Sample records for dioxide co2 methane

  1. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01T23:59:59.000Z

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

  2. 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b,

    E-Print Network [OSTI]

    1 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b, , Lilin inorganic and organic solutes (including 56 hydrocarbons) and gaseous species (e.g. carbon dioxide, CO2, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid 35molecules

  3. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion),2 China, Russia, Japan, India and Canada--accounted for more than 70 percent of energy-related CO2. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940

  4. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C., Ann Arbor, MI 48109-2125, USA Abstract Combustion synthesis of tin dioxide (SnO2) was studied using: Combustion synthesis; Nanoparticles; Tin dioxide; Metals 1. Introduction Tin dioxide (SnO2) is the most

  5. arbon dioxide (CO2 atmosphere has increased by

    E-Print Network [OSTI]

    responsive to rising atmospheric CO2 concentration than C3 species. In the southwestern United States substrate for photosynthetic energy acquisition by life, the process of using light energy to combine CO2 surface and scale up to affect the landscape water balance. Thus, through its impacts on plant water use

  6. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01T23:59:59.000Z

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  7. METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    the gas to the reactor walls. It is capacitively coupled to the radiofrequency generator (35 MHz, 10 k ) and constant pressure of 20 torr. Experimental details on discharges parameters, sampling procedure, gas analy1205 METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES

  8. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    E-Print Network [OSTI]

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01T23:59:59.000Z

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  9. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01T23:59:59.000Z

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  10. Abstract--Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused by an increase

    E-Print Network [OSTI]

    design alternatives provides reduction of CO2 emission levels such that the CO2 emissions for 2050 meet Abstract-- Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused regulations at airports through reduction of CO2 for all components of flight operations. The purpose

  11. PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    inadequate ventilation. The American Society of Heating,Refrigerating and Air Conditioning Engineers (ASHRAEPIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration is approximately 400 parts per million. In this study, we investigate the relationship between ventilation

  12. MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department of Chemical injection for two applications: 1) improved recovery from hydrocarbon reservoirs and 2) sequestration

  13. Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the poten-

    E-Print Network [OSTI]

    Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3 gases (greenhouse gases) altered by human activities (IPCC 2007), only carbon dioxide (CO2 vegeta- tion properties affect local and regional climate, as well as how atmospheric forcing

  14. The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin

    E-Print Network [OSTI]

    Agrawal, Angeni

    2007-09-17T23:59:59.000Z

    . This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery...

  15. Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints by Marcus. The third case examines the benefits of increased policy coordination between air pollution constraints

  16. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31T23:59:59.000Z

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  17. A Mechanistic Model for CO2 Sequestration in Tiffany Coal Bed Methane Field

    SciTech Connect (OSTI)

    Jenn-Tai Liang; Kevin T. Raterman; Eric P. Robertson

    2003-05-01T23:59:59.000Z

    The objective of this project is to develop mechanistic models specific to CO2 sequestration in BP’s Tiffany coal bed methane (CBM) field. In this study, the original field model was modified to match the field performance of a 5-spot pattern in the northern part of the Tiffany Field where BP plans to perform a micro-pilot test. The modified model consists of one high-permeability fast layer sandwiched between two low-permeability slow layers. In this mechanistic model, the fast layer represents well-cleated and fractured coal from all geological layers while the slow layers represent coal with little or no fracture development from the same geological layers. The model successfully matched the performance of the 5-spot pattern during the enhanced recovery period (N2 injection). However, in order to match nitrogen breakthrough times and nitrogen cut the vertical transmissibility between layers had to be set to zero. During gas injection, nitrogen was allowed to enter all three layers, not just the high-permeability fast layer. However, because the permeabilities of the slow layers were low and there is no communication between the fast and the slow layers, most of the injected nitrogen entered the high-permeability fast layer. This suggests that the future gas injection and CO2 sequestration may be restricted to only one third of the total available pay. For future gas injections, the modified model predicted early CO2 breakthrough with high CO2 cut. This suggests that the actual CO2 sequestration capability of the Tiffany Field might not be as high as originally expected. This is a direct consequence of the reduced available pay in the modified model. The modified model also predicted early inert gas (N2 plus CO2) breakthrough and high inert gas cut during future gas injections. If this is confirmed in the pilot test, the high volume of inert gas produced could overwhelm the reprocessing capability resulting in early termination of the project.

  18. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    E-Print Network [OSTI]

    Santos, Juan

    ) and coal-bed methane production make CO2 geolog- ical storage cost-effective [e.g., Baines and Worden, describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model

  19. A Mechanistic Model for CO2 Sequestration in Tiffany Coal Bed Methane Field

    SciTech Connect (OSTI)

    Liang, J.; Raterman, K.T.; Robertson, E.P.

    2003-05-01T23:59:59.000Z

    The objective of this project is to develop mechanistic models specific to CO2 sequestration in BP's Tiffany coal bed methane (CBM) field. In this study, the original field model was modified to match the field performance of a 5-spot pattern in the northern part of the Tiffany Field where BP plans to perform a micro-pilot test. The modified model consists of one high-permeability fast layer sandwiched between two low-permeability slow layers. In this mechanistic model, the fast layer represents well-cleated and fractured coal from all geological layers while the slow layers represent coal with little or no fracture development from the same geological layers. The model successfully matched the performance of the 5-spot pattern during the enhanced recovery period. However, in order to match nitrogen breakthrough times and nitrogen cut the vertical transmissibility between layers had to be set to zero. During gas injection, nitrogen was allowed to enter all three layers, not just the high-permeability fast layer. However, because the permeabilities of the slow layers were low and there is no communication between the fast and the slow layers, most of the injected nitrogen entered the high-permeability fast layer. This suggests that the future gas injection and CO2 sequestration may be restricted to only one third of the total available pay.

  20. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29T23:59:59.000Z

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  1. Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas 

    E-Print Network [OSTI]

    Hernandez Arciniegas, Gonzalo

    2006-10-30T23:59:59.000Z

    Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the ...

  2. Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas

    E-Print Network [OSTI]

    Hernandez Arciniegas, Gonzalo

    2006-10-30T23:59:59.000Z

    of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane...

  3. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    SciTech Connect (OSTI)

    Dan Kieki

    2008-09-30T23:59:59.000Z

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  4. Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    initiatives to develop carbon management technologies, including geologic sequestration of CO2. At present of how much carbon dioxide or methane can be stored in shale at a given pressure. In this paper, a shale to identify the impact of both methane and carbon dioxide sorption isotherms on cumulative methane production

  5. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28T23:59:59.000Z

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  6. Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications

    SciTech Connect (OSTI)

    L. J. Pekot; S. R. Reeves

    2002-03-31T23:59:59.000Z

    Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

  7. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29T23:59:59.000Z

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

  8. Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

    E-Print Network [OSTI]

    Mallinson, Richard

    - ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycle

  9. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms for COF-5, 65 mg g-1 for COF-6, 87 mg g-1 for COF-8, and 80 mg g-1 for COF-10; carbon dioxide at 298 K

  10. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    William A. Williams

    2004-03-01T23:59:59.000Z

    The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

  11. Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores

    E-Print Network [OSTI]

    Maduakor, Ekene Obioma

    2006-10-30T23:59:59.000Z

    psig and temperature of 60oC using a 1 foot long and 1 inch diameter Berea sandstone core. Pure CO2 and treated flue gas (99.433 % mole CO2) were injected into the Berea sandstone core initially saturated with methane at a pressure of 1500 psig and 800...

  12. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-04-25T23:59:59.000Z

    The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  13. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2002-10-01T23:59:59.000Z

    The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

  14. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06T23:59:59.000Z

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

  15. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  16. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    with carbon capture and storage (BECCS) technology [6,7] .carbon dioxide emissions by major fuel, 2009…………….2 Fig.1.4 Schematic of CO 2 capture systems and technologies……………………………..carbon footprint. One unique technique is using in-situ CO 2 capture technology,

  17. October 2004 / Vol. 54 No. 10 BioScience 895 Rising atmospheric carbon dioxide (CO2

    E-Print Network [OSTI]

    Post, Wilfred M.

    of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration or penalties associated with CO2 management. For terrestrial carbon sequestration to be useful, it must for evalu- ating all aspects of a carbon sequestration practice. Here we outline a complete and integrated

  18. CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations

    SciTech Connect (OSTI)

    Muhammad Sahimi; Theodore T. Tsotsis

    2002-12-15T23:59:59.000Z

    One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.

  19. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  20. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope

    E-Print Network [OSTI]

    biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation., 1998). The main com- ponents of biogas are CH4 (50­60%) and carbon dioxide (CO2; 40­50%). A major

  1. CO2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld...

  2. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2014-01-01T23:59:59.000Z

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

  3. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  4. The Net Environmental Effects of Carbon Dioxide Reduction Policies

    E-Print Network [OSTI]

    of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

  5. Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model

    E-Print Network [OSTI]

    Chen, Yu-Han, 1973-

    2004-01-01T23:59:59.000Z

    Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

  6. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    SciTech Connect (OSTI)

    Fang, Zhigang Zak [University of Utah] [University of Utah

    2013-11-05T23:59:59.000Z

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

  7. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    E-Print Network [OSTI]

    Mavrodiev, S Cht; Vachev, B

    2008-01-01T23:59:59.000Z

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  8. In Situ Study of CO2 and H2O Partitioning Between Na-Montmorillonite and Variably Wet Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Ilton, Eugene S.; Chen, Jeffrey; Thompson, Christopher J.; Martin, Paul F.; Benezeth, Pascale; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2014-06-03T23:59:59.000Z

    Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change, and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. In both technologies, CO2 is injected underground as a supercritical fluid (scCO2), where interactions with shale minerals could influence successful GCS implementation. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this work, we used in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy to investigate the swelling/shrinkage and water/CO2 sorption of a pure montmorillonite, Na-SWy-2, when the clay is exposed to variably hydrated scCO2 at 50 °C and 90 bar. Measured interlayer spacings and sorbed water concentrations at varying levels of scCO2 hydration are similar to previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show evidence of both water and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types with distinct chemical environments. Based on the intensity of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, we observed a significant increase in sorbed CO2 as the clay expands from a 0W to a 1W state, suggesting that water props open the interlayer so that CO2 can enter. However, as the clay transitions from a 1W to a 2W state, CO2 desorbs sharply. These observations were placed in the context of two conceptual models concerning hydration mechanisms for expandable clays and were also discussed in light of recent theoretical studies on CO2-H2O-clay interactions. The swelling/shrinkage of expandable clays could affect solid volume, porosity, and permeability of shales. Consequently, the results from this work could aid predictions of shale caprock integrity in large-scale GCS, as well as methane transmissivity in enhanced gas recovery operations.

  9. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama

    E-Print Network [OSTI]

    He, Ting

    2011-02-22T23:59:59.000Z

    basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector...

  10. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  11. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01T23:59:59.000Z

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  12. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: Simulation and experiment

    SciTech Connect (OSTI)

    Heuchel, M.; Davies, G.M.; Buss, E.; Seaton, N.A.

    1999-12-07T23:59:59.000Z

    The aim of this work is to predict the adsorption of pure-component and binary mixtures of methane and carbon dioxide in a specific activated carbon, A35/4, using grand canonical Monte Carlo (GCMC) simulation. Methane is modeled as one-center Lennard-Jones (LJ) fluid and carbon dioxide as a two-center LJ plus point quadrupole fluids. Experimental adsorption data for the system have been obtained with a new flow desorption apparatus. The pore size distribution (PSD) for the carbon was determined from both of the experimental CH{sub 4} and CO{sub 2} isotherms at 293 K. To extract numerically the PSD, GCMC-simulated isotherms for both pure components in slit-shaped pores ranging from 5.7 to 72.2 {angstrom} were used. Using only pure experimental CO{sub 2} isotherm data, it was not possible to determine a PSD that allowed a reasonable prediction of the pure methane adsorption. However, with both experimental data sets for the pure components, it was possible to derive a PSD that allowed both experimental pure-component isotherms to be fitted. With this PSD and the simulated adsorption densities in single pores, it was possible to predict in good agreement with experiment (1) the adsorption of binary mixtures of CO{sub 2} and CH{sub 4} and (2) the adsorption of both pure components at higher temperatures. However, the model was unable to reproduce precisely the experimental pressure dependence of the CO{sub 2} selectivity.

  13. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    SciTech Connect (OSTI)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05T23:59:59.000Z

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.

  14. Summary Human activities are increasing the concentra-tions of atmospheric carbon dioxide ([CO2]) and tropospheric

    E-Print Network [OSTI]

    to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) com- pounds, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased lit- ter biomass] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly

  15. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  16. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15T23:59:59.000Z

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  17. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts Print Researchers have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse...

