Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials  

SciTech Connect (OSTI)

Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

Cai, Min

2011-11-30T23:59:59.000Z

2

Electroluminescence property of organic light emitting diode (OLED)  

SciTech Connect (OSTI)

Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Y?ld?z Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadal?, Selin [National Metrology Inst?tute of Turkey (TUB?TAK-UME), Kocaeli (Turkey)

2013-12-16T23:59:59.000Z

3

Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs  

SciTech Connect (OSTI)

This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.

Mohammad Omary; Bruce Gnade; Qi Wang; Oussama Elbjeirami; Chi Yang; Nigel Shepherd; Huiping Jia; Manuel Quevedo; Husam Alshareef; Minghang Li; Ming-Te Lin; Wei-Hsuan Chen; Iain Oswald; Pankaj Sinha; Ravi Arvapally; Usha Kaipa; John Determan; Sreekar Marpu; Roy McDougald; Gustavo Garza; Jason Halbert; Unnat Bhansali; Michael Perez

2010-08-31T23:59:59.000Z

4

Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...  

Energy Savers [EERE]

Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of...

5

Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting  

SciTech Connect (OSTI)

With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

2011-01-21T23:59:59.000Z

6

Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED  

SciTech Connect (OSTI)

Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2014-03-21T23:59:59.000Z

7

Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex  

SciTech Connect (OSTI)

Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

2009-07-07T23:59:59.000Z

8

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures  

SciTech Connect (OSTI)

After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

Liu, Rui [Ames Laboratory

2012-08-01T23:59:59.000Z

9

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)  

SciTech Connect (OSTI)

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

Xiao, Teng

2012-04-27T23:59:59.000Z

10

New diode wavelengths for pumping solid-state lasers  

SciTech Connect (OSTI)

High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

Skidmore, J.A.; Emanuel, M.A.; Beach, R.J. [and others

1995-01-01T23:59:59.000Z

11

P-66: Personal Communication System Hand-set with Organic Light Emitting Diode Display  

E-Print Network [OSTI]

Light Emitting Diodes (OLED) display panel. As a result, OLEDs technology was applied to a display for a

Seungeun Lee; Wonseok Oh; Sungchul Lee; Jongchan Choi

12

Text-Alternative Version: Challenges in OLED Research and Development  

Broader source: Energy.gov [DOE]

Narrator: Organic light-emitting diodes, OLEDs, are made using organic carbon-based materials. Unlike LEDs, which are small point light sources, OLEDs are made in sheets that create diffuse area...

13

GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays  

E-Print Network [OSTI]

North Virginia Tech Blacksburg, VA north@cs.vt.edu ABSTRACT The organic light emitting diode (OLED, Color Scheme, Visualization 1. INTRODUCTION The organic light-emitting diode (OLED) display is an emerg

14

High brightness diode-pumped organic solid-state laser  

E-Print Network [OSTI]

High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

Zhao, Zhuang; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

2015-01-01T23:59:59.000Z

15

Series connected OLED structure and fabrication method  

DOE Patents [OSTI]

A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

2006-05-23T23:59:59.000Z

16

OLEDS FOR GENERAL LIGHTING  

SciTech Connect (OSTI)

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

17

Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices  

E-Print Network [OSTI]

- sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED), for example, has been commercially used in OLEDs. However, because of the cost and the scarcity of indium reactants and produce new species. Wet-chemical etching has great advantages such as low cost

Boo, Jin-Hyo

18

Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices  

E-Print Network [OSTI]

- sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED- chemical etching behaviors of ZnO films were also investigated using various chemicals. In order

Hong, Byungyou

19

OLED area illumination source  

DOE Patents [OSTI]

The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

2008-03-25T23:59:59.000Z

20

OLED devices  

DOE Patents [OSTI]

An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Record External Quantum Efficiency in Blue OLED Device  

Broader source: Energy.gov [DOE]

Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

22

Light-Emitting Diodes in the Solid-State Lighting Systems  

E-Print Network [OSTI]

Red and green light-emitting diodes (LEDs) had been produced for several decades before blue emitting diodes, suitable for lighting applications, were widely available. Today, we have the possibility of combining the three fundamental colours to have a bright white light. And therefore, a new form of lighting, the solid-state lighting, has now become a reality. Here we discuss LEDs and some of their applications in displays and lamps.

Sparavigna, Amelia Carolina

2014-01-01T23:59:59.000Z

23

Mode-locked solid state lasers using diode laser excitation  

DOE Patents [OSTI]

A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

Holtom, Gary R. (Boston, MA)

2012-03-06T23:59:59.000Z

24

Polarization methods for diode laser excitation of solid state lasers  

DOE Patents [OSTI]

A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

Holtom, Gary R. (Richland, WA)

2008-11-25T23:59:59.000Z

25

Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes  

E-Print Network [OSTI]

acrylate layer and MS-31 (MgO : SiO2 ¼ 3 : 1 wt %) layer was adopted in organic light emitting diode (OLED the penetrations of oxygen and moisture. [DOI: 10.1143/JJAP.45.5970] KEYWORDS: organic light emitting diode (OLED. Introduction As a next generation display, the organic light emitting diode (OLED) has to great performances

Hwang, Sung Woo

26

Polymer OLED White Light Development Program  

SciTech Connect (OSTI)

OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the major polymer material suppliers to develop the polymer emissive technology. M&D was successful in demonstrating a 7-8 lm/W white light source which was based on fluorescent materials. However, it became apparent that the major gains in efficiency could only be made if phosphorescent materials were utilized. Thus, in order to improve the performance of the resulting devices, the focus of the project shifted towards development of solution-processable phosphorescent light emitting diodes (PHOLEDs) and device architectures. The result is a higher efficiency than the outlined project milestone.

Homer Antoniadis; Vi-En Choong; Stelios Choulis; Brian Cumpston; Rahul Gupta; Mathew Mathai; Michael Moyer; Franky So

2005-12-19T23:59:59.000Z

27

New Efficiency Record Achieved for White OLED Device  

Broader source: Energy.gov [DOE]

Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

28

World Record White OLED Performance Exceeds 100 lm/W  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

29

Design of interferometer system for Keda Torus eXperiment using terahertz solid-state diode sources  

SciTech Connect (OSTI)

A solid-state source based terahertz (THz) interferometer diagnostic system has been designed and characterized for the Keda Torus eXperiment (KTX). The THz interferometer utilizes the planar diodes based frequency multiplier (X48) to provide the probing beam at fixed frequency 0.650 THz, and local oscillator is provided by an independent solid-state diode source with tunable frequency (0.650 THz +/? 10 MHz). Both solid-state sources have approximately 1 mW power. The planar-diode mixers optimized for high sensitivity, ?750 mV/mW, are used in the heterodyne detection system, which permits multichannel interferometer on KTX with a low phase noise. A sensitivity of {sub min} = 4.5 × 10{sup 16} m{sup ?2} and a temporal resolution of 0.2 ?s have been achieved during the initial bench test.

Xie, Jinlin, E-mail: jlxie@ustc.edu.cn; Wang, Haibo; Li, Hong; Lan, Tao; Liu, Adi; Liu, Wandong; Yu, Changxuan [School of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ding, Weixing [School of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); University of California-Los Angeles, P. O. Box 957099, Los Angeles, California 90095-7099 (United States)

2014-11-15T23:59:59.000Z

30

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect (OSTI)

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

31

Compact and efficient method of RGB to RGBW data conversion for OLED microdisplays   

E-Print Network [OSTI]

Colour Electronic Information Displays (EIDs) typically consist of pixels that are made up of red, green and blue (RGB) subpixels. A recent technology, Organic Light Emitting Diode (OLED), offers the potential to create ...

Can, Chi

2012-06-25T23:59:59.000Z

32

High-Performance Organic Light-Emitting Diodes Using ITO  

E-Print Network [OSTI]

High-Performance Organic Light-Emitting Diodes Using ITO Anodes Grown on Plastic by Room,* Mark E. Madsen, Antonio DiVenere, and Seng-Tiong Ho Organic light-emitting diodes (OLEDs) fabricated

Ho, Seng-Tiong

33

My Favorite OLED Panel  

Energy Savers [EERE]

My Favorite OLED Panel Basar Erdener Sun and Snow Photo Courtesy 2009-2015 Kvikken 2 Sizable 3 Sizable Photo Courtesy Printmeneer on Etsy 4 5 Shapeable Photo Courtesy Dia...

34

Solid-state lighting technology perspective.  

SciTech Connect (OSTI)

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

35

Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Arto V. Nurmikko; Jung Han

2005-09-30T23:59:59.000Z

36

NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Arto V. Nurmikko; Jung Han

2004-10-01T23:59:59.000Z

37

COLLOIDAL ELECTROLUMINESCENCE: NOVEL ROUTES TO CONTROLLED EMISSION OF ORGANIC LIGHT EMITTING DIODE DEVICES.  

E-Print Network [OSTI]

??In recent years the importance of the organic light emitting diode (OLED) has grown immensely, and the past two decades have seen ongoing and exhaustive… (more)

Huebner, Christopher

2009-01-01T23:59:59.000Z

38

Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy  

E-Print Network [OSTI]

Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study injec- tion and transport layers in an organic light-emitting diode (OLED) structure has been studied B.V. All rights reserved. 1. Introduction OLEDs (organic light-emitting diodes) are display de

Kim, Sehun

39

Numerical analysis of nanostructures for enhanced light extraction from OLEDs  

E-Print Network [OSTI]

Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

2013-01-01T23:59:59.000Z

40

Achieving Record Efficiency for Blue OLEDs by Controlling the Charge Balance  

Broader source: Energy.gov [DOE]

Researchers at the University of Florida (UF) have demonstrated a blue phosphorescent organic light-emitting diode (OLED) with a peak power efficiency of 50 lm/W and an external quantum efficiency exceeding 20 percent at a luminance of 1,000 cd/m2, using no external light extraction techniques. This accomplishment is believed to be the world record in blue OLED efficiency.

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching  

E-Print Network [OSTI]

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching S, France *E-mail : sebastien.forget@univ-paris13.fr Keywords: OLED, quenching, doping, red-emitting organic. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red

Paris-Sud XI, Université de

42

Tunable, diode-pumped solid-state laser for scalpel with adjustable penetration depth  

SciTech Connect (OSTI)

Wide tunability and diode-pumped operation of a new class of tunable mid-infrared (IR) transition-metal lasers: Cr+2 doped zinc chalcogenides (ZnSe:Cr2+) lasers have been demonstrated.

Page, R.H.

1998-02-10T23:59:59.000Z

43

Solvent-enhanced Dye Diffusion in Polymer This-Films for OLED Application F. Pschenitzka, K. Long, and J. C. Sturm  

E-Print Network [OSTI]

Solvent-enhanced Dye Diffusion in Polymer This-Films for OLED Application F. Pschenitzka, K. Long (POEM), Princeton University, Princeton, NJ 08544 ABSTRACT A method of solvent-enhanced dye diffusion in polymer films for organic light-emitting diode (OLED) application is introduced. After an initial dye

44

White organic light-emitting diodes: Status and perspective  

E-Print Network [OSTI]

White organic light-emitting diodes (OLEDs) are ultrathin, large-area light sources made from organic semiconductor materials. Over the past decades, much research has been spent on finding suitable materials to realize ...

Reineke, Sebastian

45

UDC Demonstrates Phosphorescent OLED Systems  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

46

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect (OSTI)

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

47

LED Watch: The Outlook for OLEDs  

Broader source: Energy.gov [DOE]

December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

48

Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode  

E-Print Network [OSTI]

Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode are presented from polymer/molecular organic heterostructure light emitting diodes composed of a layer,2 organic light emitting diodes OLEDs utilizing fluorescent molecules have attracted considerable interest

49

Enhanced coupling of light from organic light emitting diodes using nanoporous films  

E-Print Network [OSTI]

Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

50

High Efficancy Integrated Under-Cabinet Phosphorescent OLED  

SciTech Connect (OSTI)

In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

Michael Hack

2001-10-31T23:59:59.000Z

51

Components, production processes, and recommendations for future research in organic light emitting diodes  

E-Print Network [OSTI]

Organic Light Emitting Diodes (OLEDs) are small, optoelectronic devices that can be used in the production of energy-efficient, high definition displays in cell phones, computers, and televisions. These devices have great ...

Hunting, Lindsay (Lindsay E.)

2009-01-01T23:59:59.000Z

52

Storage of charge carriers on emitter molecules in organic light-emitting diodes  

E-Print Network [OSTI]

Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)[subscript 2](acac)] are studied by time-resolved electroluminescence ...

Reineke, Sebastian

53

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect (OSTI)

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

54

Challenges in OLED Research and Development  

Broader source: Energy.gov [DOE]

View the video about OLED technology’s advantages and what is needed to move it fully into the lighting market.

55

Organic Light Emitting Diodes Using a Ga:ZnO Anode  

SciTech Connect (OSTI)

We report the application of gallium doped zinc oxide (GZO) films as anodes in organic light emitting diodes (OLEDs). Pulsed laser deposited GZO films of differing Ga composition are examined. Bilayer OLEDs using GZO and indium tin oxide (ITO) anodes are then compared. Relative to ITO, the GZO anodes have slightly better sheet resistance and transparency in the visible spectral region. Device data suggest GZO results in more effective hole injection into an aromatic triamine hole transporting layer. Indium free anodes are expected toimprove OLED stability while lowering the cost per unit area, crucial for OLED based lighting applications.

Berry, J. J.; Ginley, D. S.; Burrows, Paul E.

2008-05-12T23:59:59.000Z

56

4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display  

E-Print Network [OSTI]

4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode active matrix organic light emitting diode (AMOLED) pixel with high pixel to pixel luminance uniformity such as organic light emitting diodes (OLEDs) are presently of great interest due to their potential application

57

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design  

E-Print Network [OSTI]

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

Boyer, Edmond

58

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)  

E-Print Network [OSTI]

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

Hu, Wenchuang "Walter"

59

Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility  

SciTech Connect (OSTI)

Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

Hack, Michael

2013-09-30T23:59:59.000Z

60

Quantum Dot Light Emitting Diode  

SciTech Connect (OSTI)

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Keith Kahen

2008-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quantum Dot Light Emitting Diode  

SciTech Connect (OSTI)

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Kahen, Keith

2008-07-31T23:59:59.000Z

62

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

63

Light extraction from organic light-emitting diodes for lighting applications by sand-blasting  

E-Print Network [OSTI]

Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

64

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

SciTech Connect (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

65

White organic light-emitting diodes: Status and perspective  

E-Print Network [OSTI]

White organic light-emitting diodes (OLEDs) are ultra-thin, large-area light sources made from organic semiconductor materials. Over the last decades, much research has been spent on finding the suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color-tunability, and color-quality, white OLEDs are emerging to become one of the next generation light sources. In this review, we discuss the physics of a variety of device concepts that are introduced to realize white OLEDs based on both polymer and small molecule organic materi als. Owing to the fact that about 80 % of the internally generated photons are trapped within the thin-film layer structure, we put a second focus on reviewing promising concepts for improved light outcoupling.

Reineke, Sebastian; Lüssem, Björn; Leo, Karl

2013-01-01T23:59:59.000Z

66

Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters  

E-Print Network [OSTI]

The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ense...

Steiner, Florian; Vogelsang, Jan; Lupton, John M

2015-01-01T23:59:59.000Z

67

Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs  

SciTech Connect (OSTI)

In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a profound understanding of the EL dynamics of OLED, and the theoretical model can fit and explain the experiment data quite well. For the edge emission, we focused on the spectrum and the relative intensity of the edge emission. In the future, more research can be done on the comparison of the intensity between the total edge emission and the surface emission which will give us a sense what fraction of light was trapped in the device. Micro structures can be integrated into the OLED such as DFB and DBR, the character of edge emission should be very interesting. For the transient spike, the CCP model can give a good explanation. But in the model, the effect of the electric field change is not included, because from the start point (t=0), we assume the mobility of carriers is a constant. If we consider the details of the change of the electric field, then when turning of the bias, the decrease of the electric field results in decrease of the carrier mobility and the dissociation rate. If we can add the electric field effect into the model, the whole theory will be more convincing.

