CO2 Emission Estimates for Oman...

328

CO2 Emissions - Kuwait  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Kuwait Graphics CO2 Emissions from Kuwait Data graphic Data CO2 Emissions from Kuwait image Per capita CO2 Emission Estimates for Kuwait...

329

CO2 Emissions - Lebanon  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Lebanon Graphics CO2 Emissions from Lebanon Data graphic Data CO2 Emissions from Lebanon image Per capita CO2 Emission Estimates for Lebanon...

330

CO2 Emissions - Nigeria  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Nigeria Graphics CO2 Emissions from Nigeria Data graphic Data CO2 Emissions from Nigeria image Per capita CO2 Emission Estimates for Nigeria...

331

CO2 Emissions - Maldives  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Maldives CO2 Emissions from Maldives Data graphic Data CO2 Emissions from Maldives image Per capita CO2 Emission Estimates for Maldives...

332

CO2 Emissions - Morocco  

NLE Websites -- All DOE Office Websites (Extended Search)

Morocco Graphics CO2 Emissions from Morocco Data graphic Data CO2 Emissions from Morocco image Per capita CO2 Emission Estimates for Morocco...

333

CO2 Emissions - Pakistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Pakistan CO2 Emissions from Pakistan Data graphic Data CO2 Emissions from Pakistan image Per capita CO2 Emission Estimates for Pakistan...

334

CO2 Emissions - Palau  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Palau CO2 Emissions from Palau Data graphic Data CO2 Emissions from Palau image Per capita CO2 Emission Estimates for Palau...

335

CO2 Emissions - Qatar  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Qatar Graphics CO2 Emissions from Qatar Data graphic Data CO2 Emissions from Qatar image Per capita CO2 Emission Estimates for Qatar...

336

CO2 Emissions - Guam  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Guam Graphics CO2 Emissions from Guam Data graphic Data CO2 Emissions from Guam image Per capita CO2 Emission Estimates for Guam...

337

CO2 Emissions - Rwanda  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Rwanda Graphics CO2 Emissions from Rwanda Data graphic Data CO2 Emissions from Rwanda image Per capita CO2 Emission Estimates for Rwanda...

338

CO2 Emissions - Guinea  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Guinea Graphics CO2 Emissions from Guinea Data graphic Data CO2 Emissions from Guinea image Per capita CO2 Emission Estimates for Guinea...

339

CO2 Emissions - Luxembourg  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Luxembourg CO2 Emissions from Luxembourg Data graphic Data CO2 Emissions from Luxembourg image Per capita CO2 Emission Estimates for Luxembourg...

340

CO2 Emissions - Liberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Liberia Graphics CO2 Emissions from Liberia Data graphic Data CO2 Emissions from Liberia image Per capita CO2 Emission Estimates for Liberia...

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CO2 Emissions - Haiti  

NLE Websites -- All DOE Office Websites (Extended Search)

Haiti Graphics CO2 Emissions from Haiti Data graphic Data CO2 Emissions from Haiti image Per capita CO2 Emission Estimates for Haiti...

342

CO2 Emissions - Iraq  

NLE Websites -- All DOE Office Websites (Extended Search)

Iraq Graphics CO2 Emissions from Iraq Data graphic Data CO2 Emissions from Iraq image Per capita CO2 Emission Estimates for Iraq...

343

CO2 Emissions - Hungary  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Hungary CO2 Emissions from Hungary Data graphic Data CO2 Emissions from Hungary image Per capita CO2 Emission Estimates for Hungary...

344

CO2 Emissions - Nepal  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Nepal CO2 Emissions from Nepal Data graphic Data CO2 Emissions from Nepal image Per capita CO2 Emission Estimates for Nepal...

345

CO2 Emissions - Nauru  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Graphics CO2 Emissions from Nauru Data graphic Data CO2 Emissions from Nauru image Per capita CO2 Emission Estimates for Nauru...

346

CO2 Emissions - Myanmar  

NLE Websites -- All DOE Office Websites (Extended Search)

Myanmar CO2 Emissions from Myanmar Data graphic Data CO2 Emissions from Myanmar image Per capita CO2 Emission Estimates for Myanmar...

