Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

SciTech Connect (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

2

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...  

Open Energy Info (EERE)

eight oil and gas companies and two associate members that are working together to reduce carbon capture and sequestration (CCS) costs. During Phase 2, between 2005 and 2009, the...

3

Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China  

SciTech Connect (OSTI)

This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

2009-12-01T23:59:59.000Z

4

Capturing CO2 from Air Anca Timofte  

E-Print Network [OSTI]

Capturing CO2 from Air Anca Timofte Climeworks AG Birchstrasse 155, 8050 Zürich www.climeworks.com, contact@climeworks.com Carbon Mitigation Lecture, 27 October 2014 #12;Air Climeworks CO2 capture plant CO2-free air Pure CO2 #12;3 Climeworks Products Demonstrator · 1 ton CO2 per year · Online since 12

Fischlin, Andreas

5

CO2 Capture with Enzyme Synthetic Analogue  

SciTech Connect (OSTI)

Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

Harry Cordatos

2010-03-01T23:59:59.000Z

6

Economic and energetic analysis of capturing CO2 from ambient air  

E-Print Network [OSTI]

Economic and energetic analysis of capturing CO2 from ambient air Kurt Zenz Housea,b,1 , Antonio C for review August 20, 2010) Capturing carbon dioxide from the atmosphere ("air capture") in an industrial suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost

7

Carbon Dioxide Capture DOI: 10.1002/anie.200902836  

E-Print Network [OSTI]

Carbon Dioxide Capture DOI: 10.1002/anie.200902836 Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks** Hye-Sun Choi and Myunghyun Paik Suh* Carbon dioxide capture has been warming, and the development of efficient methods for capturing CO2 from industrial flue gas has become

Paik Suh, Myunghyun

8

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

9

Capturing CO2 via reactions in nanopores.  

SciTech Connect (OSTI)

This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

2008-10-01T23:59:59.000Z

10

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network [OSTI]

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

Foss, Bjarne A.

11

Synthesis, characterization and performance of single-component CO2-binding organic liquids (CO2BOL) for post combustion CO2 capture  

SciTech Connect (OSTI)

Carbon dioxide (CO2) emission to the atmosphere will increase significantly with the shift to coal powered plants for energy generation. This increase in CO2 emission will contribute to climate change. There is need to capture and sequester large amounts of CO2 emitted from these coal power plants in order to mitigate the environmental effects. Here we report the synthesis, characterization and system performance of multiple third generation CO2 binding organic liquids (CO2BOLs) as a solvent system for post combustion gas capture. Alkanolguanidines and alkanolamidines are single component CO2BOLs that reversibly bind CO2 chemically as liquid zwitterionic amidinium / guanidinium alkylcarbonates. Three different alkanolguanidines and alkanolamidines were synthesized and studied for CO2 capacity and binding energetics. Solvent performance of these three CO2BOLs was evaluated by batch-wise CO2 uptake and release over multiple cycles. Synthesis of CO2BOLs, characterization, CO2 uptake, selectivity towards CO2 as well as solvent tolerance to water will be discussed.

Koech, Phillip K.; Heldebrant, David J.; Rainbolt, James E.; Zheng, Feng; Smurthwaite, Tricia D.

2010-03-31T23:59:59.000Z

12

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

Rochelle, Gary T.

13

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

Rochelle, Gary T.

14

Advanced Post-Combustion CO2 Capture Prepared for the  

E-Print Network [OSTI]

Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

15

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous.................................................................................................................................... 8 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

16

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing...................................................................................................................................11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

17

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing.................................................................................................................................. 10 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

18

Porous Hexacyanometalates for CO2 capture applications  

SciTech Connect (OSTI)

Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

2013-07-30T23:59:59.000Z

19

Highly efficient carbon dioxide capture with a porous organic polymer impregnated with  

E-Print Network [OSTI]

Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

Paik Suh, Myunghyun

20

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. Modeling.................................................................................................................................. 11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. In Campaign.................................................................................................................................... 9 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

22

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

23

co2 capture | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean Energy Projects SolicitationscivilCO2

24

CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents  

SciTech Connect (OSTI)

IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

None

2010-10-01T23:59:59.000Z

25

Simteche Hydrate CO2 Capture Process  

SciTech Connect (OSTI)

As a result of an August 4, 2005 project review meeting held at Los Alamos National Laboratory (LANL) to assess the project's technical progress, Nexant/Simteche/LANL project team was asked to meet four targets related to the existing project efforts. The four targets were to be accomplished by the September 30, 2006. These four targets were: (1) The CO{sub 2} hydrate process needs to show, through engineering and sensitivity analysis, that it can achieve 90% CO{sub 2} capture from the treated syngas stream, operating at 1000 psia. The cost should indicate the potential of achieving the Sequestration Program's cost target of less than 10% increase in the cost of electricity (COE) of the non-CO{sub 2} removal IGCC plant or demonstrate a significant cost reduction from the Selexol process cost developed in the Phase II engineering analysis. (2) The ability to meet the 20% cost share requirement for research level efforts. (3) LANL identifies through equilibrium and bench scale testing a once-through 90% CO{sub 2} capture promoter that supports the potential to achieve the Sequestration Program's cost target. Nexant is to perform an engineering analysis case to verify any economic benefits, as needed; no ETM validation is required, however, for this promoter for FY06. (4) The CO{sub 2} hydrate once-through process is to be validated at 1000 psia with the ETM at a CO{sub 2} capture rate of 60% without H{sub 2}S. The performance of 68% rate of capture is based on a batch, equilibrium data with H{sub 2}S. Validation of the test results is required through multiple runs and engineering calculations. Operational issues will be solved that will specifically effect the validation of the technology. Nexant was given the primary responsibility for Target No.1, while Simteche was mainly responsible for Target No.2; with LANL having the responsibility of Targets No.3 and No.4.

Nexant and Los Alamos National Laboratory

2006-09-30T23:59:59.000Z

26

CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques  

E-Print Network [OSTI]

This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

Chakib Bouallou

2010-08-12T23:59:59.000Z

27

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network [OSTI]

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

28

The contribution of CO2 capture and storage  

E-Print Network [OSTI]

The contribution of CO2 capture and storage to a sustainable energy system Policy brief of Energy Models for INtegrated Technology Systems' is partially funded by the EU under the Scientific.html. The following partners are involved in Part 2 of the CASCADE MINTS project: · Energy research Centre

29

EFFICIENT THEORETICAL SCREENING OF SOLID SORBENTS FOR CO2 CAPTURE APPLICATIONS  

SciTech Connect (OSTI)

Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.

Duan, Yuhua; Sorescu, Dan C; Luebke, David

2011-01-01T23:59:59.000Z

30

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Ram Chandra Sekar  

E-Print Network [OSTI]

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar;2 #12;3 Carbon Dioxide Capture in Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2

31

Evaluating metalorganic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption  

E-Print Network [OSTI]

Evaluating metal­organic frameworks for post-combustion carbon dioxide capture via temperature.1039/c1ee01720a Broader context The development of an effective carbon dioxide capture system is critical capture via temperature swing adsorption (TSA). Low-pressure single-component CO2 and N2 adsorption

32

Optimal synthesis of a pressure swing adsorption process for CO2 capture  

SciTech Connect (OSTI)

The emission of carbon dioxide from cement industry and power plants that burn fossil fuels is the major cause for the accumulation of CO2 in the atmosphere, which causes long-range environmental problems. One option to mitigate the emission of CO2 is to capture it from the emission sources and store it to the ocean or depleted oil field or use it for enhanced oil recovery. CO2 recovery has been achieved by gas absorption employing solutions of carbonates and alkanolamines. However, this process is energy-intensive for the regeneration of solvent and also faces problems due to corrosion. Recently, the pressure swing adsorption (PSA) process has been considered as an alternative to the absorption process. PSA processes have been widely applied for the removal of CO2 from various feed mixtures, such as CO2 in the steam reformer off gas, landfill gas and natural gas. In all these commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product and enriching the strongly adsorbed CO2 is not a concern. On the other hand, for the capture of CO2 for sequestration, it is necessary to concentrate the CO2 to a high purity to reduce the compression and transportation cost. Thus, it is necessary to develop a PSA cycle by which a high-purity product for the strongly adsorbed component with a high recovery is obtained. A multitude of PSA cycles and adsorbents have been developed for producing highly pure heavy component (CO2) from feedstock with low CO2 concentration. Kikkinides et al. suggested a 4-bed 4-step process with activated carbon as the sorbent and could recover 68% of CO2 at 99.997% purity. Chue et al. compared activated carbon and zeolite 13X on a 3-bed 7-step process and concluded that the latter is better than the former for CO2 recovery. However, the CO2 recovery was low in their process due to the lack of a countercurrent step in the chosen cycle. Choi et al. reported more than 70% CO2 recovery at more than 90% purity for a modified 3-bed 7-step cycle. However, they solved a very small two variable optimization problem, thus being a specialized case. Zhang et al. have given justifications for using a specific cyclic component step in the adsorption cycle in the context of CO2 capture by using a simplistic mathematical model for the PSA process. Reynolds et al. have suggested a variety of stripping PSA cycles for CO2 recovery at high temperature using a hydrotalcite-like adsorbent. In this study, a two-bed superstructure of the PSA process has been developed to optimally synthesize an appropriate cycle for CO2 capture. The superstructure considers all the possible operating steps in a PSA cycle with two beds. An optimal control problem with a PDE-based model for PSA system has been formulated in which different steps within a cycle are realized with the help of control variables changing with time. The optimization problem has been solved for three different cases of maximizing CO2 recovery (for a given purity), maximizing feed throughput and minimizing specific power (for a given level of CO2 purity and recovery). Current results indicate the superstructure-based approach as a promising technique for deriving optimal PSA cycles. Different cases with different number of control variables indicate convergence to a particular kind of PSA cycle with over 99% purity and recovery of CO2. The results obtained from optimization problem will also be compared with the optimal PSA cycle simulated more accurately in a dynamic simulation environment.

Agarwal, A.; Biegler, L.; Zitney, S.

2008-01-01T23:59:59.000Z

33

Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study  

SciTech Connect (OSTI)

It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

2012-05-03T23:59:59.000Z

34

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

35

Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System  

SciTech Connect (OSTI)

IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

None

2010-07-01T23:59:59.000Z

36

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing  

E-Print Network [OSTI]

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd Skogestad 18.10.2011 AIChE Annual Meeting #12;2M. Panahi, S. Skogestad ' Optimal Operation of a CO2

Skogestad, Sigurd

37

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture  

SciTech Connect (OSTI)

The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

Vahdat, Nader

2013-09-30T23:59:59.000Z

38

Computational investigation of thermal gas separation for CO2 capture.  

SciTech Connect (OSTI)

This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

Gallis, Michail A.; Bryan, Charles R.; Brady, Patrick Vane; Torczynski, John Robert; Brooks, Carlton, F.

2009-09-01T23:59:59.000Z

39

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

Chapter 31 in Carbon Dioxide Capture for Storage in DeepChapter 14 in Carbon Dioxide Capture for Storage in DeepSummary. Chapter 25 in Carbon Dioxide Capture for Storage in

Apps, J.A.

2006-01-01T23:59:59.000Z

40

co2 capture meeting | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013 NETL CO2

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

trends for four types of electric power plants equipped with CO 2 capture systems: pulverized coal (PC) and natural gas

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

42

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network [OSTI]

increased electricity generation from other power plants inplants require the capture of more CO 2 per unit of electricity generation.

Sathre, Roger

2013-01-01T23:59:59.000Z

43

An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy  

E-Print Network [OSTI]

the assumption that technol- ogies available today are used to fully offset net human emissions of carbon dioxideAn idealized assessment of the economics of air capture of carbon dioxide in mitigation policy, primarily carbon dioxide (CO2). During 2007, countries have been actively engaged in negotiating future

Colorado at Boulder, University of

44

Commerical-Scale CO2 Capture and Sequestration for the Cement Industry  

SciTech Connect (OSTI)

On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

Adolfo Garza

2010-07-28T23:59:59.000Z

45

CO2 displacement mechanisms: phase equilibria effects and carbon dioxide sequestration studies.  

E-Print Network [OSTI]

??Supercritical carbon dioxide is injected into underground formations to enhance oil recovery and for subsurface sequestration to minimize the impact of CO2 emissions due to… (more)

Pasala, Sangeetha M.

2010-01-01T23:59:59.000Z

46

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

47

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-Print Network [OSTI]

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

Green, Donna

48

CO2 Capture and Utilization for Enhanced Oil Poul Jacob Vilhelmsen1  

E-Print Network [OSTI]

for Enhanced Oil Recovery (EOR). CO2 capture is to some extent a know technology but has not yet been optimised and commercialised for power plant utilisation. Correspondingly CO2 utilisation for EOR is a known method in other and utilisation of CO2. DONG E&P within DONG Energy has started work on the utilisation of CO2 for EOR

49

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

50

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

capture of CO 2 from gasifier process producing electricalPlaquemine, Louisiana. The gasifier is a proprietary designGasifier .

