National Library of Energy BETA

Sample records for diode oled lighting

  1. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect (OSTI)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadal?, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  2. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  3. Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex

    SciTech Connect (OSTI)

    Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2009-07-07

    Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

  4. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J.

    2014-03-21

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  5. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  6. Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

    SciTech Connect (OSTI)

    Liu, Rui

    2012-08-01

    After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

  7. Enhanced Light Extraction from Organic Light Emitting Diodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Enhanced Light Extraction from Organic Light Emitting Diodes Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryAmes Laboratory researchers have developed a soft lithography microlens fabrication and array that enables more efficient organic light emitting diodes (OLEDs), improving their

  8. Advanced Light Extraction Material for OLED Lighting | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extraction Material for OLED Lighting Lead Performer: Pixelligent Technologies LLC - Baltimore, MD Partners: OLEDWorks LLC DOE Total Funding: 1,000,000 Project Term: April 6,...

  9. Advanced Light Extraction Structure for OLED Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Light Extraction Structure for OLED Lighting Advanced Light Extraction Structure for OLED Lighting Lead Performer: Pixelligent Technologies, LLC - Baltimore, MD Partners: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,000,000 Cost Share: $250,000 Project Term: 9/10/2014 - 8/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop a novel internal light extraction (ILE) design to improve the light

  10. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  11. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  12. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  13. ITO-free white OLEDs on Flexible Substrates with Enhanced Light...

    Energy Savers [EERE]

    ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling Lead Performer: Princeton ...

  14. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect (OSTI)

    Zhang, Shuyu; Turnbull, Graham A., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)] [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2013-11-18

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275?nm and 335?nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  15. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  16. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  17. Integrated Plastic Substrates for OLED Lighting | Department of Energy

    Energy Savers [EERE]

    Plastic Substrates for OLED Lighting Integrated Plastic Substrates for OLED Lighting Lead Performer: Sinovia Technologies - Foster City, CA Partners: - Eastman Kodak Company - Rochester, NY - Vitriflex - San Jose, CA - Solvay, USA Inc. - Houston, TX DOE Total Funding: $1,211,240 Cost Share: $1,249,430 Project Term: 8/1/15 - 3/1/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will combine a barrier film technology with a

  18. Text-Alternative Version: Challenges in OLED Research and Development

    Broader source: Energy.gov [DOE]

    Narrator: Organic light-emitting diodes, OLEDs, are made using organic carbon-based materials. Unlike LEDs, which are small point light sources, OLEDs are made in sheets that create diffuse area...

  19. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  20. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  1. Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs

    DOE Patents [OSTI]

    Thompson, Mark E; Forrest, Stephen

    2015-02-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  2. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-emitting diode - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect (OSTI)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  4. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  5. Integrated fuses for OLED lighting device

    DOE Patents [OSTI]

    Pschenitzka, Florian

    2007-07-10

    An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.

  6. Organic light-emitting diodes from homoleptic square planar complexes

    DOE Patents [OSTI]

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  7. SciTech Connect: "light emitting diode"

    Office of Scientific and Technical Information (OSTI)

    light emitting diode" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "light emitting diode" Semantic Semantic Term Title: Full Text:...

  8. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  9. Series connected OLED structure and fabrication method

    DOE Patents [OSTI]

    Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

    2006-05-23

    A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

  10. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  11. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    SciTech Connect (OSTI)

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  12. Demonstration Assessment of Light-Emitting Diode (LED) Freezer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report ...

  13. Demonstration Assessment of Light Emitting Diode (LED) Street...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This ...

  14. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  15. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect (OSTI)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  16. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  17. Laterally injected light-emitting diode and laser diode

    DOE Patents [OSTI]

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  18. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  19. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  20. Record External Quantum Efficiency in Blue OLED Device

    Office of Energy Efficiency and Renewable Energy (EERE)

    Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

  1. Energy Savings Estimates of Light Emitting Diodes

    Broader source: Energy.gov [DOE]

    This report is an analysis of niche markets and applications for light emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy

  2. The Approach to Low-Cost High-Efficiency OLED Lighting | Department of

    Energy Savers [EERE]

    Energy Approach to Low-Cost High-Efficiency OLED Lighting The Approach to Low-Cost High-Efficiency OLED Lighting Lead Performer: University of California - Los Angeles - Los Angeles, CA Partners: Polyradiant Corp. - Calabasas, CA DOE Total Funding: $612,733 Cost Share: $153,183 Project Term: 9/4/2014 - 8/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop an integrated plastic substrate to replace the

  3. Demonstration Assessment of Light Emitting Diode (LED) Street Lighting,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report | Department of Energy Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This report summarizes an LED street lighting assessment project conducted to study the applicability of LED luminaires in a street lighting application. PDF icon emerging_tech_report_led_streetlighting.pdf More Documents & Publications Effective White Light Options for Parking Area

  4. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  5. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    Roadway Lighting on the FDR Drive in New York, New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR ...

  6. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2009-11-01

    A U.S. Department of Energy Solid-State Lighting Gateway Report on a Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting in Lija Loop, Portland, Oregon.

  7. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    Roadway Lighting on the FDR Drive in New York, New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR...

  8. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL)

  9. OLED Stakeholder Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Report OLED Stakeholder Report PDF icon 2015 OLED Stakeholder Meeting Report.pdf More Documents & Publications OLED Stakeholder Meeting Report 2015 Project Portfolio Solid-State Lighting Recovery Act Award Selections

  10. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  11. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  12. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect (OSTI)

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4?-bis(N-carbazolyl)-1,1?-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  13. Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Geyer, Ulf; Hauss, Julian; Riedel, Boris; Gleiss, Sebastian; Lemmer, Uli; Gerken, Martina

    2008-11-01

    We describe a cost-efficient and large area scalable production process of organic light-emitting diodes (OLEDs) with photonic crystals (PCs) as extraction elements for guided modes. Using laser interference lithography and physical plasma etching, we texture the indium tin oxide (ITO) electrode layer of an OLED with one- and two-dimensional PC gratings. By optical transmission measurements, the resonant mode of the grating is shown to have a drift of only 0.4% over the 5 mm length of the ITO grating. By changing the lattice constant between 300 and 600 nm, the OLED emission angle of enhanced light outcoupling is tailored from -24.25 deg. to 37 deg. At these angles, the TE emission is enhanced up to a factor of 2.14.

  14. World Record White OLED Performance Exceeds 100 lm/W

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

  15. Demonstration Assessment of Light-Emitting Diode (LED) Street...

    Office of Scientific and Technical Information (OSTI)

    Street Lighting Host Site: Lija Loop, Portland, Oregon Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: ...

  16. Entangled Light Emission From a Diode

    SciTech Connect (OSTI)

    Stevenson, R. M.; Shields, A. J. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Salter, C. L. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, I.; Nicoll, C. A.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-12-23

    Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

  17. New Efficiency Record Achieved for White OLED Device

    Broader source: Energy.gov [DOE]

    Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

  18. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Office of Scientific and Technical Information (OSTI)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which

  19. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hamer, Tim Spencer OLEDWorks LLC Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting 2015 Building Technologies Office Peer Review DOE Agreement Number DE-EE0006263 Images show Sunic G5 VTE deposition tool and nozzle array for deposition of 3 components - OLEDWorks equipment is proprietary and won't be shown. 2 Project Summary Timeline: Start date: 10/1/2013 Planned end date: 03/31/2015 Key Milestones 1. Design, and fabrication of vaporizer system for

  20. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect (OSTI)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti E-mail: chihiwu@cc.ee.ntu.edu.tw; Wu, Chih-I E-mail: chihiwu@cc.ee.ntu.edu.tw

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    Diode (LED) Parking Lot Lighting in Leavenworth, KS This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a ...

  2. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Light-Emitting Diodes in Common Lighting Applications Prepared for the U.S. Department of Energy Solid-State Lighting Program July 2015 Prepared by Navigant This page intentionally left blank i | P a g e Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  3. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect (OSTI)

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  4. Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes

    SciTech Connect (OSTI)

    Kondakov, Denis Y.

    2008-10-15

    We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

  5. OLED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » OLED Basics OLED Basics OLEDs are organic LEDs, which means that their key building blocks are organic (i.e., carbon-based) materials. Unlike LEDs, which are small-point light sources, OLEDs are made in sheets that are diffuse-area light sources. OLED technology is developing rapidly, and there are a handful of product offerings with efficacy, lifetime, and color quality specs that are comparable to their LED counterparts. However, OLEDs are still some years away from widespread

  6. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting | Department of Energy Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report of observations and results obtained from a lighting demonstration project conducted under a U.S. Department of Energy program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with

  7. Where Do OLEDs Fit In?

    Energy Savers [EERE]

    Where Do OLEDs Fit In? DOE SSL Workshop Portland, OR Giana M. Phelan Where do OLEDs fit in? A solid-state lighting solution that complements LED With the SSL advantages...

  8. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. ...

  9. Demonstration Assessment of Light-Emitting Diode (LED) Accent...

    Office of Scientific and Technical Information (OSTI)

    Accent Lighting at the Field Museum in Chicago, IL Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field ...

  10. Demonstration Assessment of Light-Emitting Diode (LED) Roadway...

    Office of Scientific and Technical Information (OSTI)

    Roadway Lighting at the I-35W Bridge, Minneapolis, MN Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the ...

  11. Achieving Record Efficiency for Blue OLEDs by Controlling the Charge Balance

    Broader source: Energy.gov [DOE]

    Researchers at the University of Florida (UF) have demonstrated a blue phosphorescent organic light-emitting diode (OLED) with a peak power efficiency of 50 lm/W and an external quantum efficiency exceeding 20 percent at a luminance of 1,000 cd/m2, using no external light extraction techniques. This accomplishment is believed to be the world record in blue OLED efficiency.

  12. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50?nm

    SciTech Connect (OSTI)

    Hayashi, Kyohei Inoue, Munetomo; Yoshida, Kou; Nakanotani, Hajime; Mikhnenko, Oleksandr; Nguyen, Thuc-Quyen E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya E-mail: adachi@cstf.kyushu-u.ac.jp

    2015-03-02

    Using e-beam nanolithography, the current injection/transport area in organic light-emitting diodes (OLEDs) was confined into a narrow linear structure with a minimum width of 50?nm. This caused suppression of Joule heating and partial separation of polarons and excitons, so the charge density where the electroluminescent efficiency decays to the half of the initial value (J{sub 0}) was significantly improved. A device with a narrow current injection width of 50?nm exhibited a J{sub 0} that was almost two orders of magnitude higher compared with that of the unpatterned OLED.

  13. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  14. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  15. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  16. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  17. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  18. Organic light emitting diodes with structured electrodes

    DOE Patents [OSTI]

    Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

    2012-12-04

    A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I A report describing the process and results of replacing existing parking lot lighting, looking at a LED ...

  20. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect (OSTI)

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  1. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    SciTech Connect (OSTI)

    Schmidt, Tobias D. Jäger, Lars; Brütting, Wolfgang; Noguchi, Yutaka; Ishii, Hisao

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  2. OLED Luminaire with Panel Integrated Drivers and Advanced Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Luminaire with Panel Integrated Drivers and Advanced Controls OLED Luminaire with Panel Integrated Drivers and Advanced Controls Lead Performer: Acuity Brands Lighting - ...

  3. Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at

    Office of Scientific and Technical Information (OSTI)

    the Field Museum in Chicago, IL (Technical Report) | SciTech Connect Accent Lighting at the Field Museum in Chicago, IL Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field Museum in Chicago, IL This report reviews a demonstration of light-emitting diode (LED) accent lighting compared to halogen (typical) accent lighting in a gallery of the Field Museum in Chicago, IL. Authors: Myer, Michael ; Kinzey, Bruce R.

  4. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    None

    2008-10-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  5. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    none,

    2011-01-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Area Lights for a Commercial Garage

    SciTech Connect (OSTI)

    2008-11-01

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications.