  18. Geologic CO2 sequestration inhibits microbial growth | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

  19. Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes

    E-Print Network [OSTI]

    Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

  20. 8, 73737389, 2008 Scientists' CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction Publications on behalf of the European Geosciences Union. 7373 #12;ACPD 8, 7373­7389, 2008 Scientists' CO2 substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working

  1. electroseismic monitoring of co2 sequestration: a finite element ...

    E-Print Network [OSTI]

    Fabio Zyserman

    Keywords: Electroseismic Modeling, Poroelasticity, CO2 sequestration, Finite element methods. 2000 AMS ... carbon dioxide emissisons into the atmosphere.

  2. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO$_2$ and CH$_4$ molecules near surfaces and thin films

    E-Print Network [OSTI]

    Thiyam, Priyadarshini; Shajesh, K V; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F; Milton, Kimball A; Malyi, Oleksandr I; Boström, Mathias

    2015-01-01T23:59:59.000Z

    In order to understand why carbon dioxide (CO$_2$) and methane (CH$_4$) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO$_2$ molecule and an isotropically polarizable CH$_4$ molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  3. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01T23:59:59.000Z

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  4. Carbon Dioxide Sequestration in Geologic Coal Formations

    SciTech Connect (OSTI)

    None

    2001-09-30T23:59:59.000Z

    BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

  5. CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    carbon dioxide (CO2) sequestration process is to ensure a sustained confinement of the injected CO2CO2 Sequestration Modeling Using Pattern Recognition and Data Mining; Case Study of SACROC field, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

  6. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  7. How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs

    E-Print Network [OSTI]

    How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs Johannes Miocic, Stuart. The goal of CCS is to store carbon dioxide (CO2) in the subsurface for a long period of time (>10,000 yr).1 It is important that the stored CO2 does not leak from the reservoir to the surface . 3. Faults as leakage

  8. The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System

    E-Print Network [OSTI]

    Fortunat, Joos

    of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

  9. Carbon dioxide in silica-undersaturated melt Part I: The effect of mixed alkalis (K and Na) on CO2 solubility and speciation.

    E-Print Network [OSTI]

    Boyer, Edmond

    . These low-silica melts can dissolve a large quantity of CO2 and are rich in alkalis. However, the way CO2 experimental results on the CO2 solubility and speciation in synthetic nephelinite in the NKCMAS system, equilibrated at high-pressure (50-300 MPa), high-temperature (1250C) with an excess C-O-H fluid phase

  10. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    E-Print Network [OSTI]

    Kwon, T.H.

    2012-01-01T23:59:59.000Z

    Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

  11. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    and potential solutions to reduce energy-related CO 2 emissions: energy conservation; improving energy efficiency; carbon capture and sequestration (CCS)

  12. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect (OSTI)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01T23:59:59.000Z

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  13. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    Song BH, Norbeck JM. Methane steam reforming for syntheticfuel production from steam-hydrogasifier product gases.of advanced models for steam hydrogasification: process

  14. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    size gasification for syngas, substitute natural gas andEffect of CO 2 containing syngas over Pt promoted Co/?-Al 2for biomass-derived syngas. NREL report (Report No. : NREL/

  15. High Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline Aquifers

    E-Print Network [OSTI]

    are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper TOUGH2-MP. 1. Introduction Geologic carbon dioxide (CO2) sequestration involves injecting CO2

  16. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

  17. Cost Assessment of CO2 Sequestration by Mineral Carbonation 

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  18. Cost Assessment of CO2 Sequestration by Mineral Carbonation

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  19. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16T23:59:59.000Z

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  20. Formation Damage due to CO2 Sequestration in Saline Aquifers

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25T23:59:59.000Z

    Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

  1. Near Miscible CO2 Application to Improve Oil Recovery

    E-Print Network [OSTI]

    Bui, Ly H.

    2010-07-26T23:59:59.000Z

    Carbon dioxide (CO2) injection for enhanced oil recovery is a proven technology. CO2 injection is normally operated at a pressure above the minimum miscibility pressure (MMP), which is determined by crude oil composition and reservoir conditions...

  2. Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon dioxide (CO2). The minerals may affect the reservoir storage capacity as well as the integrity of its natural seals such as caprock formations. CO2 interaction...

  3. absorbing sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 158 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  4. amorphous titanium dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 177 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  5. acute sulphur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 82 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  6. addressing chlorine dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 103 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  7. The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity

    E-Print Network [OSTI]

    Minnesota, University of

    The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

  8. CO2 interaction with geomaterials.

    SciTech Connect (OSTI)

    Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

    2010-09-01T23:59:59.000Z

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

  9. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  10. Micromodel Investigations of CO2 Exsolution from Carbonated Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Abstract: In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir...

  11. CO2 exposure at pressure impacts metabolism and stress responses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the model sulfate-reducing bacterium Desulfovibrio vulgaris Abstract: Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep...

  12. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30T23:59:59.000Z

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  15. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01T23:59:59.000Z

    carbon dioxide (NEU-CO2) emissions, represent a signi?cantSimply described, NEU-CO2 emissions are generated via twoData permitting, NEU-CO2 emissions arising from energy

  16. CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON

    E-Print Network [OSTI]

    Boyer, Edmond

    PROCESSES OF CO2 SORPTION FOR CO2 STORAGE IN COAL SEAMS Delphine CHARRIERE1, 2 , Zbigniew POKRYSZKA1 storage in coal seams and the enhancement on coalbed methane production requires information on the gas sorption mechanism of kinetics. In this work, both sorption kinetics of CO2 and CH4 are studied onto a coal

  17. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    SciTech Connect (OSTI)

    Malhotra, Vivak

    2014-06-30T23:59:59.000Z

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

  18. argon carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 10 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  19. applied carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 8 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  20. aqueous carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 12 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  1. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

  2. CO2 sequestration | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

  3. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01T23:59:59.000Z

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  4. Original article Interactive effects of elevated CO2, O3,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat of elevated carbon dioxide (CO2), ozone (O3), and soil water deficit on spring wheat (Triticum aestivum L. cv consisting of two O3levels (ambient and 1.5-times ambient) in combination with two CO2levels (ambient

  5. Center for By-Products Utilization CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Saldin, Dilano

    climate change, reduced GHGs, improved air quality, CO2 reduction & sequestration, and carbon offsets. #12 for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concreteCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik

  6. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    etc.) to slowly convert stored CO2 into more useful products such as methane and methanol. Photocatalysis is the acceleration of a light-induced reaction in the presence of a...

  7. THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS

    E-Print Network [OSTI]

    for the process efficiency. However these impurities may result in contamination of hydrogen by CO, CO2 and H2S which should be removed from the product gas using methanation and H2S scrubbing steps, respectively. 11

  8. 10-MW Supercritical-CO2 Turbine

    Broader source: Energy.gov [DOE]

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  9. BNL | CO2 Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on...

  10. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  11. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  12. Ocean Acidification: The Other CO2 Problem

    E-Print Network [OSTI]

    Childress, Michael J.

    reserved 1941-1405/09/0115-0169$20.00 Key Words biogeochemistry, calcification, carbon dioxide, climate of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well

  13. Aquifer Management for CO2 Sequestration 

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14T23:59:59.000Z

    Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

  14. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

  15. Quantum Leaps in CO2 Detection Robert Byrne, Ph.D.

    E-Print Network [OSTI]

    Meyers, Steven D.

    Quantum Leaps in CO2 Detection Robert Byrne, Ph.D. USF chemical oceanographers are making quantum. #12;Quantum Leaps in CO2 Detection Robert Byrne, Ph.D. When deployed on shipboard our shipboard leaps in measuring carbon dioxide (CO2) in the oceans and measuring the interactions of CO2 between

  16. Modeling the release of CO2 in the deep ocean

    E-Print Network [OSTI]

    Liro, Christopher R.

    1991-01-01T23:59:59.000Z

    The idea of capturing and disposing of carbon dioxide (CO2) from the flue gas of fossil fuel-fired power plants has recently received attention as a possible mitigation strategy to counteract potential global warming due ...

  17. Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach

    Broader source: Energy.gov [DOE]

    Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

  18. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  19. Novel CO2-Thickeners for Improved Mobility Control

    SciTech Connect (OSTI)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2002-01-15T23:59:59.000Z

    The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

  20. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

  1. Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

  2. 9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  3. 9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  4. 9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  5. 9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  6. 9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  7. 10,045,885 Metric Tons of CO2 Injected as of April 16, 2015

    Broader source: Energy.gov [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  8. 10,180,047 Metric Tons of CO2 Injected as of May 28, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  9. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01T23:59:59.000Z

    for CO2 geological storage, Int. J. Greenhouse Gas Control,1008, DOI Bachu, S. CO2 Storage in Geological Media: Role,R.H. Worden. Geological Storage of Carbon Dioxide, in: S.J.

  10. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhenimageconcentration ARM Data

  11. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhenimageconcentration ARM Dataflux

  12. EMSL - CO2 sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

  13. Physics and Seismic Modeling for Monitoring CO2 Storage JOSE M. CARCIONE,1

    E-Print Network [OSTI]

    Santos, Juan

    , methane-bearing coal beds and saline aquifers. An example of the latter is the Sleipner field in the North-elastical equations model the seismic properties of reservoir rocks saturated with CO2, methane, oil and brine-simulation methodology to compute synthetic seismograms for reservoirs subject to CO2 sequestration. The petro

  14. Co2 geological sequestration

    SciTech Connect (OSTI)

    Xu, Tianfu

    2004-11-18T23:59:59.000Z

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  15. ORNL/CDIAC-160 Climatological Distributions of pH, pCO2, Total CO2, Alkalinity,

    E-Print Network [OSTI]

    ORNL/CDIAC-160 NDP-094 Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean. ORNL/CDIAC-160, NDP-094. Carbon Dioxide, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface ocean waters

  16. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    SciTech Connect (OSTI)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15T23:59:59.000Z

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.

  17. High CO2 levels in the Proterozoic atmosphere estimated from

    E-Print Network [OSTI]

    Kaufman, Alan Jay

    a Proterozoic (,1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope such as carbon dioxide and methane must have been much higher1,2 . However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion

  18. Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene

    E-Print Network [OSTI]

    Thygesen, Kristian

    Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene Vladimir-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane to this problem is to reduce CO instead of CO2. Volcano plots were constructed on the basis of scaling relations

  19. Interaction between CO2-rich solutions and reservoir-seal rocks. Experimentation

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    coal systems 5.Use of CO2 in enhanced coal bed methane recovery 6.Other suggested options (basalts, oilInteraction between CO2-rich solutions and reservoir-seal rocks. Experimentation María García formations (after Cook, 1999). Geological Storage Options for CO2 1.Depleted oil and gas reservoirs 2.Use

  20. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  1. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01T23:59:59.000Z

    Year) MSA Emissions from Driving (Lbs of CO2) Electricity (CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost MSA Emissions from Driving ElectricityEmissions from Driving (Lbs of CO2) Suburb-City Difference in Electricity (

  2. Separation of CO2 Using Ultra-Thin Multi-Layer Polymeric Membranes for Compartmentalized Fiber Optic Sensor Applications

    E-Print Network [OSTI]

    Victoria, University of

    Departmental Member Carbon dioxide sequestration is one of many mitigation tools available to help reduce sequestration is the most stable option for long-term storage of carbon dioxide (CO2), with significant CO2 carbon dioxide emissions while other disposal/repurposing methods are being investigated. Geologic

  3. Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    sequestration of carbon dioxide is one of the most fascinating developing technologies in order to reduce Leakage Detection System (ILDS). The main concern for geologic CO2 sequestration is the capability of the underground carbon dioxide storage to confine and sustain the injected CO2 for very long time. If a leakage

  4. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  5. Equilibrium and transport properties of CO2+N2O and CO2+NO mixtures. A molecular simulation and equation of state modelling study.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    viscosities were determined for CO2+NOx mixtures. Due to the strong similarities between carbon dioxide simulation; Equation of state. 1. Introduction In Carbon dioxide Capture and Storage (CCS) operations to a pure carbon dioxide. This may have impacts on the different stages of the CCS chain: capture

  6. Copyright 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2

    E-Print Network [OSTI]

    Springer, Clint J.

    Copyright © 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2 and Its.00, ISBN 978-0-387- 22069-7. Atmospheric carbon dioxide ([CO2 ]) concentrations have varied considerably through time. Some estimates suggest extraordinarily high concentrations of atmospheric CO2 (~ 4000

  7. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported fromSpatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions

  8. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported fromSpatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom carbon dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions

  9. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-Print Network [OSTI]

    Lu, Ping

    2012-08-31T23:59:59.000Z

    Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

  10. ATMOSPHERIC CO2 --A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN?

    E-Print Network [OSTI]

    of emissions from fossil fuel combustion. An increase in atmospheric CO2 would enhance Earth's naturalATMOSPHERIC CO2 -- A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN? S. E. Schwartz, NY www.bnl.gov ABSTRACT Carbon dioxide (CO2) is building up in the atmosphere, largely because

  11. The CO2 Content of Consumption Across US Regions: A Multi-Regional Input-Output (MRIO) Approach

    E-Print Network [OSTI]

    Caron, J.