347

CO2 Emissions - Jordan  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Jordan Graphics CO2 Emissions from Jordan Data graphic Data CO2 Emissions from Jordan image Per capita CO2 Emission Estimates for Jordan...

348

CO2 Emissions - Greece  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Greece CO2 Emissions from Greece Data graphic Data CO2 Emissions from Greece image Per capita CO2 Emission Estimates for Greece...

349

THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS  

SciTech Connect

This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

2003-08-01T23:59:59.000Z

350

Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.  

SciTech Connect

The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wells into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of the application of the CF during these different state-of-knowledge periods show that the assessment of likelihood of various leakage scenarios increased as more information became available, while assessment of impact stayed the same. Ongoing mitigation, modeling, and monitoring of the injection process is recommended.

Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.; Mazzoldi, A.; Gupta, A.K.; Bryant, S.L.

2010-08-01T23:59:59.000Z

351

Program on Technology Innovation: Drying of Low-Rank Coal with Supercritical Carbon Dioxide (CO2) in Integrated Gasification Combined Cycle (IGCC) Plants  

Science Conference Proceedings (OSTI)

This study is part of the Electric Power Research Institute (EPRI) Technology Innovation Program to assess the potential to achieve increased process efficiency and reduced capital cost by drying low-rank coal with supercritical carbon dioxide (SCCO2). This study follows the EPRI report Program on Technology Innovation: Assessment of the Applicability of Drying Low-Rank Coal With Supercritical Carbon Dioxide in IGCC Plants (1016216), which concluded that this system has potential benefits with respect to...

2010-07-30T23:59:59.000Z

352

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

SciTech Connect

Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

2011-05-01T23:59:59.000Z

353

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

Not Available

2008-10-01T23:59:59.000Z

354

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

Not Available

2008-06-01T23:59:59.000Z

355

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

Not Available

2008-06-01T23:59:59.000Z

356

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

Not Available

2008-06-01T23:59:59.000Z

357

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

Not Available

2008-10-01T23:59:59.000Z

358

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

Not Available

2008-06-01T23:59:59.000Z

359

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

Lantz, E.; Tegen, S.

2008-05-01T23:59:59.000Z

360

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

Not Available

2008-06-01T23:59:59.000Z

362

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

Not Available

2008-10-01T23:59:59.000Z

363

Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

Not Available

2008-06-01T23:59:59.000Z

364

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

Not Available

2008-10-01T23:59:59.000Z

365

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

Not Available

2008-06-01T23:59:59.000Z

366

Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

Not Available

2008-06-01T23:59:59.000Z

367

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States  

SciTech Connect

Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

Neeraj Gupta

2009-09-30T23:59:59.000Z

368

CO2 Emissions - Namibia  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Africa Namibia CO2 Emissions from Namibia Data graphic Data CO2 Emissions from Namibia image Per capita CO2 Emission Estimates for...

369

CO2 Adsorption to Sub-Single Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction  

SciTech Connect

Geologic storage of CO2 requires that the caprock sealing the storage rock is highly impermeable by CO2. Swelling clays, which are important components of caprocks, may react with CO2 under volume change, potentially impacting the seal quality. The interactions of scCO2 with Na saturated montmorillonite clay containing a sub-single layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of 0.15 g/cm3, followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 . The density of CO2 in the clay pores is relatively stable over a wide range of CO2 pressures at a given temperature, indicating the formation of a clay-CO2 phase. At low pressure increasing CO2 adsorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak or no temperature dependence. Supercritical fluids, sorption phenomena, carbon dioxide, carbon sequestration, caprock integrity

Rother, Gernot [ORNL; Ilton, Eugene [Pacific Northwest National Laboratory (PNNL); Wallacher, Dirk [Helmholtz-Zentrum Berlin; Hauss, Thomas [Helmholtz-Zentrum Berlin; Schaef, Herbert [Pacific Northwest National Laboratory (PNNL); Qafoku, Odeta [Pacific Northwest National Laboratory (PNNL); Rosso, Kevin M. [Pacific Northwest National Laboratory (PNNL); Felmy, Andrew [Pacific Northwest National Laboratory (PNNL); Krukowski, Elizabeth G [ORNL; Stack, Andrew G [ORNL; Bodnar, Robert J [ORNL