  7. Challenges in OLED Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Research and Development Challenges in OLED Research and Development View the video about OLED technology's advantages and what is needed to move it fully into the lighting market

  8. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes

    SciTech Connect (OSTI)

    Wenjin, Zeng; Ran, Bi; Hongmei, Zhang E-mail: iamwhuang@njupt.edu.cn; Wei, Huang E-mail: iamwhuang@njupt.edu.cn

    2014-12-14

    Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7–tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of host and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.

  9. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Park in New York City (Technical Report) | SciTech Connect Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide

  11. OLED Testing Opportunity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Opportunity OLED Testing Opportunity Ongoing discussions with the OLED lighting community have identified the need for a collaborative R&D framework to accelerate developments in OLED lighting technology and manufacturing. DOE has implemented a new testing opportunity to enable component makers to incorporate various R&D-stage components into a baseline state-of-the art (SOTA) OLED device. The results of the testing will lead to the identification of high-performing components

  12. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    Energy Savers [EERE]

    Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research

  13. Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

  14. Using prismatic microstructured films for image blending in OLEDS

    DOE Patents [OSTI]

    Haenichen, Lukas (Anspach, DE); Pschenitzka, Florian (San Francisco, CA)

    2009-09-08

    An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.

  15. Flip-chip light emitting diode with resonant optical microcavity

    DOE Patents [OSTI]

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  16. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  17. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  18. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  19. Poly (p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host

    Office of Scientific and Technical Information (OSTI)

    Site: Lija Loop, Portland, Oregon (Technical Report) | SciTech Connect Street Lighting Host Site: Lija Loop, Portland, Oregon Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting

  1. Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the

    Office of Scientific and Technical Information (OSTI)

    FDR Drive in New York, New York (Technical Report) | SciTech Connect Roadway Lighting on the FDR Drive in New York, New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY. Authors: Myer, Michael ; Hazra, Oindrila ; Kinzey, Bruce R.

  2. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cycle costs, reduced radiated heat, minimal light loss, dimmability, controllability, ... Costs 3. Reduced Radiated Heat 4. Minimal Light Loss 5. Dimmability and ...

  3. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  4. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting

    Office of Scientific and Technical Information (OSTI)

    in Leavenworth, KS (Technical Report) | SciTech Connect in Leavenworth, KS Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for

  5. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at

    Office of Scientific and Technical Information (OSTI)

    Central Park in New York City (Technical Report) | SciTech Connect (LED) Post-Top Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy

  6. Optical manifold for light-emitting diodes

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  7. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Market Impact: * PPG is working with OLED lighting manufacturers for evaluation of early stage products. 11 Project Integration: * PPG Glass Business and Development Center (GBDC) ...

  8. Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source

    Broader source: Energy.gov [DOE]

    General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

  9. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  10. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  11. Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field Museum in Chicago, IL

    SciTech Connect (OSTI)

    Myer, Michael; Kinzey, Bruce R.

    2010-12-10

    This report reviews a demonstration of light-emitting diode (LED) accent lighting compared to halogen (typical) accent lighting in a gallery of the Field Museum in Chicago, IL.

  12. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    SciTech Connect (OSTI)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  13. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    SciTech Connect (OSTI)

    Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patanč, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Universitŕ di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Universitŕ di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2013-12-09

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  14. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top...

    Office of Scientific and Technical Information (OSTI)

    Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New ...

  15. Low-Cost Light-Emitting Diode Luminaire for General Illumination

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate.

  16. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology Center This project is demonstrating an efficient...

  17. Doing Business with DOE's Solid-State Lighting Program

    Energy Savers [EERE]

    Doing Business with DOE's Solid-State Lighting Program Solid-state lighting (SSL) is an emerging technology that promises to make a significant impact on solving our nation's energy and environmental challenges. With the promise of being more than ten times as effcient as incandescent lighting and twice as effcient as fuorescent light- ing, SSL products using light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) will mean "greener" homes and businesses that use

  18. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting

    Office of Scientific and Technical Information (OSTI)

    at T.J.Maxx in Manchester, NH Phase I (Technical Report) | SciTech Connect at T.J.Maxx in Manchester, NH Phase I Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant

  20. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at

    Office of Scientific and Technical Information (OSTI)

    the I-35W Bridge, Minneapolis, MN (Technical Report) | SciTech Connect Roadway Lighting at the I-35W Bridge, Minneapolis, MN Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under

  1. Broadband visible light source based on AllnGaN light emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  2. Princeton University Improves Outcoupling Efficiency Of Thin-film Oleds

    Broader source: Energy.gov [DOE]

    With the desire to shift OLED lighting to flexible substrates come additional challenges that are associated with scattering trapped light, because flexible substrates have higher refractive...

  3. Secretary Chu Announces More than $37 Million for Next Generation Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of

  4. Simulated evolution of fluorophores for light emitting diodes

    SciTech Connect (OSTI)

    Shu, Yinan; Levine, Benjamin G.

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G{sup ??}). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10{sup 6} molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  5. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitŕ del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitŕ del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanč, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Universitŕ di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitŕ del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  6. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Understanding Drooping Light Emitting Diodes CEEM Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Understanding Drooping Light Emitting Diodes CEEM Print Text Size: A A A FeedbackShare Page Scientific Achievement New calculations demonstrate that LED "droop" is dominated by multi-particle interactions. Droop occurs when increasing energy input

  7. Red light-emitting diodes based on InP/GaP quantum dots

    SciTech Connect (OSTI)

    Hatami, F.; Lordi, V.; Harris, J.S.; Kostial, H.; Masselink, W.T.

    2005-05-01

    The growth, fabrication, and device characterization of InP quantum-dot light-emitting diodes based on GaP are described and discussed. The diode structures are grown on gallium phosphide substrates using gas-source molecular-beam epitaxy and the active region of the diode consists of self-assembled InP quantum dots embedded in a GaP matrix. Red electroluminescence originating from direct band-gap emission from the InP quantum dots is observed at low temperatures.With increasing temperature, however, the emission line shifts to the longer wavelength. The emission light is measured to above room temperature.

  8. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOE Patents [OSTI]

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  9. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are achieved over a wide wavelength range...

  10. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    SciTech Connect (OSTI)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  11. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Parking Structure Lighting at U.S. Department of Labor Headquarters Kinzey, Bruce R.; Myer, Michael solid-state lighting; LEDs; occupancy sensor controls; parking facility lighting...

  12. Method and apparatus for improving the performance of light emitting diodes

    DOE Patents [OSTI]

    Lowery, Christopher H. (Fremont, CA); McElfresh, David K. (Union City, CA); Burchet, Steve (Cedar Crest, NM); Adolf, Douglas B. (Albuquerque, NM); Martin, James (Tijeras, NM)

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  13. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect (OSTI)

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  14. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Patents [OSTI]

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  15. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  17. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  18. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect (OSTI)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  19. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  20. OLED panel with fuses

    DOE Patents [OSTI]

    Levermore, Levermore; Pang, Huiqing; Rajan, Kamala

    2014-09-16

    Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at least one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.

  1. High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate. Current WOLED technology requires the use of multiple emissive materials, which are expensive to manufacture and also generate color instability and color aging issues, affecting WOLED performance and operational lifetime.

  2. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  3. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect (OSTI)

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias [Physikalisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany)

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  4. ISSUANCE 2015-06-25: Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

  5. Promising Technology: Parabolic Aluminized Reflector Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    Parabolic aluminized reflectors, or PARs, are directional lamps typically used in recessed lighting. In contrast to CFLs, LEDs offer additional advantages including no warm up time, improved dimming and control capabilities, and for some products much greater efficacy ratings.

  6. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...

    Office of Science (SC) Website

    Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy ... indium in Indium Gallium Nitride (InGaN) green LEDs caused a decrease in light intensity. ...

  7. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    SciTech Connect (OSTI)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.

  8. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect (OSTI)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  9. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect (OSTI)

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

    2013-03-15

    Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  10. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOE Patents [OSTI]

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  11. OLED Stakeholder Meeting Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Meeting Report OLED Stakeholder Meeting Report PDF icon OLED Stakeholder Meeting Report.pdf More Documents & Publications OLED Stakeholder Report 2015 Project Portfolio 2015 SSL R&D WORKSHOP PRESENTATIONS - DAY 2

  12. OLED Stakeholder Meeting Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Meeting Report OLED Stakeholder Meeting Report PDF icon OLED Stakeholder Meeting Report.pdf More Documents & Publications OLED Stakeholder Report 2015 Project Portfolio 2016 DOE SSL R&D Workshop Agenda

  13. OLED Stakeholder Report | Department of Energy

    Energy Savers [EERE]

    OLED Stakeholder Report OLED Stakeholder Report PDF icon 2015 OLED Stakeholder Meeting Report.pdf More Documents & Publications OLED Stakeholder Meeting Report 2016 Project Portfolio 2015 Project Portfolio

  14. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  15. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

  16. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  17. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  18. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect (OSTI)

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4?eV at a small forward bias larger than ?2?V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  19. Low Voltage White Phosphorescent OLED Achievements

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

  20. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2013-03-01

    This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relatively high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.

  1. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect (OSTI)

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 ?m in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  2. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    SciTech Connect (OSTI)

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6?V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  3. Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Phase III Continuation

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Johnson, Megan; Pang, Terrance

    2008-11-01

    This report summarizes the third phase of an LED street lighting assessment project in Oakland, California, conducted to study the applicability of LED luminaires in a street lighting application.

  4. Demonstration Assessment of Light-Emitting Diode (LED) Residential Downlights and Undercabinet Lights

    SciTech Connect (OSTI)

    Ton, M. K.; Richman, E. E.; Gilbride, T. L.

    2008-10-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY Demonstration Program.

  5. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Phase I

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2010-06-22

    U.S. DOE Solid-State Lighting Technology Demonstration GATEWAY Program Report on the TJMaxx Demonstration.

  6. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOE Patents [OSTI]

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  7. A spin light emitting diode incorporating ability of electrical helicity switching

    SciTech Connect (OSTI)

    Nishizawa, N., E-mail: nishizawa@isl.titech.ac.jp; Nishibayashi, K.; Munekata, H. [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-J3-15 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-03-17

    Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a computer-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.

  8. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  9. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect (OSTI)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  10. OLED T Ltd | Open Energy Information

    Open Energy Info (EERE)

    OLED T Ltd Jump to: navigation, search Name: OLED-T Ltd. Place: Enfield, United Kingdom Zip: EN3 7XH Product: OLED-T is a VCPE backed R&D company focused on the development and...

  11. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  12. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    SciTech Connect (OSTI)

    Rishman, E. E.; Tuenge, J. R.

    2009-10-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology combined with occupancy sensors in a set of upright grocery store freezer cases.

  13. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-11-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

  14. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DE-FOA-0000973) | Department of Energy 4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of this opportunity are to: Maximize the energy-efficiency of SSL products in the marketplace Remove market

  15. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting (Ventura, CA)

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  16. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  17. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  18. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  19. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  20. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  1. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase inmore » the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  2. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect (OSTI)

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

  3. Stacked white OLED having separate red, green and blue sub-elements

    SciTech Connect (OSTI)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  4. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ?110?kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100?mA. The LED on the 60-?m-thick sapphire substrate exhibited the highest light output power of ?59?mW at an injection current of 100?mA, with the operating voltage unchanged.

  5. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  6. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect (OSTI)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun, E-mail: tongjun@pku.edu.cn; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  7. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect (OSTI)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup ?2} and a low dislocation density of 3 × 10{sup 8} cm{sup ?2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A}???0.04?eV, E{sub A1}???0.13?eV, and E{sub B}???0.54?eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  8. Effect of heterostructure design on carrier injection and emission characteristics of 295?nm light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank Kuhn, Christian; Stellmach, Joachim; Rothe, Mark-Antonius; Reich, Christoph; Ledentsov, Nikolay; Pristovsek, Markus; Wernicke, Tim; Kolbe, Tim; Lobo-Ploch, Neysha; Rass, Jens; Kneissl, Michael

    2015-05-21

    The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1?x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290?mA and a peak external quantum efficiency of 0.54% at 30?mA.