Zhengqing, Gan

2010-05-16T23:59:59.000Z

68

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

69

Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes  

E-Print Network [OSTI]

-coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

Meng, Hsin-Fei

70

A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.M.A. Dawson, Z. Shen, D.A. Furst, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri  

E-Print Network [OSTI]

A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.S.A. Abstract The design of an active matrix organic light emitting diode (AMOLED) display using a polysilicon. Introduction Organic light emitting diodes (OLEDs) are presently of great interest due to their potential

71

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

2011-01-02T23:59:59.000Z

72

Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing  

SciTech Connect (OSTI)

This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

Slafer, W. Dennis

2010-06-02T23:59:59.000Z

73

Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen  

SciTech Connect (OSTI)

We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (?g) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (?? < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under ?g conditions. In order to demonstrate the capabilities of the capsule laser as a tool for ?g combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany)] [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany)] [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)] [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

2014-03-15T23:59:59.000Z

74

A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms  

E-Print Network [OSTI]

We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:YVO$_4$ ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser was achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two PZTs in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

Miake, Yudai; O'Hara, Kenneth M; Gensemer, Stephen

2015-01-01T23:59:59.000Z

75

Low Voltage White Phosphorescent OLED Achievements  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

76

OLED Display with Single Grain Si TFT. (SG-TFT):.  

E-Print Network [OSTI]

??OLED is a current based device, which emitted amount of light depends on the current supplied to the device so steady current flow is needed.… (more)

Naeimi, A.

2011-01-01T23:59:59.000Z

77

OLED Manufacture Challenge: Strategy for Cost Reduction and Yield...  

Energy Savers [EERE]

activity in China will help to leverage the fund for potential market of OLED lighting: Eye-shielding Lamps for Children Shadowless Surgical Operating Lamp New Construction Design...

78

Organic light-emitting diodes from homoleptic square planar complexes  

DOE Patents [OSTI]

Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

Omary, Mohammad A

2013-11-12T23:59:59.000Z

79

OLED Stakeholder Meeting Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4,(National Renewable2014)OLED Stakeholder

80

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect (OSTI)

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode  

SciTech Connect (OSTI)

We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

2014-07-07T23:59:59.000Z

82

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 µm spectral region  

E-Print Network [OSTI]

APPLICATION OF AN ALL-SOLID-STATE DIODE-LASER-BASED SENSOR FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to the Office of Graduate... FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Rodolfo, Barron Jimenez

2005-02-17T23:59:59.000Z

83

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

SciTech Connect (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

84

Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes  

SciTech Connect (OSTI)

The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially pronounced in solution processed OLEDs lacking the accuracy and precision of fabrication found in their small molecule counterparts. From this point of view, it seems beneficial to develop materials allowing reduction of the operation bias voltage via improvement of the charge injection. The materials sought have to be compatible with solution-based fabrication process and allow easy incorporation of metal nanostructures.

Guillermo Bazan; Alexander Mikhailovsky

2008-08-01T23:59:59.000Z

85

Top-emitting Organic Light-Emitting Diode with a Cap Layer Chengfeng Qiu, Huajun Peng, Haiying Chen, Zhilang Xie,  

E-Print Network [OSTI]

, Kowloon, Hong Kong, China ABSTRACT For top emitting Organic Light-Emitting Diodes (OLED), the study of top layer is very important aiming to acquire good device performance. In this report, Pt as anode for Cu coated on glass as anode, copper (II) phthalocyanine (CuPc) as organic buffer layer, N,N'- diphenyl

Kwok, Hoi S.

86

Solvent-enhanced dye diffusion in polymer thin films for color tuning of organic light-emitting diodes  

E-Print Network [OSTI]

Solvent-enhanced dye diffusion in polymer thin films for color tuning of organic light; accepted for publication 27 February 2001 A method of solvent-enhanced dye diffusion in polymer films for organic light-emitting diode OLED application is introduced. After an initial dye transfer from a dye

87

Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode  

SciTech Connect (OSTI)

In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

2014-05-19T23:59:59.000Z

88

Laser diode package with enhanced cooling  

DOE Patents [OSTI]

A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

2012-06-12T23:59:59.000Z

89

Laser diode package with enhanced cooling  

DOE Patents [OSTI]

A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

2012-06-26T23:59:59.000Z

90

Laser diode package with enhanced cooling  

DOE Patents [OSTI]

A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

2011-09-13T23:59:59.000Z

91

A silicon current sensing amplifier and organic imager for an optical feedback OLED display  

E-Print Network [OSTI]

Organic LEDs (OLEDs) have the potential to be used to build thin, flexible cost effective displays. Currently, the primary drawback to their usage lies in the difficulty of producing OLEDs that emit light at a constant and ...

Lin, Albert, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

92

Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction  

SciTech Connect (OSTI)

Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

2011-06-06T23:59:59.000Z

93

MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes  

SciTech Connect (OSTI)

Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

2011-09-01T23:59:59.000Z

94

Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting  

SciTech Connect (OSTI)

In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

Mike Hack

2008-12-31T23:59:59.000Z

95

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers.  

E-Print Network [OSTI]

??Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon… (more)

Zhu, Jiayuan

2013-01-01T23:59:59.000Z

96

UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

97

Late Quaternary history of Washington Land, North Greenland OLE BENNIKE  

E-Print Network [OSTI]

Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260­272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

Ingólfsson, Ólafur

98

Roll-to-Roll Solution-Processible Small-Molecule OLEDs  

SciTech Connect (OSTI)

The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

Liu, Jie Jerry

2012-07-31T23:59:59.000Z

99

Diode-pumped Nd:YAG laser emitting at 899 nm Marc Castaing  

E-Print Network [OSTI]

Diode-pumped Nd:YAG laser emitting at 899 nm and below Marc Castaing Laboratoire Charles Fabry de l); published March 5, 2007 We present what is, to the best of our knowledge, the first diode-pumped Nd, or diode- pumped solid-state (DPSS) lasers. Classical wave- lengths of frequency-doubled DPSS blue lasers

Boyer, Edmond

100

Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition  

DOE Patents [OSTI]

The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

Krupke, William F. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA); Marshall, Christopher D. (Livermore, CA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations  

SciTech Connect (OSTI)

The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15?s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

Singh, Aarti, E-mail: aarti.singh@namlab.com; Schröder, Uwe [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany)] [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany)] [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)] [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany); Mikolajick, Thomas [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany) [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)

2013-12-02T23:59:59.000Z

102

Systematic Investigation of Nanoscale Adsorbate Effects at Organic Light-Emitting diode Interfaces. Interfacial Structure-Charge Injection-Luminance Relationships  

SciTech Connect (OSTI)

Molecule-scale structure effects at indium tin oxide (ITO) anode-hole transport layer (HTL) interfaces in organic light-emitting diode (OLED) heterostructures are systematically probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine precursors differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure and charge-injection/electroluminescence properties. These precursors form conformal and largely pinhole-free self-assembled monolayers (SAMs) on the ITO anode surface with angstrom-level thickness control. Deposition of a HTL on top of the SAMs places the probe molecules precisely at the anode-HTL interface. OLEDs containing ITO/SAM/HTL configurations have dramatically varied hole-injection magnitudes and OLED responses. These can be correlated with the probe molecular structures and electrochemically derived heterogeneous electron-transfer rates for such triarylamine fragments. The large observed interfacial molecular structure effects offer an approach to tuning OLED hole-injection flux over 1-2 orders of magnitude, resulting in up to 3-fold variations in OLED brightness at identical bias and up to a 2 V driving voltage reduction at identical brightness. Very bright and efficient ({approx}70 000 cd/m{sup 2}, {approx}2.5% forward external quantum efficiency, {approx}11 lm/W power efficiency) Alq (tris(8-hydroxyquinolinato)aluminum(III))-based OLEDs can thereby be fabricated.

Huang,Q.; Li, J.; Evmenenko, G.; Dutta, P.; Marks, T.

2006-01-01T23:59:59.000Z

103

Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes  

SciTech Connect (OSTI)

We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

Kondakov, Denis Y. [Eastman Kodak Company, Rochester, New York 14650-2103 (United States)

2008-10-15T23:59:59.000Z

104

Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes  

SciTech Connect (OSTI)

Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the deposition profile of material so that arbitrary concentration gradients can be implemented in layers with mixed composition. These concentration profiles are known to increase device efficiency and longevity and we confirmed that experimentally. Third, we investigated a new method for analyzing degradation in devices using mass spectrometry to look for degradation products. We showed that these methods are not simple to interpret unambiguously and need to be used with caution.

Tang, Ching; Chen, Shaw

2013-05-31T23:59:59.000Z

105

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect (OSTI)

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

106

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich  

E-Print Network [OSTI]

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

Oak Ridge National Laboratory

107

Enhancement of hole injection using O{sub 2} plasma-treated Ag anode for top-emitting organic light-emitting diodes  

SciTech Connect (OSTI)

We report the enhancement of hole injection using AgO{sub x} layer between Ag anode and 4,4{sup '}-bis[N-(1-naphtyl)-N-phenyl-amino]biphenyl in top-emitting organic light-emitting diode (OLED). The turn-on voltage of OLEDs decreased from 17 to 7 V as Ag changed to AgO{sub x} by the surface treatment using O{sub 2} plasma. Synchrotron radiation photoelectron spectroscopy results showed that the work function increased about 0.4 eV by the O{sub 2} plasma treatment. This led to the decrease of the energy barrier for hole injection, reducing the turn-on voltage of OLEDs.

Ho, Won Choi; Soo, Young Kim; Kim, Ki-Beom; Tak, Yoon-Heung; Lee, Jong-Lam [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Korea (Korea, Republic of); LG Electronics Inc., Kumi, Kyungbuk, 730-030 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of)

2005-01-03T23:59:59.000Z

108

Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror  

SciTech Connect (OSTI)

We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

2009-07-20T23:59:59.000Z

109

Vortex diode jet  

DOE Patents [OSTI]

A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

110

Ratchet Effect: Demonstration of a Relativistic Fluxon Diode  

SciTech Connect (OSTI)

We report the observation of the ratchet effect for a relativistic flux quantum trapped in an annular Josephson junction embedded in an inhomogeneous magnetic field. In such a solid state system, mechanical quantities are proportional to electrical quantities, so that the ratchet effect represents the realization of a relativistic-flux-quantum-based diode. Mean static voltage response, equivalent to directed fluxon motion, is experimentally demonstrated in such a diode for deterministic as well as stochastic oscillating current forcing.

Carapella, G.; Costabile, G.

2001-08-13T23:59:59.000Z

111

Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes  

SciTech Connect (OSTI)

Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (?{sub n}) is equal to the hole injection barrier (?{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ?{sub n}?>??{sub p} under the condition of electron mobility (?{sub 0n}) > hole mobility (?{sub 0p}), whereas the result for the case of ?{sub 0n}?OLED working mechanism and help in the future fabrication of high efficiency OLEDs.

Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong [College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 (China)

2014-04-28T23:59:59.000Z

112

Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution  

SciTech Connect (OSTI)

As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

Park, Jae-Hyung [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)], E-mail: seongoh@hanyang.ac.kr

2009-01-08T23:59:59.000Z

113

Ruggedized microchannel-cooled laser diode array with self-aligned microlens  

DOE Patents [OSTI]

A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

Freitas, Barry L.; Skidmore, Jay A.

2003-11-11T23:59:59.000Z

114

Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide  

SciTech Connect (OSTI)

The characteristics of green phosphorescent organic light-emitting diodes (OLEDs) fabricated on ITO/glass substrates pretreated with low-energy O{sub 2} and Cl{sub 2} plasma were compared. At 20 mA/cm{sup 2}, the OLEDs with O{sub 2} and Cl{sub 2} plasma-treated indium tin oxide (ITO) had voltages of 9.6 and 7.6 eV, and brightness of 9580 and 12380 cd/m{sup 2}, respectively. At {approx}10{sup 4} cd/m{sup 2}, the latter had a 30% higher external quantum efficiency and a 74% higher power efficiency. Photoelectron spectroscopies revealed that Cl{sub 2} plasma treatment created stable In-Cl bonds and raised the work function of ITO by up to 0.9 eV. These results suggest that the better energy level alignment at the chlorinated ITO/organic interface enhances hole injection, leading to more efficient and more reliable operation of the OLEDs. The developed plasma chlorination process is very effective for surface modification of ITO and compatible with the fabrication of various organic electronics.

Cao, X. A.; Zhang, Y. Q. [Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506 (United States)

2012-04-30T23:59:59.000Z

115

Sixth International Conference on Solid State Lighting, edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,  

E-Print Network [OSTI]

commercial white light emitting diodes (LEDs) rely on complicated fabrication methods to produce white light: Cadmium Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting Solid state lighting, in the form of white light emitting diodes (LEDs

Weiss, Sharon

116

Conference 5739, SPIE International Symposium Integrated Optoelectronic Devices, 22-27 Jan 2005, San Jose, CA Development of high power green light emitting diode dies in  

E-Print Network [OSTI]

, San Jose, CA Development of high power green light emitting diode dies in piezoelectric Ga in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

Wetzel, Christian M.

117

Novel phosphors for solid state lighting  

E-Print Network [OSTI]

Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

Furman, Joshua D

2010-11-16T23:59:59.000Z

118

Materials for solid state lighting  

SciTech Connect (OSTI)

Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

Johnson, S.G.; Simmons, J.A.

2002-03-26T23:59:59.000Z

119

Efficacy of 45 lm/W Achieved in White OLED  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) successfully demonstrated an all phosphorescent white organic light emitting diode (WOLED™) with a power efficacy of 45 lm/W at 1,000 cd/m2. This high-efficacy device was enabled by lowering the device operating voltage, increasing the outcoupling efficiency to ~40% from ~20%, and by incorporating highly efficient phosphorescent emitters that are capable of converting nearly all current passing through a WOLED into light.

120

Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts  

SciTech Connect (OSTI)

Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

2013-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overcoming Common Pitfalls: Energy Efficient Lighting Projects...  

Broader source: Energy.gov (indexed) [DOE]

I could talk for days about solid stat lighting, so I'll try not to drive you two nuts. Solid state lightening has three subsets, OLEDs, organic light emitting diodes and quantum...

122

Modular package for cooling a laser diode array  

DOE Patents [OSTI]

A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

Mundinger, David C. (Stockton, CA); Benett, William J. (Livermore, CA); Beach, Raymond J. (Livermore, CA)

1992-01-01T23:59:59.000Z

123

Driving conditions dependence of magneto-electroluminescence in tri-(8-hydroxyquinoline)-aluminum based organic light emitting diodes  

E-Print Network [OSTI]

we investigated the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum based organic light-emitting diodes (OLEDs) through the steady-state and transient method simultaneously. The MELs show the great different behaviors when we turn the driving condition from a constant voltage to a pulse voltage. For devices driven by the constant voltage, the MELs are similar with the literature data; for devices driven by the pulse voltage, the MELs are quite different, they firstly increase to a maximum then decrease as the magnetic field increases continuously. Negative MELs can be seen when both the magnetic field and driving voltage are high enough.

Peng, Qiming; Li, Xianjie; Li, Mingliang; Li, Feng

2011-01-01T23:59:59.000Z

124

Laser Diode Setup and Operation Eric Lochbrunner  

E-Print Network [OSTI]

Laser Diode Setup and Operation Eric Lochbrunner Diodes are a very important electrical of current. Laser diodes are complex semiconductors similar to regular diodes that convert an electrical of the diode to create laser activity. Light emitters are a key element in any fiber optic system

La Rosa, Andres H.

125

The Laser DiodeThe Laser Diode Jason HillJason Hill  

E-Print Network [OSTI]

a Laser Diode Works Edge Emitting Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n junctionn Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium

La Rosa, Andres H.