2013-01-01T23:59:59.000Z

370

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

Energy Efficiency and Carbon Dioxide Emissions Reductionconsumption and related carbon dioxide (CO 2 ) emissions.during Cumulative Carbon Dioxide Emission Reduction (MtCO

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

371

An Integrated Approach for Oxy-fuel Combustion with CO2 Capture and Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Vent Stream Vent Stream (out) CO 2 Product Stream (out) Flue Gas Stream (in) CO 2 CCU Skid Government of Canada Gouvernement du Canada An Integrated Approach for Oxy An Integrated Approach for Oxy- -fuel Combustion with CO fuel Combustion with CO 2 2 Capture and Capture and Compression Compression Kourosh Zanganeh, Ahmed Shafeen, and Carlos Salvador Zero-Emission Technologies Group, Clean Electric Power Generation CANMET CO 2 R&D Consortium CANMET Energy Technology Centre - Ottawa The capture and storage or reuse of carbon dioxide (CO 2 ) from the combustion of fossil fuels as well as industrial off gases represents an opportunity to achieve a significant reduction in anthropogenic greenhouse gas (GHG) emissions. Fossil fuel combustion is expected to dominate the energy structure in at least the next few decades.

372

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

373

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network (OSTI)

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

374

The Value of Post-Combustion Carbon Dioxide Capture and Storage Technologies in a World with Uncertain Greenhouse Gas Emissions Constraints  

Science Conference Proceedings (OSTI)

By analyzing how the largest CO2 emitting electricity generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post combustion CO2 capture technologies. The utilization of pulverized coal with carbon dioxide capture and storage (PC+CCS) technologies is particularly significant in a world where there is significant uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paperís analysis shows that within this one large, heavily coal-dominated electricity generating region, as much as 20-40 GW of PC+CCS could be in operation before the middle of this century. Depending upon the state of PC+CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either already existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC+CCS generation units are compliments to a much larger deployment of CCS-enabled coal-fired integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC+CCS and IGCC+CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 billion tones of CO2 before the middle of this century in the regionís deep geologic storage formations.

Wise, Marshall A.; Dooley, James J.

2009-01-01T23:59:59.000Z

375

ARM - Campaign Instrument - co2lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

lidar Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Carbon Dioxide Doppler Lidar (CO2LIDAR) Instrument...

376

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

377

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

378

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

Not Available

2009-03-01T23:59:59.000Z

379

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

380

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

Not Available

2008-10-01T23:59:59.000Z

382

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

Not Available

2008-10-01T23:59:59.000Z

383

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

Not Available

2008-10-01T23:59:59.000Z

384

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

Not Available

2008-10-01T23:59:59.000Z

385

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

Not Available

2008-10-01T23:59:59.000Z

386

DOE Research Projects to Examine Promising Geologic Formations for CO2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects to Examine Promising Geologic Formations for Research Projects to Examine Promising Geologic Formations for CO2 Storage DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage September 16, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2). View Project Details Funding for the projects includes $49.75 million from the 2009 American Reinvestment and Recovery Act and will result in substantial employment opportunities for local and regional organizations over the next three years while providing hands-on scientific experience for individuals looking to be employed in the carbon capture and storage (CCS) industry.

387

"Technologies to Ensure Permanent Geologic Carbon Storage,"  

NLE Websites -- All DOE Office Websites (Extended Search)

of carbon dioxide (CO of carbon dioxide (CO 2 ). DE-FOA-0000652, titled, "Technologies to Ensure Permanent Geologic Carbon Storage," addresses key geologic storage challenges and uncertainties that include improving and validating containment, improving injection operations, increasing reservoir storage efficiency, and mitigating potential releases of CO 2 from the engineered containment system. The following four technical areas of interest are addressed: Area of Interest 1 - Studies of Existing Wellbores Exposed to CO 2 ; Area of Interest 2 - Advanced Wellbore Integrity Technologies; Area of Interest 3 - Field Methods to Optimize Capacity and Ensure Storage Containment; and Area of Interest 4 - Enhanced Simulation Tools to Improve Predictions and

388

Energy Efficiency in CO2 Emissions Trading  

Science Conference Proceedings (OSTI)

This Technical Update explores methods to account for carbon dioxide (CO2) emission reductions specifically associated with the implementation of energy efficiency programs into greenhouse gas (GHG) emissions trading or offset markets. It focuses on how to understand, account for, quantify, verify, and optimize how electricity savings may both reduce CO2 emissions and potentially be granted credits for CO2 savings that may be traded in cap-and-trade regimes.

