Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

2

Electroluminescence property of organic light emitting diode (OLED)  

Science Conference Proceedings (OSTI)

Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage)

2013-01-01T23:59:59.000Z

3

Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials  

Science Conference Proceedings (OSTI)

Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

Cai, Min

2011-11-30T23:59:59.000Z

4

The Impact of the Transient Response of 0rg;anic Light Emitting Diodes on the Design of Active Matrix OLED Displays  

E-Print Network (OSTI)

The Impact of the Transient Response of 0rg;anic Light Emitting Diodes on the Design of Active, Princeton, NJ, U.S.A. Abstract Much of the organic light emitting diode (OLED) characterization published

5

Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting  

SciTech Connect

With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

2011-01-21T23:59:59.000Z

6

A smart active matrix pixelated OLED display; Smart active matrix pixelated Organic Light Emitting Diode display.  

E-Print Network (OSTI)

??An OLED display has been fabricated and successfully tested with an external optical feedback circuit to demonstrate improvement in uniformity. In addition, the process of… (more)

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2004-01-01T23:59:59.000Z

7

Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex  

SciTech Connect

Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

2009-07-07T23:59:59.000Z

8

A Novel Hole-Confining Concept for Efficient Green Organic Light Emitting Diodes.  

E-Print Network (OSTI)

??Organic light emitting diode (OLED) technology has initiated a lot of interest in the display and solid state lighting market during the last decade. The… (more)

Harikrishna Mohan, Siddharth

2008-01-01T23:59:59.000Z

9

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures  

SciTech Connect

After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

Liu, Rui [Ames Laboratory

2012-08-01T23:59:59.000Z

10

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)  

SciTech Connect

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

Xiao, Teng

2012-04-27T23:59:59.000Z

11

Lighting Group: Sources and Ballasts: OLED Cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

OLED Cathodes OLED Cathodes Development of New Cathodes for OLED's Objective The objective of this project is to develop improved cathodes for use in organic light emitting diodes (OLEDs). Approach A major challenge for organic light emitting diode (OLED) technology is to improve electron injection into the organic electroluminescent layer, which limits the efficiency of the device and the luminous flux per unit area. This project aims at overcoming such barriers by developing “structured cathodes” based on functional materials (nanotubes and nanoclusters) with characteristic size smaller than the optical wavelength. The incorporation of such nanostructured cathodes in OLEDs can significantly improve device efficiency by lowering operating voltage, and increase device stability and light extraction.

12

A Review of OLED Research at Naval Research Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division at Naval Research Laboratory. Her research is focused on organic light emitting diode (OLED) material and devices. She will discuss the research activities at Naval...

13

Power modeling of graphical user interfaces on OLED displays  

Science Conference Proceedings (OSTI)

Emerging organic light-emitting diode (OLED)-based displays obviate external lighting; and consume drastically different power when displaying different colors, due to their emissive nature. This creates a pressing need for OLED display power models ... Keywords: OLED display, graphic user interface, low power

Mian Dong; Yung-Seok Kevin Choi; Lin Zhong

2009-07-01T23:59:59.000Z

14

High average power diode pumped solid state lasers for CALIOPE  

Science Conference Proceedings (OSTI)

Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

Comaskey, B.; Halpin, J.; Moran, B.

1994-07-01T23:59:59.000Z

15

OLED devices  

DOE Patents (OSTI)

An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

2011-02-22T23:59:59.000Z

16

Solvent-enhanced Dye Diffusion in Polymer This-Films for OLED Application F. Pschenitzka, K. Long, and J. C. Sturm  

E-Print Network (OSTI)

in polymer films for organic light-emitting diode (OLED) application is introduced. After an initial dye coumarin 47, coumarin 6 and Nile red. INTRODUCTION Polymer based organic light-emitting diodes (OLEDs) have

17

Microsoft Word - oleds0805.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Light Emitting Diodes (OLEDs) Organic Light Emitting Diodes (OLEDs) for General Illumination Update 2002 A A N N O O I I D D A A T T E E C C H H N N O O L L O O G G Y Y R R O O A A D D M M A A P P Date August, 2002 Sponsored by: Optoelectronics Industry Development Association (OIDA) Department of Energy - Office of Building Technology, State and Community Programs Edited by: Milan Stolka, Consultant Published by: 1133 Connecticut Avenue, NW #600 Washington, DC 20036 Ph: 202-785-4426 ♦ Fax: 202-785-4428 Web: http://www.OIDA.org OIDA Member Use Only  2002 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report

18

Application of light emitting diodes as solid state light sources in analytical chemistry.  

E-Print Network (OSTI)

??Several analytical systems were developed with light emitting diodes (LEDs) as solid state light sources. With an LED as a light source, liquid core waveguide… (more)

Eom, In Yong

2005-01-01T23:59:59.000Z

19

JOURNAL OF DISPLAY TECHNOLOGY, VOL. 2, NO. 2, JUNE 2006 143 Maximizing Alq3 OLED Internal and External  

E-Print Network (OSTI)

bright, efficient Alq3-based [tris-(8-hydroxyquinoline) aluminum] organic light-emitting diode (OLED conversion material, lensed device, luminous intensity, organic light emitting diodes (OLED), outcoupling efficiency, quantum efficiency. I. INTRODUCTION ORGANIC light-emitting devices (OLEDs), using Alq (tris(8

Cincinnati, University of

20

Diode-pumped solid-state laser drivers for inertial fusion energy  

SciTech Connect

This paper reviews work on flashlamp-pumped solid state lasers and discusses diode-pumped solid state lasers, the Mercury laser in particular. It also discusses ICF lasers beyond Mercury.

Bibeau, C; Marshall, C D; Payne, S A; Powell, H T

1998-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Design Principals for Energy-Aware User-Interfaces on OLED-based handhelds.  

E-Print Network (OSTI)

, display technologies, such as Organic Light Emitting Diodes (OLEDs) [3], are becoming available that allow., editor. Organic Light -Emitting Diode Displays: Annual D isplay Industry Report. Second edition, 2001

Ranganathan, Parthasarathy

22

The effect of anisotropy on light extraction of organic light-emitting diodes with photonic crystal structure  

Science Conference Proceedings (OSTI)

The light extraction efficiency of organic light-emitting diodes (OLED) is greatly limited due to the difference in refractive indexes betweenmaterials ofOLED.We fabricatedOLED with photonic crystal microstructures in the interface between the glass ...

Wei Xu, Yang Li

2013-01-01T23:59:59.000Z

23

Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes  

E-Print Network (OSTI)

acrylate layer and MS-31 (MgO : SiO2 ¼ 3 : 1 wt %) layer was adopted in organic light emitting diode (OLED the penetrations of oxygen and moisture. [DOI: 10.1143/JJAP.45.5970] KEYWORDS: organic light emitting diode (OLED. Introduction As a next generation display, the organic light emitting diode (OLED) has to great performances

Hwang, Sung Woo

24

Battery cell configuration for organic light emitting diode display in modern smartphones and tablet-PCs  

E-Print Network (OSTI)

Battery cell configuration for organic light emitting diode display in modern smartphones- spite of power efficiency of organic light emitting diode (OLED) display nature, the integrated display

Pedram, Massoud

25

Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers  

Science Conference Proceedings (OSTI)

The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

1994-01-01T23:59:59.000Z

26

Optimizing diode thickness for thin-film solid state thermal neutron detectors  

Science Conference Proceedings (OSTI)

In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce [Department of Materials and Science, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, George R.; Allee, David [Flexible Display Center at Arizona State University, Tempe, Arizona 85284 (United States)

2012-10-01T23:59:59.000Z

27

Diode-Pumped Solid-State Lasers for Internal Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100J with a 2-10 ns pulse length at 1.047 mm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple chambers for high energy density physics research.

Payne, S A; Bibeau, C; Beach, R J; Bayramian, A; Chanteloup, J C; Ebbers, C A; Emanuel, M A; Orth, C D; Rothenberg, J. E; Schaffers, K I; Skidmore, J A; Sutton, S B; Zapata, L E; Powell, H T

1999-11-15T23:59:59.000Z

28

Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

1999-10-19T23:59:59.000Z

29

Enhanced Light Extraction from Organic Light Emitting Diodes  

Ames Laboratory researchers have developed a soft lithography microlens fabrication and array that enables more efficient organic light emitting diodes (OLEDs), improving their commercial viability.

30

Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier  

Science Conference Proceedings (OSTI)

An all-solid-state tunable diode-pumped Cr{sup 3+}:LiSrAlF{sub 6} (Cr:LiSAF) regenerative amplifier, seeded by a tunable diode-pumped Cr:LiSAF femtosecond oscillator, has been demonstrated for the first time to our knowledge. The oscillator was tunable over 75 nm and generated pulses as short as 24 fs. As much as 70 mW average output power was obtained with pulses of 40-fs duration. The amplifier produced recompressed pulses of less than 200-fs duration with energies exceeding 1{mu}J at a repetition rate as high as 25 kHz. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

Mellish, R.; Barry, N.P.; Hyde, S.C.W.; Jones, R.; French, P.M.W.; Taylor, J.R. [Femtosecond Optics Group, Department of Physics, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ (United Kingdom); van der Poel, C.J.; Valster, A. [Philips Optoelectronics Centre, Prof. Holstlaan 4, 5656 AA Eindhoven (Netherlands)

1995-11-15T23:59:59.000Z

31

Numerical analysis of nanostructures for enhanced light extraction from OLEDs  

E-Print Network (OSTI)

Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

2013-01-01T23:59:59.000Z

32

Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury  

Science Conference Proceedings (OSTI)

We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

Orth, C., LLNL

1998-02-23T23:59:59.000Z

33

Update on diode-pumped solid-state laser experiments for inertial fusion energy  

Science Conference Proceedings (OSTI)

The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics (energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10{sup {minus}20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup {minus}20} cm{sup 2}, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm{sup 3}. A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author`s immediate experiments. These results further increase their optimism of being able to produce a {approximately} 10% efficient diode-pumped solid state laser for inertial fusion energy.

Marshall, C.; Smith, L.; Payne, S.

1994-08-15T23:59:59.000Z

34

Solid-state lighting technology perspective.  

SciTech Connect

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

35

Progress in Organic Light emitting Diodes  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3075 Seminar HostPoint of Contact: Samuel Mao The development of organic light emitting diode (OLED) from its discovery in the Kodak Research Laboratories in the late 1970's...

36

Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy  

E-Print Network (OSTI)

Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study injec- tion and transport layers in an organic light-emitting diode (OLED) structure has been studied B.V. All rights reserved. 1. Introduction OLEDs (organic light-emitting diodes) are display de

Kim, Sehun

37

Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer  

E-Print Network (OSTI)

Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward tri-color organic light-emitting diode (OLED) pixels. At reduced pressures, and with a defined donor already been used to fabricate basic small-molecule organic light-emitting diodes (OLEDs)2,3 and polymeric

38

Improving OLED technology for displays  

E-Print Network (OSTI)

Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2008-01-01T23:59:59.000Z

39

Solid-State Lighting: Why SSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Why SSL to someone by E-mail Why SSL to someone by E-mail Share Solid-State Lighting: Why SSL on Facebook Tweet about Solid-State Lighting: Why SSL on Twitter Bookmark Solid-State Lighting: Why SSL on Google Bookmark Solid-State Lighting: Why SSL on Delicious Rank Solid-State Lighting: Why SSL on Digg Find More places to share Solid-State Lighting: Why SSL on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Why SSL Resources Solid-State Lighting: Brilliant Solutions for America's Energy Future PDF Energy Savings Potential of SSL PDF Energy Savings Estimates of LEDs PDF More Resources Since 2003, the U.S. Department of Energy has invested with industry partners in research and development of solid-state lighting (SSL)-including both light-emitting diode (LED) and organic light

40

Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)  

DOE Green Energy (OSTI)

Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

Gang Li

2003-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Department Announces $4 Million Solicitation for Solid-State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $4 Million Solicitation for Solid-State Announces $4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

42

Energy Department Announces $4 Million Solicitation for Solid-State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Solicitation for Solid-State 4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

43

Three-color organic light-emitting diodes patterned by masked dye Florian Pschenitzka and J. C. Sturma)  

E-Print Network (OSTI)

Three-color organic light-emitting diodes patterned by masked dye diffusion Florian Pschenitzka of Physics. S0003-6951 99 02913-7 Organic light-emitting diodes OLEDs have demon- strated a remarkable

44

White organic light-emitting diodes: Status and perspective  

E-Print Network (OSTI)

White organic light-emitting diodes (OLEDs) are ultrathin, large-area light sources made from organic semiconductor materials. Over the past decades, much research has been spent on finding suitable materials to realize ...

Reineke, Sebastian

45

High Efficancy Integrated Under-Cabinet Phosphorescent OLED  

SciTech Connect

In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

Michael Hack

2001-10-31T23:59:59.000Z

46

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

47

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

48

Solid-State Lighting: R&D Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D R&D Projects Printable Version Share this resource Send a link to Solid-State Lighting: R&D Projects to someone by E-mail Share Solid-State Lighting: R&D Projects on Facebook Tweet about Solid-State Lighting: R&D Projects on Twitter Bookmark Solid-State Lighting: R&D Projects on Google Bookmark Solid-State Lighting: R&D Projects on Delicious Rank Solid-State Lighting: R&D Projects on Digg Find More places to share Solid-State Lighting: R&D Projects on AddThis.com... R&D Highlights R&D Projects DOE leadership and support spur advances in the efficacy and performance of light-emitting diode (LED) and organic LED (OLED) technologies-advances that might not otherwise be achieved without DOE funding. (Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe

49

Local tuning of organic light-emitting diode color by dye droplet application  

E-Print Network (OSTI)

Local tuning of organic light-emitting diode color by dye droplet application T. R. Hebner and J. C and the spectra of organic light-emitting diodes made from these films can be successfully tuned by this method. S0003-6951 98 01339-4 A main goal of the field of organic light-emitting diodes OLEDs

50

Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode  

E-Print Network (OSTI)

Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode are presented from polymer/molecular organic heterostructure light emitting diodes composed of a layer,2 organic light emitting diodes OLEDs utilizing fluorescent molecules have attracted considerable interest

51

Enhanced coupling of light from organic light emitting diodes using nanoporous films  

E-Print Network (OSTI)

Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

Kwok, Hoi S.

52

FAQ of Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

53

Storage of charge carriers on emitter molecules in organic light-emitting diodes  

E-Print Network (OSTI)

Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)[subscript 2](acac)] are studied by time-resolved electroluminescence ...

Reineke, Sebastian

54

Components, production processes, and recommendations for future research in organic light emitting diodes  

E-Print Network (OSTI)

Organic Light Emitting Diodes (OLEDs) are small, optoelectronic devices that can be used in the production of energy-efficient, high definition displays in cell phones, computers, and televisions. These devices have great ...

Hunting, Lindsay (Lindsay E.)

2009-01-01T23:59:59.000Z

55

Solid-State Lighting Home Page for Semiconductor light emitting diodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Since 04/21/2002 Since 04/21/2002 Solid-State Lighting Archival Website As of September 1, 2006, this website is not being actively maintained. We hope that the collected news items, tracking reports, literature summaries, and links to various industry resources will be of archival value to the SSL community. Please visit Sandia's current and active Solid-State Lighting Energy Frontier Research Center website at http://ssls.sandia.gov/. Solid-State Lighting Science Energy Frontier Research Center The Mission of this site was to provide a comprehensive portal to the emerging knowledge that will enable the promise of solid-state lighting The site was active between December 2001 and September 2006, and the goal was: " … to gather together information relevant to solid-state lighting, and

56

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

57

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

58

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

Science Conference Proceedings (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

59

The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser  

SciTech Connect

The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

2007-09-24T23:59:59.000Z

60

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design  

E-Print Network (OSTI)

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display  

E-Print Network (OSTI)

4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode active matrix organic light emitting diode (AMOLED) pixel with high pixel to pixel luminance uniformity such as organic light emitting diodes (OLEDs) are presently of great interest due to their potential application

62

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)  

E-Print Network (OSTI)

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

Hu, Wenchuang "Walter"

63

Sequential Printing by Laser-Induced Forward Transfer To Fabricate a Polymer Light-Emitting Diode Pixel  

E-Print Network (OSTI)

Sequential Printing by Laser-Induced Forward Transfer To Fabricate a Polymer Light-Emitting Diode-1015, Lausanne, Switzerland ABSTRACT: Patterned deposition of polymer light-emitting diode (PLED Organic light-emitting diodes (OLEDs) have been investigated in detail for nearly a quarter of a century,1

64

Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs  

SciTech Connect

In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a profound understanding of the EL dynamics of OLED, and the theoretical model can fit and explain the experiment data quite well. For the edge emission, we focused on the spectrum and the relative intensity of the edge emission. In the future, more research can be done on the comparison of the intensity between the total edge emission and the surface emission which will give us a sense what fraction of light was trapped in the device. Micro structures can be integrated into the OLED such as DFB and DBR, the character of edge emission should be very interesting. For the transient spike, the CCP model can give a good explanation. But in the model, the effect of the electric field change is not included, because from the start point (t=0), we assume the mobility of carriers is a constant. If we consider the details of the change of the electric field, then when turning of the bias, the decrease of the electric field results in decrease of the carrier mobility and the dissociation rate. If we can add the electric field effect into the model, the whole theory will be more convincing.

Zhengqing, Gan

2010-05-16T23:59:59.000Z

65

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

66

High Performance OLEDs with Air-stable Nanostructured Electrodes ...  

Building Energy Efficiency; ... Solar Thermal; Startup America; ... This barrier can also create heating that damages the OLED.