126

Diamond Schottky barrier diodes  

E-Print Network [OSTI]

Laboratory, to Suat for showing La Dolce vita, to Mash-hud and the right to ask questions, to Marina Antoniou and her future Romanian villa, to Zeeshan and our twin PhD-routes, to Hatice and her heinous Bukowskian nights To Alex and our Internautian nights... ....................... .. . .............. ....... ..... ......... 20 2.4.1 Introduction. . .. . .. . . . . .. . ...... ... . .. . .. . ... ..... . .. . .. . .............. 20 2.4.2 Schottky diodes...... ............ .................................... 20 2.4.3 Field effect transistors...

Brezeanu, Mihai

2008-03-11T23:59:59.000Z

127

Photonic crystal light emitting diode.  

E-Print Network [OSTI]

?? This master's thesis describe electromagnetic simulations of a gallium antimonide (GaSb) light emitting diode, LED. A problem for such devices is that most of… (more)

Leirset, Erlend

2010-01-01T23:59:59.000Z

128

LASER DIODE TECHNOLOGY AND APPLICATIONS Submitted to  

E-Print Network [OSTI]

and a normal diode and a light emitting diode. I will also define the terms homojunction and heterojunction, and is the main source of light in a light-emitting diode. Under suitable conditions, the electron and the hole

La Rosa, Andres H.

129

Resonance et contr^ole en cavite ouverte Jer^ome Hoepffner  

E-Print Network [OSTI]

R´esonance et contr^ole en cavit´e ouverte J´er^ome Hoepffner KTH, Sweden Avec Espen °Akervik, Uwe) From Rowley et al, JFM 2002 Self sustained cycle: perturbation growth pressure wave new perturbation localised and where are they sensitive ? #12;Optimal transient energy growth from initial conditions System

Hoepffner, Jérôme

130

Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays  

E-Print Network [OSTI]

transformation, low power 1. Introduction Displays are known to be among the largest power-consuming components devices. Unlike liquid crystal displays (LCD), OLED displays consume dramatically different power browser that renders web pages with power-optimized color schemes under user-supplied constraints. Driven

Zhong, Lin

131

Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes  

SciTech Connect (OSTI)

We investigate the properties of N,N?-[(Diphenyl-N,N?-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N?,N?-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2?,7,7?-tetrakis(N,N?-di-p-methylphenylamino)-9,9?-spirobifluorene (Spiro-TTB), and N,N?-di(naphtalene-1-yl)-N,N?-diphenylbenzidine (NPB). The influence of 2,2?-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4?wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35?.1?lm/W (74?.0?lm/W) at 1000?cd/m{sup 2} and reach a very high brightness of 10?000 cd/m{sup 2} at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

Murawski, Caroline, E-mail: caroline.murawski@iapp.de; Fuchs, Cornelius; Hofmann, Simone; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS Scotland (United Kingdom)

2014-09-15T23:59:59.000Z

132

Seventh International Conference on Solid State Lighting, Edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,  

E-Print Network [OSTI]

Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting and white-light LEDs The use of white light emitting diodes (LEDs emitting diodes[11] , though they are a less mature technology as compared to inorganic semiconductor

Weiss, Sharon

133

High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array  

DOE Patents [OSTI]

An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

Freitas, Barry L. (Livermore, CA)

1998-01-01T23:59:59.000Z

134

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

135

Thin planar package for cooling an array of edge-emitting laser diodes  

DOE Patents [OSTI]

A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

Mundinger, David C. (Stockton, CA); Benett, William J. (Livermore, CA)

1992-01-01T23:59:59.000Z

136

White organic light-emitting diodes with an ultra-thin premixed emitting layer  

E-Print Network [OSTI]

We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

2014-01-01T23:59:59.000Z

137

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

138

Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL  

SciTech Connect (OSTI)

An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

None

2012-07-15T23:59:59.000Z

139

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)  

E-Print Network [OSTI]

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum, Michigan 48202 Received February 6, 2001. Revised Manuscript Received May 16, 2001 Tris(8-hydroxyquinoline)aluminum

Schlegel, H. Bernhard

140

Emitron: microwave diode  

DOE Patents [OSTI]

The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

1982-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of ZnO Based Light Emitting Diodes and Laser Diodes.  

E-Print Network [OSTI]

??ZnO based homojunction light emitting diode, double heterojunction light emitting diode, embedded heterojunction random laser diode and Fabry-Perot nanowire laser devices were fabricated and characterized.… (more)

Kong, Jieying

2012-01-01T23:59:59.000Z

142

Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination  

SciTech Connect (OSTI)

Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

Parker, Ian

2012-02-29T23:59:59.000Z

143

Stacked white OLED having separate red, green and blue sub-elements  

DOE Patents [OSTI]

The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

2014-07-01T23:59:59.000Z

144

Enhanced vbasis laser diode package  

DOE Patents [OSTI]

A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

2014-08-19T23:59:59.000Z

145

Security Implications of OPC, OLE, DCOM, and RPC in Control Systems  

SciTech Connect (OSTI)

OPC is a collection of software programming standards and interfaces used in the process control industry. It is intended to provide open connectivity and vendor equipment interoperability. The use of OPC technology simplifies the development of control systems that integrate components from multiple vendors and support multiple control protocols. OPC-compliant products are available from most control system vendors, and are widely used in the process control industry. OPC was originally known as OLE for Process Control; the first standards for OPC were based on underlying services in the Microsoft Windows computing environment. These underlying services (OLE [Object Linking and Embedding], DCOM [Distributed Component Object Model], and RPC [Remote Procedure Call]) have been the source of many severe security vulnerabilities. It is not feasible to automatically apply vendor patches and service packs to mitigate these vulnerabilities in a control systems environment. Control systems using the original OPC data access technology can thus inherit the vulnerabilities associated with these services. Current OPC standardization efforts are moving away from the original focus on Microsoft protocols, with a distinct trend toward web-based protocols that are independent of any particular operating system. However, the installed base of OPC equipment consists mainly of legacy implementations of the OLE for Process Control protocols.

Not Available

2006-01-01T23:59:59.000Z

146

Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions  

SciTech Connect (OSTI)

In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

2014-02-15T23:59:59.000Z

147

Organic light emitting diodes with structured electrodes  

DOE Patents [OSTI]

A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

2012-12-04T23:59:59.000Z

148

Semiconductor Nanocrystals-Based White Light Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

Dai, Quanqin [ORNL; Hu, Michael Z. [ORNL; Duty, Chad E [ORNL

2010-01-01T23:59:59.000Z

149

Semiconductor-Nanocrystals-Based White Light-Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

Dai, Quanqin [ORNL; Duty, Chad E [ORNL; Hu, Michael Z. [ORNL

2010-01-01T23:59:59.000Z

150

DuPont Displays Develops Low-Cost Method of Printing OLED Panels  

Broader source: Energy.gov [DOE]

DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

151

Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses  

E-Print Network [OSTI]

We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

2015-01-01T23:59:59.000Z

152

High efficiency III-nitride light-emitting diodes  

DOE Patents [OSTI]

Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

2013-05-28T23:59:59.000Z

153

New red phosphor for near-ultraviolet light-emitting diodes with high color-purity  

SciTech Connect (OSTI)

New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

Wang, Zhengliang, E-mail: wzhl_ww@yahoo.com.cn [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China)] [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China); He, Pei; Wang, Rui [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)] [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China); Zhao, Jishou [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China)] [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China); Gong, Menglian [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)] [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

2010-02-15T23:59:59.000Z

154

Mercury: A Diode-Pumped Solid-State Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentorMercury cleanupphoton

155

23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission  

E-Print Network [OSTI]

23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission J. X. Sun, X. L;23.2 / J. X. Sun 2. Experimental Details The SOLED were fabricated on 75nm-ITO coated glass with a sheet

156

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network [OSTI]

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

157

Megahertz organic/polymer diodes  

DOE Patents [OSTI]

Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

2012-12-11T23:59:59.000Z

158

Light emitting diode color rendition properties.  

E-Print Network [OSTI]

??This paper discusses the color rendition capabilities of light emitting diodes (LEDs) and their relationship with the current standard for color rendition quality. The current… (more)

Hood, Sean

2013-01-01T23:59:59.000Z

159

Optical Semiconductor DevicesOptical Semiconductor Devices The Foundations of the Laser Diode  

E-Print Network [OSTI]

Glowing DiodeThe Glowing Diode ·· ""LuminousLuminous carborundum [siliconcarborundum [silicon carbide

La Rosa, Andres H.

160

SciTech Connect: Broad Spectrum Photoelectrochemical Diodes for...  

Office of Scientific and Technical Information (OSTI)

Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation Citation Details In-Document Search Title: Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Demonstration Assessment of Light-Emitting Diode (LED) Freezer...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

162

Demonstration Assessment of Light Emitting Diode (LED) Street...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This...

163

Broadband light-emitting diode  

DOE Patents [OSTI]

A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

164

Broadband light-emitting diode  

DOE Patents [OSTI]

A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

Fritz, I.J.; Klem, J.F.; Hafich, M.J.

1998-07-14T23:59:59.000Z

165

Scaling of solid state lasers for satellite power beaming applications  

SciTech Connect (OSTI)

The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

1994-01-01T23:59:59.000Z

166

Synergies Connecting the Photovoltaics and Solid-State Lighting Industries  

SciTech Connect (OSTI)

Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

Kurtz, S.

2003-05-01T23:59:59.000Z

167

Chemistry Department 2013 Summer Research Program  

E-Print Network [OSTI]

(PMDs). Such devices include dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs

168

Chemistry Department 2012 Summer Research Program  

E-Print Network [OSTI]

(PMDs). Such devices include dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs

169

Materials Research Lab -Research Internships in Science and Engineering http://www.mrl.ucsb.edu/mrl/outreach/educational/RISE/interns03.html[5/10/12 9:53:34 AM  

E-Print Network [OSTI]

and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education

Bigelow, Stephen

170

Highly efficient blue OLEDs based on diphenylaminofluorenylstyrenes end-capped with heterocyclic aromatics  

SciTech Connect (OSTI)

In this paper, we have designed four diphenylaminofluorenylstyrene derivatives end-capped with heterocyclic aromatic groups, such as 9-phenylcabazole, 4-dibenzofuran, 2-benzoxazole, 2-quinoxaline, respectively. These materials showed blue to red fluorescence with maximum emission wavelengths of 476–611 nm, respectively, which were dependent on the structural and electronic nature of end-capping groups. To explore the electroluminescent properties of these materials, multilayer OLEDs were fabricated in the following sequence: ITO/DNTPD (40 nm)/NPB (20 nm)/2% doped in MADN (20 nm)/Alq{sub 3} (40 nm)/Liq. (1 nm)/Al. Among those, a device exhibited a highly efficient blue emission with the maximum luminance of 14,480 cd/m{sup 2} at 9 V, the luminous efficiency of 5.38 cd/A at 20 mA/cm{sup 2}, power efficiency of 2.77 lm/W at 20 mA/cm{sup 2}, and CIE{sub x,y} coordinates of (0.147, 0.152) at 8 V, respectively.

Oh, Suhyun [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)] [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Kum Hee; Kim, Young Kwan [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)] [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

2012-10-15T23:59:59.000Z

171

Advanced laser diodes for sensing applications  

SciTech Connect (OSTI)

The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

2000-01-01T23:59:59.000Z

172

Thermal pumping of light-emitting diodes  

E-Print Network [OSTI]

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

173

Bypass diode for a solar cell  

DOE Patents [OSTI]

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

174

Stacked Switchable Element and Diode Combination  

DOE Patents [OSTI]

A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

Branz, H. M.; Wang, Q.

2006-06-27T23:59:59.000Z

175

Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method  

E-Print Network [OSTI]

that of the incandescent bulb and comparable with that of the fluorescent tube. OLEDs are a true sur- face/area lighting

176

Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces  

SciTech Connect (OSTI)

A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

Czarske, Juergen; Moebius, Jasper; Moldenhauer, Karsten

2005-09-01T23:59:59.000Z

177

Water Cooling of High Power Light Emitting Diode Henrik Srensen  

E-Print Network [OSTI]

Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

Berning, Torsten

178

Deterministic polarization chaos from a laser diode  

E-Print Network [OSTI]

Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.

Martin Virte; Krassimir Panajotov; Hugo Thienpont; Marc Sciamanna

2014-07-22T23:59:59.000Z

179

First Assemblies Using Deep Trench Termination Diodes  

E-Print Network [OSTI]

First Assemblies Using Deep Trench Termination Diodes F. Baccar, L. Théolier, S. Azzopardi, F. Le Trench Termination (DT2 ), are analyzed in a reliability purpose. For the first time, assemblies are made. As a consequence, to improve the breakdown voltage, it is necessary to create an adequate edge termination

Paris-Sud XI, Université de

180

Uniform insulation applied-B ion diode  

DOE Patents [OSTI]

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Entangled Light Emission From a Diode  

SciTech Connect (OSTI)

Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

Stevenson, R. M.; Shields, A. J. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Salter, C. L. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, I.; Nicoll, C. A.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2011-12-23T23:59:59.000Z

182

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,  

E-Print Network [OSTI]

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

183

The Pierce-diode approximation to the single-emitter plasma diode  

SciTech Connect (OSTI)

The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the ({epsilon},{eta}) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.

Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I. [Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation); Department of Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation)

2006-11-15T23:59:59.000Z

184

Organic light-emitting diodes using open-shell molecule as emitter: the emission from doublet  

E-Print Network [OSTI]

We fabricate OLEDs using a stable neutral {\\pi} radical, BDPA, as the emitter. There is only one electron in the singly occupied molecular orbital (SOMO) of this open-shell molecule. This feature makes the excited state of open-shell molecules be neither singlet nor triplet, but doublet. The key issue of how to harvest the triplet energy in an OLED is thus bypassed, due to the radiative decay of doublet is totally spin allowed. In the BDPA-based OLED, the emission was confirmed to be from the electronic transition from LUMO to SOMO, via the frontier molecular orbital analysis combined with the spectroscopy measurements. The maximum luminance of the OLEDs is 4879 cd/m2 which is comparable to the first reported Fluorescence-, Phosphorecence- and TADF-based OLEDs.

Peng, Qiming; Chen, Youchun; He, Chuanyou; Obolda, Ablikim; Li, Feng

2014-01-01T23:59:59.000Z

185

Nanoengineering for solid-state lighting.  

SciTech Connect (OSTI)

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

186

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

187

Infrared photoemitting diode having reduced work function  

DOE Patents [OSTI]

In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

Hirschfeld, T.B.

1982-05-06T23:59:59.000Z

188

Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants  

SciTech Connect (OSTI)

The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

J. K. Partin

2006-08-01T23:59:59.000Z

189

Low frequency noise measurements of resonant tunnel diodes  

E-Print Network [OSTI]

-n junctions, and tunnel diodes 9] ~ Techniques for obtaining information such as energy levels, lifetimes, and concentrations of these conduction mechanisms have been determined for Schottky barriers, p-n junctions, and tunnel diodes. Some...LOW FREQUENCY NOISE MEASUREMENTS OF RESONANT TUNNEL DIODES A Thesis by SAMUEL SIMON VILLAREAL Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Villareal, Samuel Simon

2012-06-07T23:59:59.000Z

190

Organic-Inorganic Hetero Junction White Light Emitting Diode.  

E-Print Network [OSTI]

?? The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material… (more)

Lubuna Beegum, Shafeek

2008-01-01T23:59:59.000Z

191

Plasma-filled diode based on the coaxial gun  

SciTech Connect (OSTI)

The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N. [Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055 Tomsk (Russian Federation)

2012-10-15T23:59:59.000Z

192

RAPID COMMUNICATION CW DFB RT diode laser-based sensor for trace-gas detection  

E-Print Network [OSTI]

wave thermoelectrically cooled, distributed feedback diode laser will be described. The CW TEC DFB- moelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy

193

White light emitting diode as liquid crystal display backlight ; High brightness light emitting diode as liquid crystal display backlight .  