Apps, J.A.

2006-01-01T23:59:59.000Z

51

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network [OSTI]

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

Foss, Bjarne A.

52

A Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture  

E-Print Network [OSTI]

looping is selected as the model cycle because of its suitability for solar-driven carbon dioxide captureA Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture Lindsey Yue and Wojciech Lipi´nski, The Australian

53

Regulating carbon dioxide capture and storage  

E-Print Network [OSTI]

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

54

Failing Drop CO2 Deposition (Desublimation) Heat Exchanger for the Cryogenic Carbon Capture Process.  

E-Print Network [OSTI]

??Cryogenic carbon capture removes CO2 and other pollutants from flue and waste stream gases produced from the combustion of fossil fuels such as coal, natural… (more)

James, David William

2011-01-01T23:59:59.000Z

55

Techno-economic modelling of CO2 capture systems for Australian industrial sources.  

E-Print Network [OSTI]

??Australia is recognising that carbon capture and storage (CCS) may be a feasible pathway for addressing increasing levels of CO2 emissions. This thesis presents a… (more)

Ho, Minh Trang Thi

2007-01-01T23:59:59.000Z

56

Novel Processes for Power Plant with CO2 Capture.  

E-Print Network [OSTI]

?? The purpose of this thesis was to examine different technologies, which enhances the CO2 partial pressure in the flue gas from the natural gas… (more)

Ekre, Kjetil Vinjerui

2012-01-01T23:59:59.000Z

57

Comparison of solvents for post-combustion capture of CO2 by chemical absorption  

E-Print Network [OSTI]

Post combustion absorption technologies represent one of the most commercially ready technologies for CO2 capture. Solvent selection is the critical consideration in post-combustion absorption capture technology. In order ...

Kothandaraman, Anusha

58

An Introduction to CO2 Separation and Capture Technologies Howard Herzog  

E-Print Network [OSTI]

recovery (EOR) operations where CO2 is injected into oil reservoirs to increase the mobility of the oil andAn Introduction to CO2 Separation and Capture Technologies Howard Herzog MIT Energy Laboratory August, 1999 In general, to economically sequester CO2 produced from power plants, one must first produce

59

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network [OSTI]

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

60

European and Global Perspectives for CO2 Capture and Storage  

E-Print Network [OSTI]

plants. Therefore, it is recommended to employ mixes of the different CO2 emission reduction options are compared in order to address the question how to achieve significant CO2 emission reductions through2 emission reductions through the application of CCS technologies. The analysis shows that CCS can

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CO2 Capture and Storage Project, Education and Training Center...  

Energy Savers [EERE]

Industrial Carbon Capture and Storage (ICCS) Project is one of the nation's largest carbon capture and storage endeavors. Part of the project includes the National...

62

Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate , Gary T. Rochelle1  

E-Print Network [OSTI]

GHGT-8 1 Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate Eric Chen1 , Gary pilot for CO2 capture was successfully operated using potassium carbonate promoted with piperazine, potassium carbonate, piperazine Introduction Several amine-promoted potassium carbonate solvents have been

Rochelle, Gary T.

63

A techno-economic plant- and grid-level assessment of flexible CO2 capture.  

E-Print Network [OSTI]

??Carbon dioxide (CO?) capture and sequestration (CCS) at fossil-fueled power plants is a critical technology for CO? emissions mitigation during the transition to a sustainable… (more)

Cohen, Stuart Michael, 1984-

2012-01-01T23:59:59.000Z

64

Chemical Looping Combustion for inherent CO2 capture in a  

E-Print Network [OSTI]

HRSG Stack Steam TurbineFuel Compr. Air Flue gas H2O CO2 to compression Depleted air HP Steam not possible with Ni/NiO 6 CLC in a combined cycle power plant Fuel Reactor Air Reactor Gas Turbine Gas Turbine) ­ adiabatic, 20 bar Stoichiometric MeO Air-fuel ratio Stoichiometric ­ 3*Stoicihometric Gas turbine

65

LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE  

SciTech Connect (OSTI)

This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

2014-09-30T23:59:59.000Z

66

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network [OSTI]

and liability for carbon capture and sequestration, Environ.Wilson and Gerard, editors, Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, ISBN

Oldenburg, C.

2010-01-01T23:59:59.000Z

67

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama:5812144°Grangemouth Advanced CO2

68

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

69

Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change  

SciTech Connect (OSTI)

IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

None

2010-07-01T23:59:59.000Z

70

Ris Energy Report 6 CO2 capture and storage 2 6.1 What is CO2 capture and storage?  

E-Print Network [OSTI]

be burned in an engine or fuel cell, and a CO2 stream for storage (see chapters 7.3 and 7.6 for further2 Gas, oil Air O2 H2 Raw material Gas, ammonia, steel Air/O2 Steam Figure 15: the three main

71

Improvements of Calcium Oxide Based Sorbents for multiple CO2 Capture Laetitia Vieille*, Alexandre Govin, Philippe Grosseau  

E-Print Network [OSTI]

commercial technology to capture CO2 is amine-based absorption, but its application is limited to small scale to the formation of CaCO3 as follows: CaO + CO2 CaCO3 (1) During the carbonation cycle, CO2 uptake increasesImprovements of Calcium Oxide Based Sorbents for multiple CO2 Capture cycles Laetitia Vieille

Boyer, Edmond

72

A Plant-Level Simulation Model for Evaluating CO2 Capture Options  

E-Print Network [OSTI]

- Resource use Environmental Emissions - Air, water, land Plant & Process Costs - Capital - O&M - COE #12;E · Subcritical · Supercritical · Ultra-supercritical Furnace Firing Types · Tangential · Wall · Cyclone Furnace: - Water gas shift + CO2 capture (pre-combustion) · CO2 Transport Options Pipelines (six U.S. regions

73

CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES  

E-Print Network [OSTI]

. The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

Foss, Bjarne A.

74

Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants  

SciTech Connect (OSTI)

IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

None

2010-07-01T23:59:59.000Z

75

Research Projects to Convert Captured CO2 Emissions to Useful Products  

Broader source: Energy.gov [DOE]

Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy.

76

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Broader source: Energy.gov [DOE]

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

77

Abstract--Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused by an increase  

E-Print Network [OSTI]

design alternatives provides reduction of CO2 emission levels such that the CO2 emissions for 2050 meet Abstract-- Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused regulations at airports through reduction of CO2 for all components of flight operations. The purpose

78

COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Brinkman, K.; Gray, J.

2012-03-30T23:59:59.000Z

79

NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE  

SciTech Connect (OSTI)

A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

Sherman, S

2008-09-22T23:59:59.000Z

80

Subsurface capture of carbon dioxide  

DOE Patents [OSTI]

A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Computational Evaluation of Metal-Organic Frameworks for CO2 Capture  

E-Print Network [OSTI]

capture from flue gas streams in post-combustion plants. Although numerous efforts have been exerted on the investigation of MOFs for CO2 capture, the exploration of the effects from coexisting components present in very dilute proportions in flue gases...

Yu, Jiamei

2013-03-20T23:59:59.000Z

82

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

Gary T. Rochelle; A. Frank Seibert

2002-10-01T23:59:59.000Z

83

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. The welding work has initiated and will be completed for a revised startup of the pilot plant in February 2004.

Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hillard; Babatunde Oyenekan

2003-10-31T23:59:59.000Z

84

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

2003-01-01T23:59:59.000Z

85

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

2003-07-28T23:59:59.000Z

86

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been developed with a stand-alone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Parameters have been developed for use of the electrolyte NRTL model in AspenPlus. Analytical methods have been developed using gas chromatography and ion chromatography. The heat exchangers for the pilot plant have been ordered.

Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Terraun Jones

2003-04-01T23:59:59.000Z

87

co2 capture meeting | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt

88

co2-capture-igcc-sri | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013 NETL

89

Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy  

SciTech Connect (OSTI)

For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.

UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

2010-09-30T23:59:59.000Z

90

Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success  

SciTech Connect (OSTI)

This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

2007-06-28T23:59:59.000Z

91

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

2005-04-29T23:59:59.000Z

92

CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

2004-07-29T23:59:59.000Z

93

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

2006-09-30T23:59:59.000Z

94

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

2006-07-28T23:59:59.000Z

95

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

2005-01-26T23:59:59.000Z

96

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

2006-04-28T23:59:59.000Z

97

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

2005-10-26T23:59:59.000Z

98

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report  

SciTech Connect (OSTI)

This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

Sun, Xiaolei; Rink, Nancy T

2011-04-29T23:59:59.000Z

99

CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

Dr. Helen Kerr

2003-08-01T23:59:59.000Z

100

Biomimetic Membrane for CO2 Capture from Flue Gas  

SciTech Connect (OSTI)

These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

Michael C. Trachtenberg

2007-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CO2 Capture by Absorption with Potassium Carbonate  

SciTech Connect (OSTI)

The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best K{sup +}/PZ solvent, 4.5 m K{sup +}/4.5 m PZ, requires equivalent work of 31.8 kJ/mole CO{sub 2} when used with a double matrix stripper and an intercooled absorber. The oxidative degradation of piperazine or organic acids is reduced significantly by inhibitor A, but the production of ethylenediamine is unaffected. The oxidative degradation of piperazine in 7 m MEA/2 m PZ is catalyzed by Cu{sup ++}. The thermal degradation of MEA becomes significant at 120 C. The solubility of potassium sulfate in MEA/PZ solvents is increased at greater CO{sub 2} loading. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1.2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalate

Gary T. Rochelle; Andrew Sexton; Jason Davis; Marcus Hilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

2007-03-31T23:59:59.000Z

102

Designed amyloid fibers as materials for selective carbon dioxide capture  

E-Print Network [OSTI]

Designed amyloid fibers as materials for selective carbon dioxide capture Dan Lia,b,c,1 , Hiroyasu demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide

103

Plant-wide dynamic simulation of an IGCC plant with CO2 capture  

SciTech Connect (OSTI)

To eliminate the harmful effects of greenhouse gases, especially that of CO2, future coalfired power plants need to consider the option for CO2 capture. The loss in efficiency for CO2 capture is less in an Integrated Gasification Combined Cycle (IGCC) plant compared to other conventional coal combustion processes. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. With this objective in mind, a detailed plant-wide dynamic simulation of an IGCC plant with CO2 capture has been developed. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of about 96 mol% of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. The clean syngas is sent to a gas turbine (GT) followed by a heat recovery steam generator (HRSG). The steady state results are validated with data from a commercial gasifier. A 5 % ramp increase in the flowrate of coal is introduced to study the system dynamics. To control the conversion of CO at a desired level in the WGS reactors, the steam/CO ratio is manipulated. This strategy is found to be efficient for this operating condition. In the absence of an efficient control strategy in the AGR process, the environmental emissions exceeded the limits by a great extent.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2009-01-01T23:59:59.000Z

104

CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;  

E-Print Network [OSTI]

carbon dioxide (CO2) sequestration process is to ensure a sustained confinement of the injected CO2CO2 Sequestration Modeling Using Pattern Recognition and Data Mining; Case Study of SACROC field, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

Mohaghegh, Shahab

105

Carbon Dioxide Capture DOI: 10.1002/anie.201000431  

E-Print Network [OSTI]

, with annual global emissions of CO2 having escalated by approximately 80% between 1970 and 2004 of amine absorbers ("scrubbers") and cryogenic coolers.[6] The IPCC estimates that CO2 emissions plants is one option for reducing anthropogenic CO2 emissions; however, currently the capture alone

106

Capture and Sequestration of CO2 at the Boise White Paper Mill  

SciTech Connect (OSTI)

This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

2010-06-16T23:59:59.000Z

107

Capture of carbon dioxide by hybrid sorption  

DOE Patents [OSTI]

A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

Srinivasachar, Srivats

2014-09-23T23:59:59.000Z

108

Capture of Carbon Dioxide Archived Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture of Carbon Dioxide Archived

109

Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine  

E-Print Network [OSTI]

i Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Topical Report Prepared Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Ross Edward Dugas, M capture using monoethanolamine (MEA). MEA is an appropriate choice for a baseline study since

Rochelle, Gary T.

110

Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study  

E-Print Network [OSTI]

1 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Students #12;2 #12;3 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha with electricity generation accounting for 40% of the total1 . Carbon capture and sequestration (CCS) is one

111

Layered solid sorbents for carbon dioxide capture  

SciTech Connect (OSTI)

A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

2014-11-18T23:59:59.000Z

112

Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture  

SciTech Connect (OSTI)

This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (? 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ? 1,000 membrane intrinsic CO2 permeance, ? 90% CO2 removal in one stage, ? 2 psi gas side pressure drop, and ? 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.

Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

2013-12-31T23:59:59.000Z

113

CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis  

E-Print Network [OSTI]

of additives in the CaO matrix and the relatively high surface area materials obtained via USP explain are currently under investigation for CO2 capture, both for post- combustion (e.g., silica supported amines,2 of metal oxides, even on an industrial scale.18,19 We report here the rst use of ultrasonic spray pyrolysis

Suslick, Kenneth S.