67

Argon-ion-pumped and diode-pumped all-solid-state femtosecond Cr:LiSrAlF{sub 6} regenerative amplifiers  

Science Conference Proceedings (OSTI)

A tunable femtosecond solid-state amplifier system that uses only 3 W of 488-nm argon-ion pump power has been demonstrated to deliver microjoule pulses at repetition rates up to 20 kHz, with a maximum pulse energy of 14 {mu}J obtained at 5 kHz. An all-solid-state, tunable, diode-pumped Cr:LiSrAlF{sub 6} regenerative amplifier has been demonstrated, for the first time to our knowledge, that amplifies femtosecond pulses to energies exceeding 1 {mu}J at up to a 16-kHz repetition rate.

Hyde, S.C.W.; Barry, N.P.; Mellish, R.; French, P.M.W.; Taylor, J.R. [Femtosecond Optics Group, Department of Physics, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ (United Kingdom); van der Poel, C.J.; Valster, A. [Philips Optoelectronics Centre, Prof. Holstlann 4, 5656 AA Eindhoven (Netherlands)

1995-01-15T23:59:59.000Z

68

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

2011-01-02T23:59:59.000Z

69

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Kahen, Keith

2008-07-31T23:59:59.000Z

70

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Keith Kahen

2008-07-31T23:59:59.000Z

71

White organic light-emitting diodes: Status and perspective  

E-Print Network (OSTI)

White organic light-emitting diodes (OLEDs) are ultra-thin, large-area light sources made from organic semiconductor materials. Over the last decades, much research has been spent on finding the suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color-tunability, and color-quality, white OLEDs are emerging to become one of the next generation light sources. In this review, we discuss the physics of a variety of device concepts that are introduced to realize white OLEDs based on both polymer and small molecule organic materi als. Owing to the fact that about 80 % of the internally generated photons are trapped within the thin-film layer structure, we put a second focus on reviewing promising concepts for improved light outcoupling.

Reineke, Sebastian; Lüssem, Björn; Leo, Karl

2013-01-01T23:59:59.000Z

72

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification  

E-Print Network (OSTI)

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate in determining the power efficiency of organic light emitting diodes OLEDs is the coupling effi- ciency ( cp 1999; accepted for publication 1 February 2000 The emission intensity of an organic light-emitting

73

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells  

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells . IB-2044, IB-2231 . ... U.S. DEPARTMENT OF ENERGY • OFFICE OF SCIENCE • UNIVERSITY OF CALIFORNIA.

74

OLED Display with Single Grain Si TFT. (SG-TFT).  

E-Print Network (OSTI)

??OLED is a current based device, which emitted amount of light depends on the current supplied to the device so steady current flow is needed.… (more)

Naeimi, A.

2011-01-01T23:59:59.000Z

75

Available Technologies: High Performance OLEDs with Air-stable ...  

more balanced charge distribution ; Increased OLED device lifetime ; Capable of scale-up manufacturing--either "top-down" or "bottom-up" processing ;

76

Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes  

E-Print Network (OSTI)

-coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

Meng, Hsin-Fei

77

A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.M.A. Dawson, Z. Shen, D.A. Furst, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri  

E-Print Network (OSTI)

A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.S.A. Abstract The design of an active matrix organic light emitting diode (AMOLED) display using a polysilicon. Introduction Organic light emitting diodes (OLEDs) are presently of great interest due to their potential

78

New OLED Lighting Systems Shine Bright, Save Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Universal Display Corporation Universal Display Corporation (UDC) (Ewing, NJ), founded in 1994, provides OLED innovations and helps commercialize new generations of OLED products through technology licensing, UniversalPHOLED® materials sales, technology development, and technology transfer services. UDC is a world leader in the development of innovative OLED technology for use in flat panel displays, lighting, and organic electronics. It holds one of the largest patent portfolios in the OLED field. www.universaldisplay.com New OLED Lighting Systems Shine Bright, Save Energy Challenge Lighting consumes over 22% of the total electricity produced in the U.S. and, according to industry estimates, accounts for over $200 billion per year in electric bills worldwide. A majority of this energy consumption

79

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

80

Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media  

SciTech Connect

Optimal conditions are determined for the development of efficient diode-pumped 1-{mu}m solid-state lasers with output powers up to a few tens of kilowatts. The thermal operating conditions are analysed for various Yb{sup 3+}- or Nd{sup 3+}-doped active media used in high-power laser systems. The advantages and disadvantages of these active ions and various crystal matrices are discussed. The theoretical analysis and experimental simulations allow one to determine the application fields of various laser crystals. A new concept of a multibeam (multipoint) pumping of active media is proposed. (special issue devoted to the 25th anniversary of the a.m. prokhorov general physics institute)

Garnov, S V; Mikhailov, V A; Serov, R V; Smirnov, V A; Tsvetkov, V B; Shcherbakov, I A [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2007-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

82

Please cite this article in press as: J. Shaw-Stewart, et al., The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels, Appl. Surf. Sci. (2012), http://dx.doi.org/10.1016/j.a  

E-Print Network (OSTI)

-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels, Appl-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels James been used to fabricate various types of organic light- emitting diodes (OLEDs), and the process itself

83

Organic light-emitting diodes from homoleptic square planar complexes  

SciTech Connect

Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

Omary, Mohammad A

2013-11-12T23:59:59.000Z

84

Prospects for inertial fusion energy based on a diode-pumped solid-state laser (DPSSL) driver: Overview and development path  

SciTech Connect

It is now known with certainty that the type of fusion known as inertial fusion will work with sufficient energy input, so inertial fusion is really beyond the ``scientific breakeven`` point in many respects. The most important question that remains for inertial fusion energy (IFE) is whether this type of fusion can operate with sufficiently low input energy to make it economically feasible for energy production. The constraint for low input energy demands operation near the inertial fusion ignition threshold, and such operation creates enormous challenges to discover a target design that will produce sufficient energy gain. There are also multiple issues relating to the scientific feasibility of using a laboratory-type ``driver`` to energize a target, such as those concerning bandwidth and beam smoothing for ``direct drive,`` and extension of hohlraum plasma physics to the IFE scale for ``indirect drive.`` One driver that appears as though it will be able to meet the IFE requirements, assuming modest development and sufficient target gain, is a diode-pumped solid-state laser (DPSSL). We give an overview of this type of laser system, and explain what development remains for the economic production of electricity using this type of driver for IFE.

Orth, C.D.

1997-03-01T23:59:59.000Z

85

Nominated for the TU/e Doctoral Project Award 2010 dr.ir. R.W. Smink  

E-Print Network (OSTI)

- Intensity Discharge lamps. Organic light-emitting diodes (OLEDs) OLEDs are ultrathin solid-state light of disorder on the charge transport and recombination in organic light-emitting diodes Applied Physics Figure 1: A flexible white organic light-emitting diode. Figure 2: Schematic structure of an OLED

Franssen, Michael

86

Manganese-doped indium oxide and its application in organic light-emitting diodes  

SciTech Connect

Thin films of manganese-doped indium oxide (IMO) deposited by electron beam evaporation have been investigated as anodes in organic light-emitting diodes (OLEDs). The IMO films have a high work function of 5.35 eV, a desirable surface morphology with an average roughness of 1.1 nm, a high average optical transmittance of 87.2% in the visible region, and a maximum optical transmittance of 92% at 460 nm. It is demonstrated that an IMO anode can effectively improve hole injection at the anode/organic interface, resulting in OLEDs with an increased electroluminescent efficiency.

Liao Yaqin [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Lu Qipeng; Fan Yi; Liu Xingyuan [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

2011-07-11T23:59:59.000Z

87

Roll-to-Roll Solution-Processible Small-Molecule OLEDs  

SciTech Connect

The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

Liu, Jie Jerry

2012-07-31T23:59:59.000Z

88

Available Technologies: Novel Structured LED and OLED Devices  

APPLICATIONS OF TECHNOLOGY: Light Emitting Diode (LED) and Organic LED devices for. Energy-efficient area lighting ; Information displays

89

Novel Structured LED and OLED Devices - Energy Innovation Portal  

Applications and Industries Light Emitting Diode (LED) and Organic LED devices for. Energy-efficient area lighting; Information displays; Technology ...

90

Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction  

SciTech Connect

Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

2011-06-06T23:59:59.000Z

91

MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes  

SciTech Connect

Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

2011-09-01T23:59:59.000Z

92

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

93

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solution Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting CX(s) Applied: B3.6 Date: 03022010...

94

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting CX(s) Applied: B3.6 Date: 03022010 Location(s):...

95

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting (Pennsylvania) CX(s) Applied: B3.6 Date: 03022010...

96

CX-001035: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting CX(s) Applied: B3.6 Date: 03022010 Location(s):...

97

Categorical Exclusion Determinations: Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting (Pennsylvania) CX(s) Applied: B3.6 Date: 03022010...

98

Development of OLED panel defect detection system through improved otsu algorithm  

Science Conference Proceedings (OSTI)

OLED (Organic light-emitting) displays have been called the next generation of display devices for their unique properties: colorful images, large viewing angle, light weight and power efficiency. Complex manufacture processing makes the screen have ... Keywords: OLED panel, Otsu method, defect detection, image segmentation, subtraction operation

Jian Gao; Zhiliang Wang; Yanyun Liu; Chuanxia Jian; Xin Chen

2012-10-01T23:59:59.000Z

99

Near independence of OLED operating voltage on transport layer thickness  

SciTech Connect

We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N?-Bis(naphthalen-1-yl)-N,N?-bis(phenyl)-benzidine (?-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

Swensen, James S.; Wang, Liang (Frank) [Frank; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

2013-01-01T23:59:59.000Z

100

Laser diode package with enhanced cooling  

Science Conference Proceedings (OSTI)

A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

2012-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Laser diode package with enhanced cooling  

Science Conference Proceedings (OSTI)

A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

2012-06-12T23:59:59.000Z

102

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 µm spectral region  

E-Print Network (OSTI)

An all-solid-state continuous-wave (cw) laser system for mid-infrared absorption measurements of the carbon monoxide (CO) molecule has been developed and demonstrated. The single-mode, tunable output of an external-cavity diode laser (ECDL) is difference-frequency mixed (DFM) with the output of a 550-mW diode-pumped cw Nd:YAG laser in a periodically-poled lithium niobate (PPLN) crystal to produce tunable cw radiation in the mid-infrared. The wavelength of the 860-nm ECDL can be coarse tuned between 860.78 to 872.82 nm allowing the sensor to be operated in the 4.4 ? 4.8 µm region. Results from single-pass mid-IR direct absorption experiments for CO concentration measurements are discussed. CO measurements were performed in CO/CO2/N2 mixtures in a room temperature gas cell that allowed the evaluation of the sensor operation and data reduction procedures. Field testing was performed at two locations: in the exhaust of a well-stirred reactor (WSR) at Wright-Patterson Air Force Base and the exhaust of a gas turbine at Honeywell Engines and Systems. Field tests demonstrated the feasibility of the sensor for operation in harsh combustion environments but much improvement in the sensor design and operation was required. Experiments in near-adiabatic hydrogen/air CO2-doped flames were performed featuring two-line thermometry in the 4.8 µm spectral region. The sensor concentration measurement uncertainty was estimated at 2% for gas cell testing. CO concentration measurements agreed within 15% of conventional extractive sampling at WSR, and for the flame experiments the repeatability of the peak absorption gives a system uncertainty of 10%. The noise equivalent CO detection limit for these experiments was estimated at 2 ppm per meter, for combustion gas at 1000 K assuming a SNR ratio of 1.

Rodolfo, Barron Jimenez

2004-12-01T23:59:59.000Z

103

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers.  

E-Print Network (OSTI)

??Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon… (more)

Zhu, Jiayuan

2013-01-01T23:59:59.000Z

104

Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution  

SciTech Connect

As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

Park, Jae-Hyung [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)], E-mail: seongoh@hanyang.ac.kr

2009-01-08T23:59:59.000Z

105

Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror  

SciTech Connect

We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

2009-07-20T23:59:59.000Z

106

National Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

these results is called "The Promise of Solid-State Lighting for General Illumination: Light Emitting Diodes and Organic Light Emitting Diodes" (pdf - 329kb). The full SSL-LED...

107

Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery  

E-Print Network (OSTI)

of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid- state Illumination Á Light-emitting diode Á Minimal access surgery Á Solid-state semiconductor In the 1950s

Rosso, Lula

108

Liquid convective diodes  

DOE Green Energy (OSTI)

Liquid convective diodes are analyzed by experiments and theory. The experiments include flow visualization and temperature measurements. The dynamic behavior of a diode is analyzed and explained. Performance of three diodes of different designs that were installed in a test cell this past winter showed an average 50% thermal efficiency over a three-month period. If only the performance of the most efficient diode among the three is considered, it is expected that this figure may be increased to 60% or possibly 65% with some design improvements. A simple analytical model, which was developed earlier, is discussed. A comparison of reservoir temperatures from one of the test cell diodes with predicted temperatures from the model showed excellent agreement. The good agreement indicates that the model contains the elements that are necessary to accurately predict site-specific diode performance.

Jones, G.F.

1984-01-01T23:59:59.000Z

109

Development of high power green light emitting diode dies in piezoelectric GaInN/GaN  

E-Print Network (OSTI)

Development of high power green light emitting diode dies in piezoelectric GaInN/GaN Christian in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

Detchprohm, Theeradetch

110

Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide  

SciTech Connect

The characteristics of green phosphorescent organic light-emitting diodes (OLEDs) fabricated on ITO/glass substrates pretreated with low-energy O{sub 2} and Cl{sub 2} plasma were compared. At 20 mA/cm{sup 2}, the OLEDs with O{sub 2} and Cl{sub 2} plasma-treated indium tin oxide (ITO) had voltages of 9.6 and 7.6 eV, and brightness of 9580 and 12380 cd/m{sup 2}, respectively. At {approx}10{sup 4} cd/m{sup 2}, the latter had a 30% higher external quantum efficiency and a 74% higher power efficiency. Photoelectron spectroscopies revealed that Cl{sub 2} plasma treatment created stable In-Cl bonds and raised the work function of ITO by up to 0.9 eV. These results suggest that the better energy level alignment at the chlorinated ITO/organic interface enhances hole injection, leading to more efficient and more reliable operation of the OLEDs. The developed plasma chlorination process is very effective for surface modification of ITO and compatible with the fabrication of various organic electronics.

Cao, X. A.; Zhang, Y. Q. [Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506 (United States)

2012-04-30T23:59:59.000Z

111

Chameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong  

E-Print Network (OSTI)

. However, there is a great need for tools to automatically transform GUIs for power reduction. Firstly transformation can readily adapt them for power savings on OLED-based displays. Secondly, transformation tools includes two steps. In first step, chameleon transforms the colors of a given GUI to minimize the power

Zhong, Lin

112

Power-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays  

E-Print Network (OSTI)

Power-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays Mian to their emissive nature. They bring a new opportunity for power saving by transforming GUI colors. In this work, we to automatically transform GUIs for power reduction. Firstly, most existing GUIs are designed for conventional LCDs

Zhong, Lin

113

Online OLED dynamic voltage scaling for video streaming applications on mobile devices  

Science Conference Proceedings (OSTI)

This work proposes an online DVS approach for OLED-based mobile video applications to reduce display power consumption. A time-efficient representative-region based DVS scheme is developed and applied in MPEG video streaming. Based on the proposed scheme, ...

Mengying Zhao, Yiran Chen, Xiang Chen, Chun Jason Xue

2013-07-01T23:59:59.000Z

114

Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL  

SciTech Connect

An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

None

2012-07-15T23:59:59.000Z

115

Solid-State Lighting: R&D Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Challenges to someone by R&D Challenges to someone by E-mail Share Solid-State Lighting: R&D Challenges on Facebook Tweet about Solid-State Lighting: R&D Challenges on Twitter Bookmark Solid-State Lighting: R&D Challenges on Google Bookmark Solid-State Lighting: R&D Challenges on Delicious Rank Solid-State Lighting: R&D Challenges on Digg Find More places to share Solid-State Lighting: R&D Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges R&D Challenges Resources Doing Business with DOE's Solid-State Lighting Program PDF Solid-State Lighting Patents Resulting from DOE-Funded Projects PDF 2013 Project Portfolio PDF Solid-State Lighting R&D Manufacturing Roadmap PDF Solid-State Lighting R&D Multi-Year Program Plan PDF

116

Solid-State Lighting: Market Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Challenges to someone by Market Challenges to someone by E-mail Share Solid-State Lighting: Market Challenges on Facebook Tweet about Solid-State Lighting: Market Challenges on Twitter Bookmark Solid-State Lighting: Market Challenges on Google Bookmark Solid-State Lighting: Market Challenges on Delicious Rank Solid-State Lighting: Market Challenges on Digg Find More places to share Solid-State Lighting: Market Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Market Challenges Resources Compact Fluorescent Lighting in America PDF Guiding Market Introduction of SSL Products PDF LED Directional Lamps PDF LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps PDF What to Ask - A Checklist for Buyers of LED Lighting Products PDF

117

Solid-State Lighting: Using LEDs  

NLE Websites -- All DOE Office Websites (Extended Search)

Using LEDs to someone by E-mail Using LEDs to someone by E-mail Share Solid-State Lighting: Using LEDs on Facebook Tweet about Solid-State Lighting: Using LEDs on Twitter Bookmark Solid-State Lighting: Using LEDs on Google Bookmark Solid-State Lighting: Using LEDs on Delicious Rank Solid-State Lighting: Using LEDs on Digg Find More places to share Solid-State Lighting: Using LEDs on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Using LEDs Resources Using LEDs to Their Best Advantage PDF Establishing LED Equivalency PDF LED Directional Lamps LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps What to Ask - A Checklist for Buyers of LED Lighting Products More Resources With their unique design and performance characteristics-such as directional light emission, compact profile, superior optical control,

118

Driving conditions dependence of magneto-electroluminescence in tri-(8-hydroxyquinoline)-aluminum based organic light emitting diodes  

E-Print Network (OSTI)

we investigated the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum based organic light-emitting diodes (OLEDs) through the steady-state and transient method simultaneously. The MELs show the great different behaviors when we turn the driving condition from a constant voltage to a pulse voltage. For devices driven by the constant voltage, the MELs are similar with the literature data; for devices driven by the pulse voltage, the MELs are quite different, they firstly increase to a maximum then decrease as the magnetic field increases continuously. Negative MELs can be seen when both the magnetic field and driving voltage are high enough.