  9. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect (OSTI)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  10. A hole modulator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ?332?meV to ?294?meV at 80?A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  11. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  12. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is “lost” in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

  13. Note: A portable, light-emitting diode-based ruby fluorescence spectrometer for high-pressure calibration

    SciTech Connect (OSTI)

    Feng Yejun [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2011-04-15

    Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.

  14. Studies of solution-processed organic light-emitting diodes and their materials

    SciTech Connect (OSTI)

    Hellerich, Emily

    2013-05-15

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

  15. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  16. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect (OSTI)

    Miller, Naomi

    2011-07-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  17. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    SciTech Connect (OSTI)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Yuan, Dajun; Guo, Rui; Liu, Jianping; Asadirad, Mojtaba; Kwon, Min-Ki; Dupuis, Russell D.; Das, Suman; Ryou, Jae-Hyun

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500?nm, depth of 50?nm, and a periodicity of 1??m were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of the top p-GaN layer and the active region, respectively.

  18. Color tuning of light-emitting-diodes by modulating the concentration of red-emitting silicon nanocrystal phosphors

    SciTech Connect (OSTI)

    Barillaro, G. Strambini, L. M.

    2014-03-03

    Luminescent forms of nanostructured silicon have received significant attention in the context of quantum-confined light-emitting devices thanks to size-tunable emission wavelength and high-intensity photoluminescence, as well as natural abundance, low cost, and non-toxicity. Here, we show that red-emitting silicon nanocrystal (SiN) phosphors, obtained by electrochemical erosion of silicon, allow for effectively tuning the color of commercial light-emitting-diodes (LEDs) from blue to violet, magenta, and red, by coating the LED with polydimethylsiloxane encapsulating different SiN concentrations. High reliability of the tuning process, with respect to SiN fabrication and concentration, and excellent stability of the tuning color, with respect to LED bias current, is demonstrated through simultaneous electrical/optical characterization of SiN-modified commercial LEDs, thus envisaging exciting perspectives for silicon nanocrystals in the field of light-emitting applications.

  19. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  20. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Supplemental Notice of Proposed Rulemaking regarding Test Procedures for Integrated Light-Emitting Diode Lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  2. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding test procedures for integrated light-emitting diode lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 16, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. 2014 OLED Stakeholder Meeting Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Meeting Report October 14-15, 2014 Rochester, New York Prepared For: Energy Efficiency Renewable Energy U.S. Department of Energy Prepared By: Bardsley Consulting Navigant Consulting, Inc. SSLS, Inc. December 8, 2014 i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their

  4. 2015 OLED Stakeholder Meeting Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Meeting Report September 16-17, 2015 Pittsburgh, PA Prepared For: Energy Efficiency Renewable Energy U.S. Department of Energy Prepared By: Bardsley Consulting Navigant Consulting, Inc. SSLS, Inc. December 7, 2015 i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their

  5. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  6. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics

    SciTech Connect (OSTI)

    Liao, L. S.; Tang, C. W.

    2008-08-15

    Moisture effect on electroluminescence characteristics, including current density versus voltage, luminance versus voltage, luminous efficiency versus current density, dark spot formation, and operational stability of organic light-emitting diodes, has been systematically investigated by exposing each layer of the devices to moisture at room temperature. Moisture has a different effect on each of the interfaces or surfaces, and the influence increases as exposure time increases. There is a slight effect on the electroluminescence characteristics after the anode surface has been exposed to moisture. However, severe luminance decrease, dark spot formation, and operational stability degradation take place after the light-emitting layer or the electron-transporting layer is exposed to moisture. It is also demonstrated that the effect of moisture can be substantially reduced if the exposure to moisture is in a dark environment.

  7. The use of short-period InGaN/GaN superlattices in blue-region light-emitting diodes

    SciTech Connect (OSTI)

    Sizov, V. S., E-mail: vsizov@mail.ioffe.ru; Tsatsulnikov, A. F.; Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Cherkashin, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Hytch, M. J. [National Center for Scientific Research (CNRS), Center for Material Elaboration and Structural Studies (CEMES) (France); Nikolaev, A. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mintairov, A. M.; He Yan; Merz, J. L. [University of Notre Dame, EE Department (United States)

    2010-07-15

    Optical and light-emitting diode structures with an active InGaN region containing short-period InGaN/GaN superlattices are studied. It is shown that short-period superlattices are thin two-dimensional layers with a relatively low In content that contain inclusions with a high In content 1-3 nm thick. Inclusions manifest themselves from the point of view of optical properties as a nonuniform array of quantum dots involved in a residual quantum well. The use of short-period superlattices in light-emitting diode structures allows one to decrease the concentration of nonradiative centers, as well as to increase the injection of carriers in the active region due to an increase in the effective height of the AlGaN barrier, which in general leads to an increase in the quantum efficiency of light-emitting diodes.

  8. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect (OSTI)

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  9. Demonstration Assessment of Light-Emitting Diode Post-Top Lighting at Central Park in New York City

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2012-09-01

    GATEWAY program report on a demonstration of LED post-top lighting in Central Park in New York City.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  11. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  12. OLED Testing Call for Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Testing Call for Sources OLED Testing Call for Sources PDF icon OLED Testing Call for Sources - November 2015 More Documents & Publications CX-010821: Categorical Exclusion Determination CX-010822: Categorical Exclusion Determination CX-010823: Categorical Exclusion Determination

  13. Demonstration Assessment of Light Emitting Diode (LED) Walkway Lighting at the Federal Aviation Administration William J. Hughes Technical Center, in Atlantic City, New Jersey

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2008-03-18

    This report documents the results of a collaborative project to demonstrate a solid state lighting (SSL) general illumination product in an outdoor area walkway application. In the project, six light-emitting diode (LED) luminaires were installed to replace six existing high pressure sodium (HPS) luminaires mounted on 14-foot poles on a set of exterior walkways and stairs at the Federal Aviation Administration (FAA) William J. Hughes Technical Center in Atlantic City, New Jersey, during December, 2007. The effort was a U.S. Department of Energy (DOE) SSL Technology Gateway Demonstration that involved a collaborative teaming agreement between DOE, FAA and Ruud Lighting (and their wholly owned division, Beta LED). Pre- and post-installation power and illumination measurements were taken and used in calculations of energy savings and related economic payback, while personnel impacted by the new lights were provided questionnaires to gauge their perceptions and feedback. The SSL product demonstrated energy savings of over 25% while maintaining illuminance levels and improving illuminance uniformity. PNNL's economic analysis yielded a variety of potential payback results depending on the assumptions used. In the best case, replacing HPS with the LED luminaire can yield a payback as low as 3 years. The new lamps were quite popular with the affected personnel, who gave the lighting an average score of 4.46 out of 5 for improvement.

  14. Diode laser with improved means for electrically modulating the emitted light beam intensity

    SciTech Connect (OSTI)

    Lawrence, D.J.

    1989-10-31

    This patent describes a heterostructure combined semiconductor diode laser and junction field effect transistor device. It has located conduction path from a central exposed contract on its top surface through a centrally located semiconductor active laser region disposed between upper and lower opposite conductivity type cladding regions formed over a semiconductor substrate of the same conductivity type as the lower cladding region and having at least one laser stripe channel filled with a semiconductor composition of the same conductivity type as the lower cladding region and formed in the top surface of the substrate which supports the vertically arrayed cladding and active regions and an exposed contact on its underside.

  15. An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode

    SciTech Connect (OSTI)

    Mehta, M.; Michaelis de Vasconcellos, S.; Zrenner, A.; Meier, C. [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), University of Paderborn, Warburger Street 100, 33098 Paderborn (Germany); Reuter, D.; Wieck, A. D. [Applied Solid State Physics, Ruhr-University of Bochum, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-10-04

    We have integrated individual (In,Ga)As quantum dots (QDs) using site-controlled molecular beam epitaxial growth into the intrinsic region of a p-i-n junction diode. This is achieved using an in situ combination of focused ion beam prepatterning, annealing, and overgrowth, resulting in arrays of individually electrically addressable (In,Ga)As QDs with full control on the lateral position. Using microelectroluminescence spectroscopy we demonstrate that these QDs have the same optical quality as optically pumped Stranski-Krastanov QDs with random nucleation located in proximity to a doped interface. The results suggest that this technique is scalable and highly interesting for different applications in quantum devices.

  16. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  17. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  18. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  19. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

    SciTech Connect (OSTI)

    Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2010-12-10

    We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

  20. Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3?MeV proton irradiation

    SciTech Connect (OSTI)

    De Santi, C.; Meneghini, M. Trivellin, N.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Meneghesso, G.; Zanoni, E.

    2014-11-24

    This paper reports on the degradation and recovery of two different series of commercially available InGaN-based blue light emitting diodes submitted to proton irradiation at 3?MeV and various fluences (10{sup 11}, 10{sup 13}, and 10{sup 14}?p{sup +}/cm{sup 2}). After irradiation, we detected (i) an increase in the series resistance, in the sub-turn-on current and in the ideality factor, (ii) a spatially uniform drop of the output optical power, proportional to fluence, and (iii) a reduction of the capacitance of the devices. These results suggest that irradiation induced the generation of non-radiative recombination centers near the active region. This hypothesis is further confirmed by the results of the recovery tests carried out at low temperature (150?°C)

  1. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect (OSTI)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100?mT is markedly larger at the high-energy blue end of the EL spectrum (?I/I???11%) than at the low-energy red end (?4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  2. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5?nm. The dominant emission, detectable at ultralow (<1??A) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25??A current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter?

  3. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills.

  4. High-Efficiency and Stable White Organic Light-Emitting Diode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact Nationwide, lighting buildings costs 58 billion a year and consumes about 22% of all electricity generated. A single-doped WOLED that addresses manufacturing and ...

  5. Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO{sub 2} thin film

    SciTech Connect (OSTI)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul

    2008-11-10

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe/ZnS nanocrystals in TiO{sub 2} thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO{sub 2}/QDs/p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO{sub 2}/QDs/Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  6. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    SciTech Connect (OSTI)

    Lo Savio, R.; Galli, M.; Liscidini, M.; Andreani, L. C.; Franzň, G.; Iacona, F.; Miritello, M.; Irrera, A.; Sanfilippo, D.; Piana, A.; Priolo, F.

    2014-03-24

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54??m, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission in a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.

  7. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    SciTech Connect (OSTI)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ?120?mA (?7.5?kA/Cm{sup 2}) at 300?K. The range of peak emission wavelengths for different currents is 423–426?nm and the emission bandwidth is ?5?nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600?mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  8. Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    Lighting Solid-State Lighting 2013 DOE Solid-State Lighting Program Overview PDF icon ssl-overview_brochure_feb2013.pdf More Documents & Publications January 2016 POSTINGS Emerging Lighting Technology INNOVATIVE PHOSPHORESCENT OLED TECHNOLOGY IS HELPING TO MAKE OLED LIGHTING MARKET-READY

  9. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-08-31

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under the U.S. Department of Energy (DOE) Solid-State Lighting GATEWAY Technology Demonstration Program. Other participants in the demonstration project included the Minnesota Department of Transportation (Mn/DOT), Federal Highways Administration (FHWA), and BetaLED™ (a division of Ruud Lighting). Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. DOE has implemented a three-year evaluation of the LED luminaires in this installation in order to develop new longitudinal field data on LED performance in a challenging, real-world environment. This document provides information through the initial phase of the I-35W bridge project, up to and including the opening of the bridge to the public and the initial feedback received on the LED lighting installation from bridge users. Initial findings of the evaluation are favorable, with minimum energy savings level of 13% for the LED installation relative to the simulated base case using 250W high-pressure sodium (HPS) fixtures. The LEDs had an average illuminance level of 0.91 foot candles compared to 1.29 fc for the HPS lamps. The LED luminaires cost $38,000 more than HPS lamps, yielding a lengthy payback period, however the bridge contractor had offered to include the LED luminaires as part of the construction package at no additional cost. One potentially significant benefit of the LEDs in this installation is avoiding rolling lane closures on the heavily-traveled interstate bridge for the purpose of relamping the HPS fixtures. Rolling lane closures involve multiple crew members and various maintenance and safety vehicles, diversion of traffic, as well as related administrative tasks (e.g., approvals, scheduling, etc.). Mn/DOT records show an average cost of relamping fixtures along interstate roadways of between $130-150 per pole. The previous bridge saw a lamp mortality rate of approximately 50% every two years, though the new bridge was designed to minimize many of the vibration issues. A voluntary Web-based feedback survey of nearly 500 self-described bridge users showed strong preference for the LED lighting - positive comments outnumbered negative ones by about five-to-one.