114

Carbon Dioxide Capture and Storage Demonstration in Developing...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

115

Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage  

E-Print Network [OSTI]

This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

Otto, Vincent M.

116

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

117

CO2 Capture Using Electrical Energy: Electrochemically Mediated Separation for Carbon Capture and Mitigation  

SciTech Connect (OSTI)

IMPACCT Project: MIT and Siemens Corporation are developing a process to separate CO2 from the exhaust of coal-fired power plants by using electrical energy to chemically activate and deactivate sorbents, or materials that absorb gases. The team found that certain sorbents bond to CO2 when they are activated by electrical energy and then transported through a specialized separator that deactivates the molecule and releases it for storage. This method directly uses the electricity from the power plant, which is a more efficient but more expensive form of energy than heat, though the ease and simplicity of integrating it into existing coal-fired power plants reduces the overall cost of the technology. This process could cost as low as $31 per ton of CO2 stored.

None

2010-07-16T23:59:59.000Z

118

CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

None

2010-01-01T23:59:59.000Z

119

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network [OSTI]

carbon dioxide in enhanced oil recovery, Energy Conversionin the U.S. for enhanced oil recovery for approximately 35gained from CO 2 -enhanced oil recovery has provided a solid

Oldenburg, C.

2010-01-01T23:59:59.000Z

120

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

SciTech Connect (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon Dioxide Capture and Transportation Options in the Illinois Basin  

SciTech Connect (OSTI)

This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

M. Rostam-Abadi; S. S. Chen; Y. Lu

2004-09-30T23:59:59.000Z

122

A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology  

SciTech Connect (OSTI)

FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ? 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

2013-06-03T23:59:59.000Z

123

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect (OSTI)

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

124

Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor  

SciTech Connect (OSTI)

This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 ?m to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.

Lin, Jerry

2014-09-30T23:59:59.000Z

125

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Broader source: Energy.gov [DOE]

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

126

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect (OSTI)

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

127

Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants  

SciTech Connect (OSTI)

The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

2009-12-31T23:59:59.000Z

128

Accelerating progress toward operational excellence of fossil energy plants with CO2 capture  

SciTech Connect (OSTI)

To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

2012-01-01T23:59:59.000Z

129

Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system  

SciTech Connect (OSTI)

A coordination effect was employed to realize equimolar CO2 absorption, adopting easily synthesized amino group containing absorbents (alkali metal onium salts). The essence of our strategy was to increase the steric hindrance of cations so as to enhance a carbamic acid pathway for CO2 capture. Our easily synthesized alkali metal amino acid salts or phenolates were coordinated with crown ethers, in which highly sterically hindered cations were obtained through a strong coordination effect of crown ethers with alkali metal cations. For example, a CO2 capacity of 0.99 was attained by potassium prolinate/18-crown-6, being characterized by NMR, FT-IR, and quantum chemistry calculations to go through a carbamic acid formation pathway. The captured CO2 can be stripped under very mild conditions (50 degrees C, N-2). Thus, this protocol offers an alternative for the development of technological innovation towards efficient and low energy processes for carbon capture and sequestration.

Yang, Zhen-Zhen [Nankai University China] [Nankai University China; Jiang, Deen [ORNL] [ORNL; Zhu, Xiang [ORNL] [ORNL; Tian, Chengcheng [ORNL] [ORNL; Brown, Suree [ORNL] [ORNL; Do-Thanh, Chi-Linh [The University of Tennessee] [The University of Tennessee; He, Liang-Nian [Nankai University China] [Nankai University China; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

130

Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers  

SciTech Connect (OSTI)

Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

Peters, Catherine A

2013-02-28T23:59:59.000Z

131

EFRC Carbon Capture and Sequestration Activities at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

132

Carbon dioxide capture process with regenerable sorbents  

DOE Patents [OSTI]

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

133

Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies  

E-Print Network [OSTI]

of sedimentary basins. 1. Introduction #12;In recent years emissions of carbon dioxide from the UK electricity of these measures for deployment in 2020 depends entirely on final UK carbon emission targets and the abilityScope for Future CO2 Emission Reductions from Electricity Generation through the Deployment

Haszeldine, Stuart

134

New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.  

SciTech Connect (OSTI)

Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

135

Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture  

SciTech Connect (OSTI)

GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

Farnum, Rachel; Perry, Robert; Wood, Benjamin

2014-12-31T23:59:59.000Z

136

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

2006-09-30T23:59:59.000Z

137

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network [OSTI]

as enhanced oil recovery (EOR), serving to sequester CO 2allocation methods for EOR LCA, finding that the allocation

Sathre, Roger

2013-01-01T23:59:59.000Z

138

In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide  

SciTech Connect (OSTI)

The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

2012-04-25T23:59:59.000Z

139

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network [OSTI]

Aaron DS, Williams KA. Is carbon capture and storage reallyal. Comparison of carbon capture and storage with renewablefuel power plants with carbon capture and storage. Energy

Sathre, Roger

2013-01-01T23:59:59.000Z

140

Load-following control of an IGCC plant with CO2 capture  

SciTech Connect (OSTI)

In this paper, a decentralized control strategy is considered for load-following control of an integrated gasification combined cycle (IGCC) plant with CO2 capture without flaring the syngas. The control strategy considered is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the power load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. However, the syngas pressure control is an integrating process with significant timedelay. In this work, a modified proportional-integral-derivative (PID) control is considered for syngas pressure control given that conventional PID controllers show poor control performance for integrating processes with large time delays. The conventional PID control is augmented with an internal feedback loop. The P-controller used in this internal loop converts the integrating process to an open-loop stable process. The resulting secondorder plus time delay model uses a PID controller where the tuning parameters are found by minimizing the integral time-weighted absolute error (ITAE) for disturbance rejection. A plant model with single integrator and time delay is identified by a P-control method. When a ramp change is introduced in the set-point of the load controller, the performance of both the load and pressure controllers with the modified PID control strategy is found to be superior to that using a traditional PID controller. Key

Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Regulating Carbon Dioxide Capture and Storage 07-003 April 2007  

E-Print Network [OSTI]

Regulating Carbon Dioxide Capture and Storage by 07-003 April 2007 M.A. de Figueiredo, H.J. Herzog, P.L. Joskow, K.A. Oye, and D.M. Reiner #12;#12;Regulating Carbon Dioxide Capture and Storage M.A. de to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal

142

Capture of green-house carbon dioxide in Portland cement  

SciTech Connect (OSTI)

A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

1993-12-31T23:59:59.000Z

143

Can Radiative Forcing Be Limited to 2.6 Wm?2 Without Negative Emissions From Bioenergy AND CO2 Capture and Storage?  

SciTech Connect (OSTI)

Combining bioenergy and carbon dioxide (CO2) capture and storage (CCS) technologies (BECCS) has the potential to remove CO2 from the atmosphere while producing useful energy. BECCS has played a central role in scenarios that reduce climate forcing to low levels such as 2.6Wm-2. In this paper we consider whether BECCS is essential to limiting radiative forcing (RF) to 2.6Wm-2 by 2100 using the Global Change Assessment Model, a closely coupled model of biogeophysical and human Earth systems. We show that BECCS can potentially reduce the cost of limiting RF to 2.6Wm-2 by 2100 but that a variety of technology combinations that do not include BECCS can also achieve this goal, under appropriate emissions mitigation policies. We note that with appropriate supporting land-use policies terrestrial sequestration could deliver carbon storage ranging from 200 to 700 PgCO2-equiavalent over the 21st century. We explore substantial delays in participation by some geopolitical regions. We find that the value of BECCS is substantially higher under delay and that delay results in higher transient RF and climate change. However, when major regions postponed mitigation indefinitely, it was impossible to return RF to 2.6Wm-2 by 2100. Neither finite land resources nor finite potential geologic storage capacity represented a meaningful technical limit on the ability of BECCS to contribute to emissions mitigation in the numerical experiments reported in this paper.

Edmonds, James A.; Luckow, Patrick W.; Calvin, Katherine V.; Wise, Marshall A.; Dooley, James J.; Kyle, G. Page; Kim, Son H.; Patel, Pralit L.; Clarke, Leon E.

2013-05-01T23:59:59.000Z

144

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network [OSTI]

reservoirs, un-mineable coal seams, and possibly organic-2 , and in un-mineable coal seams is at least 3 GtCO 2 [25].

Sathre, Roger

2013-01-01T23:59:59.000Z

145

Design, Synthesis and Evaluation of Liquid-like Nanoparticle Organic Hybrid Materials for Carbon Dioxide Capture.  

E-Print Network [OSTI]

??Given the rapid increase in atmospheric concentration of CO2, the development of efficient CO2 capture technologies is critical for the future of carbon-based energy. Currently,… (more)

Lin, Kun-Yi

2012-01-01T23:59:59.000Z

146

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

2005-07-01T23:59:59.000Z

147

CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

Helen Kerr; Linda M. Curran

2005-04-15T23:59:59.000Z

148

CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

Helen Kerr

2004-04-01T23:59:59.000Z

149

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network [OSTI]

of CO 2 in an enhanced oil recovery system. Environ Scia process known as enhanced oil recovery (EOR), serving tois in support of enhanced oil recovery efforts [43]. To

Sathre, Roger

2013-01-01T23:59:59.000Z

150

Enhanced carbon dioxide capture upon incorporation of -dimethylethylenediamine in the metalorganic framework CuBTTri  

E-Print Network [OSTI]

. Introduction The separation of carbon dioxide from nitrogen at low pressures, applicable to postEnhanced carbon dioxide capture upon incorporation of N,N0 -dimethylethylenediamine in the metal-combustion carbon dioxide capture will be judged. The incorporation of N,N0 -dimethylethylenediamine (mmen) into H3

151

ECONOMIC MODELING OF CO2 CAPTURE AND SEQUESTRATION Sean Biggs, Howard Herzog, John Reilly, Henry Jacoby  

E-Print Network [OSTI]

of carbon capture and sequestration technologies using the MIT Emissions Prediction and Policy Analysis (EPPA) model. We model two of the most promising carbon capture and sequestration technologies, one, technological, and social issues of carbon capture and sequestration technologies. In 1997, the President

152

THE ECONOMICS OF CO2 SEPARATION AND CAPTURE Howard J. Herzog  

E-Print Network [OSTI]

of which will be explored later in this paper. The process of producing this high purity, high pressure CO2 into oil reservoirs to increase the mobility of the oil and, therefore, the productivity of the reservoir for reducing greenhouse gas emissions that can complement the current strategies of improving energy efficiency

153

PRODUCTION OF HYDROGEN AND ELECTRICITY FROM COAL WITH CO2 CAPTURE  

E-Print Network [OSTI]

gasification, quench cooled and shifted to (pri- marily) H2 and CO2 via sulfur-tolerant water-gas shift (WGS with sulfur-bearing waste gases, H2S and SO2. I. INTRODUCTION Carbon-free energy carriers, H2 and electricity relative abundance, high carbon intensity, and low cost. Coal-to-H2 plants based on gasification have been

154

DOI: 10.1002/cssc.201402474 Monitoring Solid Oxide CO2 Capture Sorbents in Action  

E-Print Network [OSTI]

originally developed by Air Products and Chemicals, Inc. to produce fuel-cell-grade hydro- gen by steam between the gas and already chemisorbed CO2 molecules. These sorbents have been donated by Air Products by selectively removing a reaction product from the gas phase and increasing the conversion and rate

Gilchrist, James F.

155

Carbon dioxide capture from coal-fired power plants : a real potions analysis  

E-Print Network [OSTI]

Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

Sekar, Ram Chandra

2005-01-01T23:59:59.000Z

156

Rapid setting of portland cement by greenhouse carbon dioxide capture  

SciTech Connect (OSTI)

Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

Wagh, A.S.; Singh, D.; Knox, L.J.

1994-04-01T23:59:59.000Z

157

CMTC CMTC-151075-PP Dynamic Response of Monoethanolamine (MEA) CO2 Capture Units  

E-Print Network [OSTI]

the dynamic characteristics of the capture plant for load following by simulating various ramp rates of flue to understand the dynamic response of coal-plants with CCS. A variety of engineering studies have been published model of an MEA capture plant was developed using Aspen Dynamics®. The model is used to determine

158

Economically Efficient Operation of CO2 Capturing Process Part I: Self-optimizing Procedure for Selecting the Best Controlled Variables  

E-Print Network [OSTI]

the greenhouse gas CO2 that causes global warming. Due to the effect of CO2 emissions on global warming

Skogestad, Sigurd

159

An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel  

SciTech Connect (OSTI)

The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, literature review has been completed. The project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests are in operation phase. The experimental installations are discussed in this paper.

Z. Wang; K. B. Bota

2005-03-15T23:59:59.000Z

160

An Intergrated Hydrogen Production-CO2 Capture Process from Fossil Fuel  

SciTech Connect (OSTI)

The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, the project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests have been performed. Field tests of char/fertilizer have been conducted.