E-Print Network [OSTI]

??The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One… (more)

Soon, Chian Myau

2007-01-01T23:59:59.000Z

194

E-Print Network 3.0 - avalanche diode array Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes 5. The inductance, La... Improved Light Output of Photonic Crystal Light Emitting Diode Fabricated by Anodized Aluminum Oxide Nano... -patterns , , ( ), , ( ) 16:30...

195

High power light emitting diode based setup for photobleaching fluorescent impurities  

E-Print Network [OSTI]

High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

Kaufman, Laura

196

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect (OSTI)

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

197

Bypass diode for a solar cell  

DOE Patents [OSTI]

Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

2013-11-12T23:59:59.000Z

198

Sandia National Laboratories: light-emitting diode  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locatinglight-emitting diode Sandian

199

RICE UNIVERSITY A Narrow Linewidth Diode Laser System for Strontium  

E-Print Network [OSTI]

RICE UNIVERSITY A Narrow Linewidth Diode Laser System for Strontium Laser Cooling Applications for Strontium Laser Cooling Applications by Sarah B. Nagel The diode laser system for laser cooling on the 1 S0 3 P1 intercombination line of strontium discussed in this thesis allows us to cool and trap

Killian, Thomas C.

200

TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT  

E-Print Network [OSTI]

1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

Pang, Grantham

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)  

SciTech Connect (OSTI)

This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

2013-05-01T23:59:59.000Z

202

Solid Waste (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

203

Experimental and theoretical insights into the sequential oxidations of 3-2spiro molecules derived from oligophenylenes  

E-Print Network [OSTI]

been the design of efficient and stable blue light emitters for organic light-emitting diodes (OLED in organic light emitting diode (OLED) leading to violet to blue light emitting devices. [31

Paris-Sud XI, Université de

204

Quaternary InGaAsSb Thermophotovoltaic Diodes  

SciTech Connect (OSTI)

In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

2006-03-09T23:59:59.000Z

205

SOLUTION-PROCESSED INORGANIC ELECTRONICS  

E-Print Network [OSTI]

Electrodes for Dye-Sensitized Solar Cells,” Nano Letters,diodes (OLEDs), dye- sensitized solar cells, as well as

Bakhishev, Teymur

2011-01-01T23:59:59.000Z

206

REFINING THE SONIC FLASHLIGHT FOR INTERVENTIONAL PROCEDURES  

E-Print Network [OSTI]

/or color display. For the latest handheld SF, a 54.8mm (diagonal) organic light emitting diode (OLED

Stetten, George

207

E-Print Network 3.0 - alters peripheral vascular Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inserted... , interventional radiology; IV, intravenous; OLED, organic light-emitting diode; PICC, peripherally inserted Source: Stetten, George - Department of...

208

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

Bulicz, Tytus R. (Hickory Hills, IL)

1990-01-01T23:59:59.000Z

209

Graphene/GaN diodes for ultraviolet and visible photodetectors  

SciTech Connect (OSTI)

The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

2014-08-18T23:59:59.000Z

210

Diode laser welding of aluminum to steel  

SciTech Connect (OSTI)

Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

2011-05-04T23:59:59.000Z

211

Low-cost laser diode array  

DOE Patents [OSTI]

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

212

Low-cost laser diode array  

DOE Patents [OSTI]

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

213

A study of temperature compensating circuits for voltage references which use negative temperature coefficient zener diodes  

E-Print Network [OSTI]

Character- istics in Breakdown Region . 13 3f. 1N 751 Zener Diode Voltage vs Current Character- istics in Breakdown Region . 14 3g, lN752 Zener Diode Voltage vs Current Character- istics in Breakdown Region 15 4a. 1N746 Zener Diode Ambient Temperature... vs Voltage Characteristics in Breakdown Region. . . . . . . . . . 16 4b. IN747 Zener Diode Ambient Temperature vs Voltage Characteristics in Breakdown Region. . . . . . . . . . 17 4c. 1N748 Zener Diode Ambient Temperature vs Voltage...

Coleman, Spencer Delano

1961-01-01T23:59:59.000Z

214

Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches  

SciTech Connect (OSTI)

A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ?40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang 621900 (China)

2014-09-15T23:59:59.000Z

215

Thermo-electrically pumped semiconductor light emitting diodes  

E-Print Network [OSTI]

Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

Santhanam, Parthiban

2014-01-01T23:59:59.000Z

216

White light emitting diode as liquid crystal display backlight  

E-Print Network [OSTI]

The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One of the most promising sectors would be using white LED to ...

Soon, Chian Myau

2007-01-01T23:59:59.000Z

217

Phonon diodes and transistors from magneto-acoustics  

E-Print Network [OSTI]

By sculpting the magnetic field applied to magneto-acoustic materials, phonons can be used for information processing. Using a combination of analytic and numerical techniques, we demonstrate designs for diodes (isolators) ...

Sklan, Sophia Robin

218

Electro-luminescent cooling: light emitting diodes above unity efficiency  

E-Print Network [OSTI]

Experimental demonstration of net electro-luminescent cooling in a diode, or equivalently electroluminescence with wall-plug efficiency greater than unity, had eluded direct observation for more than five decades. We review ...

Santhanam, Parthiban

219

Injection locking of laser diodes for microwave signal generation  

E-Print Network [OSTI]

INJECTION LOCKING OF LASER DIODES FOR MICROWAVE SIGNAL GENERATION A Thesis by BEN-MOU YU Submitted to the Graduate College of Texas ARM University in partial fulfillment. of the requirement. for the degree of MASTER OF SCIENCE August 1987... Major Subject: Electrical Engineering INJECTION LOCKING OF LASER DIODES FOR MICROWAVE SIGNAL GENERATION A Thesis BEN. -MOU YU Approved as to style and content by: Taylor, Henry . (E. E. ) (Chairman of Committee) Chang, Kai (E. E. ) (Member) 0...

Yu, Ben-Mou

2012-06-07T23:59:59.000Z

220

Ion implanted step recovery diodes - influence of material parameter variations  

E-Print Network [OSTI]

ION IMPLANTED STEP RECOVERY DIODES ? INFLUENCE OF MATERIAL PARAMETER VARIATIONS A Thesis by THOMAS MICHAEL MOSMAN Submitted to the Craduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1974 Major Subject: Electrical Engineering ION IMPLANTED STEP RECOVERY DIODES ? INFLUENCE OF MATERIAL PARAMETER VARIATIONS A Thesis by THOMAS MICHAEL MOSMAN Approved as to style and content by: (Chairman of Committee) (Head f...

Mosman, Thomas Michael

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

InGaAsSb thermophotovoltaic diode physics evaluation  

SciTech Connect (OSTI)

The hotside operating temperatures for many projected thermophotovoltaic (TPV) conversion system applications are approximately 1,000 C, which sets an upper limit on the TPV diode bandgap of 0.6 eV from efficiency and power density considerations. This bandgap requirement has necessitated the development of new diode material systems, never previously considered for energy generation. To date, InGaAsSb quaternary diodes grown lattice-matched on GaSb substrates have achieved the highest performance. This report relates observed diode performance to electro-optic properties such as minority carrier lifetime, diffusion length and mobility and provides initial links to microstructural properties. This analysis has bounded potential diode performance improvements. For the 0.52 eV InGaAsSb diodes used in this analysis the measured dark current is 2 {times} 10{sup {minus}5} A/cm{sup 2}, versus a potential Auger limit 1 {times} 10{sup {minus}5} A/cm{sup 2}, a radiative limit of 2 {times} 10{sup {minus}6} A/cm{sup 2} (no photon recycling), and an absolute thermodynamic limit of 1.4 {times} 10{sup {minus}7} A/cm{sup 2}. These dark currents are equivalent to open circuit voltage gains of 20 mV (7%), 60 mV (20%) and 140 mV (45%), respectively.

Charache, G.W.; Baldasaro, P.F.; Danielson, L.R. [Lockheed-Martin, Inc., Schenectady, NY (United States)] [and others

1998-06-01T23:59:59.000Z

222

Rotary bulk solids divider  

DOE Patents [OSTI]

An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

223

Laser cooling of solids  

SciTech Connect (OSTI)

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

224

Tetraphenylborate Solids Stability Tests  

SciTech Connect (OSTI)

Tetraphenylborate solids provide a potentially large source of benzene in the slurries produced in the In-Tank Precipitation process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene.

Walker, D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

1997-12-19T23:59:59.000Z

225

Solid State Division  

SciTech Connect (OSTI)

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

226

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

227

Solid Waste Management Written Program  

E-Print Network [OSTI]

Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

Pawlowski, Wojtek

228

Subdue solids in towers  

SciTech Connect (OSTI)

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

229

Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine  

SciTech Connect (OSTI)

The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

1992-05-01T23:59:59.000Z

230

Electrical Characterization of Layer-Exchange Solid-Phase Epitaxy Si Diode Junctions  

E-Print Network [OSTI]

. The controllability of the growth location and dimensions, practically unchanged when the downscale is reduced nitride (SiNx) spacer technology [14], mature in our research laboratory, has L 408 #12;been used: a 300

Technische Universiteit Delft

231

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

Bulicz, T.R.

1990-04-17T23:59:59.000Z

232

Optical and electrical investigations into cathode ignition and diode closure  

SciTech Connect (OSTI)

The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes. 13 refs., 11 figs.

Coogan, J.J.; Rose, E.A.; Shurter, R.P.

1991-01-01T23:59:59.000Z

233

Method and system for homogenizing diode laser pump arrays  

DOE Patents [OSTI]

An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

Bayramian, Andy J

2013-10-01T23:59:59.000Z

234

THE FABRICATION AND ANALYSIS OF QUANTUM-DOT THIN FILM LIGHT EMITTING DIODES FOR USE IN DISPLAYS TECHNOLOGIES.  

E-Print Network [OSTI]

??The quantum dot has many applications, one of which is the light emitting diode. Quantum dot light emitting diodes were fabricated for their use in… (more)

Pickering, Shawn

2011-01-01T23:59:59.000Z

235

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide  

E-Print Network [OSTI]

The p–n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p–n junctions, the ...

Baugher, Britton W. H.

236

Injection and transport processes in organic light emitting diodes based on N. Huby a,b  

E-Print Network [OSTI]

1 Injection and transport processes in organic light emitting diodes based on a silole. N. Huby a- conductors in light emitting diodes1 . The different fields of research around the organic electronic allowed

Boyer, Edmond

237

Harmonic wavelet analysis of modulated tunable diode laser absorption spectroscopy signals  

E-Print Network [OSTI]

of the direct absorption characteristics of atomic or molecular absorption lines. This is accomplishedHarmonic wavelet analysis of modulated tunable diode laser absorption spectroscopy signals Hong analyses of tunable diode laser absorption spectroscopy signals were performed. The absorption spectroscopy

Cheng, Harry H.

238

High-Efficiency and Stable White Organic Light-Emitting Diode...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter Presenter: Jian...

239

E-Print Network 3.0 - algainp light-emitting diodes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by sequentially adding components of different types. Six hundred AlGaInP GaAs light- emitting diode segments... of 600 AlGaInP GaAs light-emitting diodes (LEDs) onto device...

240

Multispectral imaging of the ocular fundus using light emitting diode illumination  

E-Print Network [OSTI]

Multispectral imaging of the ocular fundus using light emitting diode illumination N. L. Everdell,1 on light emitting diode LED illumination that produces multispectral optical images of the human ocular

Claridge, Ela

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode  

SciTech Connect (OSTI)

We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv, E-mail: rprakash.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)] [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

2013-12-15T23:59:59.000Z

242

2.0 Diode Applications 1 of 31 2.1 Introduction  

E-Print Network [OSTI]

2.0 Diode Applications 1 of 31 2.1 Introduction 2.2 Load-Line Analysis #12;2.0 Diode Applications 2 of 31 Drawing the load line and finding the point of operation. Drawing the load line. 1) Redraw the circuit with the diode on the right. 2) Remove the diode and find a couple of points on the curve of VD vs

Allen, Gale

243

Electromagnetic power loss in open coaxial diodes and the Langmuir-Blodgett law  

SciTech Connect (OSTI)

The space charge limited current in coaxial diodes with electromagnetic power loss is studied. The Langmuir-Blodgett law is expressed in terms of the electromagnetic power loss and the applied voltage. Particle-in-cell simulations of photodiode-like situations and high power diodes confirm the relation between the applied voltage, diode voltage, and electromagnetic power loss.

Kumar, Raghwendra; Biswas, Debabrata [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2010-10-15T23:59:59.000Z

244

Benefits of Silicon Carbide Schottky Diodes in Boost APFC Operating in CCM  

E-Print Network [OSTI]

Benefits of Silicon Carbide Schottky Diodes in Boost APFC Operating in CCM Sam Ben lossless snubber to a design with a Silicon Carbide (SiC) diode without snubber. The theoretical of the Silicon Carbide (SiC) Schottky diodes (Infineon) changes the pictures completely. As will be detailed

245

Correlation between the Indium Tin Oxide morphology and the performances of polymer light-emitting diodes  

E-Print Network [OSTI]

: This paper reports on performance enhancement of polymer light-emitting diodes (PLEDs) based on poly(2,5-bis. Keywords : Polymer light emitting diode; Indium tin oxide; Atomic force microscopy; Rutherford backscattering spectroscopy 1. Introduction Polymer light-emitting diodes (PLEDs) have received worldwide

Paris-Sud XI, Université de

246

High efficiency light emitting diode with anisotropically etched GaN-sapphire interface  

E-Print Network [OSTI]

High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

247

Space charge spectroscopy of integrated quantum well infrared photodetectorlight emitting diode  

E-Print Network [OSTI]

Space charge spectroscopy of integrated quantum well infrared photodetector±light emitting diode M ± light emitting diode (QWIP-LED). Quasistatic capacitance±voltage (C±V ) characteristics under reverse.V. All rights reserved. Keywords: Quantum-well infrared photodetector; Light-emitting diode; Space charge

Perera, A. G. Unil

248

Light extraction analysis and enhancement in a quantum dot light emitting diode  

E-Print Network [OSTI]

Light extraction analysis and enhancement in a quantum dot light emitting diode Ruidong Zhu outcoupling and angular performance of quantum dot light emitting diode (QLED). To illustrate the design principles, we use a red QLED as an example and compare its performance with an organic light emitting diode

Wu, Shin-Tson

249

Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs)  

E-Print Network [OSTI]

Depth of cure and compressive strength of dental composites cured with blue light emitting diodes with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do reserved. Keywords: Blue light emitting diodes; Light curing unit; Composites; Irradiance; Spectrum; Depth

Ashworth, Stephen H.

250

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes  

E-Print Network [OSTI]

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes Jung Min Lee, Jae a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics, light-emitting diodes, 3D architectures, transparent electrodes V ertical arrays of one-dimensional (1D

Rogers, John A.

251

Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate  

E-Print Network [OSTI]

Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

Vuckovic, Jelena

252

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer  

E-Print Network [OSTI]

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

253

Point defect engineered Si sub-bandgap light-emitting diode  

E-Print Network [OSTI]

Point defect engineered Si sub-bandgap light-emitting diode Jiming Bao1 , Malek Tabbal1,2 , Taegon light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction OCIS codes: (230.3670) Light-emitting diodes; (160.6000) Semiconductors; (130-0250) Optoelectronics

Bao, Jiming

254

Low-Voltage CMOS Temperature Sensor Design Using Schottky Diode-Based References  

E-Print Network [OSTI]

have been used for many years in systems such as air conditioners, heating systems, and automotive-delta temperature sensor using Schottky diode-based current references as a replacement for the traditional PN diode as a replacement for the tradition PN junction diode in a temperature sensor. It also explores

Baker, R. Jacob

255

Poly (p-phenyleneacetylene) light-emitting diodes  

DOE Patents [OSTI]

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

1994-10-04T23:59:59.000Z

256

Fabrication of poly(p-phenyleneacetylene) light-emitting diodes  

DOE Patents [OSTI]

Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

1994-08-02T23:59:59.000Z

257

Composition monitoring of electron beam melting processes using diode lasers  

SciTech Connect (OSTI)

Electron beam melting processes are used to produce high purity alloys for a wide range of applications. Real time monitoring of the alloy constituents, however, has historically been difficult. Absorption spectroscopy using diode lasers provides a means for measuring constituent densities, and hence alloy composition, in real time. Diode lasers are suggested because they are inexpensive and require little maintenance. There is increasing interest in the composition and quality control of titanium alloys used in aircraft parts. For this reason we describe a proposed system for composition monitoring of titanium alloys. Performance and cost of the proposed system is addressed. We discuss the applicability of this approach to other alloys.