2008-07-09T23:59:59.000Z

389

TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY  

SciTech Connect

Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

Mark A. Meadows

2006-03-31T23:59:59.000Z

390

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Updates * Validation Field Tests * Large Scale CO 2 Storage Projects * Best Practice Manuals Update * Importance of CO 2 Storage Reservoir Classes 4 Sequestration Program Updates...

391

A $70/tCO2 greenhouse gas mitigation backstop for Chinaís industrial and electric power sectors: insights from a comprehensive CCS cost curve  

Science Conference Proceedings (OSTI)

As one of the world's fastest growing economies with abundant coal reserves, China's carbon dioxide (CO2) emissions have doubled in the last decade and are expected to continue growing for the foreseeable future. While the Central Government has been promoting development and growth of cleaner and more efficient energy systems, efforts to reduce carbon emissions from the heavily coal-based economy may require continued and increased development and deployment of carbon dioxide capture and storage (CCS) technologies. This paper presents the first detailed, national-scale assessment of CCS potential across the diverse geographic, geologic, and industrial landscape of China, through the lens of an integrated CCS cost curve. It summarizes the development of a cost curve representing the full chain of components necessary for the capture and geologic storage of CO2 from China's power generation and industrial sectors. Individual component cost estimates are described, along with the optimized source-sink matching of over 1,600 large stationary CO2 sources and 2300 gigatons of CO2 storage capacity within 90 major deep geologic onshore sedimentary sub-basins, to develop a cost curve incorporating CO2 capture, compression, transport, and storage. Results suggest that CCS can provide an important greenhouse gas mitigation option for most regions and industrial sectors in China, able to store more than 80% of emissions from these large CO2 sources (2900 million tons of CO2 annually) at costs less than $70/tCO2 for perhaps a century or more.

Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

2012-08-27T23:59:59.000Z

392

Liquid Fuels from CO2, Water, and Solar Energy  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title, Liquid Fuels from CO2, Water, and Solar Energy. Author(s), Aldo†...

393

Composition and Method for Rapid and Equimolar CO2 Capture ...  

The emission of carbon dioxide (CO 2 ) from burning of fossil fuels has received worldwide attention because of its implication in climate change, which threatens ...

394

Strategies for Controlling Coal Permeability in CO2-Enhanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising levels of atmospheric carbon dioxide (CO 2 ), caused primarily by combustion of fossil fuels for power generation and transportation, are considered to be leading...

395

FACE Program, Free Air CO2 Enrichment (FACE), Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

The FACE Program Science | Engineering | Research Sites | DOEBER FACE Program The atmospheric carbon dioxide concentration (CO2) has risen by 35% since the start of the...

396

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

397

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Title Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6196E Year of Publication 2012 Authors Satish, Usha, Mark J. Mendell, Krishnamurthy Shekhar, Toshifumi Hotchi, Douglas P. Sullivan, Siegfried Streufert, and William J. Fisk Journal Environmental Health Perspectives Volume 120 Issue 12 Pagination 1671-1677 Date Published 09/20/2012 Keywords carbon dioxide, cognition, Decision Making, human performance, indoor environmental quality, ventilation Abstract Background - Associations of higher indoor carbon dioxide (CO2) concentrations with impaired

398

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

reservoirs and natural gas storage facilities. Nonetheless,USA The Yaggy natural gas storage facility is located sevenreservoirs and natural gas storage facilities, respectively,

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

399

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

reservoirs and natural gas storage facilities, respectively,reservoirs and natural gas storage facilities. Nonetheless,USA The Yaggy natural gas storage facility is located seven

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

400

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CO2 Emissions - Peru  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Peru Graphics CO2 Emissions from Peru Data graphic Data CO2 Emissions from Peru image Per capita CO2 Emission Estimates...