Z. Wang; K. B. Bota

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations  – a novel approach for expanding geothermal energy utilization.  

E-Print Network [OSTI]

??This thesis research presents a new method to harness geothermal energy by combining it with geologic carbon dioxide (CO2) sequestration. CO2 is injected into deep,… (more)

Randolph, Jimmy Bryan

2011-01-01T23:59:59.000Z

162

Highly efficient separation of carbon dioxide by a metal-organic framework replete with  

E-Print Network [OSTI]

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 from

Yaghi, Omar M.

163

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture  

SciTech Connect (OSTI)

We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

Eckert, Charles; Liotta, Charles

2011-09-30T23:59:59.000Z

164

An Integrated Hydrogen Producton-CO2 Capture Process from Fossil Fuel  

SciTech Connect (OSTI)

The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, literature review has been completed. The project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests have been performed. Field tests of char/fertilizer have been conducted. The experimental results are discussed in this paper.

Z. Wang; K.B. Bota; D. Day

2005-12-01T23:59:59.000Z

165

CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field  

E-Print Network [OSTI]

Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

Lu, Ping

2012-08-31T23:59:59.000Z

166

EQUILIBRIUM DATA OF CO2-BASED SEMI-CLATHRATES FROM QUATERNARY AMMONIUM SOLUTIONS  

E-Print Network [OSTI]

of Carbone dioxide by gas hydrate formation is a new process for separating CO2 from flue gases Mines de SAINT- ETIENNE, FRANCE ABSTRACT CO2 mitigation represents a major industrial and scientific, especially for the industries in which the gases to be treated are well localized. CO2 capture by using

Paris-Sud XI, Université de

167

Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture  

E-Print Network [OSTI]

anthro- pogenic sources.1 Carbon capture and sequestration (CCS) has been proposed as a means of limitingEvaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture Tae the impact of rising concentrations of atmo- spheric carbon dioxide on climate change continue to mount

168

Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications  

SciTech Connect (OSTI)

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

2012-05-02T23:59:59.000Z

169

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

170

Economic Assessment of CO2 Capture and Disposal Richard S. Eckaus, Henry D. Jacoby, A. Denny Ellerman, Wing-Chi Leung and Zili Yang  

E-Print Network [OSTI]

electric generation into three categories: conventional plants, non-carbon "backstop" technologies of capture technology is large-scale electric power generation, and with a set of simulation experiments we, and fossil-fired generation with CO2 capture and disposal. Today, the largest fraction of electricity supply

171

EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL May 4 7, 2009 Detection of CO2 Seepage from Geological  

E-Print Network [OSTI]

EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Detection of CO2 Seepage from Geological Sequestration Sites Using an Array of Downhole Pressure Gauges Jalal Jalali and Shahab D. Mohaghegh, West Virginia University #12;EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE

Mohaghegh, Shahab

172

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

SciTech Connect (OSTI)

This presentation begins with a description of U.S. Energy Challenges, particularly Power Generation Capacity and Clean Energy Plant Operations. It goes on to describe the missions and goals of the Advanced Virtual Energy Simulation Training And Research (AVESTARTM). It moves on to the subject of Integrated Gasification Combined Cycle (IGCC) with CO{sub 2} Capture, particularly a Process/Project Overview, Dynamic Simulator/Operator Training System (OTS), 3D Virtual Immersive Training System (ITS), Facilities, Training, Education, and R&D, and Future Simulators/Directions

Provost, G,

2012-01-01T23:59:59.000Z

173

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

SciTech Connect (OSTI)

This slideshow presentation begins by outlining US energy challenges, particularly with respect to power generation capacity and clean energy plant operations. It goes on to describe the Advanced Virtual Energy Simulation Training And Research (AVESTAR{sup TM}). Its mission and goals are given, followed by an overview of integrated gasification combined cycle (IGCC) with CO{sub 2} capture. The Dynamic Simulator/Operator Training System (OTS) and 3D Virtual Immersive Training System (ITS) are then presented. Facilities, training, education, and R&D are covered, followed by future simulators and directions.

Provost, G,

2012-01-01T23:59:59.000Z

174

solvents-co2-capture-pitt | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication of A Heat-IntegratedSolvents

175

The production of pure hydrogen with simultaneous capture of carbon dioxide  

E-Print Network [OSTI]

The need to stabilise or even reduce the production of anthropogenic CO2 makes the capture of CO2 during energy generation from carbonaceous fuels, e.g. coal or biomass, necessary for the future. For hydrogen, an environmentally-benign energy vector...

Bohn, Christopher

2010-10-12T23:59:59.000Z

176

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic  

E-Print Network [OSTI]

of the global climate change. These emissions are projected to continue to increase in the future due CO2 capture technologies using amine solvent are energy intensive, expensive, and environmentally-based infrastructure to cleaner alternatives or renewable energy would be ideal to curb the CO2 emission, such a change

Kamat, Vineet R.

177

Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration  

SciTech Connect (OSTI)

The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

2007-03-31T23:59:59.000Z

178

Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants  

SciTech Connect (OSTI)

The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.

Robert Finley

2006-09-30T23:59:59.000Z

179

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect (OSTI)

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

180

Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture  

SciTech Connect (OSTI)

IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

None

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

182

Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage  

E-Print Network [OSTI]

carbon dioxide (CO 2 ) from fossil fuels, and hence mitigate climate change, include energy savings, development of renewable biofuels, and carbon capture and storage (

Jansson, Christer G

2010-01-01T23:59:59.000Z

183

ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION  

SciTech Connect (OSTI)

This annual technical progress report summarizes the work accomplished during the second year of the program, January-December 2003, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes and confirmation of process economics, significant future progress is expected. Concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been investigated. OTM reactor combustion testing was delayed to insufficient reliability of the earlier OTM materials. Substantial improvements to reliability have been identified and testing will recommence early in 2004. Promising OTM material compositions and OTM architectures have been identified that improve the reliability of the ceramic elements. Economic evaluation continued. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton CO{sub 2}.

John Sirman; Leonard Switzer; Bart van Hassel

2004-06-01T23:59:59.000Z

184

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergyEnergyOpenStorage

185

Physical and chemical effects of CO2 storage in saline aquifers of the southern North Sea   

E-Print Network [OSTI]

One of the most promising mitigation strategies for greenhouse gas accumulation in the atmosphere is carbon capture and storage (CCS). Deep saline aquifers are seen as the most efficient carbon dioxide (CO2) storage sites, ...

Heinemann, Niklas

2013-07-01T23:59:59.000Z

186

A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission  

SciTech Connect (OSTI)

The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

Fang, Zhigang Zak [University of Utah] [University of Utah

2013-11-05T23:59:59.000Z

187

Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture Pre-Combustion Post-Combustion CO2 Compression Systems Analysis Regulatory Drivers Program Plan Capture Handbook Carbon capture involves the separation of CO2 from...

188

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

189

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect (OSTI)

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

190

MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture  

E-Print Network [OSTI]

MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000­000 Control Design for a Gas capture The semi-closed oxy-fuel gas turbine cycle has been suggested in (Ulizar and Pilidis, 1997 in Section 2), is based on concept (c) above. The exhaust gas from a gas turbine with CO2 as working fluid

Foss, Bjarne A.

191

CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems  

SciTech Connect (OSTI)

PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present

Heldebrant, David J

2014-08-31T23:59:59.000Z

192

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network [OSTI]

coal-fired power plants will require multiple injection wells Pipeline as liquid CO 2 , injection through wells Liquid or supercritical

Oldenburg, C.

2010-01-01T23:59:59.000Z

193

Ab Initio Thermodynamic Study of the CO2 Capture Properties of Potassium Carbonate Sesquihydrate, K2CO3·1.5H2O  

SciTech Connect (OSTI)

By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with dehydrated potassium carbonates through K2CO3·1.5H2O + CO2 = 2KHCO3 + 0.5H2O(g) are analyzed. The energy change and the chemical potential of this reaction have been calculated and used to evaluate its thermodynamic properties and phase transitions. The results indicate that the K2CO3·1.5H2O can only be applied for postcombustion CO2 capture technology at temperatures lower than its phase transition temperature, which depends on the CO2 pressure and the steam pressure with the best range being PH2O ? 1.0 bar. Above the phase transition temperature, the sorbent will be regenerated into anhydrous K2CO3. If the steam pressure PH2O is much greater than 1.0 bar, it is possible to use the K2CO3·1.5H2O sorbent for precombustion CO2 capture technology. Compared to anhydrous K2CO3, K2CO3·1.5H2O requires less energy for regeneration.

Duan, Yuhua; Luebkes,David R.; Pennline, Henry W; Li, Bingyun Li; Janik, Michael J.; Halley, Woods

2012-01-01T23:59:59.000Z

194

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water  

E-Print Network [OSTI]

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

Yaghi, Omar M.

195

Author's personal copy CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)  

E-Print Network [OSTI]

improvements will lead to global energy savings [1]. Additionally, carbon capture and storage is an exciting possibility for preventing the release of anthropogenic carbon dioxide into the atmosphere and hinges on gas be a step in one method for reducing carbon dioxide emissions from power plants. In pre- combustion CO2 cap

196

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect (OSTI)

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

197

High-Performance Sorbents for Carbon Dioxide Capture from Air  

SciTech Connect (OSTI)

This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

Sholl, David; Jones, Christopher

2013-03-13T23:59:59.000Z

198

Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture  

SciTech Connect (OSTI)

A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The modifications of the existing bench scale reactor were completed in order to use it in the next phase of the project. In Phase II, the optimum looping medium was selected, and bench scale demonstrations were completed using them. Different types of coal char such as those obtained from bituminous, subbituminous, and lignite were tested. Modifications were made on the existing sub-pilot scale unit for coal injection. Phase III focused on integrated CDCL demonstration in the sub-pilot scale unit. A comprehensive ASPEN® simulations and economic analysis was completed by CONSOL t is expected that the CDCL process will be ready for further demonstrations in a scale up unit upon completion of the proposed project.

Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

2013-09-30T23:59:59.000Z

199

Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications  

DOE Patents [OSTI]

A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

Gay, McMahan; Choi, Sunho; Jones, Christopher W

2014-09-16T23:59:59.000Z

200

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

2006-03-31T23:59:59.000Z

202

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial

203

New Adsorption Cycles for Carbon Dioxide Capture and Concentration  

SciTech Connect (OSTI)

The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been tested successfully against several cycle schedules taken from the literature, including a 2-bed 4-step Skarstrom cycle, a 4-bed 9-step process with 2 equalization steps, a 9-bed 11-step process with 3 equalization steps, and a 6-bed 13-step process with 4 equalization steps and 4 idle steps. With respect to CO{sub 2} capture and concentration by PSA, this new approach is now providing a very straightforward way to determine all the viable 3-bed, 4-bed, 5-bed, n-bed, etc. HR PSA cycle schedules to explore using both simulation and experimentation. This program also touted the use of K-promoted HTlc as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. This program not only showed how to use this material in HR PSA cycles, but it also proposed a new CO{sub 2} interaction mechanism in conjunction with a non-equilibrium kinetic model that adequately describes the uptake and release of CO{sub 2} in this material, and some preliminary fixed bed adsorption breakthrough and desorption elution experiments were carried out to demonstrate complete reversibility on a larger scale. This information was essentially missing from the literature and deemed invaluable toward promoting the use of K-promoted HTlc as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. Overall, the objectives of this project were met. It showed the feasibility of using K-promoted hydrotalcite (HTlc) as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. It discovered some novel HR PSA cycles that might be useful for this purpose. Finally, it revealed a mechanistic understanding of the interaction of CO{sub 2} with K-promoted HTlc.

James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

2008-07-31T23:59:59.000Z

204

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

2006-01-01T23:59:59.000Z

205

A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities  

E-Print Network [OSTI]

A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities by Nisheeth by _________________________________________________________________ Howard Herzog Principal Research Engineer, Lab for Energy & Environment, MIT Thesis Supervisor Accepted. I appreciate the financial support of the U.S. Department of Energy's National Energy Technology

206

Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog  

E-Print Network [OSTI]

. At present, fossil fuels are the dominant source of global primary energy supply, and they will likely remain Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS so for the rest of the century. Fossil fuels supply over 85% of all primary commercial energy

207

Summary Human activities are increasing the concentra-tions of atmospheric carbon dioxide ([CO2]) and tropospheric  

E-Print Network [OSTI]

to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) com- pounds, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased lit- ter biomass] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly

208

Carbon dioxide capture from a cement manufacturing process  

DOE Patents [OSTI]

A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

2011-07-12T23:59:59.000Z

209

Amine enriched solid sorbents for carbon dioxide capture  

DOE Patents [OSTI]

A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Soong, Yee (Monroeville, PA); Champagne, Kenneth J. (Fredericktown, PA)

2003-04-15T23:59:59.000Z

210

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

2001-10-01T23:59:59.000Z

211

N-nitrosamine and N-nitramine Formation from NOx Reactions with Amines during Amine-Based CO2  

E-Print Network [OSTI]

Capture for Post-combustion Carbon Sequestration Background! Generation of electricity and heat from power- combustion carbon sequestration, the capture and underground storage of CO2 from the exhaust gases of power formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon

Mitch, William A.