  11. Light emitting diode with porous SiC substrate and method for fabricating

    DOE Patents [OSTI]

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  12. Host compounds for red phosphorescent OLEDs

    DOE Patents [OSTI]

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  13. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    SciTech Connect (OSTI)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-07-31

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In{sub 2}O{sub 3} (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 {omega}/{open_square}, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit ({phi}=T{sup 10}/R{sub sheet}) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices.

  14. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  15. Edge electroluminescence of the effective silicon point-junction light-emitting diode in the temperature range 80-300 K

    SciTech Connect (OSTI)

    Emel'yanov, A. M. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: Emelyanov@mail.ioffe.ru

    2008-11-15

    The edge electroluminescence spectra of silicon point-junction light-emitting diodes with a p-n junction area of 0.008 mm{sup 2} are studied at temperatures ranging from 80 to 300 K. Unprecedentedly high stability of the position of the spectral peak is observed at temperatures in the range between 130 and 300 K. The spectral characteristics of the light emitting diodes are studied at 80 K at different current densities up to 25 kA/cm{sup 2}. In contrast to the earlier reported data obtained at 300 K, the data obtained at 80 K do not show any noticeable Augerrecombination-related decrease in the quantum efficiency. From an analysis of the electroluminescence spectra at 80 K in a wide range of currents, it follows that radiative annihilation of free excitons is not a governing mechanism of electroluminescence in the entire emitting region in the base of the point-junction light-emitting diode at all currents used in the experiment.

  16. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In{sub 0.2}Ga{sub 0.8}N/GaN quantum wells

    SciTech Connect (OSTI)

    Lelikov, Yu. S.; Bochkareva, N. I.; Gorbunov, R. I.; Martynov, I. A.; Rebane, Yu. T.; Tarkin, D. V.; Shreter, Yu. G. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: YShreter@mail.ioffe.ru

    2008-11-15

    A procedure for measuring the absorption coefficient for light propagating parallel to the surface of a GaN-based light emitting diode chip on a sapphire substrate is suggested. The procedure implies the study of emission from one end face of the chip as the opposite end face is illuminated with a light emitting diode. The absorption coefficient is calculated from the ratio between the intensities of emission emerging from the end faces of the sapphire substrate and the epitaxial layer. From the measurements for chips based on p-GaN/In{sub 0.2}Ga{sub 0.8}N/n-GaN structures, the lateral absorption coefficient is determined at a level of (23 {+-} 3)cm{sup -1} at a wavelength of 465 nm. Possible causes for the discrepancy between the absorption coefficients determined in the study and those reported previously are analyzed.

  17. OLED R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D OLED R&D DOE-funded OLED R&D projects tackle the science and technology challenges that stand in the way of achieving SSL Program targets for OLED efficacy, performance, and cost. All project selections align with the priorities and targets detailed in the SSL R&D Plan, updated annually with industry input. Learn more about R&D challenges and testing opportunities to accelerate OLED technology advances. View details about the current OLED R&D projects below. OLED

  18. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    SciTech Connect (OSTI)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen Liu, Bin; Wang, Lianhui; Shi, Hongying

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using ?-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  19. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu; Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  20. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.

  1. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  2. Efficacy of 45 lm/W Achieved in White OLED

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) successfully demonstrated an all phosphorescent white organic light emitting diode (WOLED™) with a power efficacy of 45 lm/W at 1,000 cd/m2. This high-efficacy device was enabled by lowering the device operating voltage, increasing the outcoupling efficiency to ~40% from ~20%, and by incorporating highly efficient phosphorescent emitters that are capable of converting nearly all current passing through a WOLED into light.

  3. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect (OSTI)

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  4. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect (OSTI)

    Wang, Qi; Ma, Dongge Ding, Junqiao; Wang, Lixiang; Leo, Karl; Qiao, Qiquan; Jia, Huiping; Gnade, Bruce E.

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye ? green dye ? red host ? red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1?±?0.8% and power efficiency of 37.5?±?1.4?lm/W but shows no color shift over a wide range of voltages.

  5. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    SciTech Connect (OSTI)

    Parker, Ian

    2012-02-29

    Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  6. Stacked white OLED having separate red, green and blue sub-elements

    SciTech Connect (OSTI)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  7. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  8. A quantitative method for determination of carrier escape efficiency in GaN-based light-emitting diodes: A comparison of open- and short-circuit photoluminescence

    SciTech Connect (OSTI)

    Lim, Seung-Hyuk; Ko, Young-Ho; Cho, Yong-Hoon

    2014-03-03

    We propose a method to quantitatively analyze the internal quantum efficiency (IQE) as well as the efficiencies of non-radiative recombination in the active region (NRA) and carrier escape out of the active region (ESC) by comparing open-circuit (OC) to short-circuit (SC) conditions of InGaN-based light-emitting diodes (LEDs). First, the IQE was extracted from excitation-power dependent photoluminescence at low temperature, and the electron-hole wavefunction overlaps were calculated under OC and SC conditions. Then, the NRA and ESC efficiencies were quantitatively deduced and also compared with photocurrent data. The proposed method would be useful for assessing and designing quantum barriers and analyzing leakage current in LEDs.

  9. Characterization of the deep levels responsible for non-radiative recombination in InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Meneghini, M. La Grassa, M.; Vaccari, S.; Meneghesso, G.; Zanoni, E.

    2014-03-17

    This paper presents an extensive investigation of the deep levels related to non-radiative recombination in InGaN/GaN light-emitting diodes (LEDs). The study is based on combined optical and deep-level transient spectroscopy measurements, carried out on LEDs with identical structure and with different values of the non-radiative recombination coefficient. Experimental data lead to the following, relevant, results: (i) LEDs with a high non-radiative recombination coefficient have a higher concentration of a trap (labeled as “e{sub 2}”) with an activation energy of 0.7 eV, which is supposed to be located close to/within the active region; (ii) measurements carried out with varying filling pulse duration suggest that this deep level behaves as a point-defect/dislocation complex. The Arrhenius plot of this deep level is critically compared with the previous literature reports, to identify its physical origin.

  10. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  11. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  12. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  13. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  14. Dynamic Organic Light Inc | Open Energy Information

    Open Energy Info (EERE)

    Light is a VCPE backed company that engages in R&D and licensing of materials for OLED displays and lights. Coordinates: 40.16394, -105.100504 Show Map Loading map......

  15. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I

    SciTech Connect (OSTI)

    Myer, Michael; Goettel, Russell T.

    2010-06-29

    A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

  16. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resultedmore » from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  17. Nanoscale determinant to brighten up GaN:Eu red light-emitting diode: Local potential of Eu-defect complexes

    SciTech Connect (OSTI)

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-04-21

    Emission sites in GaN:Eu red light-emitting diodes (LEDs) were investigated using a new spectroscopy technique, namely, site-selective pulse-driven emission spectroscopy (PDES). The PDES, in which the emission intensity of a pulse-driven LED is recorded with respect to the pulse frequency, revealed the charge-trapping dynamics of the Eu emission sites. We found that a determinant of the emission intensity of the sites was not their relative abundance, but rather the spatial extent of the local potential, which determines the effectiveness of the capture of injection charges. Minor sites with wider potentials enhanced the emission intensity of the LED, resulting in emission spectra that differ from those obtained using the photoluminescence of a GaN:Eu thin film. The potential curve is determined by the atomic structure of the complexes, which consist of a Eu dopant and nearby defects in the GaN host. The extent was characterized by a parameter, namely, cutoff frequency, and the emission sites with the wider and narrower potentials in the GaN:Eu LED were found to have cutoff frequencies of 400 kHz and 3 MHz, respectively. The cutoff frequency of 3 MHz was found to be the upper limit for emission sites in the LED. The emission site with the wider potential is useful for slower devices such as light fixtures, while the site with the narrower potential is useful for faster devices such as opto-isolators.

  18. DuPont Displays Develops Low-Cost Method of Printing OLED Panels

    Broader source: Energy.gov [DOE]

    DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at Intercontinental Hotel in San Francisco, CA

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-11-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program have been prescreened and tested to verify their actual performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products.

  20. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  1. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  2. Luminescent properties of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} and its potential application in white light emitting diodes

    SciTech Connect (OSTI)

    Wang, Zhijun; Li, Panlai; Li, Ting; Zhang, Xing; Li, Qingxuan; Yang, Zhiping; Guo, Qinglin

    2013-06-01

    Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ? White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes.

  3. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wenyan; Zhang, Yu; Ruan, Cheng; Wang, Dan; Zhang, Tieqiang; Feng, Yi; Gao, Wenzhu; Yin, Jingzhi; Wang, Yiding; Riley, Alexis P.; et al

    2015-01-01

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM), and power efficiency (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to themore » low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.« less

  4. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect (OSTI)

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10?mA to (0.351, 0.322) at 30?mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  5. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Moseley, Michael Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-08-07

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al{sub 0.7}Ga{sub 0.3}N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al{sub 0.7}Ga{sub 0.3}N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

  6. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect (OSTI)

    Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin [State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China); Lan, Ding [National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080 (China)

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  7. Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount

    SciTech Connect (OSTI)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavlyuchenko, A. S. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kukushkin, M. V.; Vasil'eva, E. D. [ZAO Innovation 'Tetis' (Russian Federation); Chernyakov, A. E. [Russian Academy of Sciences, Science-and-Technology Microelectronics Center (Russian Federation); Usikov, A. S. [De Core Nanosemiconductors Ltd. (India)

    2013-03-15

    Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm{sup 2} in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

  8. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect (OSTI)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  9. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    SciTech Connect (OSTI)

    Zhang, Weihuan; Zhang, Yuepin Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312?nm excited with 275?nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  10. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  11. High Performance OLEDs with Air-stable Nanostructured Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search High Performance OLEDs with Air-stable Nanostructured Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have modified the cathode-organic layer of an OLED device to significantly enhance electron injection efficiency and reduce the sensitivity of the cathode to environmental degradation by water

  12. Manufacturing Process for OLED Integrated Substrate | Department of Energy

    Energy Savers [EERE]

    Manufacturing Process for OLED Integrated Substrate Manufacturing Process for OLED Integrated Substrate Lead Performer: PPG Industries - Cheswick, PA Partners: - Plextronics - Pittsburgh, PA - Universal Display Corporation - Ewing, NJ DOE Total Funding: $2,345,638 Cost Share: $2,345,638 Project Term: 8/1/2013 - 7/31/2016 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079 Project Objective This project plans to develop manufacturing processes to

  13. Luminescence properties of light-emitting diodes based on GaAs with the up-conversion Y{sub 2}O{sub 2}S:Er,Yb luminophor

    SciTech Connect (OSTI)

    Gruzintsev, A. N. [Russian Academy of Sciences, Institute of Problems of Microelectronics Technology (Russian Federation)], E-mail: gran@ipmt-hpm.ac.ru; Barthou, C.; Benalloul, P. [Institute des NanoSciences (France)

    2008-03-15

    Y{sub 2}O{sub 2}S luminophors doped with Er{sup 3+} and Yb{sup 3+} ions are produced by means of solid-phase synthesis and deposited onto standard AL123A infrared light-emitting diodes. When excited with 940 nm radiation from a light-emitting diode, the structures exhibit intense visible up-conversion luminescence. A maximal brightness of 2340 cd/m{sup 2} of green and red up-conversion luminescence at corresponding wavelengths around 550 and 600 nm is observed for the Y{sub 2}O{sub 2}S compound doped with 2 at % Er{sup 3+} ions and 6 at % Yb{sup 3+} ions. The ratio of the intensity of green (or red) up-conversion luminescence to the intensity of infrared Stokes luminescence increases with increasing applied voltage. The efficiency of visible emission of the light-emitting diode structures is {eta} = 1.2 lm/W at an applied voltage of 1.5 V.