Peng, Qiming; Li, Xianjie; Li, Mingliang; Li, Feng

2011-01-01T23:59:59.000Z

119

Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination  

Science Conference Proceedings (OSTI)

Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

Parker, Ian

2012-02-29T23:59:59.000Z

120

Architecture and 3D device simulation of a PIN diode-based Gamma radiation detector  

Science Conference Proceedings (OSTI)

In this paper, we present a new IC-based gamma radiation detector. We report 3D simulation results for the PIN diode structure which is used in this detector, along with a discussion of the architecture of the readout electronics for this detector. Gamma ... Keywords: pin diode, radiation detection, solid-state

Amr Elshennawy; Craig M. Marianno; Sunil P. Khatri

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution  

E-Print Network (OSTI)

Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution Aurélien David of photonic crystal PhC -assisted gallium nitride light-emitting diodes LEDs to the existence of unextracted a promising but challenging solution towards efficient solid-state lighting. Conventional GaN-based light-emitting

Recanati, Catherine

122

Sixth International Conference on Solid State Lighting, edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,  

E-Print Network (OSTI)

commercial white light emitting diodes (LEDs) rely on complicated fabrication methods to produce white light: Cadmium Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting Solid state lighting, in the form of white light emitting diodes (LEDs

Weiss, Sharon

123

Security Implications of OPC, OLE, DCOM, and RPC in Control Systems  

SciTech Connect

OPC is a collection of software programming standards and interfaces used in the process control industry. It is intended to provide open connectivity and vendor equipment interoperability. The use of OPC technology simplifies the development of control systems that integrate components from multiple vendors and support multiple control protocols. OPC-compliant products are available from most control system vendors, and are widely used in the process control industry. OPC was originally known as OLE for Process Control; the first standards for OPC were based on underlying services in the Microsoft Windows computing environment. These underlying services (OLE [Object Linking and Embedding], DCOM [Distributed Component Object Model], and RPC [Remote Procedure Call]) have been the source of many severe security vulnerabilities. It is not feasible to automatically apply vendor patches and service packs to mitigate these vulnerabilities in a control systems environment. Control systems using the original OPC data access technology can thus inherit the vulnerabilities associated with these services. Current OPC standardization efforts are moving away from the original focus on Microsoft protocols, with a distinct trend toward web-based protocols that are independent of any particular operating system. However, the installed base of OPC equipment consists mainly of legacy implementations of the OLE for Process Control protocols.

2006-01-01T23:59:59.000Z

124

Novel phosphors for solid state lighting  

E-Print Network (OSTI)

Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

Furman, Joshua D

2010-11-16T23:59:59.000Z

125

Conference 5739, SPIE International Symposium Integrated Optoelectronic Devices, 22-27 Jan 2005, San Jose, CA Development of high power green light emitting diode dies in  

E-Print Network (OSTI)

, San Jose, CA Development of high power green light emitting diode dies in piezoelectric Ga in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

Wetzel, Christian M.

126

Dual function conducting polymer diodes  

DOE Patents (OSTI)

Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

Heeger, Alan J. (Santa Barbara, CA); Yu, Gang (Goleta, CA)

1996-01-01T23:59:59.000Z

127

Photonics poster small  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities in Solid State Lighting Research and Development of Light-Emitting Diodes (LEDs) and Organic Light-Emitting Diodes (OLEDs) Research & Development Applications Optical Measurements National Center for Electron Microscopy (NCEM) Advanced Light Source (ALS) Research in LEDs Spin casting of OLED Growing Low Defect GaN Crystals to reduce the density of structural defects Minigoniometer viewing LED Optical design of device and packaging Local Lattice Constants and Electric Fields LEDs Research & Development of OLEDs Measurement of spectral power distribution and efficacy of OLED Design and fabrication of luminaires: LED porchlight Electric fields and lattice parameters are simultaneously recorded by the side band and autocorrelation of an electron

128

www.dalinnovation.com Industry LIaIsonand Innovation  

E-Print Network (OSTI)

efficiencies and lifetimes of Organic Light Emitting Diode (OLED) displays. OLEDs are widely touted as the next

Beaumont, Christopher

129

The Laser DiodeThe Laser Diode Jason HillJason Hill  

E-Print Network (OSTI)

a Laser Diode Works Edge Emitting Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n junctionn Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium

La Rosa, Andres H.

130

Ole Langniss  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering German Aerospace Research Establishment Institute for Technical Thermodynamics, Stuttgart, Germany This Speaker's Seminars Germany's Future Energy Policy -...

131

Ole Langniss  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering German Aerospace Research Establishment Institute for Technical Thermodynamics, Stuttgart, Germany This speaker was a visiting speaker who delivered a talk or...

132

OLES News  

Science Conference Proceedings (OSTI)

... Citations. 06/13/2011. NIST Contributions to Smart Grid Highlighted in White House Report, Event. 06/06/2011. NIST researchers ...

2013-09-23T23:59:59.000Z

133

LASER DIODE TECHNOLOGY AND APPLICATIONS Submitted to  

E-Print Network (OSTI)

and a normal diode and a light emitting diode. I will also define the terms homojunction and heterojunction, and is the main source of light in a light-emitting diode. Under suitable conditions, the electron and the hole

La Rosa, Andres H.

134

ACM HotMobile 2013 demo: Focus: a demo on usable & effective approach to OLED display power management  

Science Conference Proceedings (OSTI)

In this demo, we present Focus , a system for effectively and efficiently reducing the power consumption of OLED displays. The key idea of Focus is that we can save display power by dimming the portions of the applications and games that are less important ...

Tan Kiat Wee, Tadashi Okoshi, Archan Misra, Rajesh Krishna Balan

2013-11-01T23:59:59.000Z

135

VPN MANUAL Windows 7 Check to ensure OleMiss wireless is visible in the network connections.  

E-Print Network (OSTI)

VPN MANUAL ­ Windows 7 Check to ensure OleMiss wireless is visible in the network connections, click Continue. #12;VPN MANUAL ­ Windows 7 Next, you will be prompted to Launch the Cisco Agent. Click to `Run' the file. #12;VPN MANUAL ­ Windows 7 The Cisco Agent will likely take a few minutes to fully

Tchumper, Gregory S.

136

Seventh International Conference on Solid State Lighting, Edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,  

E-Print Network (OSTI)

Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting and white-light LEDs The use of white light emitting diodes (LEDs emitting diodes[11] , though they are a less mature technology as compared to inorganic semiconductor

Weiss, Sharon

137

Mixing Properties in Oxide Solid Solutions Relevant to Nuclear Fuels  

Science Conference Proceedings (OSTI)

The work focuses on urania-ceria solid solutions, a surrogate system for ... Model for Hardness Uniformity of Multi-Pass Laser Heat Treatment Using Direct Diode Laser ... The Li-Graphite System and Surface Reactions from First-Principles.

138

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

139

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

Albrecht, G.; George, E.V.; Krupke, W. [and others

1994-12-31T23:59:59.000Z

140

Zakya H. Kafafi  

NLE Websites -- All DOE Office Websites (Extended Search)

Division at Naval Research Laboratory. Her research is focused on organic light emitting diode (OLED) material and devices.Expertise: organic light emitting diode (OLED)...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Emitron: microwave diode  

DOE Patents (OSTI)

The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

1982-05-06T23:59:59.000Z

142

Development of ZnO Based Light Emitting Diodes and Laser Diodes.  

E-Print Network (OSTI)

??ZnO based homojunction light emitting diode, double heterojunction light emitting diode, embedded heterojunction random laser diode and Fabry-Perot nanowire laser devices were fabricated and characterized.… (more)

Kong, Jieying

2012-01-01T23:59:59.000Z

143

Organic light emitting diodes with structured electrodes  

DOE Patents (OSTI)

A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

2012-12-04T23:59:59.000Z

144

Long persistent light emitting diode  

Science Conference Proceedings (OSTI)

Light emitting diodes(LEDs)coated with Sr 2 Mg Si 2 O 7 : Eu 2 + Nd 3 + (blue) Sr Al 2 O 4 : Eu 2 + Dy 3 + (green) Sr S : Eu 2 + Y 3 + Ce 3 + (orange)

D. Jia; D. N. Hunter

2006-01-01T23:59:59.000Z

145

1.0. Semiconductor Diodes 1 of 27 1.2 Ideal Diode  

E-Print Network (OSTI)

-high efficiency light emitting diode lamps. As an educational institution, DTCC has shown a serious commitment

Allen, Gale

146

Light Emitting Diodes and General Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Emitting Diodes and General Lighting Speaker(s): Martin Moeck Date: August 6, 2009 - 12:00pm Location: 90-3122 We give a short overview on high-power light emitting diodes,...

147

LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)  

E-Print Network (OSTI)

1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

McNeill, John A.

148

AlGaAs diode pumped tunable chromium lasers  

DOE Patents (OSTI)

An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

Krupke, William F. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

149

Few-photon optical diode  

E-Print Network (OSTI)

We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficiently than the opposite.

Roy, Dibyendu

2010-01-01T23:59:59.000Z

150

Semiconductor Nanocrystals-Based White Light Emitting Diodes  

Science Conference Proceedings (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

Dai, Quanqin [ORNL; Hu, Michael Z. [ORNL; Duty, Chad E [ORNL

2010-01-01T23:59:59.000Z

151

Semiconductor-Nanocrystals-Based White Light-Emitting Diodes  

Science Conference Proceedings (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

Dai, Quanqin [ORNL; Duty, Chad E [ORNL; Hu, Michael Z. [ORNL

2010-01-01T23:59:59.000Z

152

Striking a Balance Between Energy and the Environment in the Columbia River Basin Sockeye surprise  

E-Print Network (OSTI)

-state lighting -- light-emit- ting diodes (LED) and organic light-emitting diodes (OLED) -- appear to offer

153

Materials Research Lab -Research Internships in Science and Engineering http://www.mrl.ucsb.edu/mrl/outreach/educational/RISE/interns03.html[5/10/12 9:53:34 AM  

E-Print Network (OSTI)

and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education

Bigelow, Stephen

154

JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 12, No. 3, March 2010, p. 605 -609 The effect of laser pulse length upon laser-induced  

E-Print Network (OSTI)

], ceramics [9] and functional organic light-emitting diode (OLED) pixels [10] have all been transferred

155

Solids irradiator  

DOE Patents (OSTI)

A novel facility for irradiation of solids embodying pathogens wherein solids are conveyed through an irradiation chamber in individual containers of an endless conveyor.

Morris, Marvin E. (Albuquerque, NM); Pierce, Jim D. (Albuquerque, NM); Whitfield, Willis J. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

156

High efficiency III-nitride light-emitting diodes  

DOE Patents (OSTI)

Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

2013-05-28T23:59:59.000Z

157

IntenCity - 2 Solid State Outdoor Luminaire SL-3200 High Output LED Street Light  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a solid state outdoor luminarie light emitting diode (LED) street lighting system designed to provide various levels of direct white light.

2008-06-12T23:59:59.000Z

158

Functional Polymer Architectures for Solution Processed Organic Light Emitting Diodes  

E-Print Network (OSTI)

OLED emitter and indium tin oxide (ITO) as the transparentanode (typically indium tin oxide, ITO) and the cathode (solution on pre-treated indium-tin-oxide (ITO)-coated glass

Poulsen, Daniel Andrew

2010-01-01T23:59:59.000Z

159

Laser Diode Cathode Laser Diode Anode +5 Volts  

E-Print Network (OSTI)

the high performance you expect from a Wavelength component with two distinct improvements: low voltage operation from +5 V DC, and an Active Current Limit. Operating from a single +5 V supply minimizes heat dissipation. Modular packaging makes it easy to integrate the PLD into your system. For applications that require a higher forward voltage, a separate laser diode power supply input lets you provide a higher compliance voltage. The Active Current Limit not only protects your laser diode, but ensures that you are operating with maximum stability. When the laser current reaches the level set by the Limit I Trimpot, the output disables and the Limit LED and Limit Status indicate the current limit has been reached. Two photodiode ranges provide variable sensitivities for optimum operation. You can maintain excellent stability when operating in both constant current and constant power mode. All trimpots and switches are easily accessible and offer precision control. A slow start circuit, mechanical shorting relay, and Active Current Limit offer maximum protection for your laser diode even when power is removed.

H; pin Power Ground; Lim I Adj; I Disabled

2010-01-01T23:59:59.000Z

160

Electrically driven nanopyramid green light emitting diode  

Science Conference Proceedings (OSTI)

An electrically driven nanopyramid green light emitting diode(LED) was demonstrated. The nanopyramid arrays were fabricated from a GaN substrate by patterned nanopillar etch

S.-P. Chang; Y.-C. Chen; J.-K. Huang; Y.-J. Cheng; J.-R. Chang; K.-P. Sou; Y.-T. Kang; H.-C. Yang; T.-C. Hsu; H.-C. Kuo; C.-Y. Chang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Light emitting diode color rendition properties.  

E-Print Network (OSTI)

??This paper discusses the color rendition capabilities of light emitting diodes (LEDs) and their relationship with the current standard for color rendition quality. The current… (more)

Hood, Sean

2013-01-01T23:59:59.000Z

162

Energy_Savings_Light_Emitting_Diodes_Niche_Lighting_Apps.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.p...

163

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

164

Semiconductor diode with external field modulation  

DOE Patents (OSTI)

A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

Nasby, Robert D. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

165

Planar Vacuum Diode With Monoenergetic Electrons  

E-Print Network (OSTI)

The paper analyses volt-ampere characteristics of a planar vacuum diode with mono-energetic electrons, emitted by the cathode (an electron beam). The movement of the electron beam in the volume of the diode is described. An analytic dependence of the volt-ampere characteristics in an unlimited and limited by the field mode of the electron beam is derived.

Dimitar G. Stoyanov

2007-06-06T23:59:59.000Z

166

Broadband light-emitting diode  

DOE Patents (OSTI)

A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

167

Broadband light-emitting diode  

DOE Patents (OSTI)

A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

Fritz, I.J.; Klem, J.F.; Hafich, M.J.

1998-07-14T23:59:59.000Z

168

An Engineering-Economic Analysis of White Light-Emitting Diodes for General  

NLE Websites -- All DOE Office Websites (Extended Search)

An Engineering-Economic Analysis of White Light-Emitting Diodes for General An Engineering-Economic Analysis of White Light-Emitting Diodes for General Illumination for the U.S. Residential and Commercial Sectors Speaker(s): Inês Magarida Lima de Azevedo Date: February 15, 2008 - 12:00pm Location: 90-3122 Because lighting constitutes more than 20% of total US electricity consumption, and many current lighting technologies are highly inefficient, improved technologies for lighting hold great potential for energy savings and for reducing associated greenhouse gas emissions. Solid-state lighting is a technology that shows great promise as a source of efficient, affordable, color-balanced white light in the near future. Indeed, under a pure engineering-economic analysis, solid-state lighting already performs better than incandescent bulbs and is expected to surpass the most

169

Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers  

Science Conference Proceedings (OSTI)

Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

Deri, R J

2011-01-03T23:59:59.000Z

170

Synergies Connecting the Photovoltaics and Solid-State Lighting Industries  

DOE Green Energy (OSTI)

Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

Kurtz, S.

2003-05-01T23:59:59.000Z

171

ZnSe light?emitting diodes  

Science Conference Proceedings (OSTI)

We report the successful fabrication of ZnSe p?n junction light?emitting diodes in which Li and Cl are used as p?type and n?type dopants

J. Ren; K. A. Bowers; B. Sneed; D. L. Dreifus; J. W. Cook Jr.; J. F. Schetzina; R. M. Kolbas

1990-01-01T23:59:59.000Z

172

Resonant cavity light?emitting diode  

Science Conference Proceedings (OSTI)

A novel concept of a light?emitting diode(LED) is proposed and demonstrated in which the active region of the device is placed in a resonantoptical cavity. As a consequence

E. F. Schubert; Y.?H. Wang; A. Y. Cho; L.?W. Tu; G. J. Zydzik

1992-01-01T23:59:59.000Z

173

Thermal pumping of light-emitting diodes  

E-Print Network (OSTI)

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

174

Assessment of Latent Heat Reservoirs for Thermal Management of QCW Laser Diodes  

SciTech Connect

There is great interest in improving the thermal management of laser diodes intended for use as pumps in inertial confinement fusion systems. Laser diode power is currently constrained by heat dissipation in the diodes. Diodes typically dissipate a quantity of heat that is comparable to their optical power output. This heating of the diode junction causes a thermal rollover that prevents the output power from scaling linearly with current drive, and also results in reliability limits due to catastrophic failure at diode mirror facets. For the pulsed, quasi-continuous wave (QCW) operating mode employed for LIFE and certain DOD applications, {approx}5 kW/cm{sup 2} of heat must be removed on timescales of {approx}100{micro}s, which is determined by thermal paths located within {approx}200 {micro}m of the laser junction. For these reasons, QCW thermal management is extremely challenging. Reducing the diode junction temperature enables more efficient operation, reduced thermal chirp, and operation at higher output power without compromised reliability - which improves the diode costs as measured in $/W. We have proposed the use of latent heat reservoirs to improve thermal management of diodes used in pulsed, quasi-continuous wave (QCW) operation. Our basic concept involves placement of a reservoir of low-melting-point metal within a few hundred microns of the laser junction, as in Fig. 1-1. This metal's latent heat of fusion maintains a nearly constant temperature (like a cold plate) in the very near vicinity of the diode junction. This cold reservoir creates large thermal gradients, which in turn are anticipated to drive a large heat flow from the diode. In contrast, conventional QCW devices rely on thermal diffusion into a large solid mass which cannot be held at a fixed temperature, which significantly limits the thermal extraction. Our operational concept involves phase changes within the reservoir during every QCW pulse. During the early portion of the pulse, heating of the diode and its surrounding material initiates melting within the latent heat reservoir. This phase change results in a near-constant reservoir temperature that facilitates heat transfer. During the long ({approx}100 ms) time between QCW pulses, the reservoir metal resolidifies. A simple back-of-the-envelope calculation based on Gallium metal shows that a 50 {micro}m thick Gallium reservoir is sufficient to absorb all heat generated by a 350 {micro}s pulse at 5 kW/cm{sup 2}. While this calculation shows that a latent heat reservoir can provide sufficient capacity to handle the magnitude of heat generated, it does not address the transient change in the diode junction temperature, which depends on details the heat flow into and through the reservoir. For this reason, we undertook a set of numerical experiments to quantitatively assess the impact of latent heat reservoirs on junction temperature. This report documents the results of these simulations.