212

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network [OSTI]

Energy's Regional Carbon Sequestration Partnerships program:U.S. Department of Energy, Carbon Sequestration Atlas of theand liability for carbon capture and sequestration, Environ.

Oldenburg, C.

2010-01-01T23:59:59.000Z

213

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

214

Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)  

SciTech Connect (OSTI)

Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

Oldenburg, Curtis M. (LBNL Earth Sciences Division) [LBNL Earth Sciences Division

2009-07-21T23:59:59.000Z

215

Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

Oldenburg, Curtis M [LBNL Earth Sciences Division

2011-04-28T23:59:59.000Z

216

Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground  

SciTech Connect (OSTI)

July 21, 2009 Berkeley Lab summer lecture: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

Oldenburg

2009-07-30T23:59:59.000Z

217

Carbon dioxide capture from power or process plant gases  

SciTech Connect (OSTI)

The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.

Bearden, Mark D; Humble, Paul H

2014-06-10T23:59:59.000Z

218

IMPACCT: Carbon Capture Technology  

SciTech Connect (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

219

Novel Sorption/Desorption Process for Carbon Dioxide Capture (Feasibility Study)  

SciTech Connect (OSTI)

Western Research Institute and the University of Wyoming Enhanced Oil Recovery Institute have tested a novel approach to carbon dioxide capture in power plants and industrial operations. This approach is expected to provide considerable cost savings, in terms of regeneration of the sorbent. It is proposed that low molecular weight, low volatility liquid fluorocarbons be utilized to absorb CO{sub 2} due to their unusual affinity for the gas. The energy savings would be realized by cooling the fluorocarbon liquids below their melting point where the CO{sub 2} would be released even at elevated pressure. Thus, the expense of heating currently used sorbents, saturated with CO{sub 2}, under low pressure conditions and then having to compress the released gas would not be realized. However, these fluorinated materials have been shown to be poor carbon dioxide absorbers under conditions currently required for carbon capture. The project was terminated.

William Tuminello; Maciej Radosz; Youqing Shen

2008-11-01T23:59:59.000Z

220

Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases  

DOE Patents [OSTI]

Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

2011-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream  

DOE Patents [OSTI]

The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

2014-07-08T23:59:59.000Z

222

Parametric study of solid amine sorbents for the capture of carbon dioxide  

SciTech Connect (OSTI)

Solid amine sorbents were prepared using mixtures of linear and branched primary, secondary, and tertiary amines. These amines were immobilized within polystyrene (PS)-, silicon dioxide (SiO{sub 2})-, or polymethylmethacrylate (PMMA)-based substrates at various weight ratios. Testing was conducted in various reactor systems, where the reactive water required for the capture of carbon dioxide (CO{sub 2}) was tracked during the adsorption/desorption cycles by mass spectrometer gas analysis. The water management for these sorbents was quantified and used to assess the technical feasibility of the operating conditions for the capture of CO{sub 2} from simulated flue gas streams. In addition, the heats of reaction and performance capture loading capacities of these sorbents were also determined by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGAs), respectively, in both dry and humidified CO{sub 2} gas streams. The regenerable solid amine sorbents investigated in this study exhibit acceptable CO{sub 2}-capture loading capacities of 2.5-3.5 mol of CO{sub 2}/kg of sorbent by TGA and a laboratory-scale fixed-bed reactor. These sorbents were stable over the adsorption/desorption temperature range of 25-105{sup o}C for 10 cyclic tests. According to the DSC analysis, the heat of reaction generated by these sorbents was in the range of 400-600 Btu/lb. CO{sub 2}, which will require a reactor with heat management capabilities. 6 refs., 4 figs., 3 tabs.

M.L. Gray; J.S. Hoffman; D.C. Hreha; D.J. Fauth; S.W. Hedges; K.J. Champagne; H.W. Pennline [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

223

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

224

Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes  

E-Print Network [OSTI]

Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

225

8, 73737389, 2008 Scientists' CO2  

E-Print Network [OSTI]

ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5

Paris-Sud XI, Université de

226

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

SciTech Connect (OSTI)

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics® is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

227

Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009  

SciTech Connect (OSTI)

Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

Dooley, James J.

2009-07-09T23:59:59.000Z

228

A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture  

E-Print Network [OSTI]

The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

2013-01-01T23:59:59.000Z

229

EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS  

SciTech Connect (OSTI)

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, so

Holly Krutka; Sharon Sjostrom

2011-07-31T23:59:59.000Z

230

Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms  

SciTech Connect (OSTI)

In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

Suh, Dong-Myung; Sun, Xin

2013-09-01T23:59:59.000Z

231

Co2 geological sequestration  

SciTech Connect (OSTI)

Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

Xu, Tianfu

2004-11-18T23:59:59.000Z

232

electroseismic monitoring of co2 sequestration: a finite element ...  

E-Print Network [OSTI]

Keywords: Electroseismic Modeling, Poroelasticity, CO2 sequestration, Finite element methods. 2000 AMS ... carbon dioxide emissisons into the atmosphere.

Fabio Zyserman

233

DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

234

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

235

The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity  

E-Print Network [OSTI]

three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N atmospheric carbon dioxide (CO2) concentra- tions, increasing rates of nitrogen (N) deposition, and decliningThe response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O

Minnesota, University of

236

The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System  

E-Print Network [OSTI]

of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

Fortunat, Joos

237

Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances  

E-Print Network [OSTI]

flowrate coming from the power plant) change over the expected operating window. Dynamic simulation. The stripping column uses a large fraction, about 15-30% of the net power generated in the power plant. Optimal Scheduler Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Tuesday, October 18

Skogestad, Sigurd

238

Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle  

E-Print Network [OSTI]

stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCSDevelopment of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences

Zimmer, Uwe

239

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

Nils Johnson; Joan Ogden

2010-12-31T23:59:59.000Z

240

QGESS: CO2 Impurity Design Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10. Shah, Minish. Capturing CO2 from Oxy-Fuel Combustion Flue Gas. Cottbus, Germany : Praxair Inc., 2005. 11. Spitznogle, Gary O. CO2 Impurity Specification at AEP Mountaineer....

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Vortex Contactor for Carbon Dioxide Separations  

SciTech Connect (OSTI)

Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

2001-05-01T23:59:59.000Z

242

Synthesis of Amine-Modified Aerogel Sorbents and Metal-Organic Framework-5 (MOF-5) Membranes for Carbon Dioxide Separation.  

E-Print Network [OSTI]

??Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are… (more)

Rosa, Teresa M.

2010-01-01T23:59:59.000Z

243

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

liquids (CTL) plants with carbon capture and sequestration.RW, Hufton JR, Wright A. Carbon capture by sorption-enhanceden.wikipedia.org/wiki/Carbon_capture_and_storage 5. Johnson

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

244

Biomass torrefaction and CO2 capture using mining wastes A new approach for reducing greenhouse gas emissions of co-firing plants  

E-Print Network [OSTI]

for an efficient biomass/coal co-firing could thus be further enhanced by curbing the overall process CO2 emissions as well as using ionic-liquid-impregnated torrefac- tion to increase birch wood constituents' torrefaction saturation, and carbon monoxide and methane concen- trations on mining residues CO2 uptake was studied

Devernal, Anne

245

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas  

Broader source: Energy.gov [DOE]

DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

246

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

a recent study by the Carbon Capture Project (CCP 2000), theof Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And Sequestration

Ogden, Joan M

2004-01-01T23:59:59.000Z

247

In Situ Study of CO2 and H2O Partitioning Between Na-Montmorillonite and Variably Wet Supercritical Carbon Dioxide  

SciTech Connect (OSTI)

Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change, and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. In both technologies, CO2 is injected underground as a supercritical fluid (scCO2), where interactions with shale minerals could influence successful GCS implementation. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this work, we used in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy to investigate the swelling/shrinkage and water/CO2 sorption of a pure montmorillonite, Na-SWy-2, when the clay is exposed to variably hydrated scCO2 at 50 °C and 90 bar. Measured interlayer spacings and sorbed water concentrations at varying levels of scCO2 hydration are similar to previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show evidence of both water and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types with distinct chemical environments. Based on the intensity of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, we observed a significant increase in sorbed CO2 as the clay expands from a 0W to a 1W state, suggesting that water props open the interlayer so that CO2 can enter. However, as the clay transitions from a 1W to a 2W state, CO2 desorbs sharply. These observations were placed in the context of two conceptual models concerning hydration mechanisms for expandable clays and were also discussed in light of recent theoretical studies on CO2-H2O-clay interactions. The swelling/shrinkage of expandable clays could affect solid volume, porosity, and permeability of shales. Consequently, the results from this work could aid predictions of shale caprock integrity in large-scale GCS, as well as methane transmissivity in enhanced gas recovery operations.

Loring, John S.; Ilton, Eugene S.; Chen, Jeffrey; Thompson, Christopher J.; Martin, Paul F.; Benezeth, Pascale; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

2014-06-03T23:59:59.000Z

248

Combining geothermal energy with CO2 storage Feasibility study of low temperature geothermal electricity production using carbon dioxide as working and storage fluid.  

E-Print Network [OSTI]

??Abstract One of the emerging solutions for today’s excess of carbon dioxide emissions, which is one of the major causes of global warming, is the… (more)

Janse, D.H.M.

2010-01-01T23:59:59.000Z

249

Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report  

SciTech Connect (OSTI)

Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called �¢����an open path device�¢��� to measure CO2 concentrations near the ground above a CO2 storage area.

Sheng Wu

2012-10-02T23:59:59.000Z

250

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

size gasification for syngas, substitute natural gas andEffect of CO 2 containing syngas over Pt promoted Co/?-Al 2for biomass-derived syngas. NREL report (Report No. : NREL/

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

251

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

J. Different types of gasifiers and their integration withCO 2 in a pressurized-gasifier-based process. Energ Fuel.fluidized bed biomass steam gasifier-bed material and fuel

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

252

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

253

Comprehensive study of carbon dioxide adsorption in the metalorganic frameworks M2(dobdc)  

E-Print Network [OSTI]

are historically slow, the need for mitigation of current CO2 emissions using carbon capture and sequestration (CCSComprehensive study of carbon dioxide adsorption in the metal­organic frameworks M2(dobdc) (M ¼ Mg of adsorption in the M2(dobdc)­CO2 adducts. Introduction Currently, 80% of global energy is supplied by carbon

254

Carbon dioxide storage professor Martin Blunt  

E-Print Network [OSTI]

of CCS storage there are over a hundred sites worldwide where Co2 is injected under- ground as partCarbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS and those for injection and storage in deep geological formations. all the individual elements operate today

255

Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms  

E-Print Network [OSTI]

of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane; Coals; Methane and carbon dioxide adsorption; Modelling isotherms 1. Introduction CO2 is a greenhouse

Paris-Sud XI, Université de

256

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

257

Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration  

SciTech Connect (OSTI)

Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

2013-09-16T23:59:59.000Z

258

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

of Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And SequestrationW H SAMMIS WILLOW ISLAND TOTAL Carbon capture In the plant

Ogden, Joan

2004-01-01T23:59:59.000Z

259

High Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline Aquifers  

E-Print Network [OSTI]

are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper TOUGH2-MP. 1. Introduction Geologic carbon dioxide (CO2) sequestration involves injecting CO2

260

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

Ke, Jing

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network [OSTI]

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

262

Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

263

"Applications and future trends in polymer materials for green energy systems: from energy generation and storage, to CO2 capture and transportaion"  

SciTech Connect (OSTI)

Presentation describes United Technologies Research Center's recent work in green energy systems, including APRA-E project content to create a synthetic analogue of the carbonic anhydrase enzyme and incorporate it into a membrane for CO2 separation from the flue gas of a coal power plant.

George Zafiris

2010-08-24T23:59:59.000Z

264

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network [OSTI]

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

265

Near Miscible CO2 Application to Improve Oil Recovery  

E-Print Network [OSTI]

Carbon dioxide (CO2) injection for enhanced oil recovery is a proven technology. CO2 injection is normally operated at a pressure above the minimum miscibility pressure (MMP), which is determined by crude oil composition and reservoir conditions...

Bui, Ly H.

2010-07-26T23:59:59.000Z

266

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

267

CO2 exposure at pressure impacts metabolism and stress responses...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the model sulfate-reducing bacterium Desulfovibrio vulgaris Abstract: Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep...

268

Enhanced CO2/N2 Selectivity in Amidoxime-Modified Porous Carbon  

SciTech Connect (OSTI)

In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g-1 to 4.24 mmol g-1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.