Berzins, L.V.

1991-11-20T23:59:59.000Z

258

Broadband laser diode emitting at 1. 28. mu. m wavelength  

SciTech Connect (OSTI)

This letter presents a broadband laser diode (LD) emitting at the 1.28 ..mu..m wavelength fabricated by introducing an absorption region (300 ..mu..m long) into a conventional 600-..mu..m-long InGaAsP laser diode. The LD operates by the pulsed modulation of a high peak current whose repetition rate and duty cycle are respectively 200 kHz and 5%. The typical output power and the spectral width of the LD are 3.8 mW and 58 A, and the measured coherence length is 210 ..mu..m.

Takada, K.; Noda, J.

1985-10-15T23:59:59.000Z

259

An analysis of a germanium diode detector circuit  

E-Print Network [OSTI]

LIBRARY 4 g M C~LLEGE OF TEXAS AN ANALYSIS OF A GERMANIUIE DIODE DETECTOR CIRCUIT A Thesis Ray LaVon Jones Submitted. to the Graduate School of the Agricultural and IiIechanical Coils~. e of Texas in partial fulfillment of' the requirement... for the de, ;, :. roe of LIASTER OF SCIENICE August 1956 Major Subject: Electrical Engineering LIBRARY l k M COLLEGE OF TEXIIS AN ANALYSIS OE A G ", :A iIU: DIODE DJ''T ETON CINCUIT A Thesis i?ay LaVon Jones ApDroved. a; :o style and content by: a...

Jones, Ray LaVon

2012-06-07T23:59:59.000Z

260

Poly (p-phenyleneneacetylene) light-emitting diodes  

DOE Patents [OSTI]

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

1994-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fabrication of poly(p-phenyleneacetylene) light-emitting diodes  

DOE Patents [OSTI]

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

1994-08-02T23:59:59.000Z

262

Solid Waste Management (Connecticut)  

Broader source: Energy.gov [DOE]

Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

263

Mixed oxide solid solutions  

DOE Patents [OSTI]

The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

2003-01-01T23:59:59.000Z

264

Solid Electrolyte Batteries  

Broader source: Energy.gov (indexed) [DOE]

Kim Texas Materials Institute The University of Texas at Austin Solid Electrolyte Batteries This presentation does not contain any proprietary or confidential information. DOE...

265

Solid Waste Management (Indiana)  

Broader source: Energy.gov [DOE]

The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

266

Solid Waste Permits (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

267

Solid-State Lighting  

Broader source: Energy.gov (indexed) [DOE]

research and design. Quality LED luminaires require program designed to successfully move solid-state lighting precise design of several components -LED arrays, electronic into the...

268

Solid Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

269

Photodiode arrays having minimized cross-talk between diodes  

SciTech Connect (OSTI)

Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

Guckel, Henry (Madison, WI); McNamara, Shamus P. (Madison, WI)

2000-10-17T23:59:59.000Z

270

Measurement of nitric oxide with an antimonide diode laser  

E-Print Network [OSTI]

lasers while retaining the practical advantages of room- temperature or thermoelectrically cooled the selective detection of NO under reduced pressure conditions was identified. With wavelength- modulation cooling is not required. © 1997 Optical Society of America Key words: Diode laser, antimonide, nitric

271

Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency  

E-Print Network [OSTI]

A heated semiconductor light-emitting diode at low forward bias voltage V

Santhanam, Parthiban

272

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents [OSTI]

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

273

Fabrication of a Molecular Self-Assembled Monolayer Diode Using  

E-Print Network [OSTI]

techniques are often incompatible with the conditions necessary to self-assemble single molecules. HenceFabrication of a Molecular Self-Assembled Monolayer Diode Using Nanoimprint Lithography Michael D the conductance characteristics of a molecular self-assembled monolayer (SAM) using nanoimprint lithography (NIL

274

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents [OSTI]

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

275

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

1993-03-02T23:59:59.000Z

276

Solid Flame: Fundamentals and  

E-Print Network [OSTI]

;Self-propagating High-temperature Synthesis (SHS) Or Combustion Synthesis TECHNOLOGY FOR MATERIAL (solid) ignition front propagation cooling The Phenomenon of Wave Localization for Solid State Self-propagating) 1.0000 Temperature (K) 2744 Gas products amount (mol) 6.00E-15 Products heat capacity (J/K) 74

Mukasyan, Alexander

277

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

278

ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes  

SciTech Connect (OSTI)

By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

David P. Norton; Stephen Pearton; Fan Ren

2007-09-30T23:59:59.000Z

279

Management of Solid Waste (Oklahoma)  

Broader source: Energy.gov [DOE]

The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

280

2014 Solid-State Lighting Manufacturing R&D Workshop Presentations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Moderator U.S. OLED Lighting Manufacturing Status and Trends John Hamer, OLEDWorks DOE-SSL Manufacturing Workshop Eric Armour, Veeco Instruments Perspectives on Domestic...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solid Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

282

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

283

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

284

Application of spherical diodes for megavoltage photon beams dosimetry  

SciTech Connect (OSTI)

Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose using the spherical diode described in this work show its feasibility for the dosimetry of megavoltage photon beams. A particularly important feature is its good angular response in the MV range. They would be good candidates forin vivo dosimetry, and quality assurance of VMAT and tomotherapy, and other modalities with beams irradiating from multiple orientations, such as Cyberknife and ViewRay, with minor modifications.

Barbés, Benigno, E-mail: bbarbes@unav.es [Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra (Spain)] [Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra (Spain); Azcona, Juan D. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)] [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain); Burguete, Javier [Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra (Spain)] [Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra (Spain); Martí-Climent, Josep M. [Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)] [Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)

2014-01-15T23:59:59.000Z

285

Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR  

SciTech Connect (OSTI)

This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

Miller, Naomi

2011-07-01T23:59:59.000Z

286

Solids Accumulation Scouting Studies  

SciTech Connect (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

287

Solid Waste Management (Kansas)  

Broader source: Energy.gov [DOE]

This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

288

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

289

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

290

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

291

P-78 / H. J. Peng 516 SID 03 DIGEST  

E-Print Network [OSTI]

, Clear Water Bay, Kowloon, Hong Kong Abstract An organic light emitting diode with a microcavity calculations. 1. Introduction Organic light emitting diodes (OLEDs) are challenging liquid crystal displays organic light emitting diodes (b) the normal direction electroluminescent spectra of devices

Kwok, Hoi S.

292

Metal silicide/poly-Si Schottky diodes for uncooled microbolometers  

E-Print Network [OSTI]

Nickel silicide Schottky diodes formed on polycrystalline Si films are proposed as temperature sensors of monolithic uncooled microbolometer IR focal plane arrays. Structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by transmission electron microscopy. The Ni silicide has been identified as two-phase compound with the volume fraction of Ni_2Si:NiSi>~4:1. Two potential barriers (~0.74 and ~0.51 meV) are registered by photo-emf spectroscopy at 80K and attributed to Ni/Si and Ni-silicide/Si interfaces. I-V characteristics of the diodes studied at different temperatures demonstrate temperature coefficients of voltage and current to vary in absolute value from 0.3 to 0.6%/K for forward biased structures and around 2.5%/K for reverse biased ones.

Chizh, K V; Kalinushkin, V P; Resnik, V Ya; Storozhevykh, M S; Yuryev, V A

2013-01-01T23:59:59.000Z

293

Neutron irradiation effects on gallium nitride-based Schottky diodes  

SciTech Connect (OSTI)

Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States)] [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

2013-10-14T23:59:59.000Z

294

Flip-chip light emitting diode with resonant optical microcavity  

SciTech Connect (OSTI)

A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

Gee, James M.; Bogart, Katherine H.; Fischer, Arthur J.

2005-11-29T23:59:59.000Z

295

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents [OSTI]

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

296

Solid Target Options S. Childress  

E-Print Network [OSTI]

power is higher than for existing solid target designs - but not by a large factor. · NuMI graphite beam power) · High beam power solid targets frequently use higher z materials for increased yield plusSolid Target Options NuFACT'00 S. Childress Solid Target Options · The choice of a primary beam

McDonald, Kirk

297

International trends in solid-state lighting : analyses of the article and patent literature.  

SciTech Connect (OSTI)

We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).

Tsao, Jeffrey Yeenien; Huey, Mark C. (Strategic Perspectives, Incorporated, McLean, VA); Boyack, Kevin W.; Miksovic, Ann E. (Strategic Perspectives, Incorporated, McLean, VA)

2008-07-01T23:59:59.000Z

298

anode cathodic protection: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

299

anode interfacial layer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

300

Wire-shaped semiconductor light-emitting diodes for general-purpose lighting  

SciTech Connect (OSTI)

The object of this work is to develop and optimize a new type of light-emitting diode (LED) with a wire-shaped, cylindrical geometry.

Mauk, Michael G.

2002-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Shelf life of five meat products displayed under light emitting diode or fluorescent lighting.  

E-Print Network [OSTI]

??Light emitting diode (LED) and fluorescent (FLS) lighting effects on enhanced pork loin chops, beef longissimus dorsi and semimembranosus steaks, ground beef, and ground turkey… (more)

Steele, Kyle Stover

2011-01-01T23:59:59.000Z

302

Power control architectures for cold cathode fluorescent lamp and light emitting diode based light sources.  

E-Print Network [OSTI]

?? In this dissertation, two different energy efficient power supply topologies are introduced for controlling cold cathode fluorescent lamp (CCFL) and high-brightness light emitting diode… (more)

Doshi, Montu V.

2010-01-01T23:59:59.000Z

303

E-Print Network 3.0 - area diode laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Physics 45 header for SPIE use Integrated cooling for optoelectronic devices Summary: temperature in diode lasers. Heterostructure integrated thermionic...

304

Low-Cost Light-Emitting Diode Luminaire for General Illumination...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Santa Barbara Technology Center This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass...

305

E-Print Network 3.0 - average power diode-pumped Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: average power diode-pumped Page: << < 1 2 3 4 5 > >> 1 JOURNALDE PHYSIQUEIV Colloque C4,...

306

V-shaped resonators for addition of broad-area laser diode arrays  

DOE Patents [OSTI]

A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

2012-12-25T23:59:59.000Z

307

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

308

Effects of metallic absorption and the corrugated layer on the optical extraction efficiency of organic light-emitting diodes  

E-Print Network [OSTI]

The absorption of a metallic cathode in OLEDs is analyzed by using FDTD calculation. As the light propagates parallel to the layer, the intensity of Ez polarization decreases rapidly. The intensity at 2.0 um from the dipole is less than a quarter of that at 0.5 um. The strong absorption by a cathode can be a critical factor when considering the increase of optical extraction by means of bending the optical layers. The calculation indicates that the corrugation of layers helps the guided light escape the guiding layer, but also increases the absorption into a metallic cathode. The final optical output power of the corrugated OLED can be smaller than that of the flat OLED. On the contrary, the corrugated structure with a non-absorptive cathode increases the optical extraction by nearly two times.

Lee, Baek-Woon

2011-01-01T23:59:59.000Z

309

Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors  

SciTech Connect (OSTI)

Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

2012-02-01T23:59:59.000Z

310

Solid polymer electrolyte compositions  

DOE Patents [OSTI]

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

311

New class of diode-pumped, mid-IR, broadly-tunable lasers based on TM{sup 2+} lons in T{sub d} coordination: Cr{sup 2+}:ZnX (X=S,Se)  

SciTech Connect (OSTI)

A new class of room-temperature, diode-pumped solid state lasers, that are broadly tunable in the mid-infrared spectral region, has been conceptualized and demonstrated. These lasers are based on intra-ion transitions of divalent transition metals placed in substitutional cation sites of tetrahedral symmetry in large bandgap chalcogenide semiconductor crystals. These combinations of laser-ions and host crystals are seen to provide favorable radiative and non-radiative transition processes for the realization of the desired laser performance characteristics. Spectroscopic data for candidate schemes are reviewed and divalent chromium doped zinc chalcogenides are identified as potentially superior laser candidates. Preparation of laser quality Cr{sup 2+}:ZnSe crystals is described and experimental results to date for a diode-pumped laser are given. Remaining laser development issues are discussed briefly.

Krupke, W.F.; Page, R.H.; Schaffers, K.I.; Payne, S.A.; Beach, R.J.; Skidmore, J.A.; Emmanuel, M.A.

1997-01-01T23:59:59.000Z

312

Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)  

SciTech Connect (OSTI)

The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

2014-09-15T23:59:59.000Z

313

Physical random bit generation from chaotic solitary laser diode  

E-Print Network [OSTI]

We demonstrate the physical generation of random bits at high bit rates (> 100 Gb/s) using optical chaos from a solitary laser diode and therefore without the complex addition of either external optical feedback or injection. This striking result is obtained despite the low dimension and relatively small bandwidth of the laser chaos, i.e. two characteristics that have been so far considered as limiting the performances of optical chaos-based applications. We unambiguously attribute the successful randomness at high speed to the physics of the laser chaotic polarization dynamics and the resulting growth rate of the dynamical entropy.

Martin Virte; Emeric Mercier; Hugo Thienpont; Krassimir Panajotov; Marc Sciamanna

2014-06-11T23:59:59.000Z

314

Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes  

E-Print Network [OSTI]

trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

Dutton, Robert W.

315

The development and application of a diode-laser-based ultraviolet absorption sensor for nitric oxide  

E-Print Network [OSTI]

by the NO molecule to determine the concentration via optical absorption spectroscopy. UV radiation at 226.8 nm is generated by sum frequency mixing the outputs from a 395-nm external cavity diode laser (ECDL) and a 532-nm diode-pumped, intracavity frequency doubled...

Anderson, Thomas Nathan

2004-09-30T23:59:59.000Z

316

Atomic flux measurement by diode-laser-based atomic absorption spectroscopy  

E-Print Network [OSTI]

Atomic flux measurement by diode-laser-based atomic absorption spectroscopy Weizhi Wang,a) R. H, California 94305 Received 5 May 1999; accepted 6 June 1999 Diode-laser-based atomic absorption AA sensors- quirements, and only the QCM measures the flux. Lamp- based atomic absorption AA sensors have been success

Fejer, Martin M.

317

White Organic Light-Emitting Diodes with fine chromaticity tuning via ultrathin layer position shifting  

E-Print Network [OSTI]

White Organic Light-Emitting Diodes with fine chromaticity tuning via ultrathin layer position : Non-doped white organic light-emitting diodes using an ultrathin yellow-emitting layer of rubrene (5 via a bright white (WOLED) with CIE coordinates (x= 0.33, y= 0.32), a ext of 1.9%, and a color

Paris-Sud XI, Université de

318

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

319

On the Occurrence of Thermal Runaway in Diode in the J-Box  

Broader source: Energy.gov [DOE]

This PowerPoint presentation, focused on the environmental testing of diodes, was originally presented at the International PV Module Quality Assurance Forum on Feb. 26-27, 2013 in Denver, CO. It details the thermal runaway tests of J-boxes and discusses the Tj measurement method for bypass diodes. The presentation wraps up with a discussion of the team's anticipated next steps.