402

CO2 Emissions - Bolivia  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Bolivia Graphics CO2 Emissions from Bolivia Data graphic Data CO2 Emissions from Bolivia image Per capita CO2 Emission...

403

CO2 Emissions - Jamaica  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Jamaica Graphics CO2 Emissions from Jamaica Data graphic Data CO2 Emissions from Jamaica image Per capita CO2 Emission...

404

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

COMPOSITION OF FLUE GAS STREAMS AND CO 2 SEPARATION 43 3.3. NATURALcompositions by volume of flue (and fuel) gases from selected coal, fuel oil, natural

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

405

Microsoft Word - CO2 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

Understanding the Decline in Carbon Dioxide Understanding the Decline in Carbon Dioxide Emissions in 2009 1 EIA projects carbon dioxide (CO2) emissions from fossil fuels in 2009 to be 5.9 percent below the 2008 level in the Short-Term Energy Outlook, October 2009 (STEO) (Table 1). Projected coal CO2 emissions fall by 10.1 percent in 2009, primarily because of lower consumption for electricity generation. Coal accounts for 63 percent of the total decline in CO2 emissions from fossil fuels this year. Forecast lower natural gas and petroleum emissions this year make up 7 percent and 30 percent of the projected total decline in CO2 emissions from fossil fuels, respectively. Table 1. Short-Term Energy Outlook CO

406

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

407

CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?  

Science Conference Proceedings (OSTI)

This paper draws heavily on the authorsí previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be ďa stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.Ē The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2010-07-14T23:59:59.000Z

408

Electrochemical energy storage device based on carbon dioxide as electroactive species  

DOE Patents (OSTI)

An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

2013-03-05T23:59:59.000Z

409

NETL: News Release - CO2 Injection in Kansas Oilfield Could Greatly  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2011 31, 2011 CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says Near-Miscible Flooding in Arbuckle Formation Would Help Small Producers Tap Additional Domestic Resources Washington, D.C. - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas. Miscibility refers to the pressure at which the CO2 and oil are completely soluble in one another or form a single phase. Below the minimum miscibility pressure (MMP) the injected CO2 mixes with and swells the oil to reduce its viscosity, increasing its ability to flow through the reservoir more easily to the production well.

410

Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Game-Changing CO2 Capture Membranes in Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project November 15, 2012 - 12:00pm Addthis Washington, DC - In a project funded by the U.S. Department of Energy's Office of Fossil Energy (FE), researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that combines the separation performance of inorganic membranes with the cost-effectiveness of polymer membranes. The breakthrough technology has vast commercial potential for use at coal-fired power plants with carbon capture, utilization, and storage (CCUS), a key element in national efforts to mitigate climate change. Before the carbon dioxide (CO2) generated at a power plant can be securely

411

NETL: IEP ¬Ė Oxy-Combustion CO2 Emissions Control - CANMET CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

¬Ė Oxy-Combustion CO2 Emissions Control ¬Ė Oxy-Combustion CO2 Emissions Control CANMET CO2 Consortium-O2/CO2 Recycle Combustion Project No.: IEA-CANMET-CO2 (International Agreement) Photograph of CANMET's Vertical Combustor Research Facility. Photograph of CANMET¬ís Vertical Combustor Research Facility. The CANMET carbon dioxide (CO2) consortium will conduct research to further the development of oxy-combustion for retrofit to coal-fired power plants. Research activities include: (1) modeling of an advanced, supercritical pressure oxy-coal plant, including an analysis of the impact of oxygen (O2) purity and O2 partial enrichment, overall process performance, and cost; (2) testing of pilot-scale CO2 capture and compression; (3) investigating CO2 phase change at liquid and supercritical states in gas mixtures