Mahurin, Shannon Mark [ORNL] [ORNL; Gorka, Joanna [ORNL] [ORNL; Nelson, Kimberly M [ORNL] [ORNL; Mayes, Richard T [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

269

Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment  

E-Print Network [OSTI]

carbon dioxide (NEU-CO2) emissions, represent a signi?cantSimply described, NEU-CO2 emissions are generated via twoData permitting, NEU-CO2 emissions arising from energy

Masanet, Eric; Sathaye, Jayant

2009-01-01T23:59:59.000Z

270

Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7  

E-Print Network [OSTI]

Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

Boyer, Edmond

271

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect (OSTI)

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

272

CO2 sequestration | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

273

Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis  

SciTech Connect (OSTI)

This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

2014-03-31T23:59:59.000Z

274

TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316, 2013 DAVID L. Lawrence Convention Center Pittsburgh, Pennsylvania Page1  

E-Print Network [OSTI]

TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316 approaches of CCS. The main concern for a geologic carbon dioxide (CO2) sequestration is sustained of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA S.Alireza Haghighat1 , Shahab D

Mohaghegh, Shahab

275

Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America  

E-Print Network [OSTI]

dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

2007-01-01T23:59:59.000Z

276

Original article Interactive effects of elevated CO2, O3,  

E-Print Network [OSTI]

Original article Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat of elevated carbon dioxide (CO2), ozone (O3), and soil water deficit on spring wheat (Triticum aestivum L. cv consisting of two O3levels (ambient and 1.5-times ambient) in combination with two CO2levels (ambient

Paris-Sud XI, Université de

277

Investigation of adsorbent-based warm carbon dioxide capture technology for IGCC system  

E-Print Network [OSTI]

Integrated gasification combined cycle with CO? capture and sequestration (IGCC-CCS) emerges as one of the most promising technologies for reducing CO? emission from coal power plant without reducing thermal efficiency ...

Liu, Zan, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

278

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

279

Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture  

SciTech Connect (OSTI)

The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

Duan, Yuhua; Parlinski, K.

2011-01-01T23:59:59.000Z

280

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

SciTech Connect (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metalorganic framework (Fe-BTT) discovered via high-throughput methods  

E-Print Network [OSTI]

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal­organic framework the compound in methanol and heating at 135 C for 24 h under dynamic vacuum, most of the solvent is removed and open Fe2+ coordination sites. Hydrogen adsorption data collected at 77 K show a steep rise

282

10-MW Supercritical-CO2 Turbine  

Broader source: Energy.gov [DOE]

This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

283

The Power to Reduce CO2 Emissions: the Full Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy- efficient CO 2 capture for pulverized coal and integrated gasification combined cycle plants. Both nuclear and advanced coal with CCS technologies are...

284

Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms  

SciTech Connect (OSTI)

PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

None

2012-01-01T23:59:59.000Z

285

The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites  

E-Print Network [OSTI]

Clim. Change 2002. Workshop carbon capture storage. Proc.this concern, various Carbon Capture and Storage (CCS)Special Report on carbon dioxide capture and storage, ISBN

Cortis, Andrea

2009-01-01T23:59:59.000Z

286

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network [OSTI]

and Co. (2008) Carbon capture and storage: Assessing theof Carbon Dioxide, in Carbon Capture and SequestrationWilson and Gerard, editors, Carbon Capture and Sequestration

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

287

Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification  

E-Print Network [OSTI]

electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gas two-thirds), CO2, water vapor, oxygen, and minor components such as carbon monoxide, nitrogen oxides

288

DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500  

E-Print Network [OSTI]

to capture CO2 produced at indus- trial facilities and approaches to inject the CO2 into geologic of buoyant CO2 in terrestrial reservoirs that often contain fractures, faults, and abandoned wells and may

Schrag, Daniel

289

Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio  

E-Print Network [OSTI]

ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/energy systems with carbon capture and sequestration. Insources. Fossil H 2 with carbon capture and sequestration (

2005-01-01T23:59:59.000Z

290

Feasibility of air capture  

E-Print Network [OSTI]

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

291

Aquifer Management for CO2 Sequestration  

E-Print Network [OSTI]

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

292

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

2 abatement using the calcium looping cycle. Energy Environ.the CO 2 captured by the calcium looping system, use of the16. Flow diagram of calcium-looping CO 2 capture and cement

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

293

EMSL - CO2 sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

294

2011 NETL CO2 Capture Technology Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5March0JuneLab12011

295

Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation  

E-Print Network [OSTI]

Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

Chappellaz, Jérôme

296

Novel CO2-Thickeners for Improved Mobility Control  

SciTech Connect (OSTI)

The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

2002-01-15T23:59:59.000Z

297

Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach  

Broader source: Energy.gov [DOE]

Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

298

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núñez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

299

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

300

DOE Manual Studies 11 Major CO2 Geologic Storage Formations  

Broader source: Energy.gov [DOE]

A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

National Conference on Carbon Sequestration. National Energyfor carbon capture and sequestration? ”, Environmentalof methods of carbon dioxide capture and sequestration - the

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

302

Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease  

E-Print Network [OSTI]

. Keywords: biodiversity, ecosystem, elevated carbon dioxide, nitrogen enrichment, parasites, plant pathogensEffects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal Three components of global change, elevated CO2 , nitrogen addition, and decreased plant species

Crews, Stephen

303

9,248,559 Metric Tons of CO2 Injected as of January 16, 2015  

Broader source: Energy.gov [DOE]

This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

304

9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

305

9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...  

Office of Environmental Management (EM)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

306

9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

307

Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.  

E-Print Network [OSTI]

, Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

Boyer, Edmond

308

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

309

Carbon Capture and Storage, 2008  

SciTech Connect (OSTI)

The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

2009-03-19T23:59:59.000Z

310

Carbon Capture and Storage, 2008  

ScienceCinema (OSTI)

The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

None

2010-01-08T23:59:59.000Z

311

Carbon dioxide capture technology for the coal-powered electricity industry : a systematic prioritization of research needs  

E-Print Network [OSTI]

Coal is widely relied upon as a fuel for electric power generation, and pressure is increasing to limit emissions of the CO2 produced during its combustion because of concerns over climate change. In order to continue the ...

Esber, George Salem, III

2006-01-01T23:59:59.000Z

312

How Carbon Capture Works | Department of Energy  

Energy Savers [EERE]

past two decades. Carbon capture, utilization and storage (CCUS) -- also referred to as carbon capture, utilization and sequestration -- is a process that captures carbon dioxide...

313

Cryogenic Carbon Capture  

SciTech Connect (OSTI)

IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

None

2010-07-15T23:59:59.000Z

314

Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio  

E-Print Network [OSTI]

Annual Conference on Carbon Sequestration. 2003. WashingtonTechnology Laboratory Carbon Sequestration program andCONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/NETL May

2005-01-01T23:59:59.000Z

315

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

Santos, Juan

316

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network [OSTI]

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration...

He, Ting

2011-02-22T23:59:59.000Z

317

Soil CO2 production and surface flux at four climate observatories in eastern Canada  

E-Print Network [OSTI]

Soil CO2 production and surface flux at four climate observatories in eastern Canada David Risk December 2002. [1] Soils constitute the largest terrestrial source of carbon dioxide to the atmosphere the climatic controls on soil respiration. We use subsurface CO2 concentrations, surface CO2 flux and detailed

318

ATMOSPHERIC CO2 --A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN?  

E-Print Network [OSTI]

of emissions from fossil fuel combustion. An increase in atmospheric CO2 would enhance Earth's naturalATMOSPHERIC CO2 -- A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN? S. E. Schwartz, NY www.bnl.gov ABSTRACT Carbon dioxide (CO2) is building up in the atmosphere, largely because

319

Copyright 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2  

E-Print Network [OSTI]

Copyright © 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2 and Its.00, ISBN 978-0-387- 22069-7. Atmospheric carbon dioxide ([CO2 ]) concentrations have varied considerably through time. Some estimates suggest extraordinarily high concentrations of atmospheric CO2 (~ 4000

Springer, Clint J.

320

THE INCREASING CONCENTRATION OF ATMOSPHERIC CO2: HOW MUCH, WHEN, AND WHY?  

E-Print Network [OSTI]

consequence of the varying ratio of H to C is that different fuels have different rates of CO2 emissions per emissions when fuel consumption is expressed in energy units. Table 1: CO2 Emission Rates for Fossil community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

emissions: mineral carbonation and Finnish pulp and paper industry (CO2  

E-Print Network [OSTI]

CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and Use carbonation processes. One aspect was to verify the possible use of mineral carbon- ation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological

Zevenhoven, Ron

322

Spatial Disaggregation of CO2 Emissions for the State of California  

E-Print Network [OSTI]

Spatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom carbon dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft

323

Spatial Disaggregation of CO2 Emissions for the State of California  

E-Print Network [OSTI]

Spatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft

324

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect (OSTI)

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

325

amine methanol, ether . Amine amine CO2  

E-Print Network [OSTI]

, . promoter . 1.2 CO2 HBGS process CO2 , CO2 . CO2 , IGCC (Integrated Gasification Combined Cycle) (fuel gas) CO2 . IGCC CO2 H2 . (gasification) CO H2 (water gas shift reaction) H2 CO CO2 . CO2 H2 turbine H2 . H2 , CO2 #12;. fuel gas CO2 40%, 60% H2 . fuel gas (gasification) HBGS process . CO2 CO2 . venture

Hong, Deog Ki

326

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect (OSTI)

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

327

Mineralization of Basalts in the CO2-H2O-SO2-O2 System. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SO2-O2 System. Mineralization of Basalts in the CO2-H2O-SO2-O2 System. Abstract: Sequestering carbon dioxide (CO2) containing minor amounts of co-contaminants in geologic...

328

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms  

E-Print Network [OSTI]

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

329

The CO2 Content of Consumption Across US Regions: A Multi-Regional Input-Output (MRIO) Approach  

E-Print Network [OSTI]

We improve on existing estimates of the carbon dioxide (CO2) content of consumption across regions of the United States. Using a multi-regional input-output (MRIO) framework, we estimate the direct and indirect CO2 emissions ...

Caron, J.

330

CO2 interaction with aquifer and seal on geological timescales: the Miller oilfield, UK North Sea   

E-Print Network [OSTI]

Carbon Capture and Storage (CCS) has been identified as a feasible technology to reduce CO2 emissions whilst permitting the continued use of fossil fuels. Injected CO2 must remain efficiently isolated from the atmosphere ...

Lu, Jiemin

2008-01-01T23:59:59.000Z

331

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

332

Realistic costs of carbon capture  

SciTech Connect (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

333

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

photobiological hydrogen production [57, 58]. Under singlesimultaneous hydrogen fuel production and CO 2 mitigation”,dioxide for the production of hydrogen”, International

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

334

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect (OSTI)

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

335

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

Looping Technology Description: Amine scrubbing carboncarbon capture using absorption technologies Calera process CO 2 sequestration in concrete curing technology Carbonate looping

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

336

SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE  

SciTech Connect (OSTI)

Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

2014-12-31T23:59:59.000Z

337

Northern California CO2 Reduction Project  

SciTech Connect (OSTI)

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

338

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report  

SciTech Connect (OSTI)

This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

Not Available

1993-07-01T23:59:59.000Z

339

10 MW Supercritical CO2 Turbine Test  

SciTech Connect (OSTI)

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

340

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-Print Network [OSTI]

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide  

SciTech Connect (OSTI)

The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

Gopala Krishnan; Indira Jayaweera; Angel Sanjrujo; Kevin O'Brien; Richard Callahan; Kathryn Berchtold; Daryl-Lynn Roberts; Will Johnson

2012-03-31T23:59:59.000Z

342

PhD studentship on Catalyst for Fuel Synthesis Title: Novel catalysts for synthesis of hydrocarbon fuels from H2 and CO2  

E-Print Network [OSTI]

fuels from H2 and CO2 A three year PhD studentship is available in Department of Chemical & Process or after September, 2013. Carbon capture is an important area to reduce global CO2 emission but it is time to find an outlet for the captured CO2. To synthesis hydrocarbon from H2 and CO2 is a key

Martin, Ralph R.

343

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect (OSTI)

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

344

CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases  

E-Print Network [OSTI]

CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases in global temperatures is the amount of carbon dioxide (CO2) in the atmosphere. Is there a relationship between the amount of carbon dioxide in the atmosphere and global temperatures? Data Collection

Carriquiry, Alicia

345

Investigation of geothermal power plant performance using sequestered carbon dioxide as a heat transfer or working fluid.  

E-Print Network [OSTI]

??This study investigates the potential for combining carbon dioxide (CO2) sequestration with geothermal power production in areas with low geothermal resource temperatures. Using sequestered CO2… (more)

Janke, Brian D.

2011-01-01T23:59:59.000Z

346

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY ................................................................................................................ 7 CHAPTER 3. OVERVIEW OF CO2 CAPTURE TECHNOLOGIES

347

CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS  

SciTech Connect (OSTI)

This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.