  14. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOE Patents [OSTI]

    Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  15. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    SciTech Connect (OSTI)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-04-14

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes.

  16. Data Diode

    Energy Science and Technology Software Center (OSTI)

    2014-11-07

    The Data Diode is a data security technology that can be deployed within an organization's defense-in-depth computer network strategy for information assurance. For internal security, the software creates an environment within the network where an organization's approved users can work freely inside an enclave of protected data, but file transfers out of the enclave is restricted. For external security, once a network intruder has penetrated the network, the intruder is able to "see" the protectedmore » data, but is unable to download the actual data. During the time it takes for the intruder to search for a way around the obstacle created by the Data Diode, the network's intrusion detection technologies can locate and thwart the malicious intent of the intruder. Development of the Data Diode technology was made possible by funding from the Intelligence Advanced Research Projects Activity (IARPA).« less

  17. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

  18. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  19. High-Performance OLED Panel and Luminaire

    Broader source: Energy.gov [DOE]

    Lead Performer: OLEDWorks, LLC – Rochester, NYPartners: Acuity Brands Lighting – Berkeley, CADOE Total Funding: $1,376,999Cost Share: $458,999Project Term: 10/1/2014 - 3/31/2016Funding Opportunity:...

  20. Voltage-induced electroluminescence characteristics of hybrid light-emitting diodes with CdSe/Cd/ZnS core-shell nanoparticles embedded in a conducting polymer on plastic substrates

    SciTech Connect (OSTI)

    Kwak, Kiyeol; Cho, Kyoungah, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr; Kim, Sangsig, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-03-10

    We investigate the electroluminescence (EL) characteristics of a hybrid light-emitting diode (HyLED) with an emissive layer comprised of CdSe/Cd/ZnS core-shell nanoparticles (NPs) embedded in poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) on a plastic substrate. The EL characteristics change dramatically with increasing of the biased voltage. At low voltages, recombination of electrons and holes occurs only in the PFO film because of poor charge transfer in the PFO-CdSe/Cd/ZnS NPs composite film, while the color of the light-emitting from the HyLED changes from blue to red as the biased voltage increases from 7.5 to 17.5?V. We examine and discuss the mechanism of this color tunability.

  1. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?°C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  2. Ultrabright fluorescent OLEDS using triplet sinks

    DOE Patents [OSTI]

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  3. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  4. Portland Street Lighting Report (August 2015) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2015_gateway-msslc_portland.pdf More Documents & Publications OCTOBER 2015 POSTINGS Detroit Street Lighting Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  5. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate ...

  6. U. S. Department of Energy to Invest up to $20.6 Million for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diodes (LEDs) and organic light-emitting diodes (OLEDs). Once used only for indicator lights (to illuminate the numbers on digital clocks and light up watches), LEDs are now found...

  7. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112{sup Ż}2) semipolar versus (0001) polar planes

    SciTech Connect (OSTI)

    Ji, Yun; Liu, Wei; Chen, Rui; Tiam Tan, Swee; Zhang, Zi-Hui; Ju, Zhengang; Zhang, Xueliang; Sun, Handong; Wei Sun, Xiao; Erdem, Talha; Zhao, Yuji; DenBaars, Steven P. E-mail: volkan@stanfordalumni.org; Nakamura, Shuji; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-04-07

    The characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (112{sup Ż}2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.

  8. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  9. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  10. High Efficiency and Stable White OLED Using a Single Emitter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jian Li, jian.li.1@asu.edu Arizona State University High efficiency and stable white OLED using a single emitter 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 10/1/2011 Planned end date: 9/30/2014 Key Milestones 1. demonstrating a single-doped white device (CRI> 80) with a PE of 40 lm/W @ 1000 cd/m 2 and an operational lifetime over 100 hrs @ 1000 cd/m 2 ; 9/30/13 2. blue device using halogen-free Pt-based emitters with an EQE of over 15%; 9/30/14 3.

  11. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  12. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    manufacturing and marketing of display products typically OLED Organic Light Emitting Diode Display Vista International Inc Vista International Inc Englewood Colorado...

  13. Visionox Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100085 Product: Visionox is engaged in the development, manufacturing and marketing of display products, typically OLED (Organic Light Emitting Diode Display)....

  14. Organic light emitting device structure for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun (Princeton, NJ); Ngo, Tan (Levittown, PA)

    2007-05-01

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  15. Organic light emitting device structures for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.

    2005-04-26

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  16. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Jang, Ho Seong; Kwon, Byoung-Hwa; Jeon, Duk Young; Yang, Heesun

    2009-10-19

    In this study, bright three-band white light was generated from the CdSe/ZnSe quantum dot (QD)-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode (WLED). The CdSe/ZnSe core/shell structure was confirmed by energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The CdSe/ZnSe QDs showed high quantum efficiency (79%) and contributed to the high luminous efficiency ({eta}{sub L}) of the fabricated WLED. The WLED showed bright natural white with excellent color rendering property ({eta}{sub L}=26.8 lm/W, color temperature=6140 K, and color rendering index=85) and high stability against the increase in forward bias currents from 20 to 70 mA.

  17. Effective White Light Options for Parking Area Lighting | Department of

    Office of Environmental Management (EM)

    Energy Effective White Light Options for Parking Area Lighting Effective White Light Options for Parking Area Lighting Document details lighting technologies that provide low-maintenance alternatives to high-pressure sodium lighting. PDF icon white_light_parking_area..pdf More Documents & Publications LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  18. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    SciTech Connect (OSTI)

    Romero, V.H.; De la Rosa, E.; Salas, P.; Velazquez-Salazar, J.J.

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  19. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  20. PPG Industries Develops a Low-Cost Integrated OLED Substrate | Department

    Energy Savers [EERE]

    of Energy Research & Development » R&D Highlights » PPG Industries Develops a Low-Cost Integrated OLED Substrate PPG Industries Develops a Low-Cost Integrated OLED Substrate With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or

  1. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  2. A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} for near UV white light-emitting diodes

    SciTech Connect (OSTI)

    Yang, Zhigang; Zhao, Zhengyan; Shi, Yurong; Wang, Yuhua

    2013-10-15

    Graphical abstract: - Highlights: • Novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was prepared by solid-state reaction. • Excitation spectra suggested an obvious absorption in near-ultraviolet region. • Under 392 nm excitation, the phosphors exhibited a red emission at 614 nm. • Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white LEDs. - Abstract: A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was synthesized using a solid-state reaction method, and its luminescence characteristics and charge compensators effect (Li{sup +}, Na{sup +}, K{sup +}) were investigated. The excitation spectra showed a obvious absorption in near-ultraviolet region. Under 392 nm excitation, the phosphors exhibited an intense red emission at 614 nm. The Commission Internationale de l’Eclairage (CIE) chromaticity coordinates and quantum efficiency (QE) were (0.65, 0.35) and 62.3%, respectively. The good color saturation, high quantum efficiency and small thermal-quenching properties indicate that Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white light-emitting diodes.

  3. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and...

  4. Diode-pumped laser with improved pumping system

    DOE Patents [OSTI]

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  5. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  6. DOE Announces Winners of Lighting for Tomorrow 2010 Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004. This year, the SSL competition was expanded beyond fixtures to include light-emitting diode (LED) replacement bulbs as well as lighting control devices that are compatible...

  7. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. LED Lighting Basics | Department of Energy

    Office of Environmental Management (EM)

    LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light. LEDs are compound semiconductor devices that produce light when an appropriate electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode structure to the negative side causing a chain of complex interactions at an atomic level

  10. The site occupation and valence of Mn ions in the crystal lattice of Sr{sub 4}Al{sub 14}O{sub 25} and its deep red emission for high color-rendering white light-emitting diodes

    SciTech Connect (OSTI)

    Chen, Lei; Xue, Shaochan; Chen, Xiuling; Bahader, Ali; Deng, Xiaorong; Zhao, Erlong; Jiang, Yang; Chen, Shifu; Chan, Ting-Shan; Zhao, Zhi; Zhang, Wenhua

    2014-12-15

    Highlights: • Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were identified using XANES and EPR. • Red luminescence was attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. • The Mn{sup 3+} incorporated in the center of AlO{sub 4} tetrahedron was non-luminescent. • The bond-valence theory was used to analyze the effective valences of cations. • A white LED device with CRI up to Ra 93.23 was packaged by using the red phosphor. - Abstract: The synthesis and component of red phosphor, Sr{sub 4}Al{sub 14}O{sub 25}: Mn, were optimized for application in white light-emitting diodes. The microstructure and morphology were investigated by the X-ray diffraction and scanning electron microscopy. Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were discriminated using the electron paramagnetic resonance and X-ray absorption near-edge structure spectroscopy techniques. The bond-valence theory was used to analyze the effective valences of Sr{sup 2+} and Al{sup 3+} in Sr{sub 4}Al{sub 14}O{sub 25}. As a result, the strong covalence of Al{sup 3+} in the AlO{sub 4} tetrahedron other than in the AlO{sub 6} octahedron is disclosed. The deep red emission is attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. The mechanism of energy transfer is mainly through dipole–dipole interaction, revealed by the analyses of critical distance and concentration quench. A high color rendering white LED prototype with color-rendering index up to Ra 93.23 packaged by using the red phosphor demonstrates its applicability.

  11. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  12. Solid-State Lighting-Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Facts Solid-State Lighting-Lighting Facts Presenter: Marc Ledbetter, Pacific Northwest National Laboratory The LED Lighting Facts program provides credible, verified performance information about light-emitting diode (LED) lighting products to retailers, utilities, specifiers, energy efficiency program sponsors, and lighting users. The goal is to enable widespread market adoption of energy-efficient LED products by removing the lack-of-information market barrier. For the solid-state

  13. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect (OSTI)

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  14. Method to generate high efficient devices which emit high quality light for illumination

    DOE Patents [OSTI]

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  15. Light extraction block with curved surface

    DOE Patents [OSTI]

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  16. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting ...

  17. LED Lighting | Department of Energy

    Energy Savers [EERE]

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  18. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  19. Infrared photoemitting diode having reduced work function

    DOE Patents [OSTI]

    Hirschfeld, Tomas B. (Livermore, CA)

    1984-01-01

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid medium of the formula NR.sub.3 and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  20. Infrared photoemitting diode having reduced work function

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1982-05-06

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  1. OLED Luminaire with Panel Integrated Drivers and Advanced Controls

    Broader source: Energy.gov [DOE]

    Lead Performer: Acuity Brands Lighting – Berkeley, CAPartners: OLEDWorks – Rochester, NYDOE Total Funding: $337,505Cost Share: $112,502Project Term: 7/1/15 – 6/30/16Funding Opportunity: SSL R&D...

  2. Healthcare Energy: Spotlight on Lighting and Other Electric Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two

  3. Solid-State Lighting — Using Light-Emitting Diodes

    SciTech Connect (OSTI)

    None

    2011-12-16

    This section includes general guidelines for buying LED products and addresses how these products perform in specific applications.

  4. Application Assessment of Bi-Level LED Parking Lot Lighting

    SciTech Connect (OSTI)

    Johnson, Megan; Cook, Tyson; Shackelford, Jordan; Pang, Terrance

    2009-02-01

    This report summarizes an assessment project conducted to evaluate light-emitting diode (LED) luminaires with bi-level operation in an outdoor parking lot application.

  5. ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling

    Broader source: Energy.gov [DOE]

    Lead Performer: Princeton University – Princeton, NJDOE Total Funding: $1,021,241Cost Share: $255,661Project Term: 9/10/2014 - 9/9/2016Funding Opportunity: SSL R&D Funding Opportunity...