412

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce the amount of CO2 emitted into the atmosphere. However, a better understanding of the chemical and physical interactions between CO2, water, and formation rock is necessary before sequestration. These interactions can be evaluated by the change in mineral content in the water before and after injection, or from the change in well injectivity during CO2 injection. It may affect the permeability positively due to rock dissolution, or negatively due to precipitation. Several physical and chemical processes cover the CO2 injection operations; multiphase flow in porous media is represented by the flow of the brine and CO2, solute transportation is represented by CO2 dissolution in the brine forming weak carbonic acid, dissolution-deposition kinetics can be seen in the rock dissolution by the carbonic acid and the deposition of the reaction products, hydrodynamic instabilities due to displacement of less viscous brine with more viscous CO2 (viscous fingering), capillary effects and upward movement of CO2 due to gravity effect. The objective of the proposed work is to correlate the formation damage to the other variables, i.e. pressure, temperature, formation rock type, rock porosity, water composition, sulfates concentration in the water, CO2 volume injected, water volume injected, CO2 to water volumetric ratio, CO2 injection rate, and water injection rate. In order to achieve the proposed objective, lab experiments will be conducted on different rock types (carbonates, limestone and dolomite, and sandstone) under pressure and temperature that simulate the field conditions. CO2 will be used at the supercritical phase and different CO2-water-rock chemical interactions will be addressed. Quantitative analysis of the experimental results using a geochemical simulator (CMG-GEM) will also be performed. The results showed that for carbonate cores, maintaining the CO2/brine volumetric ratio above 1.0 reduced bicarbonate formation in the formation brine and helped in minimizing precipitation of calcium carbonate. Additionally, increasing cycle volume in WAG injection reduced the damage introduced to the core. Sulfate precipitation during CO2 sequestration was primarily controlled by temperature. For formation brine with high total dissolved solids (TDS), calcium sulfate precipitation occurs, even at a low sulfate concentration. For dolomite rock, temperature, injection flow rate, and injection scheme don't have a clear impact on the core permeability, the main factor that affects the change in core permeability is the initial core permeability. Sandstone cores showed significant damage; between 35% and 55% loss in core permeability was observed after CO2 injection. For shorter WAG injection the damage was higher; decreasing the brine volume injected per cycle, decreased the damage. At higher temperatures, 200 and 250 degrees F, more damage was noted than at 70 degrees F.

Mohamed, Ibrahim 1984-

2012-12-01T23:59:59.000Z

413

Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"  

E-Print Network (OSTI)

groundwater, natural gas storage, waste disposalÖ). Rock andfrom CO 2 EOR and natural gas storage projects, the risk of

Lumley, D.

2010-01-01T23:59:59.000Z

414

Potential Impact of Carbon Dioxide on Potable Groundwater: A Controlled Release Experiment: 2013 Final Report  

Science Conference Proceedings (OSTI)

Separating carbon dioxide (CO2) from flue gases emitted by power stations that burn fossil fuels and injecting the CO2 deep underground is one method being considered on a commercial-scale to prevent emissions from reaching the atmosphere. Although full-scale commercial deployment of CO2 capture and storage (CCS) from a power station has not been performed to date, small-scale pilot projects have demonstrated that CCS is technically feasible. The high cost of ...

2013-12-19T23:59:59.000Z

415

PHOTOCATALYTIC CONVERSION OF CO2 AN ALTERNATE TO STORAGE BASED SEQUESTRATION Melanie M. DeBusk1, A.C. Buchanan2, Chaitanya K. Narula1  

E-Print Network (OSTI)

it to CO at high temperatures and then converting CO to hydrocarbons by using the Fisher-Tropsch process. (If CO2 is heated to 2400¬įC, it splits into carbon monoxide and oxygen. The Fischer- Tropsch process

416

CO2 Sequestration in Basalt Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

417

Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks  

SciTech Connect

There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2008-02-29T23:59:59.000Z

418

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network (OSTI)

diameter [in], and L = pipeline length [miles]) Two of therate [tonnes CO2/day] and pipeline length [km]. The range of50 and 1000 MW. For pipeline length, the range is 100 to 500

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

419

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network (OSTI)

meters Figure 12: Number of Injection Wells as a Function ofCO 2 at the top of the injection well [MPa] P res = pressurei.e. , pressure at bottom of injection well) [MPa] P inter =