Deri, B; Kotovsky, J; Spadaccini, C

2010-03-15T23:59:59.000Z

175

Photochemistry of Organic Light?Emitting Diodes  

Science Conference Proceedings (OSTI)

The optical properties and excited?state geometries of some organic light?emitting diodes have been investigated by the SAC?CI method. The absorption and emission spectra have been predicted in high accuracy and the chain?length dependence of transition energies has been precisely reproduced. The present study provides the useful basis for the theoretical design predicting the photo?physical properties of the organic light?emitting diodes.

Masahiro Ehara; Hiroshi Nakatsuji

2007-01-01T23:59:59.000Z

176

Bypass diode for a solar cell  

SciTech Connect

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

177

Stacked Switchable Element and Diode Combination  

DOE Patents (OSTI)

A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

Branz, H. M.; Wang, Q.

2006-06-27T23:59:59.000Z

178

Water Cooling of High Power Light Emitting Diode Henrik Srensen  

E-Print Network (OSTI)

Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

Sørensen, Henrik

179

Schottky Diodes on Nanowires of Cadmium Telluride and Copper ...  

Science Conference Proceedings (OSTI)

For CdTe, Analysis of Schottky diodes yielded a diode ideality factor of 10 in the dark and ... Carbon Dioxide Gas Sensing Properties of Cosb2O6 Prepared by a ...

180

InMnAs magnetoresistive spin-diode logic  

Science Conference Proceedings (OSTI)

Electronic computing relies on systematically controlling the flow of electrons to perform logical functions. Various technologies and logic families are used in modern computing, each with its own tradeoffs. In particular, diode logic allows for the ... Keywords: diode logic, magnetoresistance, spin-diode, spintronics

Joseph S. Friedman; Nikhil Rangaraju; Yehea I. Ismail; Bruce W. Wessels

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL SURVEY RESULTS  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL SURVEY RESULTS STAFFREPORT: Assistance needs 26 Item 12: Information requested 28 Appendix A: Light Emitting Diode (LED) Traffic Signal efficiency upgrades. - 29 - #12;APPENDIX A - 30 - #12;California Energy Commission Light Emitting Diode (LED

182

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

1991-02-19T23:59:59.000Z

183

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1991-01-01T23:59:59.000Z

184

Phase-change radiative thermal diode  

E-Print Network (OSTI)

A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of futur contactless thermal circuits or in the conception of radiative coatings for thermal management.

Ben-Abdallah, Philippe

2013-01-01T23:59:59.000Z

185

nature materials | VOL 3 | SEPTEMBER 2004 | www.nature.com/naturematerials 601 ince 1993, InGaN light-emitting diodes (LEDs) have been  

E-Print Network (OSTI)

not fulfilled their original promise as solid-state replacements for light bulbs as their light, InGaN light-emitting diodes (LEDs) have been improved and commercialized1,2 , but these devices have and the spontaneous emissionrateinthesemiconductor3­9 ,andleadtotheenhancementof light emission by SP­QW coupling10

Okamoto, Koichi

186

Entangled Light Emission From a Diode  

SciTech Connect

Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

Stevenson, R. M.; Shields, A. J. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Salter, C. L. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, I.; Nicoll, C. A.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2011-12-23T23:59:59.000Z

187

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, and ions may be focused at a point on the z axis.

Seidel, D.B.; Slutz, S.A.

1986-04-11T23:59:59.000Z

188

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

189

Nanoengineering for solid-state lighting.  

SciTech Connect

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

190

Anomalous Temperature Dependence of Solvent-Enhanced Dye Diffusion In Polymer T. Graves-Abe, F. Pschenitzka, J.C. Sturm  

E-Print Network (OSTI)

to pattern full color polymer Organic Light-Emitting Diode (OLED) displays is to print dye from a pre. INTRODUCTION The desire to fabricate large-area Organic Light-Emitting Diode (OLED) displays has been a central

191

Experimental and theoretical insights into the sequential oxidations of 3-2spiro molecules derived from oligophenylenes  

E-Print Network (OSTI)

been the design of efficient and stable blue light emitters for organic light-emitting diodes (OLED in organic light emitting diode (OLED) leading to violet to blue light emitting devices. [31

Recanati, Catherine

192

OLES Relevant Standards  

Science Conference Proceedings (OSTI)

... residue (GSR) by scanning electron microscopy/energy-dispersive X-ray ... Specifications for Law Enforcement Records Management Systems (RMS ...

2013-03-13T23:59:59.000Z

193

OLES, Forensics Home  

Science Conference Proceedings (OSTI)

... Forensic scientists use techniques from many areas of science to analyze ... For example, projects relating to computer usage in crimes are based in ...

2013-09-04T23:59:59.000Z

194

Appl Phys A (2011) 105:713722 DOI 10.1007/s00339-011-6583-x  

E-Print Network (OSTI)

light-emitting diodes (OLEDs) [9], organic thin-film transistors [10], ceramics [11], 3-D interconnects

195

Wall Street Journal / MIT Sloan How to Back the Right Technology  

E-Print Network (OSTI)

-ray tube, or CRT; liquid-crystal display, or LCD; organic light- emitting diode, or OLED; and plasma. Each

Southern California, University of

196

TECHNICAL NOTE www.rsc.org/loc | Lab on a Chip Side-by-side comparison of disposable microchips with commercial capillary  

E-Print Network (OSTI)

/PDMS chips with an in-lab built or- ganic light emitting diode (OLED) induced fluorescence-WCID system

Le Roy, Robert J.

197

Improved property in organic light-emitting diode utilizing two Al/Alq3 layers  

Science Conference Proceedings (OSTI)

We reported on the fabrication of organic light-emitting devices (OLEDs) utilizing the two Al/Alq"3 layers and two electrodes. This novel green device with structure of Al(110nm)/tris(8-hydroxyquinoline) aluminum (Alq"3)(65nm)/Al(110nm)/Alq"3(50nm)/N,N'-dipheny1-N, ... Keywords: Emitting layer, OLEDS, Transporting layer

Chunlin Zhang; Su Liu; Fangcong Wang; Yong Zhang

2008-12-01T23:59:59.000Z

198

Photovoltaic-module bypass-diode encapsulation. Annual report  

DOE Green Energy (OSTI)

The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

Not Available

1983-06-20T23:59:59.000Z

199

Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis John E. Knox,w Mathew D. Halls, Hrant P. Hratchianz and H. Bernhard Schlegel*  

E-Print Network (OSTI)

in promoting the rate of chemical failure modes in OLED devices. The activation energy for the AlQ31 hydro characterize AlQ3 and the hydrolysis pathway product, AlQ2OH. The activation energy for the cationic AlQ3 with close regard to their electronic energy levels, usually such that the electrons are confined

Schlegel, H. Bernhard

200

Highly Efficient Silicon Light Emitting Diode  

E-Print Network (OSTI)

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DIODE STEERED MANGETIC-CORE MEMORY  

DOE Patents (OSTI)

A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

1962-09-18T23:59:59.000Z

202

Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants  

Science Conference Proceedings (OSTI)

The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

J. K. Partin

2006-08-01T23:59:59.000Z

203

Light Emitting Diode (LED) Lighting and Systems  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising and unique energy efficient light source light emitting diode (LED) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the LED and LED lighting market. Future technical improvements to LEDs and systems are also emphasized. Discussion of the importance of utility involvement in helping their customers make the switch from traditional lighting to LED lighting is provided. LED lighting technologies are covered in...

2007-12-21T23:59:59.000Z

204

Resonant tunneling diodes: Models and properties  

E-Print Network (OSTI)

The resonant tunneling diode (RTD) has been widely studied because of its importance in the field of nanoelectronic science and technology and its potential applications in very high speed/functionality devices and circuits. Even though much progress has been made in this regard, additional work is needed to realize the full potential of RTD’s. As research on RTD’s continues, we will try in this tutorial review to provide the reader with an overall and succinct picture of where we stand in this exciting field of research and to address the following questions: What makes RTD’s so attractive? To what extent can RTD’s be modeled for design purposes? What are the required and achievable device properties in terms of digital logic applications? To address these issues, we review the device operational principles, various modeling approaches, and major device properties. Comparisons among the various RTD physical models and major features of RTD’s, resonant interband tunneling diodes, and Esaki tunnel diodes are presented. The tutorial and analysis provided in this paper may help the reader in becoming familiar with current research efforts, as well as to examine the important aspects in further RTD developments and their circuit applications.

Jian Ping Sun; George I. Haddad; Pinaki Mazumder; Joel N. Schulman

1998-01-01T23:59:59.000Z

205

Spin-out in cutting-edge light source technology  

E-Print Network (OSTI)

and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education: Vojislav Sradnov Faculty Supervisor: Department: Chemistry and Biochemistry ORGANIC LIGHT EMITTING DIODE

Mottram, Nigel

206

Universit Bordeaux 1 Les Sciences et les Technologies au service de l'Homme et de l'Environnement  

E-Print Network (OSTI)

and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education: Vojislav Sradnov Faculty Supervisor: Department: Chemistry and Biochemistry ORGANIC LIGHT EMITTING DIODE

207

Electron traps in organic light-emitting diodes  

Science Conference Proceedings (OSTI)

This work presents the effects of electron traps in organic light-emitting diodes using a model which includes charge injection

Min-Jan Tsai; Hsin-Fei Meng

2005-01-01T23:59:59.000Z

208

Junction temperature measurement of light emitting diode by electroluminescence  

Science Conference Proceedings (OSTI)

Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes(LEDs). In this paper

S. M. He; X. D. Luo; B. Zhang; L. Fu; L. W. Cheng; J. B. Wang; W. Lu

2011-01-01T23:59:59.000Z

209

Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Sensors to Monitor Temperature and Gas Composition for High Temperature Coal Gasification Systems Description Sensing and measuring temperature and gas compositions in...

210

Apparatus for mounting a diode in a microwave circuit  

DOE Patents (OSTI)

Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

Liu, Shing-gong (Princeton, NJ)

1976-07-27T23:59:59.000Z

211

Si Heterostructures for Pure UV Light Emitting Diode with Carrier ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of ZnO/MgO/p+-Si Heterostructures for Pure UV Light Emitting Diode with Carrier Blocking Layer. Author(s), Byung Oh Jung, ...

212

High power flip-chip light emitting diode.  

E-Print Network (OSTI)

??xiv, 74 leaves : ill. (some col.) ; 30 cm HKUST Call Number: Thesis ELEC 2004 Lai Recently, Light-emitting diodes (LEDs) are widely used in… (more)

Lai, Yin Hing

2004-01-01T23:59:59.000Z

213

Analysis of surface plasmon mediated light emitting diode efficiency enhancement.  

E-Print Network (OSTI)

?? The extraction of light from current light emitting diodes (LEDs) is very low due to the large index of refraction mismatch between the semiconductor… (more)

Holmstedt, Jason

2011-01-01T23:59:59.000Z

214

Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes ...  

Science Conference Proceedings (OSTI)

Jun 1, 2004 ... Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes Using Atomic Force Electroluminescence Microscopy by L.S.C. Pingree ...

215

White light emitting diode as liquid crystal display backlight; High brightness light emitting diode as liquid crystal display backlight.  

E-Print Network (OSTI)

??The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One… (more)

Soon, Chian Myau

2007-01-01T23:59:59.000Z

216

High power light emitting diode based setup for photobleaching fluorescent impurities  

E-Print Network (OSTI)

High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

Kaufman, Laura

217

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

218

High power semiconductor laser diode arrays  

SciTech Connect

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes, single-facet, cw output in exces of 5 Watts has been demonstrated, and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi-cw (150 usec pulse) output in excesss of 11 Watts, and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Cross, P.S.

1986-08-15T23:59:59.000Z

219

Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)  

DOE Green Energy (OSTI)

This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

2013-05-01T23:59:59.000Z

220

CO.sub.2 optically pumped distributed feedback diode laser  

SciTech Connect

A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

Rockwood, Stephen D. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT  

E-Print Network (OSTI)

1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

Pang, Grantham

222

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

223

Solid Waste (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

224

Coupling Fibers to Semiconductor Sources To learn to couple an injection laser diode (ILD) and a light emitting diode  

E-Print Network (OSTI)

) and a light emitting diode (LED) to an optical fiber. Equipment: · 1 ~ 2 meters of F-MLD-50 multimode fiber off any other part of the circuit. Light Emitting Diode- 1.) Post mount the LED assembly the same way

Collins, Gary S.

225

Generation of incoherent light from a laser diode based on the injection of an emission from a superluminescent diode  

E-Print Network (OSTI)

In this study, incoherent light with a spectral linewidth of 7 nm and 140 mW of power was generated from a laser diode into which incoherent light emitted from a superluminescent diode was injected with 2.7 mW of power. The spectral linewidth of the light from the laser diode was broadened to 12 nm when the diode's output power was reduced to 15 mW. In the process of transformation from single-mode laser light to incoherent light with a broad spectrum by increasing injection-light power, multimode laser oscillation and a noisy spectrum were found in the light from the laser diode. This optical system can be used not only for amplification of incoherent light but also as a coherence-convertible light source.

Takamizawa, Akifumi; Ikegami, Takeshi

2013-01-01T23:59:59.000Z

226

Solid-State Lighting: 2012 Solid-State Lighting Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Frank Cerio, Veeco Instruments Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices Vivek Agrawal, Applied Materials Driving Down HB-LED Costs:...

227

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

228

Light Emitting Diodes (LEDs) for General Illumiation  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT LIGHT EMITTING DIODES (LEDS) FOR GENERAL ILLUMINATION AN OIDA TECHNOLOGY ROADMAP An OIDA Report March 2001 Co-Sponsored by DOE/BTS and OIDA Compiled by Eric D. Jones Sandia National Laboratories OIDA Member Use Only OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org © 2001 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report date without prior written permission of the Optoelectronics Industry Development Association. Published by: Optoelectronics Industry Development Association

229

Diode laser welding of aluminum to steel  

Science Conference Proceedings (OSTI)

Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

2011-05-04T23:59:59.000Z

230

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

231

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

232

Internal cooling in a semiconductor laser diode  

E-Print Network (OSTI)

Abstract—A thermal model of a diode laser structure is developed which includes a bipolar thermoelectric term not included in previous models. It is shown that heterostructure band offsets can be chosen so that there are thermoelectric cooling sources near the active region; this method of cooling is internal to the device itself, as opposed to temperature stabilization schemes which employ an external cooler. A novel laser structure is proposed that is capable of internal cooling in the Ga1 In As Sb1 –GaSb material system with = 2 64 m. Index Terms—Electrothermal effects, lasers, laser thermal factors, photothermal effects, semiconductor lasers, thermionic emission, thermionic energy conversion, thermoelectric devices, thermoelectric energy conversion, thermoelectricity. Fig. 1. Band structure and thermoelectric heat source distribution for (a) and (b) conventional SCH, and (c) and (d) ICICLE.

K. P. Pipe; R. J. Ram; A. Shakouri

1995-01-01T23:59:59.000Z

233

Nanoengineering for solid-state lighting.  

SciTech Connect

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

234

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

235

ZnO-graphene Hybrid Quantum Dots Light Emitting Diode  

Science Conference Proceedings (OSTI)

Presentation Title, ZnO-graphene Hybrid Quantum Dots Light Emitting Diode. Author(s), Won Kook Choi, Dong-Ick Son, Soon-Nam Kwon. On-Site Speaker ...

236

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

lumens/W, the LED beats the incandescent bulb and is on thefor an LED as opposed to an incandescent light bulb as shownbulb, fluorescent lamp, and blue light emitting diode. (24) (25) 2.2 LED

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

237

White light emitting diode as liquid crystal display backlight  

E-Print Network (OSTI)

The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One of the most promising sectors would be using white LED to ...

Soon, Chian Myau

2007-01-01T23:59:59.000Z

238

Focusing of diode laser beams: a simple mathematical model  

SciTech Connect

A simplified mathematical model for the far field of a monomode diode laser is employed for easy but fairly accurate computations of the optical field in the focal region. The present treatment is concerned with laser junctions significantly narrower than the wavelength. The field distribution in the plane perpendicular to the diode junction is considered in detail. The results of computations are shown to agree well with the measurements. Hence, the computational code is valuable for the designing of optical devices, such as diode--fiber couplings and laser Doppler anemometers. The present work is not concerned with design calculations for specific applications. Instead, it is intended to illustrate the general features of the proposed mathematical model of monomode diode laser beams.