    We improve on existing estimates of the carbon dioxide (CO2) content of consumption across regions of the United States. Using a multi-regional input-output (MRIO) framework, we estimate the direct and indirect CO2 emissions ...

  12. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  13. Mineralization of Basalts in the CO2-H2O-SO2-O2 System. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SO2-O2 System. Mineralization of Basalts in the CO2-H2O-SO2-O2 System. Abstract: Sequestering carbon dioxide (CO2) containing minor amounts of co-contaminants in geologic...

  14. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06T23:59:59.000Z

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  15. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

    2012-05-01T23:59:59.000Z

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

  16. Energy Policy Seminar Series: Climate impacts of methane-emitting energy technologies

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    of greenhouse gases, most notably methane and carbon dioxide, and these gases have dissimilar properties. This research finds that methane-emitting energy such as natural gas becomes significantly more carbon dioxide

  17. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    SciTech Connect (OSTI)

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01T23:59:59.000Z

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  18. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins: Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    SciTech Connect (OSTI)

    Nummedal, Dag; Sitchler, Alexis; McCray, John; Mouzakis, Katherine; Glossner, Andy; Mandernack, Kevin; Gutierrez, Marte; Doran, Kevin; Pranter, Matthew; Rybowiak, Chris

    2012-09-30T23:59:59.000Z

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is orders of magnitude smaller than renewable energy facilities with equivalent energy capacity. Finally, inexpensive natural gas here in North America is pushing coal for electricity generation off the market, thus reducing US CO2 emissions faster than any other large industrialized nation. These two big factors argue for renewed efforts to find technology solutions to reduce the carbon footprint (carbon dioxide as well as methane and trace gases) of conventional and unconventional oil and gas. One major such technology component is likely to be carbon capture, utilization and storage.

  19. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29T23:59:59.000Z

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  20. Rcupration assiste d'hydrocarbures, conventionnels ou non, par injection de CO2.

    E-Print Network [OSTI]

    Canet, Léonie

    -combustion (gas processing) 5 (+ 3.5 in construction) EOR 2010 Air Products Steam Methane Reformer EOR United · Récupération d' hydrocarbures conventionnels - CO2 ­ EOR enhanced oil recovery - CO2 ­ EGR enhanced gas recovery · Récupération d' hydrocarbures non conventionnels - veines de charbon non exploitables - hydrates

  1. CO2 Injection in Vertical and Horizontal Cores: Measurements and Numerical

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    - covery in both new reservoirs, and reservoirs that have been pre- viously depleted and/or water flooded high-pressure and low-temperature reservoirs, the den- sity of CO2 may be substantially higher than the oil density. Upon mixing of CO2 and oil, a gas phase with a high content of methane (C1) may also

  2. Separation of CO2 from flue gas using electrochemical cells

    SciTech Connect (OSTI)

    Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

    2010-06-01T23:59:59.000Z

    ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

  3. Carbonation: An Efficient and Economical Process for CO2 Sequestration

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

  4. Challenges in elevated CO2 experiments on forests

    E-Print Network [OSTI]

    , Bangor, UK 8 Queens College, City University of New York, NY, USA 9 Lund University, Lund, Sweden 10 concentrations in future experiments to better predict the effects of climate change? Plantations and natural. Forest ecosystems under climate change Carbon dioxide (CO2) is the most important greenhouse gas emitted

  5. CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases

    E-Print Network [OSTI]

    Carriquiry, Alicia

    CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases in global temperatures is the amount of carbon dioxide (CO2) in the atmosphere. Is there a relationship between the amount of carbon dioxide in the atmosphere and global temperatures? Data Collection

  6. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  7. Author's personal copy CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)

    E-Print Network [OSTI]

    improvements will lead to global energy savings [1]. Additionally, carbon capture and storage is an exciting possibility for preventing the release of anthropogenic carbon dioxide into the atmosphere and hinges on gas be a step in one method for reducing carbon dioxide emissions from power plants. In pre- combustion CO2 cap

  8. NUMERICAL MODELING OF CO2 SEQUESTRATION WITH ANOZIE EBIGBO, ANDREAS BIELINSKI, ANDREAS KOPP, HOLGER CLASS, RAINER HELMIG

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    . It takes into account the two phases CO2 and brine and the components CO2 and water which can dissolve the conceptual model for a non-isothermal composi- tional CO2-water (brine) model based on the simulator MUFTE. MODEL For the description of the flow and transport processes of carbon dioxide and brine in a rock

  9. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration

    E-Print Network [OSTI]

    atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial-effective and environmentally friendly method for CO2 sequestration. INTRODUCTION Carbon dioxide concentrations and CO2 Sequestration Xiuping Zhu,* Marta C. Hatzell, and Bruce E. Logan Department of Civil

  10. Physical and chemical effects of CO2 storage in saline aquifers of the southern North Sea 

    E-Print Network [OSTI]

    Heinemann, Niklas

    2013-07-01T23:59:59.000Z

    One of the most promising mitigation strategies for greenhouse gas accumulation in the atmosphere is carbon capture and storage (CCS). Deep saline aquifers are seen as the most efficient carbon dioxide (CO2) storage sites, ...

  11. On the Role of Sacrificial Donors in the Catalytic Reduction of CO2 by

    E-Print Network [OSTI]

    New Hampshire, University of

    Complexes Jay Agarwal Gonghu Li Department of Chemistry University of New Hampshire, Durham, NH 03824 4/23/2010 #12;Carbon Dioxide Breakdown (Gas) (Liquid) Gasoline Breakdown Gasoline (+Additives) CO2 + H2O

  12. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  13. On Leakage andSeepage of CO2 from Geologic Storage Sites intoSurface Water

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Lewicki, J.L.

    2005-10-14T23:59:59.000Z

    Geologic carbon sequestration is the capture ofanthropogenic carbon dioxide (CO2) and its storage in deep geologicformations. The processes of CO2 seepage into surface water aftermigration through water-saturated sediments are reviewed. Natural CO2 andCH4 fluxes are pervasive in surface-water environments and are goodanalogues to potential leakage and seepage of CO2. Buoyancy-driven bubblerise in surface water reaches a maximum velocity of approximately 30 cms-1. CO2 rise in saturated porous media tends to occur as channel flowrather than bubble flow. A comparison of ebullition versus dispersive gastransport for CO2 and CH4 shows that bubble flow will dominate overdispersion in surface water. Gaseous CO2 solubility in variable-salinitywaters decreases as pressure decreases leading to greater likelihood ofebullition and bubble flow in surface water as CO2 migratesupward.

  14. EQUILIBRIUM DATA OF CO2-BASED SEMI-CLATHRATES FROM QUATERNARY AMMONIUM SOLUTIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    challenge of this century, therefore CO2 capture and sequestration is a route to solve a part of the problem technologies. The capture and sequestration is an interesting route to solve part of the problem. The capture of Carbone dioxide by gas hydrate formation is a new process for separating CO2 from flue gases

  15. ORIGINAL PAPER Potential volume for CO2 deep ocean sequestration: an assessment

    E-Print Network [OSTI]

    Wu, Yih-Min

    -year storage and 61 m for one decade. Keywords Carbon dioxide Á Ocean sequestration Á RegressionORIGINAL PAPER Potential volume for CO2 deep ocean sequestration: an assessment of the area located in an average amount of 6.957 Gt within this duration. If deep sea sequestration for CO2 can be the possible

  16. Economic and energetic analysis of capturing CO2 from ambient air

    E-Print Network [OSTI]

    Economic and energetic analysis of capturing CO2 from ambient air Kurt Zenz Housea,b,1 , Antonio C for review August 20, 2010) Capturing carbon dioxide from the atmosphere ("air capture") in an industrial suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost

  17. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase

    E-Print Network [OSTI]

    Bassegoda, Arnau; Madden, Christopher; Wakerley, David W.; Reisner, Erwin; Hirst, Judy

    2014-10-17T23:59:59.000Z

    . The efficient reduction of carbon dioxide (CO2) to generate re-duced carbon compounds for use as fuels and chemical feedstocks is an essential requirement for a carbon-based sustainable energy economy.1 The electrochemical reduction of CO2, powered by carbon... -neutral electricity, would produce liquid fuels that are easier to store and transport than hydrogen, but only limited progress has been made in developing synthetic catalysts to overcome the kinetic and thermodynamic challenges of CO2 activation. Catalysts devel...

  18. CO2 Sequestration short course

    SciTech Connect (OSTI)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08T23:59:59.000Z

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  19. ambient sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

  20. NMR studies of carbon dioxide sequestration in porous media

    E-Print Network [OSTI]

    Hussain, Rehan

    2015-06-09T23:59:59.000Z

    Carbon dioxide (CO2) sequestration in the sub-surface is a potential mitigation technique for global climate change caused by greenhouse gas emissions. In order to evaluate the feasibility of this technique, understanding the behaviour of CO2 stored...

  1. Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water J. Wambui infinite dilution diffusion coefficients for carbon dioxide and water mixtures. The model takes, carbon dioxide, classical thermodynamics Introduction The increase in atmospheric concentrations of CO2

  2. Summary IsotoperatioanalysesofatmosphericCO2 atnatu-ral abundance have significant potential for contributing to our

    E-Print Network [OSTI]

    Ehleringer, Jim

    --300 µl is accomplished by linking a commercially available, trace gas condenser and gas chromatograph advances in isotope ratio mass spec- trometry allow for rapid, on-line analysis of small volumes of CO2 dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approxi- mately 50

  3. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

  4. 4370 J. Phys. Chem. 1003, 87, 4378-4387 Methanation of Carbon Dioxide on Ni(100) and the Effects of Surface Modifiers?

    E-Print Network [OSTI]

    Goodman, Wayne

    of CHIand CO production, but no change in activation energy. Results showed that the effects of K(a) can Laboratffles, Albuquerque,New Mexico 87185 and J. M. White Depamnt of Chemlsby, Unlverslty of Texas,Austln, Texas 78712 (Recehd: February 10, 1983) The methanation of COzover Ni(100)was studied with H2/C02ratios

  5. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  6. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01T23:59:59.000Z

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  7. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11T23:59:59.000Z

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  8. An Investigation of CO2 Sequestration

    E-Print Network [OSTI]

    Saldin, Dilano

    An Investigation of CO2 Sequestration through Mineralization Conference on Sustainable Construction area and increased availability of CO2 for rapid carbonation. The hardened and carbonated materials Slag #12;Carbonation Chemistry Dissolution of CO2 in water. CO2(g) CO2(aq) Formation of carbonic acid

  9. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    and transport properties of carbon dioxide for molecularinterfacial properties of binary carbon dioxide – waterCarbon dioxide’s liquid—vapor coexistence curve and critical properties

  10. CO2 Sequestration in Unminable Coal with ECBMR -2010 Reprint -Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1

    E-Print Network [OSTI]

    Wilson, Thomas H.

    CO2 Sequestration in Unminable Coal with ECBMR - 2010 Reprint - Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1 CO2 SEQUESTRATION IN UNMINABLE COAL WITH ENHANCED COAL BED conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery

  11. Weeks Island gravity stable CO2 pilot: Final report

    SciTech Connect (OSTI)

    Johnston, J.R.; Perry, G.E.

    1989-01-01T23:59:59.000Z

    The Weeks Island ''S'' sand Reservoir B (''S'' RB) gravity-stable CO2 field test was completed during February 1988. Injection started in October 1978 and production began in January 1981 in this high-permeability, steeply-dipping sandstone reservoir. About 264,000 barrels of oil or 65 percent of the starting volume has been recovered. A 24-percent pore-volume slug of CO2 mixed with about six mole percent of natural gas (mostly methane) was injected at the start of the pilot. Since 1983, produced CO2 plus hydrocarbon gases have been recycled. CO2 usage statistics are 9.34 MCF/BO with recycle and 3.24 MCF/BO based on purchased CO2. Previous annual reports document the pilot design, implementation, and early results for the 1977 to June 1981 time period. This report is a review of early pilot history and a more detailed account of the post June 1981 results and overall interpretation. A reservoir-simulation history match of pilot performance plus core and log data from a 1983 swept-zone evaluation well are described in this report. A brief description of the production facility and an account of the corrosion control program are also included. 11 refs., 34 figs.

  12. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    E-Print Network [OSTI]

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01T23:59:59.000Z

    numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

  13. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

  14. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

  15. Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake

    E-Print Network [OSTI]

    Varadharajan, Charuleka, 1980-

    2009-01-01T23:59:59.000Z

    Methane is the second most important greenhouse gas after carbon dioxide, and it can significantly impact global climate change. Considerable amounts of methane can be released to the atmosphere from freshwater lakes, ...