320

Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters  

E-Print Network [OSTI]

Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor hybridized, radial p-n junction based, nanopillar solar cells with photovoltaic performance enhanced. By furnishing Si based nanopillar photovoltaic diodes with CdSe quantum dots, we experimentally showed up

Demir, Hilmi Volkan

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Harmonic Analysis of a Three-Phase Diode Bridge Rectifier based on Sampled-Data Model  

E-Print Network [OSTI]

Harmonic Analysis of a Three-Phase Diode Bridge Rectifier based on Sampled-Data Model K. L. Lian. As demonstrated in the paper, the proposed method analytically evaluates harmonics, and obtains exact switching is to incorporate it into a harmonic power flow program to yield improved accuracy. Index Terms-- Diode Bridge

Lehn, Peter W.

322

Efficient narrow-band light emission from a single carbon nanotube pn diode  

E-Print Network [OSTI]

Efficient narrow-band light emission from a single carbon nanotube p­n diode Thomas Mueller1 and Phaedon Avouris1 * Electrically driven light emission from carbon nanotubes1­8 could be used in nanoscale. Here, we report electrically induced light emission from individual carbon nanotube p­n diodes. A new

Perebeinos, Vasili

323

Solid Waste Management Program (Missouri)  

Broader source: Energy.gov [DOE]

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

324

Solid Waste Disposal Act (Texas)  

Broader source: Energy.gov [DOE]

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

325

Solid Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

326

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

327

Diode-pumped Q-switched Nd{sup 3+} : YAG laser operating in a wide temperature range without thermal stabilisation of pump diodes  

SciTech Connect (OSTI)

A model sample of a compact low-power-consumption Nd{sup 3+} : YAG laser emitting 20-mJ pulses with a pulse repetition rate up to 20 Hz (in cyclic duty) at a wavelength of 1064 nm is developed and studied. The laser is designed for operating at external temperatures from -40 to +50 deg C. This was achieved by using quasi-end diode pumping without thermal stabilisation of pump diodes. (laser optics 2012)

Vainshenker, A E; Vilenskiy, A V; Kazakov, A A; Lysoy, B G; Mikhailov, L K; Pashkov, V A [Open Joint-Stock Company 'M.F. Stel'makh Polyus Research and Development Institute', Moscow (Russian Federation)

2013-02-28T23:59:59.000Z

328

Heat Recovery From Solid Waste  

E-Print Network [OSTI]

areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

Underwood, O. W.

1981-01-01T23:59:59.000Z

329

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 2012 1 Dynamic Driver Supply Voltage Scaling for Organic  

E-Print Network [OSTI]

Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission

Pedram, Massoud

330

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG  

E-Print Network [OSTI]

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

Paris-Sud XI, Université de

331

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--Semiconductor nanocrystal quantum dots (NQD)  

E-Print Network [OSTI]

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- Semiconductor nanocrystal convertors integrated on light-emitting diodes (LEDs). The use of nonradiative energy transfer, also known-LEDs for lighting applications. Index Terms-- Förster resonance energy transfer, light emitting diode, nanocrystal

Demir, Hilmi Volkan

332

Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal  

E-Print Network [OSTI]

Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic 21 November 2003 We demonstrate a light-emitting diode exhibiting 1.7­2.7-fold enhancement in light light emitting diode LED , the ef- ficiency is limited to several percents by a low light extrac- tion

Baba, Toshihiko

333

Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes  

E-Print Network [OSTI]

of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

Gilchrist, James F.

334

Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes  

E-Print Network [OSTI]

Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes S. L. Rumyantseva well light emitting diodes. The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase

Wetzel, Christian M.

335

A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions  

E-Print Network [OSTI]

In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

Valkov, Boris Ivanov

2014-01-01T23:59:59.000Z

336

Tunable, diode side-pumped Er:YAG laser  

DOE Patents [OSTI]

A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

Hamilton, C.E.; Furu, L.H.

1997-04-22T23:59:59.000Z

337

Tunable, diode side-pumped Er: YAG laser  

DOE Patents [OSTI]

A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

Hamilton, Charles E. (Bellevue, WA); Furu, Laurence H. (Modesto, CA)

1997-01-01T23:59:59.000Z

338

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

339

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

340

Packaging of solid state devices  

DOE Patents [OSTI]

A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

Glidden, Steven C.; Sanders, Howard D.

2006-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Closed electron drift in a self-magnetically insulated ion diode  

SciTech Connect (OSTI)

The paper investigates a spiral geometry self-magnetically insulated ion diode with an explosive-emission cathode made from graphite. The experiments have been carried out using the TEMP-4M accelerator, with the accelerator configured to operate in double-pulse mode: the first negative pulse (300–500 ns, 100–150 kV) and the second positive pulse (150 ns, 250–300 kV). The ion beam energy density was 0.4–0.8 J/cm{sup 2} and the beam was composed of carbon ions (80%–85%) and protons. In order to increase the efficiency of ion current generation, we have developed a new diode with a spiral-shaped grounded electrode. Using this geometry, it seems possible to realize closed electron drift in a diode with self-magnetic insulation. In the spiral diode, the efficiency of accelerated ions is increased from 5%–9% (conventional self-insulated diodes) up to 30%–40%. The realization of closed electron drift in the diode increases the efficiency of C{sup +} ion generation up to 40–50 times the Childe-Langmuir limit, which is more than 4 times higher than with other known constructions of self-magnetically insulated diodes.

Pushkarev, A. I.; Isakova, Y. I. [Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634050 (Russian Federation)

2013-05-15T23:59:59.000Z

342

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-04-30T23:59:59.000Z

343

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-09-01T23:59:59.000Z

344

Recent advances in solid-state organic lasers  

E-Print Network [OSTI]

Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the gr...

Chenais, Sébastien; 10.1002/pi.3173

2011-01-01T23:59:59.000Z

345

The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance  

SciTech Connect (OSTI)

Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 ?Gy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively.Conclusions: Our characterization of the designed QA “magic phantom” with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia)] [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)] [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

2013-11-15T23:59:59.000Z

346

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

347

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

348

Solid state oxygen sensor  

DOE Patents [OSTI]

Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

349

SSL Selections Descriptions v6.xls  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transparent Conductive Hole Injection Electrode for Organic Light-Emitting Diode (OLED) SSL. This project seeks to develop a cost-effective replacement for...

350

Polarized X-Rays Reveal Molecular Alignment in Printed Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

made possible by the development of solution-processable organic materials with optoelectronic properties. Organic light-emitting diodes (OLEDs) are already being produced...

351

adsorbed organic films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated...

352

DuPont Technology Breaks Away From Glass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

technology that will let manufacturers of copper indium gallium selenide, or CIGS, solar cells and organic light emitting diodes, or OLED, displays protect products with...

353

E-Print Network 3.0 - affect polymer matrix Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diffusion In Polymer Films T. Graves... to pattern full color polymer Organic Light-Emitting Diode (OLED) displays is to print dye ... Source: Sturm, James C.- Department of...

354

E-Print Network 3.0 - ac-plasma display panel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

types of information displays have been... (projection HUD) 2-3, organic light emitting diode (OLED) ... Source: Yoon, Jun-Bo - Department of Electrical Engineering and...

355

CX-010824: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

356

CX-010821: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

357

CX-010823: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

358

CX-010822: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

359

Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array  

DOE Patents [OSTI]

The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

Beach, Raymond J. (Livermore, CA); Benett, William J. (Livermore, CA); Mills, Steven T. (Antioch, CA)

1997-01-01T23:59:59.000Z

360

High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure  

SciTech Connect (OSTI)

A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ?40, and a peak sensitivity of ?12?V{sup ?1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

2014-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode  

DOE Patents [OSTI]

Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

Resnick, Paul J.; Langlois, Eric

2014-08-26T23:59:59.000Z

362

Optical diode based on the chirality of guided photons  

E-Print Network [OSTI]

Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optica...

Sayrin, C; Mitsch, R; Albrecht, B; O'Shea, D; Schneeweiss, P; Volz, J; Rauschenbeutel, A

2015-01-01T23:59:59.000Z

363

Linewidth-tunable laser diode array for rubidium laser pumping  

SciTech Connect (OSTI)

To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

2013-02-28T23:59:59.000Z

364

Luminescence and Squeezing of a Superconducting Light Emitting Diode  

E-Print Network [OSTI]

We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

Patrik Hlobil; Peter P. Orth

2015-02-17T23:59:59.000Z

365

Mid-ultraviolet light-emitting diode detects dipicolinic acid.  

SciTech Connect (OSTI)

Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk (Texas Tech University, Lubbock, TX); Crawford, Mary Hagerott; Dasgupta, Purnendu K. (Texas Tech University, Lubbock, TX); Li, Qingyang (Texas Tech University, Lubbock, TX); Allerman, Andrew Alan; Fischer, Arthur Joseph

2005-06-01T23:59:59.000Z

366

Luminescence and Squeezing of a Superconducting Light Emitting Diode  

E-Print Network [OSTI]

We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

Hlobil, Patrik

2015-01-01T23:59:59.000Z

367

Model for Triplet State Engineering in Organic Light Emitting Diodes  

E-Print Network [OSTI]

Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions and twisted geometry. The largest system studied is an eighteen carbon polyene which spans a Hilbert space of about 991 million. We show that for reverse intersystem crossing (RISC) process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

Prodhan, Suryoday; Ramasesha, S

2014-01-01T23:59:59.000Z

368

Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation  

SciTech Connect (OSTI)

Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

Grimes, Craig A.

2014-11-26T23:59:59.000Z

369

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

370

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

371

Solid Waste Management Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

372

Solid Waste Management (South Dakota)  

Broader source: Energy.gov [DOE]

This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

373

Luminescence properties of light-emitting diodes based on GaAs with the up-conversion Y{sub 2}O{sub 2}S:Er,Yb luminophor  

SciTech Connect (OSTI)

Y{sub 2}O{sub 2}S luminophors doped with Er{sup 3+} and Yb{sup 3+} ions are produced by means of solid-phase synthesis and deposited onto standard AL123A infrared light-emitting diodes. When excited with 940 nm radiation from a light-emitting diode, the structures exhibit intense visible up-conversion luminescence. A maximal brightness of 2340 cd/m{sup 2} of green and red up-conversion luminescence at corresponding wavelengths around 550 and 600 nm is observed for the Y{sub 2}O{sub 2}S compound doped with 2 at % Er{sup 3+} ions and 6 at % Yb{sup 3+} ions. The ratio of the intensity of green (or red) up-conversion luminescence to the intensity of infrared Stokes luminescence increases with increasing applied voltage. The efficiency of visible emission of the light-emitting diode structures is {eta} = 1.2 lm/W at an applied voltage of 1.5 V.

Gruzintsev, A. N., E-mail: gran@ipmt-hpm.ac.ru [Russian Academy of Sciences, Institute of Problems of Microelectronics Technology (Russian Federation); Barthou, C.; Benalloul, P. [Institute des NanoSciences (France)

2008-03-15T23:59:59.000Z

374

High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture  

DOE Patents [OSTI]

Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

Beach, Raymond J. (Livermore, CA)

1997-01-01T23:59:59.000Z

375

High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture  

DOE Patents [OSTI]

Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

Beach, R.J.

1997-11-18T23:59:59.000Z

376

Tunable Substrate Integrated Waveguide Filters Implemented with PIN Diodes and RF MEMS Switches  

E-Print Network [OSTI]

This thesis presents the first fully tunable substrate integrated waveguide (SIW) filter implemented with PIN diodes and RF MEMS switches. The methodology for tuning SIW filters is explained in detail and is used to create three separate designs...

Armendariz, Marcelino

2012-02-14T23:59:59.000Z

377

Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes  

E-Print Network [OSTI]

We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

Sun, Xiaochen

378

A strategy for the use of light emitting diodes by autonomous underwater vehicles  

E-Print Network [OSTI]

Light Emitting Diode (LED) technology has advanced dramatically in a few short years. An expensive and difficult to manufacture LED array containing nearly 100 individual LEDs and measuring at least 5 cm² can now be replaced ...

Curran, Joseph R. (Joseph Robinson)

2004-01-01T23:59:59.000Z

379

E-Print Network 3.0 - algan-based laser diodes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GaN and GaNAlGaN quantum structures for UV electroabsorption modulators Summary: optoelectronics industry.1,2 In the visible spectral range, light emitting diodes,3 laser...

380

Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology  

E-Print Network [OSTI]

This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

Huang, Hao, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - assisted diode laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laser which produces up to 78 mW at 850nm with a 500 mW pump laser... diode. The laser is tunable from ... Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

382

Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization  

E-Print Network [OSTI]

We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, $\\alpha$. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through $\\alpha$ in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as $\\alpha$ varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to $\\alpha$.

Vishwa Pal; Awadhesh Prasad; R Ghosh

2011-11-10T23:59:59.000Z

383

External-cavity designs for phase-coupled laser diode arrays  

E-Print Network [OSTI]

We describe passive phase-locking architectures based on external-cavity setups to improve the brightness of diode laser bars. Volume Bragg gratings are used to stabilize the lase line. Numerical modelling and experimental results will be presented.

Lucas-Leclin, Gaelle; Georges, Patrick; Michel, Nicolas; Calligaro, Michel; Krakowski, Michel; Lim, Jun; Sujecki, Slawomir; Larkins, Eric

2010-01-01T23:59:59.000Z

384

Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes  

E-Print Network [OSTI]

Saturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the ...

Shirasaki, Yasuhiro

2013-01-01T23:59:59.000Z

385

Electrical properties of silicon schottky diodes containing metal films of various compositions  

SciTech Connect (OSTI)

Au{sub x}Ti{sub 100{sub -}} {sub x}/n-Si Schottky diodes are fabricated and studied; in addition, the electrical properties of diodes containing metal films with varying composition (x = 0, 14, 30, 38, 60, 80, and 100) are also studied. Using X-ray phase analysis, it is established that the film of Au{sub 38}Ti{sub 62} composition has the amorphous structure, while the remaining films Au{sub x}Ti{sub 100-x} possess the polycrystalline structure. The main parameters of the Schottky diodes are determined in relation to the composition and structure of the metal films. As a result, it is shown that the electrical properties of Au{sub x}Ti{sub 100-x}/n-Si Schottky diodes are related to variations in the composition and structure of metal films.

Pashaev, I. G., E-mail: islampachayev@rambler.ru [Baku State University (Azerbaijan)

2013-06-15T23:59:59.000Z

386

Growth and characterization of mid-infrared phosphide-based semiconductor diode lasers  

E-Print Network [OSTI]

A diode laser emitting at mid-infrared wavelength (2~5 pm) is an ideal light source for petrochemical or industrial-important gas sensing. Antimony-based III-V compound semiconductor material is the most prominent pseudomorphic ...

Chi, Pei-Chun

2010-01-01T23:59:59.000Z

387

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network [OSTI]

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach: Individual simulation modules for each fuel cell type · Tubular SOFC · Planar SOFC · MCFC · PEM Reformer · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

388

Extremely Efficient Indium-Tin-Oxide-Free Green Phosphorescent Organic Light-Emitting Diodes  

SciTech Connect (OSTI)

This paper demonstrates extremely efficient (?P,max = 118 lm W?1) ITO-free green phosphorescent OLEDs (PHOLEDs) with multilayered, highly conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films as the anode. The efficiency is obtained without any outcoupling-enhancing structures and is 44% higher than the 82 lm W?1 of similar optimized ITO-anode PHOLEDs. Detailed simulations show that this improvement is due largely to the intrinsically enhanced outcoupling that results from a weak microcavity effect.

Cai, Min; Ye, Zhuo; Xiao, Teng; Liu, Rui; Chen, Ying; Mayer, Robert W.; Biswas, Rana; Ho, Kai-Ming; Shinar, Ruth; Shinar, Joseph

2012-07-12T23:59:59.000Z

389

Studies of solution-processed organic light-emitting diodes and their materials  

SciTech Connect (OSTI)

A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

Hellerich, Emily [Ames Laboratory] [Ames Laboratory

2013-05-15T23:59:59.000Z

390

Solid state rapid thermocycling  

DOE Patents [OSTI]

The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

Beer, Neil Reginald; Spadaccini, Christopher

2014-05-13T23:59:59.000Z

391

Solid and gaseous fuels  

SciTech Connect (OSTI)

This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids covered during the period of October 1984 through Sept 30, 1986. Energy Research Abstracts and Chemical Abstracts were used as the reference sources. In most categories the volume of material available made it necessary to limit the number of publications in the review. This review also surveys publications concerned with methods for the chemical, physical, and instrumental analyses of gaseous fuels and related materials. Articles of significance appearing in foreign journals and the patent literature that were not available at the time of the last review are also included. Chemical Abstracts and Energy Research Abstracts were used extensively as reference sources. Some selectivity was necessary in order to include the most pertinent publications in preparing this review.