Naqwi, A.; Durst, F. (Friedrich-Alexander Universitaet, Erlangan-Nurnberg, Lehrstuhl fuer Stroemungsmechanik, D-8520 Erlangan, Federal Republic of Germany (DE))

1990-04-20T23:59:59.000Z

239

Rotary bulk solids divider  

DOE Patents (OSTI)

An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

240

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

242

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

243

Solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

244

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

245

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

246

Power saving regulated light emitting diode circuit  

SciTech Connect

A power saving regulated light source circuit, comprising a light emitting diode (LED), a direct current source and a switching transistor connected in series with the LED, a control voltage producing resistor connected in series with the LED to produce a control voltage corresponding to the current through the LED, a storage capacitor connected in parallel with the series combination of the LED and the resistor, a comparator having its output connected to the input of the transistor, the comparator having a reference input and a control input, a stabilized biasing source for supplying a stabilized reference voltage to the reference input, the control input of the comparator being connected to the control voltage producing resistor, the comparator having a high output state when the reference voltage exceeds the control voltage while having a low output state when the control voltage exceeds the reference voltage, the transistor being conductive in response to the high state while being nonconductive in response to the low state, the transistor when conductive being effective to charge the capacitor and to increase the control voltage, whereby the comparator is cycled between the high and low output states while the transistor is cycled between conductive and nonconductive states.

Haville, G. D.

1985-03-12T23:59:59.000Z

247

Proton damage effects on light emitting diodes  

SciTech Connect

We have studied the effects of 16-MeV proton irradiation on the performance of a variety of light emitting diodes (LED's) emitting between 820 and 1300 nm. Total light output and current were measured at room temperature as a function of forward bias prior to and following a sequence of room temperature 16-MeV proton irradiations. Our results indicate that the relative amount of proton-induced degradation from one LED type to another is similar to that observed for neutron and gamma irradiations. More specifically, the most sensitive device is the amphoterically Si-doped GaAs LED which is characterized by a long preirradiation minority carrier lifetime. The most resistant LEDs are the high radiance GaAlAs (820 nm) and InGaAsP (1300 nm) LEDs. As in the case of Si devices, the degradation rate per irradiating particle fluence is significantly greater for proton irradiation of these LEDs than it is for neutron exposure. Neutron damage data presented herein indicate that the ratio of proton-to-neutron degradation rates can be as high as 100. Lifetime-damage constant products for constant current operation are calculated for each LED type and vary from 1.5 x 10/sup -13/ cm/sup 2//p for the InGaAsP LED to 1.1 x 10/sup -10/ cm/sup 2//p for the amphoterically Si-doped GaAs LED.

Rose, B.H.; Barnes, C.E.

1982-03-01T23:59:59.000Z

248

Solids fluidizer-injector  

DOE Patents (OSTI)

An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

Bulicz, T.R.

1990-04-17T23:59:59.000Z

249

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

250

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

251

Highly Stable, All-Solid-State Nd:YLF Regenerative Amplifier  

Science Conference Proceedings (OSTI)

A diode-pumped Nd:YLF regenerative amplifier (regen) has been developed and is in use in the 60-beam, 30-kJUV OMEGA laser system's driver line. The high stability, compactness, and reliability of this all-solid-state modular design are the key features of this concept. Stable, millijoule-level output-pulse energies with an overall gain of 109 have been demonstrated.

Okishev,A.V.; Zuegel,J.D.

2004-11-20T23:59:59.000Z

252

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

253

The OCT-Penlight: In-Situ Image Display for Guiding Microsurgery Using Optical Coherence Tomography (OCT)  

E-Print Network (OSTI)

emitting diode (OLED) display and a reflective liquid crystal display (LCD). The OLED has the advantage surgical access. The two prototypes constructed thus far have used, respectively, a miniature organic light

Stetten, George

254

THE FABRICATION AND ANALYSIS OF QUANTUM-DOT THIN FILM LIGHT EMITTING DIODES FOR USE IN DISPLAYS TECHNOLOGIES.  

E-Print Network (OSTI)

??The quantum dot has many applications, one of which is the light emitting diode. Quantum dot light emitting diodes were fabricated for their use in… (more)

Pickering, Shawn

2011-01-01T23:59:59.000Z

255

Optical Semiconductor DevicesOptical Semiconductor Devices The Foundations of the Laser Diode  

E-Print Network (OSTI)

Electroluminescence ·· Electroluminescence in silicon carbide crystal fibersElectroluminescence in silicon carbide crystal fibers #12;The Glowing DiodeThe Glowing Diode ·· ""LuminousLuminous carborundum [siliconcarborundum [silicon carbide

La Rosa, Andres H.

256

A Comparison of Infrared Light Emitting Diodes (IR-LED) versus Infrared  

E-Print Network (OSTI)

B. Characteristics of a typical IR LED analogous to the typeLight Emitting Diodes (IR-LED) versus Infrared Helium-Neon (light emitting diode (IR-LED) to quantitatively measure fuel

Girard, James W.; Bogin, Gregory E; Mack, John Hunter; Chen, J-Y; Dibble, Rober W

2005-01-01T23:59:59.000Z

257

Multispectral imaging of the ocular fundus using light emitting diode illumination  

E-Print Network (OSTI)

Multispectral imaging of the ocular fundus using light emitting diode illumination N. L. Everdell,1 on light emitting diode LED illumination that produces multispectral optical images of the human ocular

Claridge, Ela

258

P-78 / H. J. Peng 516 SID 03 DIGEST  

E-Print Network (OSTI)

, Clear Water Bay, Kowloon, Hong Kong Abstract An organic light emitting diode with a microcavity calculations. 1. Introduction Organic light emitting diodes (OLEDs) are challenging liquid crystal displays organic light emitting diodes (b) the normal direction electroluminescent spectra of devices

259

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

260

Data Diodes in Support of Trustworthy Cyber Infrastructure  

SciTech Connect

Interconnections between process control networks and en- terprise networks has resulted in the proliferation of stan- dard communication protocols in industrial control systems which exposes instrumentation, control systems, and the critical infrastructure components they operate to a variety of cyber attacks. Various standards and technologies have been proposed to protect industrial control systems against cyber attacks and to provide them with confidentiality, in- tegrity, and availability. Among these technologies, data diodes provide protection of critical systems by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to un- derstand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we briefly review the security challenges in an industrial control system, study data diodes, their functionalities and limitations, and pro- pose a scheme for their effective deployment in trusted pro- cess control networks (TPCNs.)

Sheldon, Frederick T [ORNL; Okhravi, Hamed [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Battery/Charger Load Switch Approximates Ideal Diode  

E-Print Network (OSTI)

Abstract: Two circuits are described. The first uses external MOSFETs driven by the Power OK (POK) output of a Li-cell charger IC (MAX8814), to switch a load between battery and charging source without intervention from a microcontroller or system software. For charger ICs without a POK output (such as the MAX1507), the second circuit does the same switching using MOSFETs and a comparator (MAX920). A similar version of this article appeared in the July 19, 2010 issue of Electronic Design magazine. Most rechargeable battery-powered systems include a switch that connects the load either to the battery or to a source of charging power. Without it, a system with depleted battery may not operate immediately when plugged in. A switching circuit also allows the system to operate on adapter power while the battery is charging. The simplest and lowest-cost method for this battery/adapter power handoff is a diode-OR connection. The load connects to each power source (battery and adapter) through separate Schottky diodes, so power is applied by the higher voltage—battery or adapter. The drawback to this approach is the power loss (P D = I BATTERYV DIODE) and voltage drop (V DIODE = 0.350V at 0.5A, from the PMEG2010AEH data sheet) incurred when the battery services the load. Such losses may not be significant for high-voltage multicell batteries, but for 1-cell Li+ batteries or 2–4 cell NiMh batteries, the percentages of power loss and diode drop across the blocking diode are considerable. The circuit of Figure 1 switches loads with a voltage drop of only 45mV at 0.5A, which is a head-room improvement of 350mV-

Budge Ing; Hubert Bugajski

2011-01-01T23:59:59.000Z

262

International trends in solid-state lighting : analyses of the article and patent literature.  

SciTech Connect

We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).

Tsao, Jeffrey Yeenien; Huey, Mark C. (Strategic Perspectives, Incorporated, McLean, VA); Boyack, Kevin W.; Miksovic, Ann E. (Strategic Perspectives, Incorporated, McLean, VA)

2008-07-01T23:59:59.000Z

263

Yuankun Cai  

Office of Scientific and Technical Information (OSTI)

Organic light emitting diodes (OLEDs) and OLED-based structurally Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors by Yuankun Cai A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Condensed Matter Physics Program of Study Committee: Joseph Shinar, Major Professor Vikram Dalal Rana Biswas Curt Struck Edward Yu Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS Chapter 1. An overview of OLED basics .................................................................................1 History of organic electroluminescence ............................................................................1 OLED applications............................................................................................................3

264

Molecular Solids I  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... However, milling brings multiple transformations produced in the API. These transformations and the resulting behavior of certain organic solid ...

265

Solid Waste Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

266

Solid Catalyst – Alkylation  

This is a method used to reactivate solid/liquid catalysts used in INL’s super critical process to produce alkylates. The method brings the catalyst ...

267

A description and evaluation of light-emitting diode displays for generation of visual stimuli*  

E-Print Network (OSTI)

A description and evaluation of light-emitting diode displays for generation of visual stimuli 53706 A description of the design and function of light-emitting diode (LED) display modules is given (Time, April 1972). Light-emitting diodes (L~Ds) are examples of these spin-offs, LED display devices

Massaro, Dominic

268

Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application  

E-Print Network (OSTI)

Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application-color (red, green, and blue) polymer light-emitting diode displays was investigated in detail. After local.1063/1.1806548] I. INTRODUCTION Polymer light-emitting diodes (PLEDs) have emerged as a very promising candidate

269

Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate  

E-Print Network (OSTI)

Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

Vuckovic, Jelena

270

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes  

E-Print Network (OSTI)

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes Jung Min Lee, Jae a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics, light-emitting diodes, 3D architectures, transparent electrodes V ertical arrays of one-dimensional (1D

Rogers, John A.

271

High efficiency light emitting diode with anisotropically etched GaN-sapphire interface  

E-Print Network (OSTI)

High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

272

GaN light-emitting diodes with Archimedean lattice photonic crystals Aurlien David,a  

E-Print Network (OSTI)

GaN light-emitting diodes with Archimedean lattice photonic crystals Aurélien David,a Tetsuo Fujii 2005; published online 16 February 2006 We study GaN-based light emitting diodes incorporating light- emitting diodes LEDs , as they could extract the emitted light otherwise trapped inside

Recanati, Catherine

273

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode  

E-Print Network (OSTI)

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodesGaN/conjugated polymer hybrid light-emitting diodes," Appl. Phys. Lett. 70, 2664-2666 (1997). 9. H. V. Demir, S

Demir, Hilmi Volkan

274

Far-field radiation of photonic crystal organic light-emitting diode  

E-Print Network (OSTI)

Far-field radiation of photonic crystal organic light-emitting diode Yong-Jae Lee, Se-Heon Kim, Guk-field profile of a photonic crystal organic light emitting diode is studied to understand the viewing angle.3670) Light- emitting diodes References and links 1. M. R. Krames, H. Amano, J. J. Brown, P. L. Heremans

Lee, Yong-Hee

275

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer  

E-Print Network (OSTI)

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

276

Space charge spectroscopy of integrated quantum well infrared photodetectorlight emitting diode  

E-Print Network (OSTI)

Space charge spectroscopy of integrated quantum well infrared photodetector±light emitting diode M ± light emitting diode (QWIP-LED). Quasistatic capacitance±voltage (C±V ) characteristics under reverse.V. All rights reserved. Keywords: Quantum-well infrared photodetector; Light-emitting diode; Space charge

Matsik, Steven G.

277

Correlation between the Indium Tin Oxide morphology and the performances of polymer light-emitting diodes  

E-Print Network (OSTI)

: This paper reports on performance enhancement of polymer light-emitting diodes (PLEDs) based on poly(2,5-bis. Keywords : Polymer light emitting diode; Indium tin oxide; Atomic force microscopy; Rutherford backscattering spectroscopy 1. Introduction Polymer light-emitting diodes (PLEDs) have received worldwide

Paris-Sud XI, Université de

278

Point defect engineered Si sub-bandgap light-emitting diode  

E-Print Network (OSTI)

Point defect engineered Si sub-bandgap light-emitting diode Jiming Bao1 , Malek Tabbal1,2 , Taegon light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction.3670) Light-emitting diodes; (160.6000) Semiconductors; (130-0250) Optoelectronics. References and links 1. S

279

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature  

E-Print Network (OSTI)

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Yufeng Li1,2 , Wei, photoluminescence and cathodoluminescence of GaInN/GaN multiple quantum well light emitting diode dies are analyzed and efficient pure green light emitting diodes (LEDs) are of high economic value. However, when the emission

Wetzel, Christian M.

280

Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes  

DOE Patents (OSTI)

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Axis-1 diode simulations I: standard 2-inch cathode  

SciTech Connect

The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

Ekdahl, Carl [Los Alamos National Laboratory

2011-01-11T23:59:59.000Z

282

Fabrication of poly(p-phenyleneacetylene) light-emitting diodes  

DOE Patents (OSTI)

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

1994-08-02T23:59:59.000Z

283

Poly (p-phenyleneneacetylene) light-emitting diodes  

DOE Patents (OSTI)

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

1994-10-04T23:59:59.000Z

284

Fabrication of poly(p-phenyleneacetylene) light-emitting diodes  

DOE Patents (OSTI)

Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

1994-08-02T23:59:59.000Z

285

Poly (p-phenyleneacetylene) light-emitting diodes  

DOE Patents (OSTI)

Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

1994-10-04T23:59:59.000Z

286

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

287

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

288

Photodiode arrays having minimized cross-talk between diodes  

DOE Patents (OSTI)

Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

Guckel, Henry (Madison, WI); McNamara, Shamus P. (Madison, WI)

2000-10-17T23:59:59.000Z

289

Optical switching in midinfrared light-emitting diodes  

Science Conference Proceedings (OSTI)

We report on the optical quenching of electroluminescence in midinfrared light-emitting diodes operating at 3.0 ?m. The source is based on a symmetrical double heterostructure with large band offsets and is effectively switched off using coherent visible light.

A. Krier; V. V. Sherstnev; H. H. Gao; A. M. Monahov; G. Hill

2002-01-01T23:59:59.000Z

290

Efficiency enhancement of microcavity organic light emitting diodes  

Science Conference Proceedings (OSTI)

We report microcavity efficiency enhancement of organic electroluminescent devices based on the hole transporter bis(triphenyl) diamine and the electron transporter and light emitter tris(8?hydroxyquinoline) aluminum.Microcavityorganic light emitting diodes are described that emit four times the light measured in the forward direction (spectrally integrated)

R. H. Jordan; A. Dodabalapur; R. E. Slusher

1996-01-01T23:59:59.000Z

291

Nanofabrication of gallium nitride photonic crystal light-emitting diodes  

Science Conference Proceedings (OSTI)

We describe a comparison of nanofabrication technologies for the fabrication of 2D photonic crystal structures on GaN/InGaN blue LEDs. Such devices exhibit enhanced brightness and the possibility of controlling the angular emission profile of emitted ... Keywords: GaN dry-etching, Light-emitting diodes, Nanolithography, Photonic crystals

Ali Z. Khokhar; Keith Parsons; Graham Hubbard; Faiz Rahman; Douglas S. Macintyre; Chang Xiong; David Massoubre; Zheng Gong; Nigel P. Johnson; Richard M. De La Rue; Ian M. Watson; Erdan Gu; Martin D. Dawson; Steve J. Abbott; Martin D. B. Charlton; Martin Tillin

2010-11-01T23:59:59.000Z

292

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

293

Molecular rectifying diodes from self-assembly on silicon  

E-Print Network (OSTI)

Molecular rectifying diodes from self-assembly on silicon Stéphane Lenfant , Christophe Krzeminski a molecular rectifying junction made from a sequential self-assembly on silicon. The device structure consists resonance through the highest occupied molecular orbital of the -group in good agreement with our

Paris-Sud XI, Université de

294

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

295

Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency  

E-Print Network (OSTI)

A heated semiconductor light-emitting diode at low forward bias voltage V

Santhanam, Parthiban

296

Solid-State Lighting: 2013 Solid-State Lighting Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Manufacturing R&D...

297

ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes  

SciTech Connect

By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

David P. Norton; Stephen Pearton; Fan Ren

2007-09-30T23:59:59.000Z

298

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

299

Effects of metallic absorption and the corrugated layer on the optical extraction efficiency of organic light-emitting diodes  

E-Print Network (OSTI)

The absorption of a metallic cathode in OLEDs is analyzed by using FDTD calculation. As the light propagates parallel to the layer, the intensity of Ez polarization decreases rapidly. The intensity at 2.0 um from the dipole is less than a quarter of that at 0.5 um. The strong absorption by a cathode can be a critical factor when considering the increase of optical extraction by means of bending the optical layers. The calculation indicates that the corrugation of layers helps the guided light escape the guiding layer, but also increases the absorption into a metallic cathode. The final optical output power of the corrugated OLED can be smaller than that of the flat OLED. On the contrary, the corrugated structure with a non-absorptive cathode increases the optical extraction by nearly two times.

Lee, Baek-Woon

2011-01-01T23:59:59.000Z

300

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 2012 1 Dynamic Driver Supply Voltage Scaling for Organic  

E-Print Network (OSTI)

Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission

Pedram, Massoud

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy-Adaptive Display System Designs for Future Mobile Environments  

E-Print Network (OSTI)

displays to minimize power. However, new techno- logies, such as Organic Light Emitting Diodes (OLEDs for the entire screen. Organic Light Emitting Diode (OLED) displays [3] are a good example of this class" AMOLED (Active Matrix Organic Light Emitting Diode) display. (Section 4 discusses other hardware ap

Ranganathan, Parthasarathy

302

Solid-State Lighting: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Solid-State Lighting: Events to someone by E-mail Share Solid-State Lighting: Events on Facebook Tweet about Solid-State...