  16. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

    2013-01-01T23:59:59.000Z

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  17. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    carbon dioxide in enhanced oil recovery, Energy Conversionin the U.S. for enhanced oil recovery for approximately 35gained from CO 2 -enhanced oil recovery has provided a solid

  18. 1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal aquifers

    E-Print Network [OSTI]

    Neufeld, Jerome A.

    1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal] Injection of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing 6 anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative 7 to the ambient groundwater

  19. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers

    E-Print Network [OSTI]

    Huppert, Herbert

    Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative to the ambient groundwater. The buoyant plume

  20. Carbon Dioxide Capture DOI: 10.1002/anie.200902836

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Carbon Dioxide Capture DOI: 10.1002/anie.200902836 Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks** Hye-Sun Choi and Myunghyun Paik Suh* Carbon dioxide capture has been warming, and the development of efficient methods for capturing CO2 from industrial flue gas has become

  1. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    SciTech Connect (OSTI)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01T23:59:59.000Z

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  2. 6, 1092910958, 2006 Regional scale CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

  3. An investigation of the evolution and present distribution of residual oil zones (ROZ) in the Permian Basin, West Texas and its implications for carbon dioxide

    E-Print Network [OSTI]

    Texas at Austin, University of

    , and widespread development of CO2-EOR in the Permian Basin have made production from ROZ economically attractive) in the Permian Basin, West Texas and its implications for carbon dioxide (CO2) storage West, L. 1 logan significant new resources for tertiary oil production through carbon dioxide (CO2) enhanced oil recovery (CO2

  4. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) Carbon dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissionsScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT

  5. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) CarbonScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissions substantially

  6. CO2 Sequestration in Non-air Entrained Concrete Tarun R. Naik, Rakesh Kumar, and Rudolph N. Kraus

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    CO2 Sequestration in Non-air Entrained Concrete Tarun R. Naik, Rakesh Kumar, and Rudolph N. Kraus deals with a laboratory investigation conducted for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concrete. Several experimental factors

  7. Discovery of a natural CO2 seep in the German North Sea: Implications for shallow dissolved gas and seep detection

    E-Print Network [OSTI]

    Wehrli, Bernhard

    2010; published 5 March 2011. [1] A natural carbon dioxide (CO2) seep was discovered during conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubbleplume modeling further shows

  8. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

    E-Print Network [OSTI]

    Zhou, Quanlin

    , USA 1. Introduction Geological carbon dioxide (CO2) sequestration in deep forma- tions (e.g., saline of the U.S. Department of Energy (USDOE) Carbon Sequestration Regio 2008 Published on line 21 March 2008 Keywords: Geological CO2 sequestration Storage capacity Saline

  9. CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    are driving initiatives to develop carbon management technologies, including geologic sequestration of CO2 of carbon dioxide (CO2), especially from the combustion of fossil fuels, are being linked to global climate change and are of considerable concern. These concerns are driving initiatives to develop carbon

  10. DOI: 10.1002/cssc.201402474 Monitoring Solid Oxide CO2 Capture Sorbents in Action

    E-Print Network [OSTI]

    Gilchrist, James F.

    and Chemicals, Inc. to Lehigh University for further develop- ment. Similar chemisorbents based on CaO (Periodic originally developed by Air Products and Chemicals, Inc. to produce fuel-cell-grade hydro- gen by steam methane reforming.[8­11] These chemisorbents offer (i) reversible sorption of CO2 in the presence of steam

  11. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground

    SciTech Connect (OSTI)

    Oldenburg

    2009-07-30T23:59:59.000Z

    July 21, 2009 Berkeley Lab summer lecture: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  12. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M. (LBNL Earth Sciences Division) [LBNL Earth Sciences Division

    2009-07-21T23:59:59.000Z

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  13. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  14. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  15. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01T23:59:59.000Z

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  16. Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    accommodate carbon dioxide capture and sequestration. Oxy-fuel combustion, where the fuel is combusted in oxygen diluted with steam or CO2, is one promising approach for post-combustion carbon capture Inc. All rights reserved. Keywords: Oxy-fuel; Carbon dioxide; Carbon capture; Carbon monoxide; Oxygen

  17. On the suitability of partially clathrated ice for analysis of concentration and 13 palaeo-atmospheric CO2

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    dioxide stable carbon isotope ratio ice core bubble clathrate transformation EPICA Dome C Berkner Island form 3 May 2011 Accepted 4 May 2011 Available online 28 May 2011 Editor: P. DeMenocal Keywords: carbon The stable carbon isotopic signature of carbon dioxide (13 CO2) measured in the air occlusions of polar ice

  18. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  19. A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2007-09-01T23:59:59.000Z

    Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

  20. Potential method for measurement of CO2 leakage from underground sequestration fields using radioactive tracers

    SciTech Connect (OSTI)

    Bachelor, Paula P.; McIntyre, Justin I.; Amonette, James E.; Hayes, James C.; Milbrath, Brian D.; Saripalli, Prasad

    2008-07-01T23:59:59.000Z

    Reduction of anthropogenic carbon dioxide (CO2) release to the environment is a pressing challenge that should be addressed to avert the potential devastating effects of global warming. Within the United States, the most abundant sources of CO2 emissions are those generate from coal- or gas-fired power plants; one method to control CO2 emissions is to sequester it in deep underground geological formations. From integrated assessment models the overall leakage rates from these storage locations must be less than 0.1% of stored volume per year for long-term control. The ability to detect and characterize nascent leaks, in conjunction with subsequent remediation efforts, will significantly decrease the amount of CO2 released back into the environment. Because potential leakage pathways are not necessarily known a priori, onsite monitoring must be performed; the monitoring region in the vicinity of a CO2 injection well may be as large as 100 km2, which represents the estimated size of a supercritical CO2 bubble that would form under typical injection scenarios. By spiking the injected CO2 with a radiological or stable isotope tracer, it will be possible to detect ground leaks from the sequestered CO2 using fewer sampling stations, with greater accuracy than would be possible using simple CO2 sensors. The relative merits of various sorbent materials, radiological and stable isotope tracers, detection methods and potential interferences will be discussed.

  1. ATMOSPHERIC CO2 A GLOBAL LIMITING RESOURCE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    Carbondioxideatmosphericburden,PgC Land use Fossil CO2 from land use emissions ­ not fossil fuel combustion ­ was the dominant CO2 Comparison of CO2 mixing ratio from fossil fuel combustion and land use changes 400 380 360 340 cores 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Forcing,Wm -2 #12;ATMOSPHERIC CO2 EMISSIONS Time series 1700

  2. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14T23:59:59.000Z

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  3. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    SciTech Connect (OSTI)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01T23:59:59.000Z

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  4. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  5. Insights into the structure of mixed CO2/CH4 in gas hydrates

    SciTech Connect (OSTI)

    Everett, Susan M [ORNL; Rawn, Claudia J [ORNL; Chakoumakos, Bryan C [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Huq, Ashfia [ORNL; Phelps, Tommy Joe [ORNL

    2015-01-01T23:59:59.000Z

    The exchange of CO2 for CH4 in natural gas hydrates is an attractive approach to methane for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x 5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. High-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. These results provide important insights on the impact and mechanisms for exchanging CH4 and CO2.

  6. 5, 33133340, 2005 SCIAMACHY CO2 and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title Page Abstract Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols S. Houweling 1,2 , W. Hartmann 1 Commons License. 3313 #12;ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title

  7. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    E-Print Network [OSTI]

    Lisal, Martin

    Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations C.M. COLINAa,b, *, C and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based: Fluctuations; Carbon dioxide; 2CLJQ; Joule­Thomson coefficient; Speed of sound INTRODUCTION Simulation methods

  8. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

  9. Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03T23:59:59.000Z

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  10. CO$_2$ cooling experience (LHCb)

    E-Print Network [OSTI]

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01T23:59:59.000Z

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  11. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-02-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

  12. Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer

    E-Print Network [OSTI]

    van den Brink, Jeroen

    Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer brandstoffen en veranderingen in landgebruik. Toenemende concentraties van CO2 in de atmosfeer zullen naar toename van CO2 in de atmosfeer op de dynamiek van de microbiële gemeenschap in de directe omgeving van de

  13. MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter

    E-Print Network [OSTI]

    Turova, Varvara

    MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

  14. Surface controls on the characteristics of natural CO2 seeps: implications for engineered CO2 stores

    E-Print Network [OSTI]

    Haszeldine, Stuart

    of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is knownSurface controls on the characteristics of natural CO2 seeps: implications for engineered CO2

  15. Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009

    E-Print Network [OSTI]

    catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

  16. Pressure Buildup and Brine Migration During CO2 Storage in Multilayered Aquifers

    E-Print Network [OSTI]

    Zhou, Quanlin

    . Introduction Carbon dioxide capture combined with geologic stor- age (CCS) in suitable subsurface formations-6584.2012.00972.x potentially creating far-ranging pressure buildup and brine displacement in deep CO2 storage of resident brine caused by CCS operations require modeling/analysis tools of considerable complexity (Celia

  17. CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical : 10.1021/jp500313j #12;Abstract Carbon dioxide adsorption isotherms have been computed for the Metal derived from quantum mechanical calculations has been used to model adsorption isotherms within a MOF

  18. Short Communication Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing

    E-Print Network [OSTI]

    lithium cations Youn-Sang Bae a,1 , Brad G. Hauser b,1 , Omar K. Farha b , Joseph T. Hupp b, , Randall Q November 2010 Keywords: Lithium doping Carbon dioxide (CO2) Metal-organic framework (MOF) Separation improvement by the Li cation exchange comes from enhanced solid­gas interactions. Ó 2010 Elsevier Inc. All

  19. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  20. Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

  1. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  2. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  3. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

  4. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect (OSTI)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01T23:59:59.000Z

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  5. Global Methane Emissions from Pit Latrines Matthew C. Reid,*,,

    E-Print Network [OSTI]

    Mauzerall, Denise

    to 944 $/ton carbon dioxide equivalents (CO2e) in Africa and 46 to 97 $/ton CO2e in Asia. INTRODUCTION in pits. In this study, we develop a spatially explicit approach to account for local hydrological control with other CH4 mitigation measures in organic waste sectors, with marginal abatement costs ranging from 57

  6. Final Progress Report: Direct Experiments on the Ocean Disposal of Fossil Fuel CO2.

    SciTech Connect (OSTI)

    James P. Barry; Peter G. Brewer

    2004-05-25T23:59:59.000Z

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life. Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.

  7. CO2 Adsorption to Sub-Single Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction

    SciTech Connect (OSTI)

    Rother, Gernot [ORNL; Ilton, Eugene [Pacific Northwest National Laboratory (PNNL); Wallacher, Dirk [Helmholtz-Zentrum Berlin; Hauss, Thomas [Helmholtz-Zentrum Berlin; Schaef, Herbert [Pacific Northwest National Laboratory (PNNL); Qafoku, Odeta [Pacific Northwest National Laboratory (PNNL); Rosso, Kevin M. [Pacific Northwest National Laboratory (PNNL); Felmy, Andrew [Pacific Northwest National Laboratory (PNNL); Krukowski, Elizabeth G [ORNL; Stack, Andrew G [ORNL; Bodnar, Robert J [ORNL

    2013-01-01T23:59:59.000Z

    Geologic storage of CO2 requires that the caprock sealing the storage rock is highly impermeable by CO2. Swelling clays, which are important components of caprocks, may react with CO2 under volume change, potentially impacting the seal quality. The interactions of scCO2 with Na saturated montmorillonite clay containing a sub-single layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of 0.15 g/cm3, followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 . The density of CO2 in the clay pores is relatively stable over a wide range of CO2 pressures at a given temperature, indicating the formation of a clay-CO2 phase. At low pressure increasing CO2 adsorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak or no temperature dependence. Supercritical fluids, sorption phenomena, carbon dioxide, carbon sequestration, caprock integrity

  8. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

  9. Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations

    E-Print Network [OSTI]

    Long, Bernard

    . Emitted in large proportions, especially from (stationary) fossil-fuel based power plants, carbon dioxide­1200 °C), humidity (0­10 mol %) and CO2 partial pressure (20­67 mol %), thermal preconditioning

  10. Modeling of CO2 storage in aquifers

    E-Print Network [OSTI]

    santos,,,

    Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an ...

  11. QGESS: CO2 Impurity Design Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limits Component Unit (Max unless Otherwise noted) Carbon Steel Pipeline Enhanced Oil Recovery Saline Reservoir Sequestration Saline Reservoir CO 2 & H 2 S Co- sequestration...