  6. Angle sensitive single photon avalanche diode

    SciTech Connect (OSTI)

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  7. Today LED Holiday Lights, Tomorrow the World?

    SciTech Connect (OSTI)

    Gordon, Kelly L.

    2004-12-20

    This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

  8. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. October 25, 2013 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos

  9. LED intense headband light source for fingerprint analysis

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  10. Emitron: microwave diode

    DOE Patents [OSTI]

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  11. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    DOE Patents [OSTI]

    Savage-Leuchs; Matthias P. (Woodinville, WA)

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  12. EcoSense Lighting Inc | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 10002-2434 Product: New York City-based developer of energy efficient, solid-state lighting products., including light emitting diodes. References: EcoSense...

  13. When to Turn Off Your Lights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    are not already factored into the rate. LED Lighting The operating life of a light emitting diode (LED) is unaffected by turning it on and off. While lifetime is reduced for...

  14. Enhanced vbasis laser diode package

    DOE Patents [OSTI]

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  15. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Benett, William J. (Livermore, CA); Mills, Steven T. (Antioch, CA)

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  16. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOE Patents [OSTI]

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  17. Portland Street Lighting Report (August 2015) | Department of Energy

    Energy Savers [EERE]

    Portland Street Lighting Report (August 2015) Portland Street Lighting Report (August 2015) PDF icon 2015_gateway-msslc_portland.pdf More Documents & Publications OCTOBER 2015 POSTINGS Detroit Street Lighting Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  18. CX-010822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  19. CX-010821: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  20. CX-010823: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  1. CX-010824: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory

  2. CX-004127: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Saving Phosphorescent Organic Light Emitting Diode (OLED) LuminairesCX(s) Applied: B3.6, B5.1Date: 09/14/2010Location(s): Ewing, New JerseyOffice(s): Energy Efficiency and Renewable Energy

  3. An all-organic UV on-chip spectrometer created | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Ames Laboratory have developed a near ultra-violet and all-organic light emitting diode (OLED) that can be used as an on-chip photosensor. It's a first in a rather...

  4. Ames Laboratory scientists create an all-organic UV on-chip spectromet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Ames Laboratory has developed a near ultra-violet and all-organic light emitting diode (OLED) that can be used as an on-chip photosensor. It's a first in a rather...

  5. MicroEmissive Displays | Open Energy Information

    Open Energy Info (EERE)

    Edinburgh, United Kingdom Zip: EH9 3JF Product: MicroEmissive Displays makes P-OLED (polymer light emitting diode) displays. Specific interests are head mounted displays and...

  6. Photoluminescent and thermal properties of (Sr{sub 0.995?x?y?z}Ca{sub x}Ba{sub y}Mg{sub z}){sub 2}SiO{sub 4}:0.01Eu{sup 2+} phosphors for warm white light-emitting diodes

    SciTech Connect (OSTI)

    Li, Yao; Ci, Zhipeng; Peng, Yingquan; Wang, Yuhua; Liu, Chunjuan

    2015-01-15

    Highlights: • The photoluminescent property of Sr{sub 2}SiO{sub 4}:Eu{sup 2+} is improved by doping Ca{sup 2+} and Ba{sup 2+}. • The emission spectra red-shift obviously by doping Ca{sup 2+} into Sr{sub 2}SiO{sub 4}:Eu{sup 2+}. • The thermal stability is enhanced by doping Ba{sup 2+} into (Sr,Ca){sub 2}SiO{sub 4}:Eu{sup 2+}. • The improved phosphors can combine blue-LED chips to generate warm white light. - Abstract: A series of phosphors (Sr{sub 0.995?x?y?z}Ca{sub x}Ba{sub y}Mg{sub z}){sub 2}SiO{sub 4}:0.01Eu{sup 2+} (0 ? x ? 0.45, 0 ? y ? 0.015, 0 ? z ? 0.35) were synthesized by solid state reaction. Their phase compositions and photoluminescent properties were investigated in detail. The X-ray diffraction analysis indicates the impurity phase of SrSiO{sub 3} is formed only when z ? 0.25. A photoluminescence investigation shows, with x increasing the emission spectra of the phosphors (0 ? x ? 0.45, 0 ? y ? 0.015, z = 0) obviously red-shift, the corresponding color tones shift from yellow to orange–yellow and their CCTs reduce from 2875 to 2237 K. All the results are beneficial for the phosphors to combining blue light-emitting diode chips to generate warm white light. Besides, the thermal stability of the phosphor (x = 0.36, y = z = 0) is enhanced by doping Ba{sup 2+}, due to the greater activation energy for the compounds containing barium.

  7. Diode-Pumped Alkali Laser: A New Combination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery Science Lab Astrophysics Nuclear Astrophysics Planetary Physics Plasma Physics Photon Science Advanced Optical Technologies Fiber Lasers Laser-Compton Light Source Technology Short-Pulse Lasers High-Powered Lasers Journal Articles home / science / photon science / directed energy Diode-Pumped Alkali Laser: A New

  8. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P. (Albuquerque, NM); Lott, James A. (Albuquerque, NM)

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  9. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  10. diod - distributed I/O daemon

    Energy Science and Technology Software Center (OSTI)

    2010-01-29

    diod is an I/O forwarding daemon used to improve scalability of file systems on large Linux clusters.

  11. Method of making diode structures

    DOE Patents [OSTI]

    Compaan, Alvin D.; Gupta, Akhlesh

    2006-11-28

    A method of making a diode structure includes the step of depositing a transparent electrode layer of any one or more of the group ZnO, ZnS and CdO onto a substrate layer, and depositing an active semiconductor junction having an n-type layer and a p-type layer onto the transparent electrode layer under process conditions that avoid substantial degradation of the electrode layer. A back electrode coating layer is applied to form a diode structure.

  12. Photodiode arrays having minimized cross-talk between diodes

    DOE Patents [OSTI]

    Guckel, Henry (Madison, WI); McNamara, Shamus P. (Madison, WI)

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  13. Polarization methods for diode laser excitation of solid state lasers

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA)

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  14. Yuankun Cai

    Office of Scientific and Technical Information (OSTI)

    Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors by Yuankun Cai A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Condensed Matter Physics Program of Study Committee: Joseph Shinar, Major Professor Vikram Dalal Rana Biswas Curt Struck Edward Yu Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS Chapter 1. An overview of OLED basics

  15. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, Alan M. (Livermore, CA); Edwards, William R. (Modesto, CA)

    1983-01-01

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  16. Electroluminescent device having improved light output

    DOE Patents [OSTI]

    Tyan; Yuan-Sheng (Webster, NY); Preuss, Donald R. (Rochester, NY); Farruggia, Giuseppe (Webster, NY); Kesel, Raymond A. (Avon, NY); Cushman, Thomas R. (Rochester, NY)

    2011-03-22

    An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.

  17. Red phosphor Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} for potential application in field emission displays and white light-emitting diodes

    SciTech Connect (OSTI)

    Wang, Ting; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei; Yu, Xue

    2014-12-15

    Abstract: A novel red emitting phosphor of Eu{sup 3+} doped Ca{sub 2}Ge{sub 7}O{sub 16} was prepared through the solid state reaction. The luminescence properties were studied in detail by photoluminescence excitation (PLE), emission (PL) spectra and cathodoluminescence (CL). Under the excitation of ultraviolet light, Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor shows the characteristic {sup 5}D{sub 0}-{sup 7}F{sub J}(J = 1, 2, 3, 4) transition of Eu{sup 3+} with two different emissions due to the two kinds of Eu{sup 3+} ions. The luminescent intensity could be improved by co-doping with the charge compensators R{sup +} (Li, Na, K) which partially substitute for Ca{sup 2+} crystal sites. CL spectra show that Eu{sup 3+} ions were excited by the plasma produced by the incident electrons and the CL properties of Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+}, Li{sup +} as a function of accelerating voltage and probe current were investigated. Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor offers higher thermal stability compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+}. The results indicate that Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} can be a suitable red-emitting phosphor candidate for FEDs and w-LEDs.

  18. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  19. Megahertz organic/polymer diodes

    DOE Patents [OSTI]

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  20. Solid-State Lighting Consortia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Consortia Solid-State Lighting Consortia Presenter: Marc Ledbetter, Pacific Northwest National Laboratory Most potential users of light-emitting diode (LED) lighting do not have large training budgets to independently educate themselves; participation in the Solid-State Lighting (SSL) Consortia is a low-cost-low-risk way to benefit from the knowledge and experience of others. The goal of the SSL Consortia is to help specific members of the lighting community-including

  1. Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting |

    Office of Environmental Management (EM)

    Department of Energy Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico (MCBQ) in Virginia Document provides an overview of how the Marine Corps Base Quantico (MCBQ) achieved 85% energy savings in parking lighting at one of its parking lots as part of a major overhaul of its outdoor lighting (replacing 2,000 fixtures with light-emitting diode lights),

  2. Energy Conservation Program: Test Procedure for Integrated Light...

    Energy Savers [EERE]

    EERE-2011-BT-TP-0071 RIN: 1904-AC67 Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps AGENCY: Office of Energy Efficiency and Renewable ...

  3. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  4. A method to quench and recharge avalanche photo diodes for use in high rate situations

    SciTech Connect (OSTI)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI.

  5. Light source comprising a common substrate, a first led device and a second led device

    SciTech Connect (OSTI)

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  6. Heat diode effect and negative differential thermal conductance...

    Office of Scientific and Technical Information (OSTI)

    Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces Citation Details In-Document Search Title: Heat diode effect and...

  7. Demonstration Assessment of LED Freezer Case Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Host Site: Albertsons Grocery, Eugene, Oregon Final Report prepared in support of the U.S. DOE Solid State Lighting Technology Demonstration GATEWAY Program Study Participants: Pacific Northwest National Laboratory U.S. Department of Energy LED Power, Inc. Aztec Energy Partners PECI, Inc. Eugene Water and Electric Board October 2009 Prepared for the U.S. Department of Energy by Pacific Northwest National Laboratory

  8. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant

    SciTech Connect (OSTI)

    Zhou, Dong-Ying; Zu, Feng-Shuo; Shi, Xiao-Bo; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn; Zhang, Ying-Jie; Aziz, Hany E-mail: lsliao@suda.edu.cn

    2014-08-25

    In this work, we report thermally decomposable lithium amide (LiNH{sub 2}) feasible to function as an effective n-type dopant for intermediate connectors in tandem organic light-emitting devices (OLEDs). Metallic lithium, which is released from the decomposition process of LiNH{sub 2}, is proved by X-ray photoelectron spectroscopy and responsible for n-type electrical doping of electron transporting materials. We demonstrate that tandem OLEDs using LiNH{sub 2} and Cs{sub 2}CO{sub 3} as n-type dopants, respectively, give a comparable electroluminescence efficiency and, moreover, the device with LiNH{sub 2} has far longer operational lifetime. The results therefore highlight the significance of selecting suitable n-type dopant in intermediate connectors to fabricate high-stability tandem OLEDs.

  9. Semiconductor diode with external field modulation

    DOE Patents [OSTI]

    Nasby, Robert D. (Albuquerque, NM)

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  10. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  11. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  12. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  13. Promising Technology: Parking Lot Light-Emitting Diodes with Controls

    Broader source: Energy.gov [DOE]

    LEDs offer several advantages over conventional high intensity discharge (HID) luminaires. LEDs have longer life times, reduced maintenance and operating costs, superior color rendition, and lower energy consumption.

  14. Demonstration of Light-Emitting Diode (LED) Retrofit Lamps

    SciTech Connect (OSTI)

    Miller, N.

    2011-09-01

    GATEWAY program report on a demonstration of LED retrofit lamps at the Jordan Schnitzer Museum of art in Eugene, OR

  15. Promising Technology: High Bay Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    High bay LEDs offer several advantages over conventional high intensity discharge (HID) luminaires including longer lifetimes, reduced maintenance costs, and lower energy consumption.