303

Solid Cold - C  

Office of Scientific and Technical Information (OSTI)

R&D Nuggets Home Page DOE R&D Accomplishments Celebrating Einstein "Solid Cold" (continued) A B C D E F C. Temperature and energy Most basically, temperature is related to energy...

304

Solids Accumulation Scouting Studies  

Science Conference Proceedings (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

305

ELECTRON IRRADIATION OF SOLIDS  

DOE Patents (OSTI)

A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

Damask, A.C.

1959-11-01T23:59:59.000Z

306

SOLIDS ACCUMULATION SCOUTING STUDIES  

SciTech Connect

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M.; Steeper, T.; Steimke, J.

2012-09-26T23:59:59.000Z

307

Solid Cold - F  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Progress in science F. Progress in science Aside from what it tells us about the thermodynamics of solids, this analysis by Einstein illustrates some important things about the way scientific progress is made. For one, it serves as a typical example of how discoveries about one phenomenon often help us understand others that had no obvious relation to it earlier. In this case, newly discovered properties of light suggested significant facts about solids-and about whether or not solids were made of atoms. Einstein thus found another significant relation between thermodynamics and optics besides the ones already known earlier. Another point this work illustrates is that progress doesn't always require understanding everything at once. It turned out that solids do act like

308

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

309

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

310

Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR  

SciTech Connect

This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

Miller, Naomi

2011-07-01T23:59:59.000Z

311

Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters  

SciTech Connect

This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relatively high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.

Kinzey, Bruce R.; Myer, Michael

2013-03-01T23:59:59.000Z

312

Energy Department Announces Investments to Accelerate U.S. Manufacturing of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Investments to Accelerate U.S. Energy Department Announces Investments to Accelerate U.S. Manufacturing of Energy Efficient Lighting Technologies Energy Department Announces Investments to Accelerate U.S. Manufacturing of Energy Efficient Lighting Technologies June 7, 2012 - 1:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy to help reduce energy costs for America's homes and businesses, the Energy Department today announced more than $7 million for three innovative lighting projects at companies in California, Michigan and North Carolina that aim to lower the cost of manufacturing high-efficiency solid-state lighting (SSL) technologies like light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs). LEDs and OLEDs are generally

313

Secretary Chu Announces Nearly $15 Million for Next Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly $15 Million for Next Generation Nearly $15 Million for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly $15 Million for Next Generation Energy-Efficient Lighting June 7, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced nearly $15 million to support eight new research and development projects that will accelerate the development and deployment of high-efficiency solid-state lighting technologies like LEDs and OLEDs. Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) have the potential to be ten times more energy-efficient than conventional incandescent lighting and can last up to 25 times as long. The projects selected today are located in four states across the country and are focused on advancing core R&D goals,

314

Energy Department Announces Investments to Accelerate U.S. Manufacturing of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments to Accelerate U.S. Investments to Accelerate U.S. Manufacturing of Energy Efficient Lighting Technologies Energy Department Announces Investments to Accelerate U.S. Manufacturing of Energy Efficient Lighting Technologies June 7, 2012 - 1:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy to help reduce energy costs for America's homes and businesses, the Energy Department today announced more than $7 million for three innovative lighting projects at companies in California, Michigan and North Carolina that aim to lower the cost of manufacturing high-efficiency solid-state lighting (SSL) technologies like light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs). LEDs and OLEDs are generally

315

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Allison Park) CX(s) Applied: A2, A9 Date: 03192010...

316

DOE Science Showcase - Read about Energy-Efficient Lighting ...  

Office of Scientific and Technical Information (OSTI)

Development Novel Smart Windows Based on Transparent Phosphorescent OLEDs Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes...

317

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

manufacturing and marketing of display products typically OLED Organic Light Emitting Diode Display Vista International Inc Vista International Inc Englewood Colorado...

318

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

319

CX-001308: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Allison Park) CX(s) Applied: A2, A9 Date: 03192010...

320

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory, Oak Ridge, TN 37830 Achievement Organic light-emitting diode (OLED) layers have been integrated into the carbon nanotube-vertical field...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CX-010822: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

322

Structure of Pentacene Monolayers on Amorphous Silicon Oxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

and potential applications in low-cost electronics such as organic light emitting diode (OLED) displays, thin film transistors and related applications (e.g. TFT...

323

Gao Liu  

NLE Websites -- All DOE Office Websites (Extended Search)

electrode binder design and synthesis, electrolyte and additives. Organic light emitting diode (OLED): Light emitting polymer design and synthesis, device assembly and...

324

CX-010824: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

325

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

will develop, fabricate, and fully characterize a 12-inch square OLED (Organic Light Emitting Diode) white light prototype. The prototype will be based on use of multiple discrete...

326

JOM: The Member Journal of TMS - JOM Monthly  

Science Conference Proceedings (OSTI)

May 12, 2009... transparent conductive film designed to replace indium tin oxide (ITO) films used in touch panels, organic light-emitting diode (OLED) panels, ...

327

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents (OSTI)

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

328

Outdoor Light-Emitting Diode (LED) Digital Signage  

Science Conference Proceedings (OSTI)

Utilities have been supporting outdoor advertising companies and their traditional simple billboards for many years. The level of support these billboards needed was minimal because electricity for them was only used to power basic lighting technologies. The growth in the billboard industry combined with the explosion in available electronic and digital systems and the advancements made in light-emitting diodes (LEDs) has resulted in a new type of billboard8212the LED electronic billboard. Electronic bil...

2009-12-17T23:59:59.000Z

329

Background Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

light sources Dramatic changes are unfolding in lighting technology. Semiconductor light-emitting diodes (LEDs), until recently used mainly as simple indicator lamps in...

330

Trends and Opportunities in Photonics Technologies: Solid ...  

Science Conference Proceedings (OSTI)

... This rather broad brush description is applicable to both light emitting diode (LED) based lamps, which are composed of traditional semiconductor ...

2008-07-28T23:59:59.000Z

331

Dielectrics for GaN based MIS-diodes  

SciTech Connect

GaN MIS diodes were demonstrated utilizing AlN and Ga{sub 2}O{sub 3}(Gd{sub 2}O{sub 3}) as insulators. A 345 {angstrom} of AlN was grown on the MOCVD grown n-GaN in a MOMBE system using trimethylamine alane as Al precursor and nitrogen generated from a wavemat ECR N2 plasma. For the Ga{sub 2}O{sub 3}(Gd{sub 2}O{sub 3}) growth, a multi MBE chamber was used and a 195 {angstrom} oxide is E-beam evaporated from a single crystal source of Ga{sub 5}Gd{sub 3}O{sub 12}. The forward breakdown voltage of AlN and Ga{sub 2}O{sub 3}(Gd{sub 2}O{sub 3}) diodes are 5V and 6V, respectively, which are significantly improved from {approximately} 1.2 V of schottky contact. From the C-V measurements, both kinds of diodes showed good charge modulation from accumulation to depletion at different frequencies. The insulator GaN interface roughness and the thickness of the insulator were measured with x-ray reflectivity.

Ren, F.; Abernathy, C.R.; MacKenzie, J.D. [Univ. of Florida, Gainesville, FL (United States)] [and others

1998-02-01T23:59:59.000Z

332

Process for preparing schottky diode contacts with predetermined barrier heights  

DOE Patents (OSTI)

A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

Chang, Y. Austin (Middleton, WI); Jan, Chia-Hong (Portland, OR); Chen, Chia-Ping (Madison, WI)

1996-01-01T23:59:59.000Z

333

Solid handling valve  

DOE Patents (OSTI)

The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

Williams, William R. (Morgantown, WV)

1979-01-01T23:59:59.000Z

334

SOLID WASTE MANAGEMENT PLAN  

E-Print Network (OSTI)

ACKNOWLEDGMENTS The Chelan County Public Works Department would like to thank the following organizations and individuals for their assistance in the development of this plan: ? Chelan County’s Solid Waste Council members, past and present, and the municipalities they represent. ? Chelan County’s Solid Waste Advisory Committee members, past and present, and the agencies and businesses they represented. ? the Chelan–Douglas Health District staff. ? Washington Department of Ecology staff. Chelan County residents and businesses also contributed to this document through comments provided during public meetings and through various other channels. The Board of County Commissioners and the Public Works Department gratefully acknowledge this input by the

unknown authors

2007-01-01T23:59:59.000Z

335

Wire-shaped semiconductor light-emitting diodes for general-purpose lighting  

SciTech Connect

The object of this work is to develop and optimize a new type of light-emitting diode (LED) with a wire-shaped, cylindrical geometry.

Mauk, Michael G.

2002-10-28T23:59:59.000Z

336

Sources à diode laser auto-organisables - Nonlinearités dans des nanostructures semi-conductrices.  

E-Print Network (OSTI)

??La première partie du manuscrit est consacrée au fonctionnement de sources à diode laser en montage de type cavité étendue et qui intègre un filtre… (more)

Dubreuil, Nicolas

2010-01-01T23:59:59.000Z

337

V-shaped resonators for addition of broad-area laser diode arrays  

SciTech Connect

A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

2012-12-25T23:59:59.000Z

338

Power control architectures for cold cathode fluorescent lamp and light emitting diode based light sources.  

E-Print Network (OSTI)

?? In this dissertation, two different energy efficient power supply topologies are introduced for controlling cold cathode fluorescent lamp (CCFL) and high-brightness light emitting diode… (more)

Doshi, Montu V.

2010-01-01T23:59:59.000Z

339

Shelf life of five meat products displayed under light emitting diode or fluorescent lighting.  

E-Print Network (OSTI)

??Light emitting diode (LED) and fluorescent (FLS) lighting effects on enhanced pork loin chops, beef longissimus dorsi and semimembranosus steaks, ground beef, and ground turkey… (more)

Steele, Kyle Stover

2011-01-01T23:59:59.000Z

340

THE PROMISE OF SOLID STATE LIGHTING FOR GENERAL ILLUMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Conclusions and Recommendations Conclusions and Recommendations from OIDA Technology Roadmaps Co-sponsored by DOE (BTS) and OIDA OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org Building Technology, State and Community Programs Energy Efficiency and Renewable Energy U.S. Department of Energy Published by: Optoelectronics Industry Development Association 1133 Connecticut Avenue NW, Suite 600 Washington, DC 20036 Phone: (202) 785-4426 Fax: (202) 785-4428 Internet: http://www.oida.org 1 The Promise of Solid State Lighting for General Illumination s Light Emitting Diodes (LEDs) © 2001 Optoelectronics Industry Development Association Executive Summary In the midst of the rising fuel prices and the blackouts in California there is silent rev-

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

342

El-pincel: a painter cloud service for greener web pages  

Science Conference Proceedings (OSTI)

Due to their thin size, vivid colors, high contrast and power efficiency, OLED (Organic Light-Emitting Diode) display and its variants such as AMOLED (Active Matrix OLED) displays are increasingly replacing traditional LCD (Liquid Crystal Display) screens ... Keywords: OLED display, browsing, cloud service, color harmony, color transformation, low power, tone mapping

Anand Bhojan; Lee Kee Chong; Ee-Chien Chang; Mun Choon Chan; Ananda L. Akkihebbal; Wei Tsang Ooi

2012-10-01T23:59:59.000Z

343

Solid polymer electrolyte compositions  

DOE Patents (OSTI)

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

344

Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors  

SciTech Connect

Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

2012-02-01T23:59:59.000Z

345

A Near-Infrared Diode Laser Spectrometer for the In Situ Measurement of Methane and Water Vapor from Stratospheric Balloons  

Science Conference Proceedings (OSTI)

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne near-infrared diode laser spectrometer, was developed to provide simultaneous in situ measurements of methane and water vapor in the troposphere and the lower stratosphere. The ...

Georges Durry; Ivan Pouchet

2001-09-01T23:59:59.000Z

346

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

347

Solid Waste Management Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

348

Solid Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

349

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

350

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

351

Solid-State Lighting: Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Partnerships to someone by E-mail Share Solid-State Lighting: Partnerships on Facebook...

352

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

353

Blue light emitting diode internal and injection efficiency  

Science Conference Proceedings (OSTI)

A simple experimental method of light emitting diode(LED) injection efficiency (IE) determination was suggested. IE and internal quantum efficiency(IQE) calculation is an actual and difficult problem in LED science. In this paper IE and IQE of blue LEDs were determined separately. The method is based on electroluminescence data fitting by the modified rate equation model. Efficiency droop caused by Auger recombination and poor injection were taken into account. Only one reasonable assumption was accepted during the calculations: IE tends to 1 at low current densities.

Ilya E. Titkov; Denis A. Sannikov; Young-Min Park; Joong-Kon Son

2012-01-01T23:59:59.000Z

354

Ion-implanted planar-buried-heterostructure diode laser  

DOE Patents (OSTI)

A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM); Myers, David R. (Albuquerque, NM); Vawter, Gregory A. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

355

Observation of enhanced infrared photoresponse in forward?biased amorphous silicon p?i?n diodes  

Science Conference Proceedings (OSTI)

The photoconductive response of hydrogenated amorphous silicon (a?Si:H) p?i?n diodes has been investigated under conditions of low?temperature operation. We show that cooled p?i?n diodes exhibit an enhanced infrared response when operated under forward bias conditions. The induced IR response is of the order of 10?3A/W

J. Wind; G. Müller

1991-01-01T23:59:59.000Z

356

Qualification and selection of flight diode lasers for the NuSTAR space mission  

Science Conference Proceedings (OSTI)

Reliability and lifetime of diode lasers is critical to space missions. 12Rigorous tests were conducted on diode lasers to qualify them to be deployed on the Nuclear Spectroscopic Telescope Array (NuSTAR) mission. This mission includes a metrology system ...

Patrick Meras; Mark Cooper; R. Peter Dillon; Siamak Forouhar; Ivair Gontijo; Carl Christian Liebe; Andrew Shapiro

2011-03-01T23:59:59.000Z

357

High power light emitting diode based setup for photobleaching fluorescent impurities  

E-Print Network (OSTI)

High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes for simple photobleaching pur- poses, we designed a simple but efficient lighting system using light emitting

Kaufman, Laura

358

Nearest-IR superluminescent diodes with a 100-nm spectral width  

Science Conference Proceedings (OSTI)

This paper presents an experimental study of quantum well superluminescent diodes with an extremely thin (InGa)As active layer. Under cw injection, the output power of such diodes is several milliwatts, with a centre wavelength of 830 nm and emission bandwidth of about 100 nm. (letters)

Il'chenko, S N; Ladugin, M A; Marmalyuk, Aleksandr A; Yakubovich, S D

2012-11-30T23:59:59.000Z

359

Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a  

E-Print Network (OSTI)

for conventional incandescent and fluorescent light bulbs.5 However, luminous efficacies of commercial white LEDsConfocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a Akio Kaneta-well-structured light-emitting diodes LEDs with a yellow-green light 530 nm and an amber light 600 nm was measured

Okamoto, Koichi

360

Solid state electrochemical current source  

DOE Patents (OSTI)

A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

2002-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

362

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State...

363

Solid-State Lighting: Past Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Past Conferences on Twitter Bookmark Solid-State Lighting: Past Conferences on Google Bookmark Solid-State Lighting: Past Conferences on Delicious Rank Solid-State...

364

Solid-State Lighting: Related Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Articles on Twitter Bookmark Solid-State Lighting: Related Articles on Google Bookmark Solid-State Lighting: Related Articles on Delicious Rank Solid-State...

365

Solid-State Lighting: Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights on Twitter Bookmark Solid-State Lighting: Research Highlights on Google Bookmark Solid-State Lighting: Research Highlights on Delicious Rank Solid-State...

366

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

367

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

368

Solid Cold - A  

NLE Websites -- All DOE Office Websites (Extended Search)

By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each? Back in the 18th century, the chemist Joseph Black discovered that different materials required different amounts of heat to raise their temperatures by equal amounts. The amount by which the temperature of a material changes as it absorbs or gives off heat can even be used to help identify the material. Among solid materials near room temperature,

369

Solid Radwaste Radionuclide Measurements  

Science Conference Proceedings (OSTI)

Methods employed at U.S. nuclear power plants to assay low level solid radwaste were reviewed to identify those aspects of the assay process that have substantial improvement potential and to develop recommendations on programs to develop more effective methods. Discussions were held on practices at 41 nuclear stations and in-depth reviews were performed at 14 sites. Recommendations for future efforts are provided, particularly with reference to demonstrating adherence to proposed regulations.

1982-11-01T23:59:59.000Z

370

Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes  

E-Print Network (OSTI)

Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes S. L. Rumyantseva well light emitting diodes. The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase

Wetzel, Christian M.

371

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--Semiconductor nanocrystal quantum dots (NQD)  

E-Print Network (OSTI)

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- Semiconductor nanocrystal convertors integrated on light-emitting diodes (LEDs). The use of nonradiative energy transfer, also known-LEDs for lighting applications. Index Terms-- Förster resonance energy transfer, light emitting diode, nanocrystal

Demir, Hilmi Volkan

372

Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal  

E-Print Network (OSTI)

Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic 21 November 2003 We demonstrate a light-emitting diode exhibiting 1.7­2.7-fold enhancement in light light emitting diode LED , the ef- ficiency is limited to several percents by a low light extrac- tion

Baba, Toshihiko

373

Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes  

E-Print Network (OSTI)

of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

Gilchrist, James F.

374

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures  

E-Print Network (OSTI)

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode and GaInN/GaN heterostructures typically used for high efficiency light emitting diodes is of high materials for green, blue, and UV light emitting diodes (LED) [1-2]. It is known that huge piezoelectric

Wetzel, Christian M.