C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

2003-12-15T23:59:59.000Z

348

On the Role of Sacrificial Donors in the Catalytic Reduction of CO2 by  

E-Print Network [OSTI]

Complexes Jay Agarwal Gonghu Li Department of Chemistry University of New Hampshire, Durham, NH 03824 4/23/2010 #12;Carbon Dioxide Breakdown (Gas) (Liquid) Gasoline Breakdown Gasoline (+Additives) CO2 + H2O

New Hampshire, University of

349

Strategy for prevention of sequestered CO2 seepage from CBM formations.  

E-Print Network [OSTI]

??This study introduces a new strategy for the prevention of post-sequestration carbon dioxide (CO2) seepage to the surface from CBM (coalbed methane) formations that is… (more)

Tovar Torrealba, Miguel Angel.

2006-01-01T23:59:59.000Z

350

Transport properties of CO2-expanded acetonitrile from molecular dynamics simulations  

E-Print Network [OSTI]

by acetonitrile and carbon dioxide, in which the CO2 mole fraction is adjusted by changing the pressure, at a constant temperature of 298K. They report values of translational diffusion coefficients, rotational correlation times, and shear viscosities...

Houndonougbo, Yao; Laird, Brian Bostian; Kuczera, Krzysztof

2007-02-21T23:59:59.000Z

351

DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage  

Broader source: Energy.gov [DOE]

The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

352

Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration  

E-Print Network [OSTI]

atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial-effective and environmentally friendly method for CO2 sequestration. INTRODUCTION Carbon dioxide concentrations and CO2 Sequestration Xiuping Zhu,* Marta C. Hatzell, and Bruce E. Logan Department of Civil

353

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network [OSTI]

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit...

Hernandez Arciniegas, Gonzalo

2006-10-30T23:59:59.000Z

354

Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America  

SciTech Connect (OSTI)

Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

Oldenburg, C.; Birkholzer, J.T.

2011-07-22T23:59:59.000Z

355

CO2 Sequestration short course  

SciTech Connect (OSTI)

Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

356

ORIGINAL PAPER Potential volume for CO2 deep ocean sequestration: an assessment  

E-Print Network [OSTI]

-year storage and 61 m for one decade. Keywords Carbon dioxide Á Ocean sequestration Á RegressionORIGINAL PAPER Potential volume for CO2 deep ocean sequestration: an assessment of the area located in an average amount of 6.957 Gt within this duration. If deep sea sequestration for CO2 can be the possible

Wu, Yih-Min

357

Remediation of CO2 Leakage from Deep Saline Aquifer Storage Based on Reservoir and Pollution  

E-Print Network [OSTI]

and of the Council of 23 April 2009 on the geological storage of carbon dioxide IEA-GHG, 2007. Remediation of Leakage from CO2 Storage Reservoirs. IEA Greenhouse Gas R&D Programme, 2007/11, September 2007. Le Guenan T : review and modelling., in CO2NET 2009 Annual Seminar Agenda - Trondheim - Norway - 18-19 June 2009. Xu T

Paris-Sud XI, Université de

358

CO2 Saline Storage Demonstration in Colorado Sedimentary Basins: Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations  

SciTech Connect (OSTI)

This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is orders of magnitude smaller than renewable energy facilities with equivalent energy capacity. Finally, inexpensive natural gas here in North America is pushing coal for electricity generation off the market, thus reducing US CO2 emissions faster than any other large industrialized nation. These two big factors argue for renewed efforts to find technology solutions to reduce the carbon footprint (carbon dioxide as well as methane and trace gases) of conventional and unconventional oil and gas. One major such technology component is likely to be carbon capture, utilization and storage.

Nummedal, Dag; Sitchler, Alexis; McCray, John; Mouzakis, Katherine; Glossner, Andy; Mandernack, Kevin; Gutierrez, Marte; Doran, Kevin; Pranter, Matthew; Rybowiak, Chris

2012-09-30T23:59:59.000Z

359

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

SciTech Connect (OSTI)

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

360

The Status of COThe Status of CO22 CaptureCapture and Storage Technologyand Storage Technology  

E-Print Network [OSTI]

and hydrogen from fossil fuels · Energy models show that without CCS, the cost of mitigating climate change (Electricity, Fuels, Chemicals, Hydrogen) CO2 CO2 Capture & Compress CO2 Transport CO2 Storage (Sequestration) - Post-combustion - Pre-combustion - Oxyfuel combustion - Pipeline - Tanker - Depleted oil/gas fields

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect (OSTI)

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

362

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

and Resource Saving Technologies in Cement Industry.1:87–94. Blue World Crete. 2012. Technology. Available atOakey. 2009. CO 2 Capture Technologies for Cement Industry.

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

363

Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices  

SciTech Connect (OSTI)

Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

2011-04-18T23:59:59.000Z

364

Modeling long-term CO2 storage, sequestration and cycling  

SciTech Connect (OSTI)

The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

Bacon, Diana H.

2013-11-11T23:59:59.000Z

365

Implications of "peak oil" for atmospheric CO2 and climate  

E-Print Network [OSTI]

Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

Kharecha, P A

2007-01-01T23:59:59.000Z

366

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network [OSTI]

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

Marroquin Cabrera, Juan Carlos

1998-01-01T23:59:59.000Z

367

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

368

Surface CO2 leakage during the first shallow subsurface CO2 release experiment  

E-Print Network [OSTI]

numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

2008-01-01T23:59:59.000Z

369

Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage  

E-Print Network [OSTI]

E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

Nielsen, L.C.

2013-01-01T23:59:59.000Z

370

Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect on forest  

E-Print Network [OSTI]

ecosystem's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy's natural capacity toA forest ecosystem's natural capacity to capture energy, capture energy, sustain life10/13/2010 1 Increasing carbon dioxideIncreasing carbon dioxide & its effect on forest& its effect

Gray, Matthew

371

SciTech Connect: Development of Novel CO2 Adsorbents for Capture of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatronAerogel DeepThermal Processing of

372

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

373

Surface Ocean CO2 Atlas (SOCAT) gridded data products  

SciTech Connect (OSTI)

A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

2013-01-01T23:59:59.000Z

374

6, 1092910958, 2006 Regional scale CO2  

E-Print Network [OSTI]

ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

Paris-Sud XI, Université de

375

Electrochemical Membrane for Carbon Dioxide Separation and Power Generation  

SciTech Connect (OSTI)

uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

2012-12-28T23:59:59.000Z

376

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network [OSTI]

, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

Agrawal, Angeni

2007-09-17T23:59:59.000Z

377

CO2 Sequestration in Chrysotile Mining ResiduesImplication of Watering and Passivation under Environmental Conditions  

E-Print Network [OSTI]

carbonation reactors for the capture of CO2 produced at its source.5-8 In most available direct carbonation was found to develop very rapidly in comparison to silica gel polymerization. INTRODUCTION The fixation

378

arbon dioxide (CO2 atmosphere has increased by  

E-Print Network [OSTI]

on how plants and ecosystems may respond to this change in atmospheric composition, giving us confidence surface and scale up to affect the landscape water balance. Thus, through its impacts on plant water use and water to produce organic compounds. Since photosynthesis is an unsaturated biochemical reaction

379

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network [OSTI]

acceptance of carbon dioxide storage Energy Policy 35 2780–carbon dioxide capture and storage RD&D roadmap; National EnergyEnergy 2006 Sequestration test to demonstrate carbon dioxide storage

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

380

Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves  

SciTech Connect (OSTI)

TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

Doughty, Christine

2006-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL emphasizes CO{sub 2} capture from existing plants  

SciTech Connect (OSTI)

This paper gives brief description of several carbon dioxide capture projects that were directed toward a broader range of capture technologies.

NONE

2008-04-01T23:59:59.000Z

382

Post-Combustion CO2 Capture 11 -13 July 2010  

E-Print Network [OSTI]

PROCEEDINGS Published November 2010 Sponsored by | MIT Carbon Sequestration Initiative | | Global CCS was sponsored by the MIT Carbon Sequestration Initiative, Global CCS Institute, Clean Air Task Force and Asia 2010 | Tufts University European Center in Talloires, France Sponsors | MIT Carbon Sequestration

383

Secretary Chu Announces Six Projects to Convert Captured CO2...  

Energy Savers [EERE]

clay, a by-product of aluminum refining. The carbonate product can be utilized as construction fill material, soil amendments, and green fertilizer. Alcoa will demonstrate and...

384

SO2-Resistant Immobilized Amine Sorbents for CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Smalln n u a l r e p o r

385

Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53ReferenceRegarding

386

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock - BasementCEPISsourceCMERI JumpPoject

387

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

388

A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations  

E-Print Network [OSTI]

, USA 1. Introduction Geological carbon dioxide (CO2) sequestration in deep forma- tions (e.g., saline of the U.S. Department of Energy (USDOE) Carbon Sequestration Regio 2008 Published on line 21 March 2008 Keywords: Geological CO2 sequestration Storage capacity Saline

Zhou, Quanlin

389

PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant  

E-Print Network [OSTI]

the use of carbon dioxide as refrigerant in supermarket refrigeration systems. The work includes fieldPhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 a PhD student in Energy Technology, specifically Commercial refrigeration systems with CO2

Kazachkov, Ivan

390

CO2 Sequestration in Non-air Entrained Concrete Tarun R. Naik, Rakesh Kumar, and Rudolph N. Kraus  

E-Print Network [OSTI]

CO2 Sequestration in Non-air Entrained Concrete Tarun R. Naik, Rakesh Kumar, and Rudolph N. Kraus dioxide (CO2) sequestration in non-air entrained concrete. Several experimental factors sequestration in non-air entrained concrete. Compressive strength, splitting tensile strength, flexural strength

Wisconsin-Milwaukee, University of

391

CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration  

SciTech Connect (OSTI)

This report (which forms part of the requirements of the Statement of Work Task 0, subtask 0.4) records progress towards defining a detailed Work Plan for the CCP 30 days after contract initiation. It describes the studies planned, workscope development and technology provider bid evaluation status at that time. Business sensitive information is provided separately in Appendix 1. Contract negotiations are on hold pending award of patent waiver status to the CCP.

Helen Kerr

2002-01-10T23:59:59.000Z

392

High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges  

SciTech Connect (OSTI)

IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

None

2010-09-01T23:59:59.000Z

393

An investigation of the evolution and present distribution of residual oil zones (ROZ) in the Permian Basin, West Texas and its implications for carbon dioxide  

E-Print Network [OSTI]

, and widespread development of CO2-EOR in the Permian Basin have made production from ROZ economically attractive) in the Permian Basin, West Texas and its implications for carbon dioxide (CO2) storage West, L. 1 logan significant new resources for tertiary oil production through carbon dioxide (CO2) enhanced oil recovery (CO2

Texas at Austin, University of

394

A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage  

SciTech Connect (OSTI)

Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture environmental pollutants in the gaseous state and co-inject them with the CO2, in order to mitigate problems associated with solid waste disposal in surface impoundments. Under such conditions, the injected pollutant concentrations could be roughly equivalent to their concentrations in the coal feed. The fate of the injected contaminants can only be determined through further testing and geochemical modeling. However, the concentrations of inadvertent contaminants in the injected CO2 would probably be comparable to their ambient concentrations in confining shales of the injection zone. In general, the aqueous concentrations of hazardous constituents in distal parts of the injection zone, regardless of source, are likely to be limited by equilibrium with respect to coexisting solid phases under the acid conditions induced by the dissolved high pressure CO2, rather than by the initial concentrations of injected contaminants. Therefore, even if a deliberate policy of contaminant recovery and injection were to be pursued, water quality in USDWs would more likely depend on thermodynamic controls governing aqueous contaminant concentrations in the presence of high pressure CO2 rather than in the injected CO2. The conclusions reached in this report are preliminary, and should be confirmed through more comprehensive data evaluation and supporting geochemical modeling.

Apps, J.A.

2006-02-23T23:59:59.000Z

395

The Net Environmental Effects of Carbon Dioxide Reduction Policies  

E-Print Network [OSTI]

of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

396

Feasibility of Air Capture Manya Ranjan  

E-Print Network [OSTI]

benefits of air capture, reported in literature, are that it allows us to reduce the atmospheric carbon process to capture CO2 and biomass coupled with carbon capture and sequestration, which utilizes coupled with carbon capture and sequestration looks more promising from a cost perspective. This work puts

397

Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration  

SciTech Connect (OSTI)

Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.

Daniels, Jeff

2012-11-30T23:59:59.000Z

398

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network [OSTI]

cooled by liquid nitrogen. The water and CO2 are separated from one another by sublimation and the CO2 for oceanic CO2 analysis: A method for the certification of total alkalinity. Marine Chemistry 80, 185

399

ATMOSPHERIC CO2 A GLOBAL LIMITING RESOURCE  

E-Print Network [OSTI]

Carbondioxideatmosphericburden,PgC Land use Fossil CO2 from land use emissions ­ not fossil fuel combustion ­ was the dominant CO2 Comparison of CO2 mixing ratio from fossil fuel combustion and land use changes 400 380 360 340 cores 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Forcing,Wm -2 #12;ATMOSPHERIC CO2 EMISSIONS Time series 1700

Schwartz, Stephen E.