Schultz, H.; Wells, A.W.; Frommell, E.A.; Flenory, P.B.

1987-06-15T23:59:59.000Z

392

Aerospace Applications for OLED Lighting  

Energy Savers [EERE]

2015 Boeing. All rights reserved. Export Controlled ECCN: 9E991 NLR Aerospace economics drive long development cycles and even longer product lifecycles * Development of a...

393

OLED Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based,OHA FOIA Cases Archive File OHAOLEDs

394

2014 OLED Stakeholder Meeting Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department44ScopeUnified2014

395

Development of laser diode sources for small-size Ca optical frequency standards  

SciTech Connect (OSTI)

Wavelength (frequency) tuning, coverage, and linewidth reduction characteristics of a visible laser diode (LD) operating near 656 run at room temperature were investigated by using optical feedback from Littrow-type grating (LG). Frequency tuning coefficients on the grating angle, LD temperature, and injection current were found to be 1 THz/degree, 32.39 GHz/K, and 6.15 GHz/mA, respectively, using a InGaAsP visible laser diode.

Yoon, Tai Hyun; Suh, Ho Suhng; Chung, Myung Sai [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)] [and others

1994-12-31T23:59:59.000Z

396

An experimental study of low-frequency amplitude noise in a fibre Bragg grating laser diode  

SciTech Connect (OSTI)

We have studied the amplitude noise in a fibre Bragg grating laser diode. It has been shown that discontinuities in noise characteristics correlate with those in the power – current and spectral characteristics of the laser diode, whereas the noise characteristics of the pump source have no such discontinuities. The highest noise level has been observed at pump currents corresponding to concurrent generation of two longitudinal modes. (lasers)

Zholnerov, V S [Russian Institute of Radionavigation and Time, St.Petersburg (Russian Federation); Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Chernov, R V [Open Joint-Stock Company M.F. Stel'makh Polyus Research Institute, Moscow (Russian Federation)

2013-09-30T23:59:59.000Z

397

Stacked switchable element and diode combination with a low breakdown switchable element  

DOE Patents [OSTI]

A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.

Wang, Qi (Littleton, CO); Ward, James Scott (Englewood, CO); Hu, Jian (Englewood, CO); Branz, Howard M. (Boulder, CO)

2012-06-19T23:59:59.000Z

398

L'MISSION LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network [OSTI]

L'�MISSION �LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH�RE D'IODE par M. PIERRE JEZ],du platine incandescent ~dans une atmosphère d'iode en fonction : 1, de la température ; 2, du temps; 3, de électrodes, d'un grillage métallique pour éviter les influences extérieures. L'incandescence des électrodes s

Paris-Sud XI, Université de

399

A study on the effects of parasitic packaging on diode digital phase shifters  

E-Print Network [OSTI]

A STUDY ON THE EFFECTS OF PARASITIC PACKAGING ON DIODE DIGITAL PHASE SHIFTERS A Thesis bv JERRY SWIE THANG BONG Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree oi MASTER... OF SCIENCE December 198i Major Subject: Electrical Engineering A STUDY ON THE EFFECTS OF PARASITIC PACKAGING ON DIODE DIGITAL PHASE SHIFTERS A Thesis by JERRY STEVIE THANG BONG Approved as to style snd content by: Kai Chang (Co-Chairman of Committee...

Bong, Jerry Swie Thang

2012-06-07T23:59:59.000Z

400

Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.  

SciTech Connect (OSTI)

Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.

MW Dashiell; JF Beausang; G Nichols; DM Depoy; LR Danielson; H Ehsani; KD Rahner; J Azarkevich; P Talamo; E Brown; S Burger; P Fourspring; W Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Marinelli; D Donetski; S Anikeev; G Belenky; S Luryi; DR Taylor; J Hazel

2004-06-09T23:59:59.000Z

402

Investigations of shot reproducibility for the SMP diode at 4.5 MV.  

SciTech Connect (OSTI)

In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3

Bennett, Nichelle [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Crain, Marlon D. [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Droemer, Darryl W. [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Gignac, Raymond Edward [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Lare, Gregory A. [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Molina, Isidro [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Obregon, Rafael [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Smith, Chase C. [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Wilkins, Frank Lee [National Security Technologies, LLC, Las Vegas, NV] [National Security Technologies, LLC, Las Vegas, NV; Welch, Dale Robert [Voss Scienti c, LLC, Albuquerque, NM] [Voss Scienti c, LLC, Albuquerque, NM; Cordova, Steve Ray; Gallegos, M.; Johnston, Mark D.; Kiefer, Mark Linden; Leckbee, Joshua J.; Nielsen, Daniel Scott; Oliver, Bryan Velten; Renk, Timothy Jerome; Romero, Tobias; Webb, Timothy Jay; Ziska, Derek Raymond

2013-11-01T23:59:59.000Z

403

Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination  

SciTech Connect (OSTI)

This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

Ian Ferguson

2006-07-31T23:59:59.000Z

404

X-RAY ESCAPE PEAK VARIATIONS IN DIODES MADE FROM DOUBLY TRAVELLING SOLVENT GROWN p-TYPE CdTe  

E-Print Network [OSTI]

293 X-RAY ESCAPE PEAK VARIATIONS IN DIODES MADE FROM DOUBLY TRAVELLING SOLVENT GROWN p-TYPE CdTe H On a étudié la variation de l'intensité du pic d'échappement d'un compteur CdTe en fonction de la tension de height on the applied diode voltage was measured at diodes made from doubly travelling solvent grown CdTe

Paris-Sud XI, Université de

405

Solid Xenon Project  

SciTech Connect (OSTI)

Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

Balakishiyeva, Durdana N.; Saab, Tarek [University of Florida (United States); Mahapatra, Rupak [Texas A and M University (United States); Yoo, Jonghee [FNAL (United States)

2010-08-30T23:59:59.000Z

406

Eugene Solid Waste Management Market Analysis  

E-Print Network [OSTI]

Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

Oregon, University of

407

Illinois Solid Waste Management Act (Illinois)  

Broader source: Energy.gov [DOE]

 It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid...

408

City of Phildelphia: Light emitting diodes for traffic signal displays  

SciTech Connect (OSTI)

This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

NONE

1995-12-01T23:59:59.000Z

409

White Light Emitting Diode Development for General Illumination Applications  

SciTech Connect (OSTI)

This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

James Ibbetson

2006-05-01T23:59:59.000Z

410

ELSEVIER Solid State Ionics 94 (1997) 17-25 Ceramic solid electrolytes  

E-Print Network [OSTI]

ELSEVIER Solid State Ionics 94 (1997) 17-25 SOLID STATE IoMcs Ceramic solid electrolytes John B electrolytes are best suited for solid reactants, as are found in most battery systems. Ceramic solid 78712-106.3. USA Abstract Strategies for the design of ceramic solid electrolytes are reviewed. Problems

Gleixner, Stacy

411

Stiffening solids with liquid inclusions  

E-Print Network [OSTI]

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

2014-07-24T23:59:59.000Z

412

The Effect of Light Emitting Diode Phototherapy on the Rate of Orthodontic Tooth Movement - A Clinical Study.  

E-Print Network [OSTI]

??Increasing the rate of orthodontic tooth movement (OTM) can reduce risks such as periodontal disease and caries. This study investigated whether light emitting diode (LED)… (more)

Chung, Sean

2013-01-01T23:59:59.000Z

413

Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York  

SciTech Connect (OSTI)

This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY.

Myer, Michael; Hazra, Oindrila; Kinzey, Bruce R.

2011-12-01T23:59:59.000Z

414

PUBLISHED ONLINE: 21 JULY 2013 | DOI: 10.1038/NMAT3711 User-interactive electronic skin for instantaneous  

E-Print Network [OSTI]

diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting

California at Irvine, University of

415

activation vanadium alloys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes Materials Science Websites Summary: to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin...

416

anodic tantala films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes Materials Science Websites Summary: to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin...

417

activation vanadium alloy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes Materials Science Websites Summary: to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin...

418

Hyperfine-Field-Mediated Spin Beating in Electrostatically Bound Charge Carrier Pairs D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S.-Y. Paik, J. M. Lupton,* and C. Boehme  

E-Print Network [OSTI]

of the current through an organic light emitting diode under coherent spin-resonant excitation. At weak driving processes responsible for light emission in organic light-emitting diodes (OLEDs), such local variations

McCamey, Dane

419

Energy Department Offers $10 Million for Energy-Saving Lighting...  

Broader source: Energy.gov (indexed) [DOE]

technologies. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to...

420

Energy Department Announces $10 Million for Innovative, Energy...  

Energy Savers [EERE]

the country. This funding will accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Department Announces $10 Million to Advance Innovative...  

Broader source: Energy.gov (indexed) [DOE]

the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to...

422

Chapter 47 Solid Waste Facilities (Kentucky)  

Broader source: Energy.gov [DOE]

This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

423

Solid Waste Management Act (West Virginia)  

Broader source: Energy.gov [DOE]

In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

424

Solid Waste Management Program (South Dakota)  

Broader source: Energy.gov [DOE]

South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

425

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect (OSTI)

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

426

Solid Waste Disposal Facilities (Massachusetts)  

Broader source: Energy.gov [DOE]

These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

427

Solid Waste Facilities Regulations (Massachusetts)  

Broader source: Energy.gov [DOE]

This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

428

Solid Waste Management Rules (Vermont)  

Broader source: Energy.gov [DOE]

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

429

Solid Waste Management Program Plan  

SciTech Connect (OSTI)

The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

Duncan, D.R.

1990-08-01T23:59:59.000Z

430

Cogeneration/Cogeneration - Solid Waste  

E-Print Network [OSTI]

This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

Pyle, F. B.

1980-01-01T23:59:59.000Z

431

Doc 2136-D01 Rev E 1/24/02 If other laser diode mounts are used, connect the laser diode and, if provided, the photodiode with shielded cables to  

E-Print Network [OSTI]

, if provided, the photodiode with shielded cables to "LD OUTPUT" (5) according to the pin assignment shown is at ground) 3 ground for the laser diode photodiode: 2 photodiode cathode 4 photodiode anode Fig. 2.3 Pin by connecting Pin 1 to Pin 5 with a wire as shown in Fig. 2.4. Connecting the laser diode and photodiode Connect

La Rosa, Andres H.

432

Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS  

SciTech Connect (OSTI)

This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.

Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

2011-05-06T23:59:59.000Z

433

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

Greenbaum, Elias (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

434

Municipal Solid Waste in The United States  

E-Print Network [OSTI]

2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

Barlaz, Morton A.

435

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

436

Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress  

E-Print Network [OSTI]

The Karlsruhe Tritium Neutrino Experiment (KATRIN) will detect tritium beta- decay electrons that pass through its electromagnetic spectrometer with a highly- segmented monolithic silicon pin-diode focal-plane detector (FPD). This pin-diode array will be on a single piece of 500-{\\mu}m-thick silicon, with contact between titanium nitride (TiN) coated detector pixels and front-end electronics made by spring-loaded pogo pins. The pogo pins will exert a total force of up to 50N on the detector, deforming it and resulting in mechanical stress up to 50 MPa in the silicon bulk. We have evaluated a prototype pin-diode array with a pogo-pin connection scheme similar to the KATRIN FPD. We find that pogo pins make good electrical contact to TiN and observe no effects on detector resolution or reverse-bias leakage current which can be attributed to mechanical stress.

B. A. VanDevender; L. I. Bodine; A. W. Myers; J. F. Amsbaugh; M. A. Howe; M. L. Leber; R. G. H. Robertson; K. Tolich; T. D. Van Wechel; B. L. Wall

2012-02-01T23:59:59.000Z

437

Method and apparatus for improving the performance of light emitting diodes  

DOE Patents [OSTI]

A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

Lowery, Christopher H. (Fremont, CA); McElfresh, David K. (Union City, CA); Burchet, Steve (Cedar Crest, NM); Adolf, Douglas B. (Albuquerque, NM); Martin, James (Tijeras, NM)

1996-01-01T23:59:59.000Z

438

Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes  

E-Print Network [OSTI]

the thickness-dependent optical properties of single layer polymer light emitting diodes for two materials, poly the electronic and optical properties of these materials in light emitting diode LED structures.2 OurThickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting

Carter, Sue

439

Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes  

E-Print Network [OSTI]

Keywords: GaInN/GaN Light emitting diode temperature Micro-Raman Photoluminescence Electroluminescence well light emitting diode (LED) dies is analyzed by micro-Raman, photoluminescence, cathodoluminescenceJunction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting

Wetzel, Christian M.

440

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network [OSTI]

incandescent bulbs and fluorescent bulbs). Solid-stateindex (CRI) than fluorescent bulbs. Common examples where

Fina, Michael Dane

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microcavity enhanced vertical-cavity light-emitting diodes U. Keller, G. R. Jacobovitz-Veselka, J. E. Cunningham, W. Y. Jan, B. Tell,  

E-Print Network [OSTI]

Microcavity enhanced vertical-cavity light-emitting diodes U. Keller, G. R. Jacobovitz-Veselka, J-cavity light-emitting diode (LED) by continuously changing the microcavity resonance with respect for optical interconnects seems to be the light emitting diode (LED), or better yet, the microcavity en

Keller, Ursula

442

C. Wetzel et al MRS Internet J. Nitride Semicond. Res. 10, 2 (2005) 1 Development of High Power Green Light Emitting Diode Chips  

E-Print Network [OSTI]

Power Green Light Emitting Diode Chips C. Wetzel and T. Detchprohm Future Chips Constellation Abstract The development of high emission power green light emitting diodes chips using GaInN/GaN multi production-scale implementation of this green LED die process. Keywords: nitrides, light emitting diode

Wetzel, Christian M.

443

Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520525 nm employing graded growth-temperature profile  

E-Print Network [OSTI]

Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520­525 nm employing current spreading and light extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012

Gilchrist, James F.

444

InP-Based Oxide-Confined 16 p.m Microcavity Light Emitting Diodes Weidong Zhou, Omar Qasaimeh, and Pallab Bhattacharya  

E-Print Network [OSTI]

InP-Based Oxide-Confined 16 p.m Microcavity Light Emitting Diodes Weidong Zhou, Omar Qasaimeh light emitting diodes (MCLEDs) have been designed, fabricated and characterized. Oxide- confined MCLEDs region emission peak and cavity resonance peak. Key words: Microcavity light emitting diode (MCLED), wet

Zhou, Weidong

445

Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal  

SciTech Connect (OSTI)

We propose a kind of electromagnetic (EM) diode based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This periodic microstructure has separately broken symmetries in both parity (P) and time-reversal (T) but obeys parity-time (PT) symmetry. This kind of diode could support bulk one-way propagating modes either for group velocity or phase velocity with various types of negative and positive refraction. This symmetry-broken system could be a platform to realize abnormal photoelectronic devices, and it may be analogous to an electron counterpart with one-way features.

He Cheng; Lu Minghui; Chen Yanfeng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Heng Xin [Bio-Rad Laboratories, Hercules, California 94547 (United States); Feng Liang [Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

2011-02-15T23:59:59.000Z

446

X-ray detectors based on GaN Schottky diodes  

SciTech Connect (OSTI)

GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien [CRHEA, CNRS, Rue Bernard Gregory, Sophia Antipolis, F-06560 Valbonne (France); Reverchon, Jean-Luc [THALES R and T, Campus Polytechnique, 1 avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Idir, Mourad [Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin-BP 48 91192, GIF-sur-Yvette Cedex (France)

2010-10-18T23:59:59.000Z

447

Characterization of the self magnetic pinch diode at high voltages for flash radiography.  