375

The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer  

E-Print Network (OSTI)

The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward online 23 January 2013) Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs

376

EVALUATION OF SILICON DIODES AS IN-SITU CRYOGENIC FIELD EMISSION DETECTORS FOR SRF CAVITY DEVELOPMENT  

Science Conference Proceedings (OSTI)

We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

Ari Palczewski, Rongli Geng

2012-07-01T23:59:59.000Z

377

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

378

Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Sapphire Wafers Intended for Use for Manufacturing High Brightness-Light Emitting Diode Devices," and recently approved SEMI Draft Document 5420A, "Specification for...

379

Solid-State Lighting: Standards Development for Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

IES G-2, Guideline for the Application of General Illumination ("White") Light-Emitting Diode (LED) Technologies Provides lighting and design professionals with a general...

380

Quantifying the heat switching capability of a thermionic diode  

DOE Green Energy (OSTI)

The Integrated Solar Upper Stage (ISUS) Advanced Technology Demonstrator (ATD) program, recently initiated by the US Air Force Phillips Laboratory (USAF PL), will demonstrate the feasibility of a combined solar power and propulsion upper stage. The solar bimodal design approach will use thermal energy storage to reduce engine mass and concentrator area. However, in order to store enough energy over an orbit period there must be minimal heat lost with a system that is designed to remove heat for energy conversion. A unique feature of thermionics is their ability to reduce heat flow by reducing or eliminating the electron cooling. However, demonstration and quantification of this capability is needed. This paper presents the results to date of the Receiver Diode Integration Test, one of two critical experiments of the ISUS ATD program being performed by the Idaho National Engineering Laboratory (INEL). Results of the demonstration testing of thermionic heat pipe modules (THPMs) to operate as heat switches in conjunction with the solar receiver cavity are presented as are the performance limits and operational constraints of a combined receiver/diode subsystem.

Snyder, A.M.; Verrill, D.A.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

jap.aip.org A Selection of Top 2012 Articles  

E-Print Network (OSTI)

- equilibrium Green's function calculations. J. Appl. Phys. 111, 073111 (2012) organic light-emitting diodes and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize

Lee, Jason R.

382

Triplet Formation by Charge Recombination in Thin Film Blends of Perylene Red and Pyrene: Developing a Target Model for the  

E-Print Network (OSTI)

, photovoltaic cells, field effect transistors, and light-emitting diodes. These activities are aimed at product in xerography,9 organic field-effect transistors (OFETs),3,10 organic light-emitting diodes (OLEDs),11

van Stokkum, Ivo

383

Energy Department Announces New Investments to Drive Cost-Competitive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs). Today's LED lighting is six or seven times more efficient than conventional lighting and can last...

384

Hyperfine-Field-Mediated Spin Beating in Electrostatically Bound Charge Carrier Pairs D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S.-Y. Paik, J. M. Lupton,* and C. Boehme  

E-Print Network (OSTI)

of the current through an organic light emitting diode under coherent spin-resonant excitation. At weak driving processes responsible for light emission in organic light-emitting diodes (OLEDs), such local variations

McCamey, Dane

385

Temperature dependence of electron mobility, electroluminescence and photoluminescence This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

mobility were investigated over temperature from 60 to 300 K in small-molecule organic light emitting diode technological advances have been achieved in this decade on organic light emitting diodes (OLEDs) driven

Klotzkin, David

386

Extremely Efficient Indium-Tin-Oxide-Free Green Phosphorescent Organic Light-Emitting Diodes  

SciTech Connect

This paper demonstrates extremely efficient (?P,max = 118 lm W?1) ITO-free green phosphorescent OLEDs (PHOLEDs) with multilayered, highly conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films as the anode. The efficiency is obtained without any outcoupling-enhancing structures and is 44% higher than the 82 lm W?1 of similar optimized ITO-anode PHOLEDs. Detailed simulations show that this improvement is due largely to the intrinsically enhanced outcoupling that results from a weak microcavity effect.

Cai, Min; Ye, Zhuo; Xiao, Teng; Liu, Rui; Chen, Ying; Mayer, Robert W.; Biswas, Rana; Ho, Kai-Ming; Shinar, Ruth; Shinar, Joseph

2012-07-12T23:59:59.000Z

387

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

388

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

389

Low Energy Electrodynamics in Solids (LEES) 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Electrodynamics in Solids (LEES) 2012 Low Energy Electrodynamics in Solids (LEES) 2012 July 22-27, 2012; Napa...

390

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

391

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

392

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

393

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

394

Recent advances in solid-state organic lasers  

E-Print Network (OSTI)

Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the gr...

Chenais, Sébastien; 10.1002/pi.3173

2011-01-01T23:59:59.000Z

395

Highly Efficient Polymer Light-Emitting Diodes Using Graphene ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

396

Solid-State Lighting: Solid-State Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE...

397

Poisson-Nernst-Planck Model of Bipolar Nano uidic Diode Based on Bulletlike Nanopore  

E-Print Network (OSTI)

Bipolar nanofluidic diode is based on nanopore with positive and negative surface charges separated by a junction. This paper investigates the effects of the pore structure, taking the bullet-like pore as an example, on the ion current rectification. The Poisson-Nernst-Planck Modelings show that the ion current rectification behavior can be greatly influenced by the shape of the pore. The bipolar nanofluidic diode with more tapered tip has significantly higher ion current rectification degree. The modelling results indicate that special design of the nanopore is necessary for the performance of the bipolar nanofluidic diode.

Li-Jian Qu; Xinghua Zhang; Jie Fua; Lin Li; Dadong Yan

2013-09-10T23:59:59.000Z

398

Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar  

Science Conference Proceedings (OSTI)

The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

2008-02-13T23:59:59.000Z

399

Optimization of light emitting diodes based on bipolar double-barrier resonant-tunneling structures  

Science Conference Proceedings (OSTI)

A bipolar double-barrier resonant-tunneling light emitting diode will have maximum emitted light intensity if (1) electrons and holes simultaneously resonant-tunnel into the quantum well, (2) the charge carriers are entirely trapped in the well as the ... Keywords: Poisson equation, Schrodinger equation, automated computer code, bipolar double-barrier RTD structures, charge carriers, chemical compositions, doping profiles, electroluminescence, electroluminescence spectrum profile, electron-hole recombination, electron-hole recombination rate, geometric structures, light emitting diodes, near zero-field condition, optimisation, quantum well, resonant tunnelling diodes, resonant-tunneling LED, semiconductor device models, semiconductor quantum wells, temperature stability, theoretical modeling, thermal stability

A. Kindlihagen; K. A. Chao; M. Willander; J. Genoe

1995-11-01T23:59:59.000Z

400

Hybrid high-temperature superconductor-semiconductor tunnel diode  

E-Print Network (OSTI)

We report the demonstration of hybrid high-Tc-superconductor-semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices were fabricated by our newly-developed mechanical bonding technique, resulting in high-Tc-semiconductor planar junctions acting as superconducting tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi2Sr2CaCu2O8+{\\delta} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity - in good agreement with theoretical predictions for a d-wave superconductor-normal material junction, and similar to spectra obtained in scanning tunneling microscopy. Additional junctions are demonstrated using Bi2Sr2CaCu2O8+{\\delta} combined with graphite or Bi2Te3. Our results pave the way for new methods in unconventional superconductivity studies, novel materials and quantum technology applications.

Alex Hayat; Parisa Zareapour; Shu Yang F. Zhao; Achint Jain; Igor G. Savelyev; Marina Blumin; Zhijun Xu; Alina Yang; G. D. Gu; Harry E. Ruda; Shuang Jia; R. J. Cava; Aephraim M. Steinberg; Kenneth S. Burch

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ion-implanted planar-buried-heterostructure diode laser  

DOE Patents (OSTI)

A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group 3-5 cladding layer 14 and an n-type compositionally graded Group 3-5 cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe. 4 figs.

Brennan, T.M.; Hammons, B.E.; Myers, D.R.; Vawter, G.A.

1990-01-25T23:59:59.000Z

402

Ultra-high current density thin-film Si diode  

DOE Patents (OSTI)

A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

Wang; Qi (Littleton, CO)

2008-04-22T23:59:59.000Z

403

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

404

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

405

Solidification Structures of Solid Solutions  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 16 Binary phase diagrams. L, L 1 , and L 2 are liquid solutions. α and β are solid solutions. (a) Complete

406

Solid Waste Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

407

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the… (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

408

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids ...

409

Response comparison of a single-diode electronic dosimeter, a three-diode electronic dosimeter, and a conventional four-filter TLD assembly in several irradiation environments  

E-Print Network (OSTI)

This study was performed in order to determine and compare the response of several different dosimetry media in various exposure categofies. In order to justify the use of an electronic dosimeter as an adequate badge of record, an electronic dosimeter must be on par with accepted external dosimetry standards. Additionally, recent studies determined that a multiple diode electronic dosimeter may be considered the best candidate for use as a badge of record. The response of two commercially available electronic dosimeters, a single diode and a three-diode configuration, and a four-filter TLD packet are compared in this investigation. The exposure categofies include dose output linearity, dose rate linearity, angular dependence, incident photon energy dependence, and noble gas fission product exposure testing. These exposure categories are meant to simulate most conditions encountered in an operational setting. The responses of each dosimeter are compared to applicable industry standards. The major results include electronic dosimeter underresponse at 112 rem min-', single-diode electronic dosimeter underresponse for 100-200 keV photons, excellent deep dose agreement between the three dosimeters in the noble gas environment, and shallow dose disagreement between two TLD algorithm and the three-diode electronic dosimeter.

Charlton, Michael Aaron

1995-01-01T23:59:59.000Z

410

Solids feeder apparatus  

SciTech Connect

This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

411

Luminescence properties of light-emitting diodes based on GaAs with the up-conversion Y{sub 2}O{sub 2}S:Er,Yb luminophor  

SciTech Connect

Y{sub 2}O{sub 2}S luminophors doped with Er{sup 3+} and Yb{sup 3+} ions are produced by means of solid-phase synthesis and deposited onto standard AL123A infrared light-emitting diodes. When excited with 940 nm radiation from a light-emitting diode, the structures exhibit intense visible up-conversion luminescence. A maximal brightness of 2340 cd/m{sup 2} of green and red up-conversion luminescence at corresponding wavelengths around 550 and 600 nm is observed for the Y{sub 2}O{sub 2}S compound doped with 2 at % Er{sup 3+} ions and 6 at % Yb{sup 3+} ions. The ratio of the intensity of green (or red) up-conversion luminescence to the intensity of infrared Stokes luminescence increases with increasing applied voltage. The efficiency of visible emission of the light-emitting diode structures is {eta} = 1.2 lm/W at an applied voltage of 1.5 V.

Gruzintsev, A. N., E-mail: gran@ipmt-hpm.ac.ru [Russian Academy of Sciences, Institute of Problems of Microelectronics Technology (Russian Federation); Barthou, C.; Benalloul, P. [Institute des NanoSciences (France)

2008-03-15T23:59:59.000Z

412

Solid-State Lighting: 2009 Solid-State Lighting Vancouver Manufacturin...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting Vancouver Manufacturing Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Vancouver Manufacturing Workshop...

413

passivation of InGaN/GaN nanopillar light emitting diodes.  

E-Print Network (OSTI)

??Recently, InGaN/GaN based blue light emitting diodes (LEDs) have become widely available commercially, but their efficiency is reduced due to the quantum confined Stark effect… (more)

Choi, Won

2013-01-01T23:59:59.000Z

414

Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology  

E-Print Network (OSTI)

This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

Huang, Hao, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

415

Tailoring optical properties of light-emitting diodes by nanostructuring with nanospheres.  

E-Print Network (OSTI)

???III-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to… (more)

??

2012-01-01T23:59:59.000Z

416

F5, Influence of Geometry on Silicon Carbide JBS Diodes Conduction  

Science Conference Proceedings (OSTI)

I4, Electrical Spin Injection in a Hybrid Organic/Inorganic Spin-Polarized Light Emitting Diode (Spin-LED) · I5, Properties of MnAs/GaMnAs/MnAs Magnetic ...

417

A strategy for the use of light emitting diodes by autonomous underwater vehicles  

E-Print Network (OSTI)

Light Emitting Diode (LED) technology has advanced dramatically in a few short years. An expensive and difficult to manufacture LED array containing nearly 100 individual LEDs and measuring at least 5 cm² can now be replaced ...

Curran, Joseph R. (Joseph Robinson)

2004-01-01T23:59:59.000Z

418

Developing quantum dot phosphor-based light-emitting diodes for aviation lighting applications  

Science Conference Proceedings (OSTI)

We have investigated the feasibility of employing quantum dot (QD) phosphor-based light-emitting diodes (LEDs) in aviation applications that request Night Vision Imaging Systems (NVIS) compliance. Our studies suggest that the emerging QD phosphorbased ...

Fengbing Wu; Dawei Zhang; Shuzhen Shang; Yiming Zhu; Songlin Zhuang; Jian Xu

2012-01-01T23:59:59.000Z

419

PERFORMANCE OF CESIUM THERMIONIC DIODES OPERATED IN SERIES-PARALLEL CIRCUITS  

SciTech Connect

Electrical power degradation from the operation of many series-parallel circuited cesium diodes in a thermionic reactor must be considered when a nonflattened nuclear power distribution exists over the volume of the reactor core. An experiment was carried out to measure the loss of power and efficiency due to unequal heat inputs to series- or parallel-connected diodes, and to study the operating characteristics of a multiple-diode system. The results were applied to a specific thermionic reactor configuration with a ratio of maximum to minimum diode heat input of 1.85. The minimum degradation of power and efficiency was found to be 41 and 19%, respectively, at optimized operating conditions. (auth)

Holland, J.W.

1962-01-01T23:59:59.000Z

420

Fast Time Response Tunable Diode Laser Measurements of Atmospheric Trace Gases for Eddy Correlation  

Science Conference Proceedings (OSTI)

A fast-response, atmospheric trace gas monitor, based on the principle of tunable diode laser absorption spectroscopy, has been developed for making eddy correlation measurements of dry deposition fluxes. This system, which is capable of ...

G. L. Ogram; F. J. Northrup; G. C. Edwards

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes.  

E-Print Network (OSTI)

??The focus of this study is mono-layer polymer light emitting diode (PLED). The emitting layer is poly-p-phenylenebenzobisoxazole (PBO). PBO is a fully conjugated heterocyclic aromatic… (more)

Liao, Hung-chi

2004-01-01T23:59:59.000Z

422

Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes  

E-Print Network (OSTI)

Saturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the ...

Shirasaki, Yasuhiro

2013-01-01T23:59:59.000Z

423

Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes  

E-Print Network (OSTI)

We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

Sun, Xiaochen

424

High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture  

DOE Patents (OSTI)

Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

Beach, R.J.

1997-11-18T23:59:59.000Z

425

High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture  

DOE Patents (OSTI)

Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

Beach, Raymond J. (Livermore, CA)

1997-01-01T23:59:59.000Z

426

Stacked switchable element and diode combination with a low breakdown switchable element  

SciTech Connect

A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.

Wang, Qi (Littleton, CO); Ward, James Scott (Englewood, CO); Hu, Jian (Englewood, CO); Branz, Howard M. (Boulder, CO)

2012-06-19T23:59:59.000Z

427

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

428

SOLID MECHANICS James R. Rice  

E-Print Network (OSTI)

1 SOLID MECHANICS James R. Rice School of Engineering and Applied Sciences, and Department of Earth: February 2010 Downloadable at: http://esag.harvard.edu/rice/e0_Solid_Mechanics_94_10.pdf TABLE OF CONTENTS provided on last three pages, pp. 87-89 INTRODUCTION The application of the principles of mechanics to bulk

429

Valve for controlling solids flow  

DOE Patents (OSTI)

A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

Staiger, M. Daniel (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

430

Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.  

DOE Green Energy (OSTI)

Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

2012-01-01T23:59:59.000Z

431

Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector  

SciTech Connect

Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal (CHUM), 1560 Sherbrooke est, Montreal, Quebec H2L 4M1, Canada and Departement de Physique, Universite de Montreal, Pavillon Roger-Gaudry (D-428), 2900 Boul. Edouard-Montpetit, Montreal, Quebec H3T 1J4 (Canada); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec G1K 7P4, Quebec, Canada and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec (CHUQ), Quebec, Quebec G1R 2J6 (Canada); Ionizing Radiation Standards, Institute for National Measurement Standards, National Research Council (NRC), Ottawa, Ontario K1A 0R6 (Canada); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec G1K 7P4, Quebec, Canada and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec (CHUQ), Quebec, Quebec G1R 2J6 (Canada)

2011-10-15T23:59:59.000Z

432

Secretary Chu Announces More than $37 Million for Next Generation Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than $37 Million for Next Generation than $37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of incandescent bulbs, has the potential to be ten times more energy-efficient than traditional incandescent lighting. Lighting accounts for approximately 24 percent of the total electricity generated in the United States today - by 2030, the development and widespread deployment of cost-effective solid-state

433

Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Solid-State Lighting 2007 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2007 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

434

Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Solid-State Lighting 2006 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2006 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

435

Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: 2012 DOE Solid-State

436

Gasification of carbonaceous solids  

DOE Patents (OSTI)

A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

Coates, Ralph L. (Provo, UT)

1976-10-26T23:59:59.000Z

437

Solid hydrogen structure  

DOE Green Energy (OSTI)

The J=0{minus}>2 Raman signal from solid J=0 D{sub 2} or H{sub 2} reveals HCP structure when deposited at a rate 0.1 {le} R({mu}/min) {le} 40 onto MgF{sub 2} at T{sub d}/T{sub tp} > 0.3, a mixture of HCP and FCC crystals at 0.2 < T{sub d}/T{sub tp} < 0.3 and possibly a randomly stacked close packed structure at T{sub d}/T{sub tp} < 0.2, where T{sub tp} is the triple point temperature. Non-HCP crystals transform to HCP continuously and irreversibly with increasing T. Finally, the crystal size decreases with decreasing T{sub d} and increasing R, from {approximately} 1 mm at T{sub d} {approximately} 0.8 T{sub tp} and R {approximately} 2 {mu}/min to {approximately} 1 {mu}m at 0.25 T{sub tp} and R {approximately} 40 {mu}/min.