400

Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

5, 33133340, 2005 SCIAMACHY CO2 and  

E-Print Network [OSTI]

ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title Page Abstract Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols S. Houweling 1,2 , W. Hartmann 1 Commons License. 3313 #12;ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title

Paris-Sud XI, Université de

402

2, 711743, 2006 Glacial CO2  

E-Print Network [OSTI]

CPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin Scientist Award win- ners 2006 711 #12;CPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title

Paris-Sud XI, Université de

403

Potential method for measurement of CO2 leakage from underground sequestration fields using radioactive tracers  

SciTech Connect (OSTI)

Reduction of anthropogenic carbon dioxide (CO2) release to the environment is a pressing challenge that should be addressed to avert the potential devastating effects of global warming. Within the United States, the most abundant sources of CO2 emissions are those generate from coal- or gas-fired power plants; one method to control CO2 emissions is to sequester it in deep underground geological formations. From integrated assessment models the overall leakage rates from these storage locations must be less than 0.1% of stored volume per year for long-term control. The ability to detect and characterize nascent leaks, in conjunction with subsequent remediation efforts, will significantly decrease the amount of CO2 released back into the environment. Because potential leakage pathways are not necessarily known a priori, onsite monitoring must be performed; the monitoring region in the vicinity of a CO2 injection well may be as large as 100 km2, which represents the estimated size of a supercritical CO2 bubble that would form under typical injection scenarios. By spiking the injected CO2 with a radiological or stable isotope tracer, it will be possible to detect ground leaks from the sequestered CO2 using fewer sampling stations, with greater accuracy than would be possible using simple CO2 sensors. The relative merits of various sorbent materials, radiological and stable isotope tracers, detection methods and potential interferences will be discussed.

Bachelor, Paula P.; McIntyre, Justin I.; Amonette, James E.; Hayes, James C.; Milbrath, Brian D.; Saripalli, Prasad

2008-07-01T23:59:59.000Z

404

Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization  

SciTech Connect (OSTI)

The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with a thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.

Oldenburg, Curtis M.; Unger, Andre A.J.

2004-02-18T23:59:59.000Z

405

A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2007-09-01T23:59:59.000Z

406

CO$_2$ cooling experience (LHCb)  

E-Print Network [OSTI]

The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

Van Lysebetten, Ann; Verlaat, Bart

2007-01-01T23:59:59.000Z

407

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

408

Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer  

E-Print Network [OSTI]

Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer brandstoffen en veranderingen in landgebruik. Toenemende concentraties van CO2 in de atmosfeer zullen naar toename van CO2 in de atmosfeer op de dynamiek van de microbiële gemeenschap in de directe omgeving van de

van den Brink, Jeroen

409

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network [OSTI]

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

410

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network [OSTI]

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

411

The Smart Grid: An Estimation of the Energy and Carbon Dioxide...  

Open Energy Info (EERE)

Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

412

E-Print Network 3.0 - atmospheric carbon dioxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sunday, June 10, 2007 Ecofocus: Even older forests help control CO2 Summary: is a form of carbon sequestration. During photosynthesis, trees remove carbon dioxide from the...

413

E-Print Network 3.0 - aqueous carbon dioxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 3 CO2 Sequestration using Steelmaking Slag Investigators Summary: Sequestration of Carbon Dioxide through Aqueous Processing of Steelmaking Slag," Rawlins,...

414

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin  

Broader source: Energy.gov [DOE]

Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

415

Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath  

E-Print Network [OSTI]

Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath Trembling Aspen, Paper Birch, North Carolina 27695, USA ABSTRACT Nitrogen cycling in northern temperate forest ecosystems could change to a negative feed- back on N availability. Key words: Acer saccharum; Betula papyrifera; Carbon dioxide; FACE

416

Short Communication Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing  

E-Print Network [OSTI]

lithium cations Youn-Sang Bae a,1 , Brad G. Hauser b,1 , Omar K. Farha b , Joseph T. Hupp b, , Randall Q November 2010 Keywords: Lithium doping Carbon dioxide (CO2) Metal-organic framework (MOF) Separation improvement by the Li cation exchange comes from enhanced solid­gas interactions. Ó 2010 Elsevier Inc. All

417

CO2-SO2 clathrate hydrate formation on early Mars1 Eric Chassefirea,b  

E-Print Network [OSTI]

hal-00804822,version1-26Mar2013 #12;3 1. Introduction53 54 Sulfur dioxide (SO2) has been proposed1 CO2-SO2 clathrate hydrate formation on early Mars1 2 Eric Chassefièrea,b , Emmanuel Dartoisc hal-00804822,version1-26Mar2013 Author manuscript, published in "Icarus 223, 2 (2013) 878-891" DOI

Boyer, Edmond

418

Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications  

E-Print Network [OSTI]

Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

Bahrami, Majid

419

DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone  

Broader source: Energy.gov [DOE]

The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

420

Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2  

E-Print Network [OSTI]

1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test  

Broader source: Energy.gov [DOE]

A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

422

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular  

E-Print Network [OSTI]

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant, community composition, grassland, niche partitioning hypothesis, nitrogen fertilization, plant richness

Minnesota, University of

423

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular  

E-Print Network [OSTI]

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant enrichment, community composition, grassland, niche partitioning hypothesis, nitrogen fertilization, plant

Minnesota, University of

424

The Economic Impacts of Technical Change in Carbon Capture.  

E-Print Network [OSTI]

??There is a general consensus in the literature that carbon capture and storage (CCS), a technology that controls CO2 emissions from fossil fuel power plants,… (more)

Rasmussen, Peter G.

2012-01-01T23:59:59.000Z

425

Assessing the health risks of natural CO2 seeps in Italy  

SciTech Connect (OSTI)

Industrialized societies which continue to use fossil fuel energy sources are considering adoption of Carbon Capture and Storage (CCS) technology to meet carbon emission reduction targets. Deep geological storage of CO2 onshore faces opposition regarding potential health effects of CO2 leakage from storage sites. There is no experience of commercial scale CCS with which to verify predicted risks of engineered storage failure. Studying risk from natural CO2 seeps can guide assessment of potential health risks from leaking onshore CO2 stores. Italy and Sicily are regions of intense natural CO2 degassing from surface seeps. These seeps exhibit a variety of expressions, characteristics (e.g., temperature/ flux), and location environments. Here we quantify historical fatalities from CO2 poisoning using a database of 286 natural CO2 seeps in Italy and Sicily. We find that risk of human death is strongly influenced by seep surface expression, local conditions (e.g., topography and wind speed), CO2 flux, and human behavior. Risk of accidental human death from these CO2 seeps is calculated to be 10-8 year-1 to the exposed population. This value is significantly lower than that of many socially accepted risks. Seepage from future storage sites is modeled to be less than Italian natural flux rates. With appropriate hazard management, health risks from unplanned seepage at onshore storage sites can be adequately minimized.

Roberts, J.J.; Wood, R.A.; Haszeldine, R.S. [Scottish Carbon Capture and Storage, School of GeoSciences, Grant Institute, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland (United Kingdom)

2011-10-04T23:59:59.000Z

426

The supply chain of CO2 emissions  

E-Print Network [OSTI]

emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

Davis, S. J; Peters, G. P; Caldeira, K.

2011-01-01T23:59:59.000Z

427

Modeling of CO2 storage in aquifers  

E-Print Network [OSTI]

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an ...

santos,,,

428

Legal Implications of CO2 Ocean Storage  

E-Print Network [OSTI]

role in naturally removing carbon dioxide from the atmosphere, the ocean is considered an essential dioxide in addition to the vast quantities already stored naturally. A few recent research to contradict each other regarding the use of the ocean as a "sink" or disposal area for carbon dioxide. On one

429

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

430

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

431

Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions  

SciTech Connect (OSTI)

The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

Malhotra, Vivak

2014-06-30T23:59:59.000Z

432

Balancing the global energy demand with a decrease in an-thropogenic CO2 emissions to mitigate climate change has  

E-Print Network [OSTI]

- and gas-burning power plants, compressed into a supercritical fluid and injected into 11 deep saline, they assumed that the rate of CO2 production from the power plants would increase linearly, reach a maxi- mum to evaluate the prospects of using CCS to store CO2 emissions that would be captured from the flue gas of coal

Entekhabi, Dara

433

ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS  

SciTech Connect (OSTI)

The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

2013-01-01T23:59:59.000Z

434

Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations  

E-Print Network [OSTI]

. Emitted in large proportions, especially from (stationary) fossil-fuel based power plants, carbon dioxide­1200 °C), humidity (0­10 mol %) and CO2 partial pressure (20­67 mol %), thermal preconditioning

Long, Bernard

435

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network [OSTI]

clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

436

solvent-carbon-capture-scientific | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Project No.: DE-FE0007567 Carbon Capture Scientific is developing and testing a novel,...

437

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network [OSTI]

are capturing CO 2 emissions from a coal power plant you aresources of emissions, e.g. coal-fired power plants or cementemissions are captured from stationary sources such as coal-fired power

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

438

4, 23852405, 2007 CO2 and climate  

E-Print Network [OSTI]

BGD 4, 2385­2405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

Paris-Sud XI, Université de

439

Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents  

E-Print Network [OSTI]

CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

Al Yousef, Zuhair

2012-10-19T23:59:59.000Z

440

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dioxide co2 capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The PCOR Partnership is off to a very exciting and ambitious start. Task 1 activities have included the planning and execution of an internal kickoff meeting, participation in the DOE's national kickoff meeting, and the planning and execution of the first meeting of the PCOR Partnership at the Energy & Environmental Research Center (EERC). Task 2 activities have focused on developing effective and critical partnerships. A plan has been developed to utilize Dakota Gasification Company's (DGC) experience and data with respect to their participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's compensatory efforts. Task 3 activities have been focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4, Characterization and Evaluation, has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, and treatment to prepare the fluid for pipeline transportation. Task 5 activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Thomas A. Erickson

2004-01-01T23:59:59.000Z

442

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The PCOR Partnership continues to make great progress. Task 2 (Deployment Issues) activities have focused on utilizing Dakota Gasification Company (DGC) experience and data with respect to DGC participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's complementary efforts. Task 3 (Public Education and Outreach) activities have focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4 (Characterization and Evaluation) has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Thomas A. Erickson

2004-04-01T23:59:59.000Z

443

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both  

E-Print Network [OSTI]

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model

Bushman, Frederic

444

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network [OSTI]

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

Akinnikawe, Oyewande

2012-10-19T23:59:59.000Z

445

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II  

SciTech Connect (OSTI)

The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

2002-02-21T23:59:59.000Z

446

Economic assessment of CO? capture and disposal  

E-Print Network [OSTI]

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

447

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford  

E-Print Network [OSTI]

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

Keller, Klaus

448

MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes  

E-Print Network [OSTI]

MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical

Uppsala Universitet

449

Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2  

SciTech Connect (OSTI)

This report summarizes a synthesis project of a long-term global change experiment conducted at the Kennedy Space Center, Florida, investigating how increasing concentrations of atmospheric carbon dioxide (CO2) influences the functioning of a fire-dominated scrub-oak ecosystem. The experiment began in 1996 and ended in 2007. Results presented here summarize the effects of elevated CO2 on plant growth, soil processes, carbon and nutrient cycling, and other responses. Products include archived data from the experiment, as well as six publications in the peer-reviewed literature.

Hungate, Bruce

2014-11-07T23:59:59.000Z

450

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network [OSTI]

of carbon dioxide in enhanced oil recovery Energy Conserv.the use of CO 2 for enhanced oil recovery, where the use ofand potential for enhanced oil recovery. The public living

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

451

Prospects for Subsurface CO2 Sequestration  

E-Print Network [OSTI]

to be around 28 Gigatons. For the last few centuries prior to the industrial revolution, the average atmospheric CO2 concentra- tion was about 280 ppm.2 Since the onset of the industrial rev- olution, there has

Firoozabadi, Abbas

452

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

453

Gulf of Mexico Miocene CO2 Site Characterization Mega Transect  

SciTech Connect (OSTI)

This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

Meckel, Timothy; Trevino, Ramon

2014-09-30T23:59:59.000Z

454

Bisphosphine dioxides  

DOE Patents [OSTI]

A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, Kenneth G. (Charleston, WV)

1990-01-01T23:59:59.000Z

455

Bisphosphine dioxides  

DOE Patents [OSTI]

A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, K.G.

1990-02-20T23:59:59.000Z

456

Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk  

SciTech Connect (OSTI)

A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

Oldenburg, Curtis M.

2006-11-27T23:59:59.000Z

457

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Broader source: Energy.gov [DOE]

Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

458

The Influence of Temperature on the Sorption and Permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes  

SciTech Connect (OSTI)

This paper reports the transport and sorption properties of poly(fluoroalkoxyphosphazene) (PFAP) membranes for carbon dioxide and nitrogen in both pure and mixed gas experiments. The CO</