  16. 2015 DOE Solid-State Lighting Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PORTFOLIO: SOLID-STATE LIGHTING January 2015 DOE Solid-State Lighting Project Portfolio January 2015 Executive Summary The U.S. Department of Energy (DOE) partners with businesses, universities, and national laboratories to accelerate improvements in solid-state lighting (SSL) technology. These collaborative, cost-shared efforts focus on developing highly energy-efficient, low cost, white light sources for general illumination. DOE supports SSL research for both light-emitting diode

  17. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  18. Arbitrary waveform generator to improve laser diode driver performance

    DOE Patents [OSTI]

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  19. Stacked switchable element and diode combination

    DOE Patents [OSTI]

    Branz, Howard M.; Wang, Qi

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  20. Bypass diode for a solar cell

    DOE Patents [OSTI]

    Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  1. Stacked Switchable Element and Diode Combination

    DOE Patents [OSTI]

    Branz, H. M.; Wang, Q.

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  2. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  3. Stable and Efficient White OLEDs Based on a Single Emissive Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Mitigation of Droop Mechanism in GaN-Based LEDs Materials and Designs for High-Efficacy LED Light Engines Next-Generation "Giant" Quantum Dots: ...

  4. Restoring Detroit's Street Lighting System

    SciTech Connect (OSTI)

    Kinzey, Bruce R.

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  5. Why SSL | Department of Energy

    Energy Savers [EERE]

    SSL Basics » Why SSL Why SSL Since 2003, the U.S. Department of Energy has invested with industry partners in research and development of solid-state lighting (SSL)-including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies. Why such concentrated attention on SSL? The answer is simple: because of SSL's rapid ongoing improvements and superior energy-saving potential. It is estimated that switching to SSL could reduce national lighting electricity use by nearly

  6. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1983-10-11

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

  7. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1982-03-23

    A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  8. Energy-Department Supported Scientist Receives Nobel Prize for Blue Light LED

    Broader source: Energy.gov [DOE]

    This week, three scientists—two from Japan and one from the United States—received the Nobel Prize in physics for their work on the LED light. The trifecta, Isamu Akasaki, Hiroshi Amano and Shuji Nakamura, earned the prestigious award specifically for their invention of the blue light emitting diode, a game-changer in the history of LED lights. The American scientist, Shuji Nakamura, a pioneer in the lighting industry, is the founder of LED company Soraa, which has a history of working with the Department of Energy—both through EERE and our Advanced Research Projects Agency-Energy (ARPA-E)—on the subject of blue light diodes.

  9. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    SciTech Connect (OSTI)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  10. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  11. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  12. Close-packed array of light emitting devices

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2013-04-09

    A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

  13. Solid-State Lighting R&D Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Plan Solid-State Lighting R&D Plan The Solid-State Lighting (SSL) R&D Plan is a consolidation of the Department of Energy (DOE) SSL Multi-Year Program Plan (MYPP) and the DOE SSL Manufacturing R&D Roadmap that DOE has published and updated in previous years. The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The Roadmap also reviews SSL technology status and trends for both LEDs and OLEDs

  14. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. Compared to traditional incandescents, energy-efficient lightbulbs such as halogen incandescents, compact fluorescent lamps (CFLs), and light emitting diodes (LEDs) have the

  15. DOE Solid-State Lighting Program: Modest Investments, Extraordinary Impacts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate grocery display cases, make parking garages and streets brighter and safer, and proliferate on retail shelves. Homeowners and businesses are making the switch to SSL at an ever-faster pace, as product costs fall and performance keeps improving. The result: Americans are already saving hundreds of millions of dollars on

  16. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  17. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect (OSTI)

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117 beta comes from the other monomer of the physiological dimer.

  18. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect (OSTI)

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117{beta} comes from the other monomer of the physiological dimer.

  19. Spin-current diode with a ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Sun, Qing-Feng Xie, X. C.

    2015-05-04

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics.

  20. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  1. LightFace | Open Energy Information

    Open Energy Info (EERE)

    Place: Massachusetts Product: A group of engineers from MIT working on a method for manufacturing customisable, flexible, luminescent OLED panels for high-end architectural...

  2. April 2013 Most Viewed Documents for Physics | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information April 2013 Most Viewed Documents for Physics Science Subject Feed Lithium literature review: lithium's properties and interactions Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E. (1978) 123 /> Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 85 /> Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors Cai, Yuankun (2010) 83 /> White LED with High Package

  3. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  4. Robust random number generation using steady-state emission of gain-switched laser diodes

    SciTech Connect (OSTI)

    Yuan, Z. L. Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.

    2014-06-30

    We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20?Gb/s, for laser repetition rates of 1 and 2.5?GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80?Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5?GHz.

  5. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  6. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    SciTech Connect (OSTI)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  7. CX-001310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Ewing)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Ewing, New JerseyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. CX-001307: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Harmar)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Harmar, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. CX-001309: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Monroeville)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Monroeville, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  10. CX-001036: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solution Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting (Pennsylvania)CX(s) Applied: B3.6Date: 03/02/2010Location(s): Pittsburgh, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. CX-001035: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solution Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State LightingCX(s) Applied: B3.6Date: 03/02/2010Location(s): Sunnyvale, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. CX-001308: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Allison Park)CX(s) Applied: A2, A9Date: 03/19/2010Location(s): Allison Park, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. DIODE STEERED MANGETIC-CORE MEMORY

    DOE Patents [OSTI]

    Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

    1962-09-18

    A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

  14. Advancements in ion diode and triode design

    SciTech Connect (OSTI)

    Cavenago, M., E-mail: cavenago@lnl.infn.it [INFN-LNL, viale dell'Universitá n.2, 35020 Legnaro (PD) (Italy)

    2014-02-15

    Selfconsistent laminar flow models, which enable to predict the optimal cathode and anode geometry in simple diodes, must be modified to account for the anode aperture and the effect of other electrodes. An equation for charge coupled to arbitrary laminar flows is here first presented and its numerical solutions are obtained with a new method, based on mesh transformations. It is found that a close match to theoretical flows requires an increase of the simple diode voltage v{sub 0} by an amount v{sub ?}, which, for a typical case designed for zero exit angle condition, are v{sub 0} = 0.7465 and v{sub ?} = 0.0294 in adimensional units. States “in” and “out” for the anode lens are also shown, where “out” is a new and nonlinear solution for the beam expansion in a drift tube.

  15. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it's LED Solid-State Lighting. | Department of Energy Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks, it's LED Solid-State Lighting. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks, it's LED Solid-State Lighting. May 5, 2009 - 5:00am Addthis John Lippert When it comes to lighting, light-emitting diodes (LEDs) are the new kid on the block. LEDs are a form of solid-state lighting. As such, they are following the example of their siblings in

  16. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps3_nrel_zhang.pdf More Documents & Publications US TG 4 Activities of QA Forum US & Japan TG 4 Activities of QA Forum High Temperature Reverse By-Pass Diodes Bias and Failures

  17. Leveraging Lighting for Energy Savings: GSA Northwest/Artic Region

    SciTech Connect (OSTI)

    2016-01-01

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  18. Plasma-filled diode based on the coaxial gun

    SciTech Connect (OSTI)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  19. Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO3.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kezsmarki, I.; Nagel, U.; Bordacs, S.; Fishman, Randy Scott; Lee, Jun Hee; Yi, Hee Taek; Cheong, Sang-Wook; Room, T.

    2015-09-15

    The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our findingsmore » are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.« less

  20. High Temperature Reverse By-Pass Diodes Bias and Failures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reverse By-Pass Diodes Bias and Failures High Temperature Reverse By-Pass Diodes Bias and ... US & Japan TG 4 Activities of QA Forum Thermal Reliability Study of Bypass Diodes in ...

  1. Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers

    Office of Environmental Management (EM)

    Briefing for Media and Retailers - Lighting eere.energy.gov 1 Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Briefing for Media and Retailers - Lighting eere.energy.gov 2 * Briefing: - To schedule interviews, please contact DOE Public Affairs at 202-586-4940 * Terms: - Lumens: Commonly a measure of brightness (technically "luminous flux") - CFL: Compact Fluorescent Lamp: The curly fluorescent bulbs - LED: Light Emitting Diode: more recently emerging

  2. The use of laser diodes for control of uranium vaporization rates

    SciTech Connect (OSTI)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements.

  3. Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants

    SciTech Connect (OSTI)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

  4. Bypass diode for a solar cell

    DOE Patents [OSTI]

    Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

    2013-11-12

    Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

  5. Solid-State Lighting | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Our goal is to advance the fundamental science and technology to both understand factors that limit efficiencies for light emitting diode-based lighting and to provide innovative and viable solutions to current roadblocks. We intend to achieve these goals by: (1) control and elucidation of the carrier loss mechanisms on nonpolar/semipolar GaN LEDs; (2) growth of defect-free bulk GaN crystals; and (3) full-spectrum lighting using an all semiconductor-based emission region;

  6. Energy Department Offers $10 Million for Energy-Saving Lighting

    Office of Environmental Management (EM)

    Technologies | Department of Energy Offers $10 Million for Energy-Saving Lighting Technologies Energy Department Offers $10 Million for Energy-Saving Lighting Technologies December 11, 2013 - 12:00am Addthis Light bulbs like solid-state light-emitting diodes (LED) are more efficient and can reduce energy costs. LED bulbs use about 75%-80% less energy than traditional bulbs.Credit: Dennis Schroeder / NREL The Energy Department on December 6 announced nearly $10 million to support U.S.

  7. Titanium-dioxide nanotube p-n homojunction diode

    SciTech Connect (OSTI)

    Alivov, Yahya E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant E-mail: pnagpal@colorado.edu

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5?V and exhibited good photoresponse for ultraviolet light (??=?365?nm) with sensitivity of 0.19?A/W at reverse bias of ?5?V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  8. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    SciTech Connect (OSTI)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S. [School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom)] [School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom)

    2013-12-09

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.

  9. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect (OSTI)

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  10. CO.sub.2 optically pumped distributed feedback diode laser

    DOE Patents [OSTI]

    Rockwood, Stephen D. (Los Alamos, NM)

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  11. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  12. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. â—Ź Light source luminosity â—Ź Detector resolution & rep-rates â—Ź Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  13. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  14. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  15. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  16. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  17. Quaternary InGaAsSb Thermophotovoltaic Diodes

    SciTech Connect (OSTI)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  18. Mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect (OSTI)

    Sagartz, M.J.; Segalman, D.; Simmermacher, T.

    1998-02-01

    In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.

  19. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  20. Microlens frames for laser diode arrays

    DOE Patents [OSTI]

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  1. Microlens frames for laser diode arrays

    DOE Patents [OSTI]

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  2. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  3. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  4. Lighting the Way for Big Energy Savings in Los Angeles | Department of

    Energy Savers [EERE]

    Energy 14, 2013 - 1:10pm Addthis A Los Angeles lighting project is saving the city $7 million a year in electricity costs. | Photo courtesy of Los Angeles Bureau of Street Lighting A Los Angeles lighting project is saving the city $7 million a year in electricity costs. | Photo courtesy of Los Angeles Bureau of Street Lighting Jim Brodrick Jim Brodrick Lighting Program Manager The world's largest light emitting diode (LED) conversion project to date is under way in Los Angeles, California.

  5. SSL Basics | Department of Energy

    Energy Savers [EERE]

    SSL Basics SSL Basics Solid-state lighting (SSL) differs from other kinds of lighting in that it's based on light-emitting diodes (LEDs) or organic LEDs (OLEDs) instead of filaments, plasma, or gases. In addition to having the potential to be more energy efficient than any other existing lighting technology, it also has a number of other advantages-including directionality, controllability, vibration resistance, long life, color tunability, and aesthetic appeal. But SSL is still at a relatively

  6. Army Reserve 63d RSC Achieves 85% Savings in Parking Lot Lighting

    SciTech Connect (OSTI)

    2016-01-01

    Case study describes how the Army Reserve 63d Regional Support Command (RSC) achieved 85% energy savings and $4,000 per year in cost savings by replacing 12 old light fixtures with light-emitting diode fixtures in the military equipment parking area. This project was part of a camp-wide parking lighting retrofit which, on average, delivered 78% energy savings and a simple payback of 4.4 years.