Collins, G.W.; Unites, W.G.; Mapoles, E.R.; Magnotta, F.; Bernat, T.P.

1994-11-01T23:59:59.000Z

438

In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material  

SciTech Connect

Purpose: For external beam in vivo measurements, the dosimeter is normally placed on the patient's skin, and the dose to a point of interest inside the patient is derived from surface measurements. In order to obtain accurate and reliable measurements, which correlate with the dose values predicted by a treatment planning system, a dosimeter needs to be at a point of electronic equilibrium. This equilibrium is accomplished by adding material (buildup) above the detector. This paper examines the use of buildup caps in a clinical setting for two common detector types: OSLDs and diodes. Clinically built buildup-caps and commercially available hemispherical caps are investigated. The effects of buildup cap thickness and fabrication material on field-size correction factors, C{sub FS}, are reported, and differences between the effects of thickness and fabrication material are explained based on physical parameters. Methods: Measurements are made on solid water phantoms for 6 and 15 MV x-ray beams. Two types of dosimeters are used: OSLDs, InLight/OSL Nanodot dosimeters (Landauer, Inc., Glenwood, IL) and a P-type surface diode (Standard Imaging, Madison, WI). Buildup caps for these detectors were fabricated out of M3, a water-equivalent material, and sheet-metal stock of Al, Cu, and Pb. Also, commercially available hemispherical buildup caps made of plastic water and brass (Landauer, Inc., Glenwood, IL) were used with Nanodots. OSLDs were read with an InLight microStar reader (Landauer, Inc., Glenwood, IL). Dose calculations were carried out with the XiO treatment planning system (CMS/Elekta, Stockholm) with tissue heterogeneity corrections. Results: For OSLDs and diodes, when measurements are made with no buildup cap a change in C{sub FS} of 200% occurs for a field-size change from 3 cm x 3 cm to 30 cm x 30 cm. The change in C{sub FS} is reduced to about 4% when a buildup cap with wall thickness equal to the depth of maximum dose is used. Buildup caps with larger wall thickness do not cause further reduction in C{sub FS}. The buildup cap fabrication material has little or no effect on C{sub FS}. The perturbation to the delivered dose caused by placing a detector with a buildup cap on the surface of a patient is measured to be 4%-7%. A comparison between calculated dose and dose measured with a Nanodot and a diode for 6 and 15 MV x-rays is made. When C{sub FS} factors are carefully determined and applied to measurements made on a phantom, the differences between measured and calculated doses were found to be between {+-}1.3%. Conclusions: OSLDs and diodes with appropriate buildup caps can be used to measure dose on the surface of a patient and predict the delivered dose to depth dmax in a range of {+-}1.3% for 100 cGy. The buildup cap: can be fabricated from any material examined in this work, is best with wall thickness dmax, and causes a perturbation to the delivered dose of 4%-7% when the wall thickness is dmax. OSLDs and diodes with buildup caps can both give accurate measurements of delivered dose.

Jursinic, Paul A.; Yahnke, Clifford J. [West Michigan Cancer Center, 200 North Park St. Kalamazoo, Michigan 49007 (United States); Landauer, Inc., 2 Science Road, Glenwood, Illinois 60425 (United States)

2011-10-15T23:59:59.000Z

439

Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination  

SciTech Connect

This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

Ian Ferguson

2006-07-31T23:59:59.000Z

440

Solid-State Lighting: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: NewsDetail on Twitter Bookmark Solid-State Lighting: NewsDetail on Google Bookmark Solid-State Lighting: NewsDetail on Delicious Rank Solid-State Lighting:...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Photonic crystal laser lift-off GaN light-emitting diodes Aurlien David,a  

E-Print Network (OSTI)

Photonic crystal laser lift-off GaN light-emitting diodes Aurélien David,a Tetsuo Fujii,b Brendan March 2006 We report on the fabrication and study of laser lift-off GaN-based light-emitting diodes-state lighting. However, as is the case for any light-emitting diode LED , light tends to be trapped in the high

Recanati, Catherine

442

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

443

Power Generation from Solid Fuels in Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Gorte vohs@seas.upenn.edu, 215-898-6318 Abstract In this study we demonstrate the generation of electricity at high power densities, >300 mWcm 2 at 973 K, from a solid...

444

STATEMENT OF CONSIDERATIONS REQUEST BY DOW CORNING CORPORATION FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT OF CONSIDERATIONS REQUEST BY DOW CORNING CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42344; W(A)-05-002, CH-1266 The Petitioner, Dow Coming Corporation (Dow), was awarded this cooperative agreement for the performance of work entitled, "Thin Film Packaging Solutions for High Efficiency OLED Lighting Products." The waiver will apply to inventions made by Dow employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. The purpose of the cooperative agreement is to develop novel substrate and packaging technology for solid state lighting devices that use Organic Light Emitting Diodes (OLEDs) as the

445

Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell (SOFC) technology, which offers many advantages over traditional energy conversion systems including low emission and high efficiency, has become increasingly attractive to the utility, automotive, and defense industries (as shown in Figure 1). As an all solid-state energy conversion device, the SOFC operates at high temperatures (700-1,000 C) and produces electricity by electrochemically combining the fuel and oxidant gases across an ionically conducting oxide membrane. To build up a useful voltage, a number of cells or PENs (Positive cathode-Electrolyte-Negative anode) are electrically connected in series in a stack through bi-polar plates, also known as interconnects. Shown in Figure 2 (a) is a schematic of the repeat unit for a planar stack, which is expected to be a mechanically robust, high power-density and cost-effective design. In the stack (refer to Figure 2 (b)), the interconnect is simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing (fuels such as hydrogen or natural gas) environment on the anode side for thousands of hours at elevated temperatures (700-1,000 C). Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain sulfide impurities. Also, the interconnect must be stable towards any sealing materials with which it is in contact, under numerous thermal cycles. Furthermore, the interconnect must also be stable towards electrical contact materials that are employed to minimize interfacial contact resistance, and/or the electrode materials. Considering these service environments, the interconnect materials should possess the following properties: (1) Good surface stability (resistance to oxidation and corrosion) in both cathodic (oxidizing) and anodic (reducing) atmospheres. (2) Thermal expansion matching to the ceramic PEN and other adjacent components, all of which typically have a coefficient of thermal expansion (CTE) in the range of 10.5-12.0 x 10{sup -6} K{sup -1}. (3) High electrical conductivity through both the bulk material and in-situ formed oxide scales. (4) Satisfactory bulk and interfacial mechanical/thermomechanical reliability and durability at the SOFC operating temperatures. (5) Good compatibility with other materials in contact with interconnects such as seals and electrical contact materials. Until recently, the leading candidate material for the interconnect was doped lanthanum chromite (LaCrO3), which is a ceramic material which can easily withstand the traditional 1000 C operating temperature. However, the high cost of raw materials and fabrication, difficulties in obtaining high-density chromite parts at reasonable sintering temperatures, and the tendency of the chromite interconnect to partially reduce at the fuel gas/interconnect interface, causing the component to warp and the peripheral seal to break, have plagued the commercialization of planar SOFCs for years. The recent trend in developing lower temperature, more cost-effective cells which utilize anode-supported, several micron-thin electrolytes and/or new electrolytes with improved conductivity make it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2003-06-15T23:59:59.000Z

446

Light Emitting Diode (LED) fiducial system: Setup and operation  

SciTech Connect

Streak cameras, either electronic or rotating mirror, are common diagnostic tools used to explore very fast phenomena. Often they are used to precisely time events or durations, and in most cases, it is important to have quality time marks on the film record. Many methods have been used to introduce time marks onto the film. Exploding bridge wires are frequently used, but they light up slowly and are difficult to read with consistent accuracy. It is also difficult to put more than a few bridge wires in the view of a camera slit, so there are only a few timing marks written to the film. In some cases the time scale on the film must be interpolated over long distances, creating a significant loss of accuracy. Interpolation is especially troublesome with those cameras that have a nonlinear sweep rate. Spark gaps located on the camera slit turn on a bit faster, but suffer from the same interpolation induced errors. A series of short duration laser pulses, accurately timed and introduced along the edges of the film, is a very fine solution. The problem with such a laser fiducial system is that the lasers are very expensive and difficult to maintain. There has been a need for many years for an inexpensive, very bright light source that can be repetitively pulsed accurately and with short duration. Various technologies have sufficiently developed over the past few years, allowing us to build a fiducial system based on light emitting diodes (LED) for the Cordin rotating mirror streak cameras.

Muelder, S.A.

1995-01-01T23:59:59.000Z

447

City of Phildelphia: Light emitting diodes for traffic signal displays  

SciTech Connect

This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

1995-12-01T23:59:59.000Z

448

White Light Emitting Diode Development for General Illumination Applications  

SciTech Connect

This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

James Ibbetson

2006-05-01T23:59:59.000Z

449

Ultra-low voltage resonant tunnelling diode electroabsorption modulator  

E-Print Network (OSTI)

Embedding a double barrier resonant tunnelling diode (RTD) in an unipolar InGaAlAs optical waveguide gives rise to a very low driving voltage electroabsorption modulator (EAM) at optical wavelengths around 1550 nm. The presence of the RTD within the waveguide core introduces high non-linearity and negative differential resistance in the current-voltage (I-V) characteristic of the waveguide. This makes the electric field distribution across the waveguide core strongly dependent on the bias voltage: when the current decreases from the peak to the valley there is an increase of the electric field across the depleted core. The electric field enhancement in the core-depleted layer causes the Franz-Keldysh absorption band-edge to red shift, which is responsible for the electroabsorption effect. High frequency ac signals as low as 100 mV can induce electric field high speed switching, producing substantial light modulation (up to 15 dB) at photon energies slightly lower than the waveguide core band-gap energy. The k...

Figueiredo, J M L; Stanley, C R

2002-01-01T23:59:59.000Z

450

Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)  

SciTech Connect

Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

2010-06-01T23:59:59.000Z

451

Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York  

SciTech Connect

This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY.

Myer, Michael; Hazra, Oindrila; Kinzey, Bruce R.

2011-12-01T23:59:59.000Z

452

Matrix-addressable III-nitride light emitting diode arrays on silicon substrates by flip-chip technology.  

E-Print Network (OSTI)

??xiv, 81 leaves : ill. ; 30 cm HKUST Call Number: Thesis ECED 2007 Keung Matrix-addressable light emitting diode (LED) micro-arrays on sapphire substrates have… (more)

Keung, Chi Wing

2007-01-01T23:59:59.000Z

453

The Effect of Light Emitting Diode Phototherapy on the Rate of Orthodontic Tooth Movement - A Clinical Study.  

E-Print Network (OSTI)

??Increasing the rate of orthodontic tooth movement (OTM) can reduce risks such as periodontal disease and caries. This study investigated whether light emitting diode (LED)… (more)

Chung, Sean

2013-01-01T23:59:59.000Z

454

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

455

Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Solid-State Lighting 08 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2008 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

456

Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 DOE Solid-State Lighting 2014 DOE Solid-State Lighting R&D Workshop to someone by E-mail Share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Facebook Tweet about Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Twitter Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Google Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Delicious Rank Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Digg Find More places to share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2014 DOE Solid-State Lighting R&D Workshop logo for Next Generation Lighting Industry Alliance

457

Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR® Solid-State ENERGY STAR® Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools ENERGY STAR® Solid-State Lighting Workshop Workshop Purpose: To prepare manufacturers for the launch of the ENERGY

458

Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Solid-State Lighting R&D 11 Solid-State Lighting R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2011 Solid-State Lighting R&D Workshop Materials

459

Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Solid-State Lighting DOE Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools DOE Solid-State Lighting Manufacturing Workshop This page provides links to the presentations given at the 2009 DOE

460

Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Solid-State Lighting 2010 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools 2010 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting 2009 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2009 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

462

Business Plan : Residential Solid Waste Collection.  

E-Print Network (OSTI)

??Residential solid waste means all the solid wastes produced in household level, which includes bio-waste, metal, mixed wastes, organic and inorganic waste. The inability of… (more)

Mazengo, Dorice

2013-01-01T23:59:59.000Z

463

Solid-State Lighting: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Financial Opportunities to someone by E-mail Share Solid-State Lighting: Financial Opportunities on Facebook Tweet about Solid-State Lighting: Financial Opportunities on Twitter Bookmark Solid-State Lighting: Financial Opportunities on Google Bookmark Solid-State Lighting: Financial Opportunities on Delicious Rank Solid-State Lighting: Financial Opportunities on Digg Find More places to share Solid-State Lighting: Financial Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to

464

Solid Solution Lithium Alloy Cermet Anodes  

E-Print Network (OSTI)

Solid Solution Lithium Alloy Cermet Anodes Thomas J.94720 USA Abstract Lithium-magnesium solid solution alloysHeating mixtures of lithium nitride and magnesium provides a

Richardson, Thomas J.; Chen, Guoying

2006-01-01T23:59:59.000Z

465

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

466

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

467

Chapter 47 Solid Waste Facilities (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

468

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Municipal Solid Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSo...

469

Hydrogen & Fuel Cells - Fuel Cell - Solid Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Research and Development Solid Oxide Fuel Cells Solid oxide diagram In an SOFC, oxygen from air is reduced to ions at the cathode, which diffuse through the...

470

Characteristics Of Fresh Municipal Solid Waste.  

E-Print Network (OSTI)

??Hossain, Sahadat The characteristics of fresh municipal solid waste (MSW) are critical in planning, designing, operating or upgrading solid waste management systems. Physical composition, moisture… (more)

Taufiq, Tashfeena

2010-01-01T23:59:59.000Z

471

Solid Waste Management Program Plan  

SciTech Connect

The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

Duncan, D.R.

1990-08-01T23:59:59.000Z

472

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

473

Solid State Photovoltaic Research Branch  

DOE Green Energy (OSTI)

This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

Not Available

1990-09-01T23:59:59.000Z

474

Solid-State Lighting: Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Municipal Solid-State Street Lighting Consortium Kickoff Webcast to someone by E-mail Share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Facebook Tweet about Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Twitter Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Google Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Delicious Rank Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Digg Find More places to share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on AddThis.com... Conferences & Meetings

475

Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2007 Solid-State Lighting April 2007 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on

476

Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Digg

477

Solid-State Lighting: 2011 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Solid-State Lighting 2011 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on AddThis.com... Conferences & Meetings

478

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

479

Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2008 Solid-State Lighting July 2008 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on

480

Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Solid-State Lighting R&D 2012 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

Note: This page contains sample records for the topic "diode oled solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solid-State Lighting: 2012 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting Market

482

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

483

Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hosts Solid-State Lighting DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Google Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Delicious Rank Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on

484

Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting R&D 2013 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

485

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Lighting Consortium Kickoff to someone by Municipal Solid-State Street Lighting Consortium Kickoff to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on

486

Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Solid-State Lighting 1 Solid-State Lighting Manufacturing R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on AddThis.com... Conferences & Meetings

487

Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State

488

Solid-State Lighting: 2013 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State

489

Triggering GaAs lock-on switches with laser diode arrays  

SciTech Connect

Laser diode arrays have been used to trigger GaAs Photoconducting Semiconductor Switches (PCSS) charged to voltages of up to 60 kV and conducting currents of 580 A. The driving forces behind the use of laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays can trigger GaAs at high fields as the result of a new switching mode (lock-on) with very high carrier number gain. We have achieved switching of up to 10 MW in a 60 {Omega} system, with a pulse rise time of 500 ps. At 1.2 MW we have achieved repetition rates of 1 kHz with switch rise time of 500 ps for 10{sup 5} shots. The laser diode array used for these experiments delivers a 166 W pulse. In a single shot mode we have switched 4 kA with a flash lamp pumped laser and 600 A with the 166 W array. 7 refs., 5 figs.

Loubriel, G.M.; Buttram, M.T.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. (Sandia National Labs., Albuquerque, NM (USA)); Rosen, A.; Stabile, P.J. (David Sarnoff Research Center, Princeton, NJ (USA))

1990-01-01T23:59:59.000Z

490

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect

In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

Paul T. Fini; Shuji Nakamura

2003-10-30T23:59:59.000Z

491

Technische Universitt Berlin Institute of Solid State Physics  

E-Print Network (OSTI)

GaN/ AlGaN blue green light emitting diode, which has a much higher quantum efficiency than the SiC blue light emitting diode, became possible.2 Presently the wide bandgap semi- conductor GaN is intensively. Especially the 1.19 eV is very intense. Thus one can think of developing a light emitting diode in the near

Nabben, Reinhard

492

CX-001036: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Categorical Exclusion Determination 6: Categorical Exclusion Determination CX-001036: Categorical Exclusion Determination Solution Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting (Pennsylvania) CX(s) Applied: B3.6 Date: 03/02/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory The objective of this project is to develop a solution processable transparent conducting hole injection (TCHI) electrode. American Recovery and Reinvestment Act Funding: DE-FOA-0000082. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-001036.pdf More Documents & Publications CX-002810: Categorical Exclusion Determination CX-002813: Categorical Exclusion Determination CX-001331

493

Conversion of organic solids to hydrocarbons  

DOE Patents (OSTI)

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

Greenbaum, Elias (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

494

Conversion of organic solids to hydrocarbons  

DOE Patents (OSTI)

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

495

Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS  

SciTech Connect

This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.

Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

2011-05-06T23:59:59.000Z