  12. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01T23:59:59.000Z

    emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

  13. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2005-05-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

  14. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21T23:59:59.000Z

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  15. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    coal bed methane recovery (ECBM). Data from reservoirs incoal bed methane (ECBM) recovery. Also, since oil and gas reservoirs

  16. Capturing CO2 from Air Anca Timofte

    E-Print Network [OSTI]

    Fischlin, Andreas

    emissions through renewable fuels · Storage of fluctuating renewable energies · Short-term: Substitute concentrated CO2 from atmospheric air Renewable energy source for Climeworks and subsequent fuel synthesis in Greenhouses Beverage Carbonation CO2 Supply for Renewable Fuel Synthesis #12;5 Climeworks plant delivers

  17. 2, 711743, 2006 Glacial CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacialCPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction

  18. Capturing CO2 via reactions in nanopores.

    SciTech Connect (OSTI)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

    2008-10-01T23:59:59.000Z

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  19. 4, 23852405, 2007 CO2 and climate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 2385­2405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

  20. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-11-08T23:59:59.000Z

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  1. Prospects for Subsurface CO2 Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Prospects for Subsurface CO2 Sequestration Abbas Firoozabadi and Philip Cheng Dept. of Chemical in Wiley InterScience (www.interscience.wiley.com). Keywords: CO2 sequestration, mixing, diffusion coal in the future. Coal has a high carbon to hydrogen ratio while natural gas, the premium fuel

  2. Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents

    E-Print Network [OSTI]

    Al Yousef, Zuhair

    2012-10-19T23:59:59.000Z

    CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

  3. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01T23:59:59.000Z

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  4. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

  5. Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford

    E-Print Network [OSTI]

    Keller, Klaus

    Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

  6. Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis Amin,§ and Richard I. Masel*, Dioxide Materials, 60 Hazelwood Drive, Champaign, Illinois 61820, United States properties for CO2 conversion. INTRODUCTION The discovery and development of efficient catalysts for CO2

  7. MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes

    E-Print Network [OSTI]

    Uppsala Universitet

    MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical

  8. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change

    SciTech Connect (OSTI)

    Oechel, W.

    1990-05-23T23:59:59.000Z

    A proposal for continuation of research on net ecosystem carbon dioxide and methane flux and sampling and analysis of soil samples from arctic tundra regions is presented.

  9. Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens

    E-Print Network [OSTI]

    Gauci, Vincent

    Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs, glacial, Last Glacial Maximum (LGM), methane (CH4), peatland, wetland. Summary · Wetlands were the largest (n = 8 per treatment) and measured gaseous CH4 flux, pore water dissolved CH4 and volatile fatty acid

  10. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19T23:59:59.000Z

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  11. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach 

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19T23:59:59.000Z

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  12. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  13. Preparation of Inclusion Complex of Piroxicam with Cyclodextrin by Using Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    or the temperature. Moreover, additional advantages lie in the use of carbon dioxide (CO2) which properties of non with CO2 at 150°C and 15 MPa. Keywords: piroxicam; cyclodextrin; complex; ternary agent; supercritical-toxicity and mild critical conditions make it an ideal substitute to organic solvents. CO2 is gaseous at ambient

  14. Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2

    SciTech Connect (OSTI)

    Hungate, Bruce

    2014-11-07T23:59:59.000Z

    This report summarizes a synthesis project of a long-term global change experiment conducted at the Kennedy Space Center, Florida, investigating how increasing concentrations of atmospheric carbon dioxide (CO2) influences the functioning of a fire-dominated scrub-oak ecosystem. The experiment began in 1996 and ended in 2007. Results presented here summarize the effects of elevated CO2 on plant growth, soil processes, carbon and nutrient cycling, and other responses. Products include archived data from the experiment, as well as six publications in the peer-reviewed literature.

  15. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    and contribute to global warming. The problem of greenhouse gases and their impact on global warming have become gas source. #12;1 1. Introduction The electricity produced by hydroelectric reservoirs is commonly greenhouse gases. One good point to know by dealing with these two greenhouse gases is that the global

  16. The United States has put more CO2 into the atmosphere than anybody else, but without too much trouble we now can take the lead in slowing

    E-Print Network [OSTI]

    coal-fired power plants, which produce just over half of U.S. electricity and much more CO2 than any this argument they probably think in terms of familiar air pollution, such as sulfur dioxide. Once it enters the atmosphere, normal pollution stays there only a few hours or days. Carbon dioxide is not like that. Much

  17. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  18. New Catalyst Converts CO2 to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a catalyst that improves their system for converting waste carbon dioxide (CO) into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer...

  19. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox freshwater contour, where methane content is high and the freshwater aquifer can be avoided.

  20. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20T23:59:59.000Z

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  1. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G. (Charleston, WV)

    1990-01-01T23:59:59.000Z

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  2. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  3. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.

    2006-11-27T23:59:59.000Z

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

  4. The Influence of Temperature on the Sorption and Permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes

    SciTech Connect (OSTI)

    Mayur Ostwal; JOshua M. Lau; Christopher J. Orme; Frederick F. Stewart; J. Douglas Way

    2009-11-01T23:59:59.000Z

    This paper reports the transport and sorption properties of poly(fluoroalkoxyphosphazene) (PFAP) membranes for carbon dioxide and nitrogen in both pure and mixed gas experiments. The CO2 permeability decreased from 336 to 142 Barrers with an increase in the CO2/N2 ideal separation factor from 12 to 21 as the membrane temperature was decreased from 303 K to 258 K at feed pressure of 2.9 bars. At lower feed pressure (1.5 bars) the CO2 permeability decreased from 327 to 140 Barrers, while the CO2/N2 ideal separation factor increased from 13 to 22 over the same temperature range. CO2 sorption isotherms were measured using the pressure decay equilibrium method. Solubility of CO2 was determined using the sorption isotherms and the diffusion coefficients were calculated from CO2 permeabilities and solubilities. Sorption isotherms were linear at each temperature for the pressure range studied and the enthalpy of sorption was -5.8 kcal/mol. The solubility coefficient values for CO2 increased from 0.95 to 5.43 cm3 CO2(STP)/cm3 polymer.atm whereas the diffusion coefficient decreased from 2.71 X 10-6 to 0.19 X 10-6 cm2/sec as the temperature decreased from 303 K to 258 K.

  5. co2 capture | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Capture Technology Meeting Dates: June 23-26, 2015 Registration Fee: 360.00 Venue: 300 West Station Square Drive Pittsburgh, PA 15219-1122 Phone: (412)261-2000...

  6. Gulf of Mexico Miocene CO2 Site Characterization Mega Transect

    SciTech Connect (OSTI)

    Meckel, Timothy; Trevino, Ramon

    2014-09-30T23:59:59.000Z

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

  7. Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

    2013-03-01T23:59:59.000Z

    Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

  8. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each

  9. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  10. Conversion of CO2 into Commercial Materials Using Carbon Feedstocks

    SciTech Connect (OSTI)

    Shen, Jian-Ping; Peters, Jonathan; Lail, Marty; Mobley, Paul; Turk, Brian

    2014-05-31T23:59:59.000Z

    In this project, our research focused on developing reaction chemistry that would support using carbon as a reductant for CO2 utilization that would permit CO2 consumption on a scale that would match or exceed anthropomorphic CO2 generation for energy production from fossil fuels. Armed with the knowledge that reactions attempting to produce compounds with an energy content greater than CO2 would be thermodynamically challenged and/or require significant amounts of energy, we developed a potential process that utilized a solid carbon source and recycled the carbon to effectively provide infinite time for the carbon to react. During testing of different carbon sources, we found a wide range of reaction rates. Biomass-derived samples had the most reactivity and coals and petcoke had the lowest. Because we had anticipated this challenge, we recognized that a catalyst would be necessary to improve reaction rates and conversion. From the data analysis of carbon samples, we recognized that alkali metals improved the reaction rate. Through parametric testing of catalyst formulations we were able to increase the reaction rate with petcoke by a factor of >70. Our efforts to identify the reaction mechanism to assist in improving the catalyst formulation demonstrated that the catalyst was catalyzing the extraction of oxygen from CO2 and using this extracted oxygen to oxidize carbon. This was a significant discovery in that if we could modify the catalyst formulation to permit controlled the oxidation, we would have a very power selective oxidation process. With selective oxidation, CO2 utilization could be effective used as one of the process steps in making many of the large volume commodity chemicals that support our modern lifestyles. The key challenges for incorporating these functionalities into the catalyst formulation were to make the oxidation selective and lower the temperature required for catalytic activity. We identified four catalyst families that had the potential to meet these challenges. Initial screening of the catalyst families did show that the reduction/oxidation activity did occur at lower temperatures and that these catalysts were able to cause carbon chain growth as well as C—C cleavage. A preliminary techno-economic feasibility of using petcoke/catalyst to produce a CO-rich syngas product was completed and showed significant economic promise. Testing of the different catalyst families demonstrated that Catalyst A was able to stably produce 5 sccm of ethylene/gram of catalyst at 900°C for one hour. For dry methane reforming, our Catalyst 4 was able to achieve production rates of > 10 sccm of CO and > 3 sccm of H2 per gram of catalyst at 600°C and 350 psig. Based on these developments, the potential for CO2 utilization in the production of large volume commodity chemicals is very promising.

  11. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09T23:59:59.000Z

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  12. Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach

    SciTech Connect (OSTI)

    Schoonen, Martin A. [Stony Brook University] (ORCID:0000000271331160)

    2014-12-22T23:59:59.000Z

    The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO2 (scCO2) and scCO2 with commingled aqueous solutions containing H2S and/or SO2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO2 with commingled aqueous solutions containing H2S and/or SO2 under conditions simulating the environment near the injection point (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.

  13. Version 3.0 SOP 4 --p(CO2) October 12, 2007 (p(CO2))

    E-Print Network [OSTI]

    Version 3.0 SOP 4 -- p(CO2) October 12, 2007 91 SOP 4 (p(CO2)) - 1. . microatmospheres . (20°C 250-2000 µatm) (mole fraction) . 2. CO2 (mole fraction) . 2 2(CO ) (CO( ) . . Frit . #12;October 12, 2007 SOP 4 -- p(CO2) Version 3.0 92 CO2 CO2 2 . p(CO2) (1) . 4. 3

  14. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2003-10-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

  15. Atmospheric CO2 concentrations during ancient greenhouse climates were similar

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted atmospheric CO2 concentrations (½CO2atm) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO2 levels. Empirical estimates of ½CO2atm

  16. Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Zimmer, Uwe

    stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCSDevelopment of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences

  17. Carbon Dioxide Capture DOI: 10.1002/anie.201000431

    E-Print Network [OSTI]

    ] Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from powerCarbon Dioxide Capture DOI: 10.1002/anie.201000431 Carbon Dioxide Capture: Prospects for New- and gas-fired power plants.[3­5] Such conven- tional technologies for large-scale capture have been com

  18. Carbon dioxide sequestration in concrete in different curing environments

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

  19. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  20. Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions-validation (GCV) and x2 test are compared for the first time under a realistic setting in a mesoscale CO2 estimation, uncertainty quantification, mesoscale carbon dioxide inversions 1. Introduction The atmosphere

  1. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-04-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

  2. Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations

    E-Print Network [OSTI]

    Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

    2008-01-01T23:59:59.000Z

    Phase Medium Irradiance ? H2 ? CO2 Maximum Reported Ratesa) Specific CO 2 uptake rate, ? CO2 (kg CO 2 /kg dry cell/h)

  3. Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations: A Summary of the 2003 Critical Review

    SciTech Connect (OSTI)

    White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W.

    2003-06-01T23:59:59.000Z

    Increasing amounts of carbon dioxide (CO2) in the atmosphere, and the resulting global warming effect, is a major air quality concern. CO2 is the most abundant greenhouse gas emitted by fossil-fuel combustion for power generation, transportation, and heating. Reducing worldwide emissions of CO2 will require many mitigation measures, including reductions in energy consumption, more efficient use of available energy, renewable energy sources, and carbon sequestration. The feasibility of capturing CO2 from large point sources and subsequent geological sequestration is the subject of this year’s Critical Review.

  4. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel—making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they’re pumped out of the tank.