  7. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; Reynolds, J. R. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  8. GSA Northwest/Arctic Region Achieves 74% Savings in Parking Lighting

    Energy Savers [EERE]

    Leveraging Lighting for Energy Savings: GSA Northwest/ Arctic Region The Northwest/Arctic Region branch of the U.S. General Services Administration (GSA) won a 2015 Lighting Energy Effciency in Parking (LEEP) Award for cutting energy use by 74% at the Fairbanks Federal Building Parking Garage in Fairbanks, Alaska. The GSA replaced 220 high-pressure sodium (HPS) fxtures with an equal number of light-emitting diode (LED) fxtures in the four-story, 600-space parking facility adjacent to the

  9. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K. Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-12-23

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94??m light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ?3.5?K bulk cooling of Si at 450?K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  10. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect (OSTI)

    Atwater, Jackson H; Spinelli, P.; Kosten, Emily D; Parsons, J.; Van Lare, C; Van de Groep, J; Garcia de Abajo, J.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 ?m high and 10 ?m in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  11. Megahertz organic/polymer diodes (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    flows through the layers in one direction when a voltage is applied in one direction. ... the first layer, the diode is capable of high frequency rectifications on the order of ...

  12. Analysis and Optimization of "Full-Length" Diodes

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19

    A method of analyzing the axial variation of the heat generation rate, temperature, voltage, current density and emitter heat flux in a thermionic converter is described. The method is particularly useful for the case of "long" diodes, each extending over the full length of the reactor core. For a given diode geometry and fuel distribution, the analysis combines a nuclear solution of the axial fission density profile with the iterative solution of four differential equations representing the thermal, electrical, and thermionic interactions within the diode. The digital computer program developed to solve these equations can also perform a design optimization with respect to lead resistance, load voltage, and emitter thickness, for a specified maximum emitter temperature. Typical results are presented, and the use of this analysis for predicting the diode operating characteristics is illustrated.

  13. Parameter Estimation for Single Diode Models of Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 11 2. SINGLE DIODE MODELS A model for the electrical characteristic of a solar cell (e.g., 2, Eq. 1) can be derived from physical principles (e.g., 3) and is...

  14. ILE: | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ILE: More Documents & Publications ILE: ILE:&0; Advanced Light Extraction Material for OLED Lighting...

  15. Modular package for cooling a laser diode array

    DOE Patents [OSTI]

    Mundinger, David C. (Stockton, CA); Benett, William J. (Livermore, CA); Beach, Raymond J. (Livermore, CA)

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  16. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  17. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  18. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  19. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  20. Army Reserve 63d RSC Achieves 85% Savings in Parking Lot Lighting |

    Energy Savers [EERE]

    Department of Energy Army Reserve 63d RSC Achieves 85% Savings in Parking Lot Lighting Army Reserve 63d RSC Achieves 85% Savings in Parking Lot Lighting Case study describes how the Army Reserve 63d Regional Support Command (RSC) achieved 85% energy savings and $4,000 per year in cost savings by replacing 12 old light fixtures with light-emitting diode fixtures in the military equipment parking area. This project was part of a camp-wide parking lighting retrofit which, on average, delivered

  1. Energy Department Invests More Than $10 Million in Efficient Lighting R&D |

    Office of Environmental Management (EM)

    Department of Energy More Than $10 Million in Efficient Lighting R&D Energy Department Invests More Than $10 Million in Efficient Lighting R&D June 13, 2014 - 8:29am Addthis The Energy Department today announced nine research and development projects that will receive funding to support solid-state lighting (SSL) core technology research and product development. The projects will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting

  2. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  3. The Tenth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Nearly 250 researchers, manufacturers, and other industry insiders and observers gathered in Long Beach, CA, January 29–31, 2013, to participate in DOE's tenth annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by noting how far SSL has come in the past 10 years. Whereas in 2003 LEDs were just starting to gain a foothold in traffic signals and exit signs, today they're used for nearly every lighting application, and OLED niche products are gaining traction. Brodrick noted that despite the progress, there's still significant headroom, and urged attendees to explore ways to maximize efficacy, "not compared to what was, but compared to what is and what can be." He emphasized the present opportunity to push the boundaries with new approaches, product designs, form factors, and value-added features.

  4. Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO3.

    SciTech Connect (OSTI)

    Kezsmarki, I.; Nagel, U.; Bordacs, S.; Fishman, Randy Scott; Lee, Jun Hee; Yi, Hee Taek; Cheong, Sang-Wook; Room, T.

    2015-09-15

    The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

  5. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  6. Method and system for homogenizing diode laser pump arrays

    DOE Patents [OSTI]

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  7. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  8. GSA Northwest/Arctic Region Achieves 74% Savings in Parking Lighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  9. Discovering an Active Subspace in a Single-Diode Solar Cell Model...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Discovering an Active Subspace in a Single-Diode Solar Cell Model Citation Details In-Document Search Title: Discovering an Active Subspace in a Single-Diode Solar ...

  10. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    SciTech Connect (OSTI)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv, E-mail: rprakash.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)] [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

    2013-12-15

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

  11. Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices

  12. Axis-1 diode simulations I: standard 2-inch cathode

    SciTech Connect (OSTI)

    Ekdahl, Carl [Los Alamos National Laboratory

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  13. Integrated digital metamaterials enables ultra-compact optical diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2015-01-01

    We applied nonlinear optimization to design integrated digital metamaterials in silicon for unidirectional energy flow. Two devices, one for each polarization state, were designed, fabricated, and characterized. Both devices offer comparable or higher transmission efficiencies and extinction ratios, are easier to fabricate, exhibit larger bandwidths and are more tolerant to fabrication errors, when compared to alternatives. Furthermore, each device footprint is only 3?m × 3?m, which is the smallest optical diode ever reported. To illustrate the versatility of digital metamaterials, we also designed a polarization-independent optical diode.

  14. LED Lighting: Applying Lessons Learned from the CFL Experience

    SciTech Connect (OSTI)

    McCullough, Jeffrey J.; Gilbride, Theresa L.; Gordon, Kelly L.; Ledbetter, Marc R.; Sandahl, Linda J.; Ton, My K.

    2008-08-20

    Light emitting diode (LED) technology has emerged as an exciting new lighting alternative with the potential for significant energy savings. There is concern, however, that white light LEDs for general illumination could take a long, bumpy course similar to another energy-efficient lighting technology – compact fluorescent lights (CFLs). Recognizing the significant potential energy-efficient lighting has to reduce U.S. energy consumption, Congress mandated in the Energy Policy Act of 2005 that the U.S. Department of Energy (DOE) develop Solid State Lighting (SSL) through a Next Generation Lighting Initiative. DOE’s first step was to analyze the market introduction of compact fluorescent lighting to determine what lessons could be learned to smooth the introduction of SSL in the United States (Sandahl et al. 2006). This paper summarizes applicable lessons learned from the market introduction of CFLs and describe how DOE and others are applying those lessons to speed the development and market introduction of energy-efficient LED lighting for general illumination applications. A description of the current state of LED technology and compares LEDs to incandescent, fluorescent, and halogen lights is also provided.

  15. Laser diode assembly including a cylindrical lens

    DOE Patents [OSTI]

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  16. Laser diode assembly including a cylindrical lens

    DOE Patents [OSTI]

    Snyder, James J. (San Jose, CA); Reichert, Patrick (Hayward, CA)

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  17. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-01

    The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

  18. Red-Emitting Phosphors for Solid-State Lighting - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Red-Emitting Phosphors for Solid-State Lighting Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (851 KB) Technology Marketing SummarySandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes

  19. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting on Residential and Commercial Streets in Palo Alto, CA

    SciTech Connect (OSTI)

    Myer, Michael; Kinzey, Bruce R.; Tam, Christine

    2010-06-24

    This report is part of a GATEWAY demonstration that replaced existing HPS streetlights with two different types of LED products and one induction product. Energy savings ranged from 6% to 44%.

  20. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  1. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    SciTech Connect (OSTI)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-26

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency ({eta}{sub TPV}) and a power density (PD) of {eta}{sub TPV} = 19% and PD=0.58 W/cm{sup 2} were measured for T{sub radiator} = 950 C and T{sub diode} = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be {eta}{sub TPV} = 26% and PD = 0.75 W/cm{sup 2}. These limits are extended to {eta}{sub TPV} = 30% and PD = 0.85W/cm{sup 2} if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are {approx}10% lower than the predicted semi-empirical limit to open circuit voltage for a device having absorbing substrate; the voltages are {approx}17% below that for an Auger-limited device having back surface reflector and two-pass optical design.

  2. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode

    SciTech Connect (OSTI)

    Gubbin, Christopher R.; Maier, Stefan A.; Kéna-Cohen, Stéphane

    2014-06-09

    We demonstrate electroluminescence from Frenkel molecular excitons ultrastrongly coupled to photons of a metal-clad microcavity containing a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene emissive layer. Thin layers of molybdenum oxide and 4,7-diphenyl-1,10-phenanthroline are used as hole and electron injection layers, respectively. The fabricated devices exhibit an electroluminescence threshold of 3.1?V, a value that is below the bare exciton energy. This result is found to be independent of detuning and consistent with a two-step process for polariton formation. Moreover, we investigate the quantum efficiency of carrier to polariton to photon conversion and obtain an external quantum efficiency of 0.1% for the fabricated structures, an improvement of 5 orders of magnitude over previous reports.

  3. Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home » Research & Development Research & Development RD Plan.jpg DOE leadership and support spur advances in the efficacy and performance of light-emitting diode (LED) and organic LED (OLED) technologies-advances that might not otherwise be achieved without DOE funding. Despite rapid advances, SSL technology is actually still in its early years, and continued innovation and breakthroughs are needed to achieve the full potential of the technology. Unlike conventional lighting

  4. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2012-06-26

    This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.

  5. Mode-locked solid state lasers using diode laser excitation

    DOE Patents [OSTI]

    Holtom, Gary R. (Boston, MA)

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  6. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect (OSTI)

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  7. Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

    SciTech Connect (OSTI)

    Mueller, Robert P.; Simmons, Mary Ann

    2007-12-29

    The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).

  8. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect (OSTI)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  9. Process for preparing schottky diode contacts with predetermined barrier heights

    DOE Patents [OSTI]

    Chang, Y. Austin (Middleton, WI); Jan, Chia-Hong (Portland, OR); Chen, Chia-Ping (Madison, WI)

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  10. DOE SSL Postings: September 16, 2015, issue

    Energy Savers [EERE]

    parts of Philips' OLED lighting business, including the OLED production facility in Germany. In May, the DOE SSL program announced the latest round of funding for OLED R&D...

  11. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  12. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    SciTech Connect (OSTI)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  13. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOE Patents [OSTI]

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  14. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    DOE Patents [OSTI]

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  15. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  16. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  17. V-shaped resonators for addition of broad-area laser diode arrays

    DOE Patents [OSTI]

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  18. On the Occurrence of Thermal Runaway in Diode in the J-Box | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy On the Occurrence of Thermal Runaway in Diode in the J-Box On the Occurrence of Thermal Runaway in Diode in the J-Box This PowerPoint presentation, focused on the environmental testing of diodes, was originally presented at the International PV Module Quality Assurance Forum on Feb. 26-27, 2013 in Denver, CO. It details the thermal runaway tests of J-boxes and discusses the Tj measurement method for bypass diodes. The presentation wraps up with a discussion of the team's anticipated

  19. Solid-State Lighting Sub-Program Logic Model

    Energy Savers [EERE]

    Advance awareness of needed product improvements Accelerate technology advances through stakeholder engagement Outreach to stakeholders with information & workshops Prototypes to fill technical gaps (materials, devices, luminaires) LED & OLED product cost & performance data (e.g. prices, efficacies) Competitive & shared R&D by researchers in lab / test facilities LED & OLED product testing in national lab & independent lab facilities Market reports / outreach

  20. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...