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

420

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

and consequences of carbon dioxide sequestration, NatureData on Global Change. Carbon Dioxide Information AnalysisCA 94720 Glossary Carbon dioxide capture and storage (CCS) -

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: NATCARB - CO2 Stationary Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary Sources Stationary Sources NATCARB CO2 Stationary Sources CO2 Stationary Source Emission Estimation Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) employed carbon dioxide (CO2) emissions estimate methodologies that are based on the most readily available representative data for that particular industry type within the respective partnership area. Carbon dioxide emissions data provided by databases (for example, eGRID, IEA GHG, or NATCARB) were the first choice for all of the RCSPs, both for identifying major CO2 stationary sources and for providing reliable emission estimations. Databases are considered to contain reliable and accurate data obtained

422

Relevance of underground natural gas storage to geologic sequestration of carbon dioxide  

Science Conference Proceedings (OSTI)

The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

Lippmann, Marcelo J.; Benson, Sally M.

2002-07-01T23:59:59.000Z

423

Carbon Storage R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D R&D Carbon Storage R&D Carbon dioxide storage in geologic formations includes oil and gas reservoirs, unmineable coal seams, and deep saline reservoirs. These are structures that have stored crude oil, natural gas, brine and CO2 over millions of years. The primary goal of our carbon storage research is to understand the behavior of CO2 when stored in geologic formations. For example, studies are being conducted to determine the extent to which the CO2 moves within the geologic formation, and when CO2 is injected, what physical and chemical changes occur within the formation. This information is key to ensure that carbon storage will not affect the structural integrity of an underground formation, and that CO2 storage is secure and environmentally

424

Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir  

Science Conference Proceedings (OSTI)

This paper presents numerical simulations of reactive transport which may be induced in the caprock of an on-shore depleted gas reservoir by the geological sequestration of carbon dioxide. The objective is to verify that CO{sub 2} geological disposal activities currently being planned for the study area are safe and do not induce any undesired environmental impact. In our model, fluid flow and mineral alteration are induced in the caprock by penetration of high CO{sub 2} concentrations from the underlying reservoir, where it was assumed that large amounts of CO{sub 2} have already been injected at depth. The main focus is on the potential effect of precipitation and dissolution processes on the sealing efficiency of caprock formations. Concerns that some leakage may occur in the investigated system arise because the seal is made up of potentially highly-reactive rocks, consisting of carbonate-rich shales (calcite+dolomite averaging up to more than 30% of solid volume fraction). Batch simulations and multi-dimensional 1D and 2D modeling have been used to investigate multicomponent geochemical processes. Numerical simulations account for fracture-matrix interactions, gas phase participation in multiphase fluid flow and geochemical reactions, and kinetics of fluid-rock interactions. The geochemical processes and parameters to which the occurrence of high CO{sub 2} concentrations are most sensitive are investigated by conceptualizing different mass transport mechanisms (i.e. diffusion and mixed advection+diffusion). The most relevant mineralogical transformations occurring in the caprock are described, and the feedback of these geochemical processes on physical properties such as porosity is examined to evaluate how the sealing capacity of the caprock could evolve in time. The simulations demonstrate that the occurrence of some gas leakage from the reservoir may have a strong influence on the geochemical evolution of the caprock. In fact, when a free CO{sub 2}-dominated phase migrates into the caprock through fractures, or through zones with high initial porosity possibly acting as preferential flow paths for reservoir fluids, low pH values are predicted, accompanied by significant calcite dissolution and porosity enhancement. In contrast, when fluid-rock interactions occur under fully liquid-saturated conditions and a diffusion-controlled regime, pH will be buffered at higher values, and some calcite precipitation is predicted which leads to further sealing of the storage reservoir.

Xu, Tianfu; Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

2007-09-07T23:59:59.000Z

425

Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration  

SciTech Connect

Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

2013-03-01T23:59:59.000Z

426

CO2 Impurities Literature Review  

Science Conference Proceedings (OSTI)

The objective of this study was to identify what chemical contaminants exist (or are expected to exist) in a post-combustion carbon dioxide (CO2) capture system using aqueous amines and to gather and summarize some representative thermodynamic, chemical, and environmental fate and transport data/properties for these species. The eventual goal of the Electric Power Research Instituteís (EPRIís) work in this area is to identify liquid/solid/gaseous contaminants and evaluate or predict their fate in the env...