  5. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09T23:59:59.000Z

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  6. Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rue de la Férollerie, 45072 Orléans Cedex, France Abstract CO2 injection in unmineable coal seams capacities on various coals for the future modelling of CO2 injection in coal seams. Keywords: CO2 storage is estimated from 3 up to 200 GtCO2 therefore CO2 storage in coal seams is one of the potential types

  7. Satellite remote sounding of mid-tropospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    and Y. L. Yung (2006), CO 2 in the upper troposphere:derivatives with application to CO 2 , Geophys. Res. Lett. ,feasibility of monitoring CO 2 from high-resolution infrared

  8. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    WITH SITE SCREENING AND SELECTION FOR CO 2 STORAGE D. A.77 ASSESSING AND EXPANDING CO 2 STORAGE CAPACITY IN DEPLETEDFOR CO 2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN

  9. The impacts of direct seeding into mulch on the CO2 mitigation MR KHALEDIAN1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    such as direct seeding into mulch (DSM). Conservation tillage can both reduce diesel consumption and sequestrate combustion and organic carbon variations in soil during the field trial. The results showed that using DSM that the quantity of fossil energy input is closely related to the release of carbon dioxide (CO2) from a specific

  10. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions into the atmosphere2

    E-Print Network [OSTI]

    Boyer, Edmond

    dioxide sequestration process. The overall carbonation reaction includes the following steps: (1)23 CaCarbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions change.20 This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper

  11. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    on the combus- tion methods. The ue gas emitted from the post-combustion chamber has a pressure of 1 atm with 15. To apply a MOF in capturing CO2 from industrial ue gas that is emitted from a post-combustion chamber, its capture,2 and O2/N2 gas separation.3 In particular, selective and reversible capture of carbon dioxide

  12. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro-mechanical properties of the materials modelled are chosen to be representative of a potential injection site. For high on the injection process, and on site and rock properties. Rutqvist et al. (2008) showed through a coupled

  13. Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs

    E-Print Network [OSTI]

    Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

  14. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  15. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

  16. abiotic co2 flows: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s... Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia,...

  17. af co2 fra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s... Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia,...

  18. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    F Monitoring studies above EOR-CO2 fields Weyburn-MidaleTexas •? Over 30 years of CO2-EOR •? Sampled outside of

  19. Modeling CO2 Sequestration in a Saline Reservoir and Depleted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System,...

  20. Reaction of Water-Saturated Supercritical CO2 with Forsterite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

  1. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

  2. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

  3. numerical methodology to model and monitor co2 sequestration

    E-Print Network [OSTI]

    santos,,,

    CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths ...

  4. Variations in 13 C discrimination during CO2 exchange by

    E-Print Network [OSTI]

    as to differential diffusivities of 13 CO2 and 12 CO2 in air (Farquhar, O'Leary & Berry 1982; O'Leary 1984

  5. Carbon Dioxide Corrosion: Modelling and Experimental Work

    E-Print Network [OSTI]

    Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

  6. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  7. CO2 Compression | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4CO2 Compression CO2

  8. EFFICIENT THEORETICAL SCREENING OF SOLID SORBENTS FOR CO2 CAPTURE APPLICATIONS

    SciTech Connect (OSTI)

    Duan, Yuhua; Sorescu, Dan C; Luebke, David

    2011-01-01T23:59:59.000Z

    Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.

  9. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect (OSTI)

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20T23:59:59.000Z

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

  10. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01T23:59:59.000Z

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  11. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.

    2006-03-15T23:59:59.000Z

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.

  12. Decarbonization and the time-delay between peak CO2 emissions and concentrations

    E-Print Network [OSTI]

    Seshadri, Ashwin K

    2015-01-01T23:59:59.000Z

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

  13. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.

    2005-09-19T23:59:59.000Z

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.

  14. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30T23:59:59.000Z

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  15. Projecting human development and CO2 emissions

    E-Print Network [OSTI]

    Costa, Luís; Kropp, Jürgen P

    2012-01-01T23:59:59.000Z

    We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

  16. 9780199573288 13-Helm-c13 Helm Hepburn (Typeset by SPi, Chennai) 263 of 283 June 21, 2009 12:8 Carbon Dioxide Capture and Storage

    E-Print Network [OSTI]

    :8 13 Carbon Dioxide Capture and Storage Howard Herzog I. INTRODUCTION Carbon dioxide capture and storage (CCS) is the capture and secure storage of carbon dioxide (CO2) that would otherwise be emitted 12:8 264 Carbon Dioxide Capture and Storage discusses the future of CCS in the context of climate

  17. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16T23:59:59.000Z

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

  18. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  19. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  20. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    SciTech Connect (OSTI)

    Aubrey, Doug, P.; Teskey, Robert, O.

    2009-07-01T23:59:59.000Z

    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m?2 d?1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m?2 d?1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  1. CO2 Storage and Sink Enhancements: Developing Comparable Economics

    E-Print Network [OSTI]

    CO2 Storage and Sink Enhancements: Developing Comparable Economics B.R. Bock1 , R.G. Rhudy2 , and H technologies and practices under development for CO2 storage and sink enhancement, including options. For the geologic and ocean storage options, CO2 capture costs from another project were added to the costs of CO2

  2. Original article Limitation of photosynthetic activity by CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Limitation of photosynthetic activity by CO2 availability in the chloroplasts to resistances opposing the CO2 fluxes in the mesophyll of tree leaves. To validate this assertion, values of CO2 CO2 assimilation and respiration rate measurement, and using the known electron requirements (four

  3. CO2 levels during the greenhouse of the Paleocene

    E-Print Network [OSTI]

    Shull, Kenneth R.

    CO2 levels during the greenhouse of the Paleocene Eocene Thermal Maximum (PETM) Francesca A. Mc, Boulder #12;Estimating paleopCO2 0 5 10 15 20 25 30 0 500 1000 1500 2000 2500 3000 Meter Level, start of CIE=0 pCO2 pCO2 values using different calculation methods Bulk nalk For the past 250 years human

  4. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  5. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2006-03-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

  6. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01T23:59:59.000Z

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  7. Free Air CO2 Enrichment (FACE) Data from the Duke Forest FACE Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEÆs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The Duke University FACE website actually presents information on several FACE experiments. The Forest-Atmosphere Carbon Transfer and Storage (FACTS-I) facility is located in the Blackwood Division of the Duke Forest. It consists of four free-air CO2 enrichment (FACE) plots that provide elevated atmospheric CO2 concentration and four plots that provide ambient CO2 control. The system has been in operation since June, 1994 in the prototype plot, and since August, 1996 in the three additional plots. The prototype plot and its reference were halved with a barrier inserted in the soil in 1998 to conduct, together with five additional plot pairs, CO2 X soil nutrient enrichment experiments. The rest of the plots were partitioned in early 2005 and incorporated into the CO2 X nutrient experiment. To increase statistical power, four additional ambient plots were established in January, 2005, halved, and one half of each fertilized. [copied from http://face.env.duke.edu/description.cfm] The Duke FACE home page makes information available from both completed and ongoing projects, provides a searchable database of publications and presentations, and data, images, and links to related websites.

  8. Spatial Disaggregation of CO2 Emissions for the State of California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11T23:59:59.000Z

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

  9. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    SciTech Connect (OSTI)

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

    2013-07-01T23:59:59.000Z

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 ?m) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.

  10. Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

    2009-01-01T23:59:59.000Z

    Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

  11. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  12. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

  13. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23T23:59:59.000Z

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  14. Buildings, Commissioning, Efficiency, Comfort, and CO2

    E-Print Network [OSTI]

    Claridge, D. E.

    2006-01-01T23:59:59.000Z

    comfort, optimize energy use and identify retrofits for existing commercial and institutional buildings and central plant facilities. It includes the entire commissioning process from assessment through implementation and subsequent follow-up as necessary...Buildings, Commissioning, Efficiency, Comfort, and CO2 Asian Pacific Building Commissioning Conference ICEBONovember 8, 2006Shenzhen, ChinaPresented ByDavid E. ClaridgeEnergy Systems LaboratoryTexas A&M University Commissioning New Buildings...

  15. Continuous CO2 extractor and methods

    SciTech Connect (OSTI)

    None listed

    2010-06-15T23:59:59.000Z

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  16. Aquifer Management for CO2 Sequestration

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14T23:59:59.000Z

    to the Computer Modeling Group (CMG) and Kappa Engineering for providing the uninterrupted license of the software packages. I am grateful to Mr. Bob Brugman from CMG for his help with the GEM-GHG (Green House Gas) module of CMG. I would like to extend my... biological sinks of CO 2 and decreasing the carbon intensity of fossil fuels should be considered. Out of all the potential mitigation options for stabilizing atmospheric GHG concentrations, including injection into deep oceans, depleted oil reservoirs...

  17. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01T23:59:59.000Z

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  18. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18T23:59:59.000Z

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  19. Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-10-02T23:59:59.000Z

    Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called �¢����an open path device�¢��� to measure CO2 concentrations near the ground above a CO2 storage area.

  20. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02T23:59:59.000Z

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  1. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01T23:59:59.000Z

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

  2. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect (OSTI)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01T23:59:59.000Z

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

  3. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    10.1029/2010JG001390, 2010 Ecosystem carbon dioxide fluxesdioxide fluxes of black spruce ecosystems in eastern Northof a stand?replacing fire on ecosystem CO 2 exchange of a

  4. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-Print Network [OSTI]

    Sekar, Ram Chandra

    2005-01-01T23:59:59.000Z

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  5. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01T23:59:59.000Z

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  6. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    dioxide emissions from fossil-fuel combustion R. J. Andresdioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emission

  7. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect (OSTI)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31T23:59:59.000Z

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  8. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    SciTech Connect (OSTI)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09T23:59:59.000Z

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C tagged NH4HCO3 (ABC) was used. Products of ammonium bicarbonate (ABC) or long-term effect ammonium bicarbonate (LEABC) were tagged with 14C when they were synthesized in the laboratory. An indoor greenhouse was built and wheat was chosen as the plant to study in this ecosystem. The investigated ecosystem consists of plant (wheat), soils with three different pH values (alkaline, neutral and acid), and three types of underground water (different Ca2+ and Mg2+ concentrations). After biological assimilation and metabolism in wheat receiving ABC or LEABC, it was found that a considerable amount (up to 10%) of the carbon source is absorbed by the wheat with increased biomass production. The majority of the unused carbon source (up to 76%) percolated into the soil as carbonates, such as environmentally benign calcium carbonate (CaCO3). Generally speaking, alkaline soil has a higher capability to capture and store carbon. For the same soil, there is no apparent difference in carbon capturing capability between ABC fertilizer and LEABC fertilizer. These findings answer the question how carbon is distributed after synthesized fertilizer is applied into the ecosystem. In addition, a separate post-experiment on fertilizer carbon forms that exist in the soil was made. It was found that the up to 88% of the trapped carbon exists in the form of insoluble salts (i.e., CaCO3) in alkaline soils. This indicates that alkaline soil has a greater potential for storing carbon after the use of the synthesized fertilizer from exhausted CO2.

  9. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15T23:59:59.000Z

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

  10. Conductivity measurements on H2O-bearing CO2-rich fluids

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University; Rimstidt, J. Donald [Virginia Polytechnic Institute and State University

    2015-01-01T23:59:59.000Z

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H2O to CO2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H2O concentrations up to ~1600 ppmw (xH2O 3.9 10-3), corresponding to the H2O solubility limit in liquid CO2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. This observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.

  11. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    Units Current Plant MEA CO 2 Recovery O 2 fired, Direct CO 2 Compression` MEA/MDEA CO 2 Recovery Steam

  12. Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they’ve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

  13. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 CaptureTransport Cost

  14. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  15. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of December. A preliminary report shows methane content values for the desorbed coal samples ranged between 330 and 388 scf/t., on ''as received'' basis. Residual gas content of the coals was not included in the analyses, which results in an approximate 5-10% underestimation of in-situ gas content. Coal maps indicate that total coal thickness is 40-70 ft in the Lower Calvert Bluff Formation of the Wilcox Group in the vicinity of the Sam K. Seymour power plant. A conservative estimate indicates that methane in place for a well on 160-acre spacing is approximately 3.5 Bcf in Lower Calvert Bluff coal beds. When they receive sorption isotherm data from the laboratory, they will determine the amount of CO{sub 2} that it may be possible to sequester in Wilcox coals. In December, when the final laboratory and field test data are available, they will complete the reservoir model and begin to simulate CO{sub 2} sequestration and enhanced CH{sub 4} production.

  16. INFLUENCE OF CAPILLARY PRESSURE ON CO2 STORAGE AND MONITORING

    E-Print Network [OSTI]

    Santos, Juan

    volume - 1 + + = + - 1 + = : 2 solubility in brine : 2 formation volume factor : brine formation volume factor The Black-Oil formulation = - - = - - Darcy's Empirical Law + = 1 - = : capillary pressure brine brine CO2 CO2 #12;· The numerical solution was obtained

  17. atmospheric co2 face: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Duke Forest free-air CO2 enrichment (FACE) study. Rates of An Katul, Gabriel 11 Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment...

  18. air co2 enrichment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with increasing CO2 between ambient (1.0x California at Santa Cruz, University of 13 Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment...

  19. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    157 WELL INTEGRITY IN CO 2 ENVIRONMENTS: PERFORMANCE, RISK,of CO 2 injection, wells integrity and long term behavior ofcan compromise the well integrity and thus its functional

  20. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts From CO2 to Methanol via Novel Nanocatalysts Print Wednesday, 03 December 2014 00:00 Researchers have found novel nanocatalysts that...