SciTech Connect (OSTI)

The Sandia Laboratories Advanced Radiographic Technologies Department, in collaboration with the United Kingdom Atomic Weapons Establishment, has been conducting research into the development of the Self-Magnetic-Pinched diode as an x-ray source suitable for flash radiographic experiments. We have demonstrated that this source is capable of meeting and exceeding the initial requirements of 250 rads (measured at one meter) with a 2.75 mm source spot-size. Recent experiments conducted on the RITS-6 accelerator have demonstrated the ability of this diode to meet intermediate requirements with a sub 3 mm source spot size and a dose in excess of 400 rads at one meter.

Cordova, Steve Ray; Portillo, Salvador; Oliver, Bryan Velten; Threadgold, James R. (Atomic Weapons Establishment Aldermaston, Reading Berkshire, U.K.); Crotch, Ian (Atomic Weapons Establishment Aldermaston, Reading Berkshire, U.K.); Ziska, Derek Raymond

2008-10-01T23:59:59.000Z

448

Power loss in open cavity diodes and a modified Child Langmuir Law  

E-Print Network [OSTI]

Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.

Debabrata Biswas; Raghwendra Kumar; R. R. Puri

2005-07-26T23:59:59.000Z

449

Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays  

DOE Patents [OSTI]

Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

2014-10-21T23:59:59.000Z

450

L'MISSION LECTRIQUE DU TUNGSTNE INCANDESCENT DANS UNE ATMOSPHRE D'IODE.  

E-Print Network [OSTI]

L'�MISSION �LECTRIQUE DU TUNGST�NE INCANDESCENT DANS UNE ATMOSPH�RE D'IODE. par S. KALANDYK'émission négative du tungstène; l'influence de l'iode est prépondérante aux basses températures d'incandescence 3. L vapeur d'iode augmente l'émis sion électrique négative du platine incandescent. L'influence de l'iode se

Paris-Sud XI, Université de

451

The effects of laser energy on modelling the characteristics of p-n diodes  

E-Print Network [OSTI]

THE EFFECTS OF LASER ENERGY ON MODELLING THE CHARACTERISTICS OF P-N DIODES A Thesis by WILLIAM ALFRED SEVERIN Submitted to the Graduate College of Texas A&M University in partial fulfullment of the requirements for the degree of MASTER... OF SCIENCE August 1984 Ma jor Sub]ect: Electrical Engineering THE EFFECTS LASER ENERGY ON MODELLING THE CHARACTERISTICS OF P-N DIODES A Thesis WILLIAM ALFRED SEVERIN Approved as to style and content by: (Chairma of Committee) Dr. Phillip E. Allen...

Severin, William Alfred

2012-06-07T23:59:59.000Z

452

A micrometer-size movable light emitting area in a resonant tunneling light emitting diode  

SciTech Connect (OSTI)

We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patanè, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)

2013-12-09T23:59:59.000Z

453

Solid oxide electrochemical reactor science.  

SciTech Connect (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

454

Geometrical setting of solid mechanics  

SciTech Connect (OSTI)

Highlights: > Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). > Generalized logarithmic strain. > Consistent linearization. > Incremental principle of virtual power. > Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.

Fiala, Zdenek, E-mail: fiala@itam.cas.cz [Institute of Theoretical and Applied Mechanics, ASCR, v. v. i., Prosecka 809/76, 190 00 Praha 9 (Czech Republic)

2011-08-15T23:59:59.000Z

455

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

456

Solid evacuated microspheres of hydrogen  

DOE Patents [OSTI]

A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

1982-01-01T23:59:59.000Z

457

Physics 326 Spring 2014 1/15/14 Lab 4: DIODES AND TRANSISTORS  

E-Print Network [OSTI]

Physics 326 Spring 2014 1/15/14 1 Lab 4: DIODES AND TRANSISTORS Please read Faissler Chapters. The transformer has a center tap (i.e. a line connected to the center of the coil). Characterize the transformer Spring 2014 1/15/14 2 Describe the effect of the capacitor on the output. Repeat with a 0.1 F capacitor

Glashausser, Charles

458

Local tuning of organic light-emitting diode color by dye droplet application  

E-Print Network [OSTI]

Local tuning of organic light-emitting diode color by dye droplet application T. R. Hebner and J. C 1998 We have demonstrated that fluorescent dyes may be introduced into previously fabricated polymer thin films by local application of a dye-containing droplet. The UV fluorescence spectra of the films

459

Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application  

E-Print Network [OSTI]

Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application 2004; accepted 24 August 2004) The method of solvent-enhanced dye diffusion for patterning full dry transfer of dye onto a device polymer film, the dye remains on the surface of the polymer layer

460

Diode Laser Welding of ABS: Experiments and Process Modelling , E.CICALA1,2  

E-Print Network [OSTI]

Diode Laser Welding of ABS: Experiments and Process Modelling M.ILIE1,3 , E.CICALA1,2 , D.GREVEY2 for Welding and Material Testing, 30, Mihai Viteazul Bv, 300222 Timisoara, Romania Abstract In the present.ilie@mec.upt.ro, milie@isim.ro Keywords: Laser welding; Semitransparent Polymers; Numerical simulation; Experimental

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation  

E-Print Network [OSTI]

Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation Feng Qin,1 accuracy. © 2011 Optical Society of America OCIS codes: 350.5610, 290.6815, 280.6780, 280.5475. Trivalent, and optical amplifiers in fiber optics. [1,2]. In recent years, there has been an increasing interest

Cao, Wenwu

462

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode  

E-Print Network [OSTI]

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode@fen.bilkent.edu.tr Abstract: We develop and demonstrate high-quality white light generation that relies on the use of a single-UV LED platform. The high-quality white emission from the polyfluorene is achieved by using the azide

Demir, Hilmi Volkan

463

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment  

E-Print Network [OSTI]

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment Received 15 July 2002; accepted 27 December 2002 An electrochemical surface treatment has been developed to the large power consumption and noise levels that can be present in circuits that incorporate such devices.1

Yu, Edward T.

464

Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond  

SciTech Connect (OSTI)

Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

1999-06-01T23:59:59.000Z

465

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network [OSTI]

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH�RE D'IODE par M. S. KALANDYK influence devient nulle aux températures de chauffage élevées. 3. Pour une faible incandescence du platine approximativement linéaire; aux fortes incandescences, cette variation offre un caractère beaucoup plus compliqué. 1

Paris-Sud XI, Université de

466

Stability and energetics of Bursian diodes. M.S. Rosin H. Sun, Department of Math, UCLA  

E-Print Network [OSTI]

present an analysis of the stability, energy and torque properties of a model Bursian diode in a one]. Historically, much of the illuminating analysis has come from simulations, espe- cially in complex geometries of this process in terms of kinetic, potential and boundary-flux energies is given, and the relation

Soatto, Stefano

467

Development of an automated diode-laser-based multicomponent gas sensor  

E-Print Network [OSTI]

-IR spectral region, room-temperature operation of cw single or multisection distributed feedback InGaAsP diode to the mid-IR spectro- scopic fingerprint region 3.3­4.4 m . A continuous absorption spectrum of CH4 and H2CO, and portable sensing device capable of high sensitiv- ity and rapid response time. Characteristic absorption

468

Iodine stabilization of a diode laser in the optical communication band  

E-Print Network [OSTI]

Iodine stabilization of a diode laser in the optical communication band Hsiang-Chen Chui and Sen September 23, 2004 The iodine molecule has frequently been used as a frequency reference from the green provides a simple, compact, and high-performance frequency reference in the optical communication band

Shy,Jow-Tsong

469

The design and manufacture of a novel thin-film microelectronic vacuum diode structure  

E-Print Network [OSTI]

as an alternative to the silicon transistor. To date, these approaches have been plagued with design-related problems that have retarded their acceptance as a viable technology. This work proposes a new vacuum diode structure, novel in its design. It can...

Mason, Mark E.

2012-06-07T23:59:59.000Z

470

Diode-Pumped Gigahertz Repetition Rate Femtosecond Cr:Lisaf Laser  

E-Print Network [OSTI]

We report a low-cost, 1 GHz repetition-rate, diode-pumped, saturable Bragg reflectors mode-locked Cr:LiSAF laser, which generates nearly transform-limited 103-fs long pulses around 866 nm, with a record high peak power of 1.45 kW.

Li, Duo

471

Resonant-Cavity-Enhanced Single Photon Avalanche Diodes , G. Armellini1  

E-Print Network [OSTI]

the steady trend toward smaller sample volumes, lower excitation intensity and compact, low-cost analytical, low cost, etc.) along with remarkably good photon timing resolution (-cavity-enhanced Single Photon Avalanche Diode (SPAD) fabricated on a reflecting silicon- on-insulator (SOI) substrate

472

BPM Electronics based on Compensated Diode Detectors – Results from development Systems  

E-Print Network [OSTI]

High resolution beam position monitor (BPM) electronics based on diode peak detectors is being developed for processing signals from button BPMs embedded into future LHC collimators. Its prototypes were measured in a laboratory as well as with beam signals from the collimator BPM installed on the SPS and with LHC BPMs. Results from these measurements are presented and discussed.

Gasior, M; Steinhagen, RJ

2012-01-01T23:59:59.000Z

473

Measurement of Water Vapor Concentration using Tunable Diode Laser Absorption Spectroscopy  

E-Print Network [OSTI]

Tunable diode laser spectroscopy and the Beer-Lambert relation has been used to measure the absorption of water vapor both in an absorption cell and in a shock tube. The purpose of this thesis is to develop a laser diagnostic capable of determining...

Barrett, Alexander B.

2010-07-14T23:59:59.000Z

474

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

475

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

476

Solid-state radioluminescent compositions  

DOE Patents [OSTI]

A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

1991-01-01T23:59:59.000Z

477

Solid colloidal optical wavelength filter  

DOE Patents [OSTI]

A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

Alvarez, Joseph L. (Boulder, CO)

1992-01-01T23:59:59.000Z

478

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

479

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)  

Broader source: Energy.gov [DOE]

These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

480

Limitation of the electron emission in an ion diode with magnetic self-insulation  

SciTech Connect (OSTI)

The results of a study of the generation of a pulsed ion beam of gigawatt power formed by a diode with an explosive-emission potential electrode in a mode of magnetic self-insulation are presented. The studies were conducted at the TEMP-4M ion accelerator set in double pulse formation mode: the first pulse was negative (300-500 ns and 100-150 kV) and the second, positive (150 ns and 250-300 kV). The ion current density was 20-40 A/cm{sup 2}; the beam composition was protons and carbon ions. It was shown that plasma is effectively formed over the entire working surface of the graphite potential electrode. During the ion beam generation, a condition of magnetic cutoff of electrons along the entire length of the diode (B/B{sub cr}{>=} 4) is fulfilled. Because of the high drift rate, the residence time of the electrons and protons in the anode-cathode gap is 3-5 ns, while for the C{sup +} carbon ions, it is more than 8 ns. This denotes low efficiency of magnetic self-insulation in a diode of such a design. At the same time, it has been experimentally observed that, during the generation of ion current (second pulse), the electronic component of the total current is suppressed by a factor of 1.5-2 for a strip diode with plane and focusing geometry. A new model of the effect of limiting the electron emission explaining the decrease in the electronic component of the total current in a diode with magnetic self-insulation is proposed.

Pushkarev, A. I.; Isakova, Yu. I.; Guselnikov, V. I. [Tomsk Polytechnic University, 30, Lenin Ave., Tomsk 634050 (Russian Federation)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solid waste education in children's museums  

E-Print Network [OSTI]

Solid waste education in museum environments is an increasingly popular educational tool; however, no documents exist detailing the specifics of such educational approaches. A study was therefore conducted to identify and describe solid waste...

King, Jennifer Campbell

1997-01-01T23:59:59.000Z

482

Solid Waste Assessment Fee Exemptions (West Virginia)  

Broader source: Energy.gov [DOE]

A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the...

483

Solid Waste Resource Recovery Financing Act (Texas)  

Broader source: Energy.gov [DOE]

The State of Texas encourages the processing of solid waste for the purpose of extracting, converting to energy, or otherwise separating and preparing solid waste for reuse. This Act provides for...

484

Gaines County Solid Waste Management Act (Texas)  

Broader source: Energy.gov [DOE]

This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

485

Solid Waste Reduction, Recovery, and Recycling  

Broader source: Energy.gov [DOE]

This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

486

Solid Waste and Infectious Waste Regulations (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

487

Eastern Kodak Company  

SciTech Connect (OSTI)

Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.

Y.S. Tyan

2009-06-30T23:59:59.000Z

488

Advanced Characterisation of Municipal Solid Waste Ashes  

E-Print Network [OSTI]

Advanced Characterisation of Municipal Solid Waste Ashes Preparatory thesis Randi Skytte Pedersen is to investigate Municipal Solid Waste (MSW) ashes with respect to particle sizes, structures and composition with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant M°abjergværket, Holstebro. MSW

489

Solid Waste Diversion Plan Fallen Star, 2012  

E-Print Network [OSTI]

Solid Waste Diversion Plan DO HO DUH Fallen Star, 2012 Stuart Collection UC San Diego Updated July 2012 Prepared by: Facilities Management #12;UC San Diego Solid Waste Diversion Plan Table of Contents Overview Location and Areas Covered Recycling and Solid Waste Management Contact Campus/Medical Center

Aluwihare, Lihini

490

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

491

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

492

Solid-state membrane module  

DOE Patents [OSTI]

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

493

Clustering Fossils in Solid Inflation  

E-Print Network [OSTI]

In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tensor perturbation induces observable clustering fossils in the form of quardupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with Planck constraints. Specializing to this allowed range of model parameter, we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of scalar perturbations. We argue that imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.

Mohammad Akhshik

2014-09-10T23:59:59.000Z

494

A Model and Numerical Framework for the Simulation of Solid-Solid Phase Transformations  

E-Print Network [OSTI]

A Model and Numerical Framework for the Simulation of Solid-Solid Phase Transformations Garrett J computational realization for the simulation of solid-solid phase transformations of the type observed in shape physical experiments and is indicative of the power of the proposed modelling methodology. In particular

Govindjee, Sanjay

495

Supercritical/Solid Catalyst (SSC)  

SciTech Connect (OSTI)

INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

None

2010-01-01T23:59:59.000Z

496

Supercritical/Solid Catalyst (SSC)  

ScienceCinema (OSTI)

INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

497

Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications  

SciTech Connect (OSTI)

Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200 ?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to traditional gas-based neutron detectors.

Danon, Yaron; Bhat, Ishwara; Jian-Qiang Lu, James

2013-09-03T23:59:59.000Z

498

Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han, Junfeng Song, Xuemei Li, Yang Liu, Dingsan Gao,  

E-Print Network [OSTI]

Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han emission factor is an important parameter for the characterization of semiconductor light emitting devices difference involved in each device. In this article, the spontaneous emission factor for superluminescent

Cao, Hui

499

Matrix-addressable III-nitride light emitting diode arrays on silicon substrates by flip-chip technology.  

E-Print Network [OSTI]

??Matrix-addressable light emitting diode (LED) micro-arrays on sapphire substrates have been reported. In the fabrication process, complicated chemical-mechanical polishing after planarization with oxides, or conformal… (more)

Keung, Chi Wing

2007-01-01T23:59:59.000Z

500

Méthodologie d'analyse de défaillance pour l'évaluation de la fiabilité de diodes électroluminescentes GaN.  

E-Print Network [OSTI]

??Ce mémoire s'inscrit dans la construction d'une méthodologie d'analyse de défaillance pour l'évaluation de la fiabilité de diodes électroluminescentes, par une approche basée sur l'analyse… (more)

Baillot, Raphaël

2011-01-01T23:59:59.000Z