2010-12-31T23:59:59.000Z

427

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

428

Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field  

E-Print Network (OSTI)

Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.

Gaviria Garcia, Ricardo

2005-12-01T23:59:59.000Z

429

NETL: CO2 Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

430

CO2 Incentives  

Science Conference Proceedings (OSTI)

... Crude Fuel Air Separation Plant Air N2 Coal, Refinery Residues, or Biomass NG, Oil or Landfill Gas HP IP LP O 2 Fuel* CO2 Recovery ...

2012-10-30T23:59:59.000Z

431

Evidence of irreversible CO2 intercalation in montmorillonite  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal of Greenhouse Gas Control 14 (2013) 220-226 Journal of Greenhouse Gas Control 14 (2013) 220-226 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i j g g c Evidence of irreversible CO 2 intercalation in montmorillonite Vyacheslav N. Romanov ‚ąó National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, United States a r t i c l e i n f o Article history: Received 6 November 2012 Received in revised form 11 January 2013 Accepted 14 January 2013 Keywords: Clay Carbon dioxide Sorption Spectroscopy XRD a b s t r a c t Mitigation of the global climate change via sequestration of anthropogenic carbon dioxide (CO 2 ) in geo- logic formations requires assessment of the reservoir storage capacity and cap rock seal integrity. The

432

CO2 Emissions - Guinea Bissau  

NLE Websites -- All DOE Office Websites (Extended Search)

Guinea Bissau Graphics CO2 Emissions from Guinea Bissau Data graphic Data CO2 Emissions from Guinea Bissau image Per capita CO2 Emission Estimates for Guinea Bissau...

433

CO2 Emissions - Peninsular Malaysia  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Far East Peninsular Malaysia CO2 Emissions from Peninsular Malaysia Data graphic Data CO2 Emissions from Peninsular Malaysia image Per...

434

CO2 Emissions - New Caledonia  

NLE Websites -- All DOE Office Websites (Extended Search)

New Caledonia Graphics CO2 Emissions from New Caledonia Data graphic Data CO2 Emissions from New Caledonia image Per capita CO2 Emission Estimates for New Caledonia...

435

CO2 Emissions - United Korea  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Centrally Planned Asia United Korea CO2 Emissions from United Korea Data graphic Data CO2 Emissions from United Korea...

436

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

437

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

438

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scaleÖ (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

439

The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratoryís MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

2010-03-01T23:59:59.000Z

440

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Quantum Capture and Energy Storage. Photochem. Photobio.D ISSERTATION Solar Energy Storage through the Homogeneoussolar based fuels and energy storage. At present, it is not

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: News Release - DOE Partnership Completes Successful CO2...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mount Simon Sandstone Formation Proves to be Promising CO2 Storage Candidate in the Ohio Valley Region Washington, D.C. - The Midwest Regional Carbon Sequestration Partnership...

442

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

companies and government organisations that are undertaking research and development of carbon capture and storage technologies. References CO2 Capture Poject (CCP)1 LinkedIn...

443

BNL | CO2 Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Laser CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on fast optical switching from the output of a conventional CO2 laser oscillator, and a chain of high-pressure laser amplifiers. It starts with a wavelength converter wherein a near-IR picosecond solid-state laser with l¬Ľ1 őľm produces a mid-IR 10-őľm pulse. This process employs two methods; semiconductor optical switching, and the Kerr effect. First, we combine the outputs from a multi-nanosecond CO2 laser oscillator with a picosecond Nd:YAG laser on a germanium Brewster-plate to produce an ~200 ps, 10őľm pulse by semiconductor optical switching. Co-propagating this pulse with a Nd:YAG's 2nd harmonic in a

444

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

445

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

446

CO2 Emissions - Wake Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Oceania Wake Island Graphics CO2 Emissions from Wake Island Data graphic Data CO2 Emissions from Wake Island image Per capita CO2...

447

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2