  1. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    problems of aqueous fluids, make heretofore inaccessible energy resources available for human use, and provide ancillary benefits by using and storing CO2. A CO2-based EGS is...

  2. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    projects based CO 2 enhanced oil recovery in the US. Energydeveloped for CO 2 -enhanced oil recovery. In: 16th SPE/DOEpurposes such as enhanced oil recovery (EOR) and enhanced

  3. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

  4. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

  5. Formation Damage due to CO2 Sequestration in Saline Aquifers 

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25T23:59:59.000Z

    the amount of CO2 emitted into the atmosphere. However, a better understanding of the chemical and physical interactions between CO2, water, and formation rock is necessary before sequestration. These interactions can be evaluated by the change in mineral...

  6. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    WITH HETEROGENEITY IN OIL AND GAS RESERVOIRS APPLIED TO CO 2sedimentary basins, oil and gas fields, and industrial CO 2Harr, C.L. , 1996, Paradox oil and gas potential of the Ute

  7. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    E-Print Network [OSTI]

    Chakib Bouallou

    2010-08-12T23:59:59.000Z

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  8. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Model Inputs Emissions Factors CO2 Emission factor for grid tonne CO2/MWh)  CO2 Emission factor for fuel  (tonne CO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

  9. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01T23:59:59.000Z

    form of enhanced petroleum production as CO 2 is injected.for monitoring production in petroleum reservoirs. The cost

  10. CO2 stabilization, climate change and the terrestrial carbon sink

    E-Print Network [OSTI]

    White, Andrew

    CO2 stabilization, climate change and the terrestrial carbon sink A N D R E W W H I T E , * M E L V, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225

  11. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    potential CO 2 storage and water extraction projects based on the effort’s findings DOE’s Interagency CCS

  12. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01T23:59:59.000Z

    combined CO 2 enhanced oil recovery (EOR) and sequestrationMODEL The enhanced oil recovery (EOR)/sequestration

  13. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01T23:59:59.000Z

    an oil reservoir, (2) a brine formation, and (3) a depletedoil-bearing formations or depleted coalbed methane reservoirs.

  14. A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Nael N State University, Raleigh, North Carolina 27695-7905 CO2 was used to break several water-in-crude oil density and mole fraction. The proposed mechanism by which CO2 destabilizes water-in-crude oil emulsions

  15. Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems at stripper conditions

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems thermodynamic models. The range in CO2 solubility measured from 100 ­ 120 o C for K+ /PZ mixtures was from (0 and Technology to expand the thermodynamic data of for potassium carbonate/piperazine/CO2 with measurements of CO

  16. Comprehensive study of carbon dioxide adsorption in the metalorganic frameworks M2(dobdc)

    E-Print Network [OSTI]

    Comprehensive study of carbon dioxide adsorption in the metal­organic frameworks M2(dobdc) (M ¼ Mg and Craig M. Brown*bl Analysis of the CO2 adsorption properties of a well-known series of metal and single crystal X-ray di raction experiments are used to unveil the site-speci c binding properties of CO2

  17. CO2 Injection in the Subsurface Kjetil Haugen

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    fuel. Nevertheless, natural gas combustion results in sub- stantial quantities of CO2. Instead Warming Fossil fuels produce CO2 upon combustion. CO2 is a greenhouse gas and contributes to global warm. Thus, replacing oil and coal with less carbon-intensive natural gas, is probably the fastest way

  18. Post-Combustion CO2 Capture 11 -13 July 2010

    E-Print Network [OSTI]

    Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

  19. ORIGINAL ARTICLE Navajo SandstonebrineCO2 interaction: implications

    E-Print Network [OSTI]

    Zhu, Chen

    ORIGINAL ARTICLE Navajo Sandstone­brine­CO2 interaction: implications for geological carbon to the injected CO2 is largely unknown. Experiments involving the reac- tion of Navajo Sandstone with acidic brine experiment examined sandstone interaction with CO2-impregnated brine; the second experiment examined

  20. A Numerical Investigation of Wettability Alteration during Immiscible CO2

    E-Print Network [OSTI]

    Hossain, M. Enamul

    A Numerical Investigation of Wettability Alteration during Immiscible CO2 Flooding Process, April 2012 #12;2 Table of Contest Abstract 3 Introduction 3 Literature Review 5 CO2 Flooding 7 New alteration during CO2 flooding. However, limited research on numerical and/or analytical modeling

  1. Cimpor inventa nova frmula para reduzir pegada de CO2

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Cimpor inventa nova fórmula para reduzir pegada de CO2 CIMENTO. A Cimpor descobriu uma nova fórmula para produzir ci- mento que lhe permitirá reduzir a pegada de CO 2 em 25%. Segundo as contas da as fábricas do grupo, seriam emitidos menos quatro milhões de toneladas de CO 2 por ano, o que permitiria uma

  2. results and benefits... Birmingham Cutting your CO2

    E-Print Network [OSTI]

    Everest, Graham R

    results and benefits... Birmingham Cutting your CO2 Birmingham City Council July 2007 c a s e s t u of the BirminghamCutting CO2 campaign, news items, display materials etc. · Advising on pledge gathering materials system was launched in July 2007 as part of the `Birmingham Cutting Your CO2' campaign. By the end

  3. Aquatic primary production in a high-CO2 world

    E-Print Network [OSTI]

    Fussman, Gregor

    Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

  4. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  5. CO2-avskiljning med syrgasfrbrnning -nya tekniska mjligheter

    E-Print Network [OSTI]

    Lemurell, Stefan

    CO2-avskiljning med syrgasförbränning - nya tekniska möjligheter Klas Andersson Avd. Energiteknik Chalmers Tekniska Högskola Chalmers Energikonferens 14 december 2012 #12;· Combustion and CO2 capture with power and industrial sectors #12;Air-Fuel Combustion Air Fuel Flue gas CO2: 10-20 % N2: 60

  6. Central serotonin neurons are required for arousal to CO2

    E-Print Network [OSTI]

    Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

  7. Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10T23:59:59.000Z

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the CO2 scrubber. The ?30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  8. Chemical Looping Combustion for inherent CO2 capture in a

    E-Print Network [OSTI]

    Evaluate CLC using syngas as fuel Effect of fuel Effect of operating conditions Use CLC for CO2-capture Reactor System O2,N2 CO2,H2O To CO2 recovery and compression #12;15 Clean syngas from different gasifiers

  9. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous.................................................................................................................................... 8 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  10. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing...................................................................................................................................11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  11. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing.................................................................................................................................. 10 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  12. Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media

    E-Print Network [OSTI]

    Cai, Shuzong

    2011-10-21T23:59:59.000Z

    CO2 has been widely used as a displacement fluid in both immiscible and miscible displacement processes to obtain tertiary recovery from the field. There are several problems associated with the application of CO2 flooding, especially when...

  13. Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage

    E-Print Network [OSTI]

    Otto, Vincent M.

    This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

  14. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    E-Print Network [OSTI]

    Birkholzer, Jens

    2008-01-01T23:59:59.000Z

    Changes in Response to CO2 Leakage from Deep Geologicalstudy mineral trapping for CO2 disposal in deep arenaceousconstituents as function of P(CO2)? function of P(CO2)? – –

  15. INTEGRATING MEA REGENERATION WITH CO2 COMPRESSION AND PEAKING TO REDUCE CO2 CAPTURE COSTS

    E-Print Network [OSTI]

    Rochelle, Gary T.

    system with no compression heat recovery, CO2 vapor recompression heat recovery, and multipressure stripping with and without vapor recompression heat recovery. These configurations were simulated using of power for sale to the grid based on 500 MW unit ) clearly outweighed the modest increases in capital

  16. Rate Determination of the CO2* Chemiluminescence Reaction CO + O + M = CO2* + M

    E-Print Network [OSTI]

    Kopp, Madeleine Marissa, 1987-

    2012-10-15T23:59:59.000Z

    flame characteristics, such as fuel consumption rate, heat release rate, and H-atom concentration. In 2002, Kim et al. [2] made detailed spectral measurements in SI, HCCI, and SCCI engines from various excited state species and determined that CO2...

  17. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    within ± 15% of nominal P. EPM2-SPC/E DZ- SPC/E PPL-SPC/EEPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE ?to C and O atoms (Table 1). The PPL model (In Het Panhuis et

  18. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15T23:59:59.000Z

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.

  19. Quantitative implications of the secondary role of carbon dioxide climate forcing in the past glacial-interglacial cycles for the likely future climatic impacts of anthropogenic greenhouse-gas forcings

    E-Print Network [OSTI]

    Soon, Willie

    2007-01-01T23:59:59.000Z

    A review of the recent refereed literature fails to confirm quantitatively that carbon dioxide (CO2) radiative forcing was the prime mover in the changes in temperature, ice-sheet volume, and related climatic variables in the glacial and interglacial periods of the past 650,000 years, even under the "fast response" framework where the convenient if artificial distinction between forcing and feedback is assumed. Atmospheric CO2 variations generally follow changes in temperature and other climatic variables rather than preceding them. Likewise, there is no confirmation of the often-posited significant supporting role of methane (CH4) forcing, which despite its faster atmospheric response time is simply too small, amounting to less than 0.2 W/m2 from a change of 400 ppb. We cannot quantitatively validate the numerous qualitative suggestions that the CO2 and CH4 forcings that occurred in response to the Milankovich orbital cycles accounted for more than half of the amplitude of the changes in the glacial/intergla...

  20. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas 

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are ...

  1. Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7

    E-Print Network [OSTI]

    Boyer, Edmond

    Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

  2. Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    FULL PAPER Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex Eun Young Lee,[a] Daewon Hong,[a] Han Woong Park,[a] and Myunghyun Paik Suh*[a] Keywords: Nickel / Macrocyclic compounds / Carbon dioxide

  3. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05T23:59:59.000Z

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  4. January 2, 2008 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

  5. Research projects for 2014 Carbon Dioxide Chemistry Prof. Chris Rayner Prof. Chris Rayner

    E-Print Network [OSTI]

    Rzepa, Henry S.

    commercialising our recently patented technology for carbon dioxide capture.3 Carbon dioxide in Synthesis. Our underway, summarised below. Carbon capture and storage (CCS) is a key strategy for reducing atmospheric CO2 chemistry similar to that which occurs in carbon capture processes for CCS, in the purification of high

  6. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  7. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

  8. Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao

    E-Print Network [OSTI]

    Barthelat, Francois

    Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

  9. Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Ram Chandra Sekar

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar;2 #12;3 Carbon Dioxide Capture in Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar less expensive (pre-investment IGCC). All coal-fired power plants can be retrofitted to capture CO2

  10. Evaluation of Polymer-Supported Rhodium Catalysts in 1-Octene Hydroformylation in Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Abdou, Hanan E.

    Carbon Dioxide Zulema K. Lopez-Castillo, Roberto Flores, Ibrahim Kani,,§ John P. Fackler Jr., and Aydin employed in homogeneous cataly- sis. The most common benign solvent is supercritical carbon dioxide (scCO2). It is nonflammable, inert, and inexpensive, is readily available at high purity, and has low critical properties

  11. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

    2006-05-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

  12. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-10-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to injection rate. The main difference is in timing, with longer breakthrough times resulting as injection rate decreases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 670 days (1.8 years) to 7,240 days (19.8 years) for the reservoir parameters and well operating conditions investigated. The dewatering sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to dewatering prior to CO{sub 2} injection. As time to start CO{sub 2} injection increases, the time to reach breakthrough also increases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 850 days (2.3 years) to 5,380 days (14.7 years) for the reservoir parameters and well injection/production schedules investigated. Preliminary economic modeling results using a gas price of $7-$8 per Mscf and CO{sub 2} credits of $1.33 per ton CO{sub 2} indicate that injection of flue gas (87% N{sub 2}-13% CO{sub 2}) and 50% N{sub 2}-50% CO{sub 2} are more economically viable than injecting 100% CO{sub 2}. Results also indicate that injection rate and duration and timing of dewatering prior to CO{sub 2} injection have no significant effect on the economic viability of the project(s).

  13. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2002-04-01T23:59:59.000Z

    This is the first Technical Progress report for the subject agreement. During the first six months of the project, progress was made in arranging participation by other CONSOL departments, identifying a prospective site, developing an environmental assessment report, and securing land and coal rights. In addition, correspondences were drafted in response to NETL inquiries. These aspects of the project are discussed in detail in this report.

  14. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    William A. Williams

    2004-10-01T23:59:59.000Z

    This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

  15. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2003-04-01T23:59:59.000Z

    This is the third semi-annual Technical Progress report under the subject agreement. During this report period, substantial progress was made on finalizing NEPA approval, securing well permits for the project wells, developing the well sites, and drilling at the north well site. These aspects of the project, as well as progress on public communications, are discussed in detail in this report.

  16. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2003-10-01T23:59:59.000Z

    This is the fourth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on developing the south well site, reclaiming the north access road, and assessing drilling at the north well site. These aspects of the project, as well as progress on public communications, are discussed in detail in this report.

  17. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  18. Commerical-Scale CO2 Capture and Sequestration for the Cement Industry

    SciTech Connect (OSTI)

    Adolfo Garza

    2010-07-28T23:59:59.000Z

    On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

  19. Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals

    E-Print Network [OSTI]

    Iglesia, Enrique

    Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt smaller than the rate of methane chemical conversion in CO2 and H2O reforming reactions; thus, C-H bond and Pt2,3,8-32 lead to H2/CO mixtures useful as precursors to fuels and petrochemicals. Pt appears

  20. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15T23:59:59.000Z

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  1. Methane Hydrate Program

    Office of Environmental Management (EM)

    Biofilms in Fracture-Dominated Sediment that Anaerobically Oxidize Methane. Applied and Environmental Microbiology, 77, 7 pp. Brunner, C., Ingram, W., Meyers, S.,...

  2. Methane Digester Loan Program

    Broader source: Energy.gov [DOE]

    Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

  3. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, Lye Meng; Tucker, Abigail E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice; Taylor, Ronald C.

    2014-09-01T23:59:59.000Z

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  4. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  5. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31T23:59:59.000Z

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  6. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15T23:59:59.000Z

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  7. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity  (tonne CO2 Savings Figure 6. 2010-2030 Electricity and Electricity-Base CO 2 Emissions

  8. Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

  9. Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"

    SciTech Connect (OSTI)

    J. Patrick Megonigal; Bert G. Drake

    2010-08-27T23:59:59.000Z

    The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO2 effect to diminish, with consequences for change in soil elevation.

  10. ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang Song1, Igor Razlivano1, Kevin R. Gurney1, and Preeti Rao2

    E-Print Network [OSTI]

    Hall, Sharon J.

    ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang University, 2Jet Propulsion Laboratory Introduction Carbon dioxide (CO2) emissions, a primary greenhouse gas emissions from natural gas, coal, and petroleum sources. We use a `bottom-up' approach in which CO2

  11. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    liquid/vapor interface of SPC/E water. J. Phys. Chem. 100,dioxide mixtures described by the SPC/E and EPM2 models. (and water oxygen is denoted by O SPC/E and O TIP for SPC/E (

  12. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  13. Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production

    E-Print Network [OSTI]

    Zulkarnain, Ismail

    2006-04-12T23:59:59.000Z

    . This permeability anisotropy tends to create a preferential flow. In facts, the permeability has impacts on the coal bed methane production. One of the well known impacts is the drainage pattern shape. 1.4 Cleats Compression and Matrix Shrinkage Effect (Palmer.... This theory, in facts, has impacts on coal bed methane production. Because the matrix shrinkage phenomenon tends to develop permeability rebound at lower pressure. It might also have implications for enhanced coal bed methane recovery such as CO2...

  14. The Influence of deep-sea bed CO2 sequestration on small metazoan (meiofaunal) community structure and function

    SciTech Connect (OSTI)

    Carman, Kevin R; Fleeger, John W; Thistle, David

    2013-02-17T23:59:59.000Z

    We conducted a series of experiments in Monterey Submarine Canyon to examine potential ecological impacts of deep-ocean CO2 sequestration. Our focus was on responses of meiofaunal invertebrates (< 1 mm body length) living within the sediment at depths ranging between 3000-3600 m. Our particular emphasis was on harpacticoid copepods and nematodes. In the first phase of our DOE funding, we reported findings that suggest substantial (~80%) mortality to harpacticoid copepods. In the second phase of our funding we published additional findings from phase one and conducted follow-up experiments in the Monterey Canyon and in the laboratory. In one experiment we looked for evidence that meiofauna seek to escape areas where CO2 concentrations are elevated. �Emergence traps� near the source of the CO2-rich seawater caught significantly more harpacticoids than those far from it. The harpacticoids apparently attempted to escape from the advancing front of carbon dioxide-rich seawater and therefore presumably found exposure to it to be stressful. Although most were adversely affected, species differed significantly in the degree of their susceptibility. Unexpectedly, six species showed no effect and may be resistant. The hypothesis that harpacticoids could escape the effects of carbon dioxide-rich seawater by moving deeper into the seabed was not supported. Exposure to carbon dioxide-rich seawater created partially defaunated areas, but we found no evidence that disturbance-exploiting harpacticoid species invaded during the recovery of the affected area. Based on a detailed analysis of nematode biovolumes, we postulated that the nematode community in Monterey Canyon throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that �moderate� CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods). While we found evidence for negative impacts on deep-sea benthos, we also observed that small-scale experiments with CO2 releases were difficult to replicate in the deep sea. Specifically, in one CO2-release experiment in the Monterey Canyon we did not detect an adverse impacts on benthic meiofauan. In laboratory experiments, we manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepod species were both more sensitive to increased acidity when generated by CO2. Copepods living in environments more prone to hypercapnia, such as mudflats, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion. This interaction could be due to a competition for H+ and metals for binding sites.

  15. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01T23:59:59.000Z

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  16. Supported polyethylenimine adsorbents for CO2 capture from flue gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Gray, M.L.; Pennline, H.W.

    2008-10-01T23:59:59.000Z

    Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

  17. RMOTC - News - Methane Test 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (DOE), Los Alamos National Laboratory (LANL) and Chevron Corporation. The test was a methane controlled-release experiment and was designed to measure methane...

  18. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  19. Corrosion of various engineering alloys in supercritical carbon dioxide

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2010-01-01T23:59:59.000Z

    The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610°C and 20MPa. The purpose of this work was to evaluate each alloy as a potential ...

  20. www.sciam.com SCIENTIFIC AMERICAN 49 Pumping carbon dioxide

    E-Print Network [OSTI]

    O'Donnell, Tom

    for capture and storage already exists and that the obstacles hindering implementa- tion seem to the gallon and go 10,000 miles next year, you will need to buy 330 gallons-- about a ton--of gasoline. Burning that much gasoline sends around three tons of carbon dioxide out the tailpipe. Al- though CO2

  1. Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    SciTech Connect (OSTI)

    Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming

    2013-10-01T23:59:59.000Z

    The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 °C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals’ surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO3•3H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.

  2. Center for Nanoscale Control of Geologic CO2 (EFRC) - Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary The objective of the DOE Energy Frontier Research Center (EFRC) for Nanoscale Control of Geologic CO2 (NCGC) is to use new investigative tools, combined with experiments...

  3. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    The geomechanics of CO 2 storage in deep sedimentaryThis paper provides a review of the geomechanics andmodeling of geomechanics associated with geologic carbon

  4. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

  5. Advanced Post-Combustion CO2 Capture Prepared for the

    E-Print Network [OSTI]

    Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

  6. accelerating co2 emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita...

  7. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    Soviet Union (Ukraine, Kazakhstan, Belarus, and Russia),kg CO 2 /$GDP FSS Ukraine Kazakhstan Iran East Asia BelarusAsia China South Africa Kazakhstan Malaysia Russia Thailand

  8. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    strain and microseismicity, well integrity, caprock sealingstrain and microseismicity, well integrity, caprock sealingactions. 7 WELLBORE INTEGRITY The well design of a deep CO 2

  9. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    Efforts Investigating Water Extraction •! LLNL –! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios –! Technical

  10. Influence of capillary pressure on CO2 storage and monitoring

    E-Print Network [OSTI]

    gabriela

    solutions to mitigate the greenhouse effect. We are interested in analyzing the influence of capillary pressure on CO2 in- jection, storage and monitoring in saline ...

  11. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    Program eere.energy.gov * The project started in FY10 * Collaboration between LBNL (Pruess) and INL (Redden) - Berkeley leads modeling, CO 2 -brine flow and heat...

  12. Quantum Alloys Offer Prospects for CO2 Management Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radical new catalysts capable of converting CO2 emissions into fuels, chemicals, and plastics. Their unique discovery involves shrinking gold into a system consisting of just 25...

  13. atmospheric co2 content: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  14. atmospheric co2 concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  15. atmospheric co2 concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  16. atmospheric co2 laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  17. atmospheric co2 measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  18. atmospheric co2 variations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  19. atmospheric co2 mixing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  20. A Theoretical Study of CO2 Anions on Anatase (101) Surface. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Anions on Anatase (101) Surface. A Theoretical Study of CO2 Anions on Anatase (101) Surface. Abstract: Binding configurations of CO2 and CO2 - on perfect and oxygen-deficient...

  1. Inducinga CO2 leak into ashallow aquifer (CO2FieldLab EUROGIA+ project): Monitoring the CO2 plume in groundwaters.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (saline aquifer, depleted oil/gas reservoir), aquifers are ubiquitousin the overlying sedimentary pile in case of unwanted CO2leakages from a storage site. Independently from the nature of the reservoir

  2. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska

    SciTech Connect (OSTI)

    Roy Chowdhury, Taniya [ORNL; Herndon, Elizabeth M [ORNL; Phelps, Tommy Joe [ORNL; Elias, Dwayne A [ORNL; Gu, Baohua [ORNL; Liang, Liyuan [ORNL; Wullschleger, Stan D [ORNL; Graham, David E [ORNL

    2015-01-01T23:59:59.000Z

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.

  3. Solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration at ambient conditions

    SciTech Connect (OSTI)

    Wang, Xiaoxing [Pennsylvania State University; Ma, Xiaoliang [Pennsylvania State University; Schwartz, Viviane [ORNL; Clark, Jason C [ORNL; Overbury, Steven {Steve} H [ORNL; Zhao, Shuqi [Pennsylvania State University, University Park, PA; Xu, Xiaochun [Pennsylvania State University; Song, Chunshan [Pennsylvania State University

    2012-01-01T23:59:59.000Z

    In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15 was studied for CO2 capture from gas streams with low CO2 concentration at ambient conditions. The sorbent was able to effectively and selectively capture CO2 from a gas stream containing 1% CO2 at 75 C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg/g, respectively, and a selectivity of 14 for CO2/CO and 185 for CO2/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO2-TPD study showed that the sorbent could be regenerated at mild conditions (50-110 C) and was stable in the cyclical operations for at least 20 cycles. Furthermore, the possibility for CO2 capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg/g was attained at 75 C via TPD method using a simulated air with 400 ppmv CO2 in N2.

  4. Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    E-Print Network [OSTI]

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01T23:59:59.000Z

    from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

  5. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect (OSTI)

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01T23:59:59.000Z

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  6. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    SciTech Connect (OSTI)

    Nguyen, Quoc; Hirasaki, George; Johnston, Keith

    2014-12-31T23:59:59.000Z

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  7. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

  8. Greener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from the flue gases of coal-fired power plants would alleviate concerns

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    to remove CO2 from dilute gas streams because they have very high affinity for CO2. Unfortunately high solvents that balance high affinity for CO2 with ease of solvent recovery and reuse. Because the numberGreener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from

  9. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Others* Air Conditioner Frozen Scenario Total CO2 EmissionsCO2 Emissions (million tonnes CO2)Improvement Scenario Total CO2 Emissions *Others include:

  10. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATE RELEASENovel CO 2

  11. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01T23:59:59.000Z

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  12. Intercomparison of simulation models for CO2 disposal in underground storage reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Tsang, Chin-Fu; Law, David; Oldenburg, Curt

    2001-01-01T23:59:59.000Z

    oil recovery (EOR) using CO2 requires an understanding ofexperience with using CO2 for EOR projects (SPE, 1999), and

  13. Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

    E-Print Network [OSTI]

    Zhang, Da

    2012-09-01T23:59:59.000Z

    To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity

  14. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    CO2 mitigation potential and costs in China's electricityCO2 mitigation potential and costs in China's electricity

  15. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    SciTech Connect (OSTI)

    Vahdat, Nader

    2013-09-30T23:59:59.000Z

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  16. Electrolysed palladium has the potential to increase methane production by a mixed rumen population in vitro

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electrolysed palladium has the potential to increase methane production by a mixed rumen population the proportion of protozoa with attached methanogens decreased, however no estimate of CH4 production under were re-filled with H2:CO2, sealed with butyl rubber stoppers and incubated at 39°C with shaking

  17. Decoding Titanium Dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decoding Titanium Dioxide Decoding Titanium Dioxide Released: December 03, 2010 Scientists advance understanding of remarkable catalyst STM images of 1-, 2-, 3-, and 4-octoxy...

  18. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  19. Original article Responses to elevated atmospheric CO2 concentration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus* School of Forest Resources and Conservation, University of Florida, 326 Newins-Ziegler Hall, Gainesville. Elevated [CO2] increased biomass production only in the high-N treatment. Fine root/foliage mass ratio

  20. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-Print Network [OSTI]

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation