National Library of Energy BETA

Sample records for diode oled lighting

  1. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect (OSTI)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadal?, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  2. Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable

    E-Print Network [OSTI]

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency & Engineering Doctoral Defense Phosphorescent Organic Light Emitting Diodes with Platinum Complexes Jeremy Ecton

  3. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    SciTech Connect (OSTI)

    Cai, Yuankun

    2010-05-16

    General introduction to OLED basics and OLED-based structurally integrated sensors was provided in chapter 1 and chapter 2. As discussed in chapter 3, OLEDs were developed or improved using novel engineering methods for better charge injection (increased by over 1 order of magnitude) and efficiency. As the excitation sources, these OLEDs have preferred characteristics for sensor applications, including narrowed emission, emission at desired wavelength, and enhanced output for reduced EL background, higher absorption and improved device lifetime. In addition to OLEDs with desired performance, sensor integration requires oxidase immobilization with the sensor film for O{sub 2}-based biological and chemical sensing. Nanoparticles such as ZnO have large surface area and high isoelectric point ({approx}9.5), which favors enzyme immobilization via physical adsorption as well as Coulombic bonding. In chapter 4, it was demonstrated that ZnO could be used for this purpose, although future work is needed to further bond the ZnO to the sensor film. In chapter 5, single unit sensor was extended to multianalyte parallel sensing based on an OLED platform, which is compact and integrated with silicon photodiodes and electronics. Lactate and glucose were simultaneously monitored with a low limit of detection 0.02 mM, fast response time ({approx} 1 minute) and dynamic range from 0-8.6 ppm of dissolved oxygen. As discovered in previous work, the dynamic range covers 0-100% gas phase O{sub 2} or 0-40 ppm dissolved oxygen at room temperature. PL decay curve, which is used to extract the decay time, is usually not a simple exponential at high O{sub 2} concentration, which indicates that O{sub 2} is not equally accessible for different luminescent sites. This creates a challenge for data analysis, which however was successfully processed by stretched exponential as shown in chapter 6. This also provides an insight about the distribution of O{sub 2}:dye collisional quenching rate due to microheterogeneity. Effect of TiO{sub 2} doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 {mu}s). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  4. A low temperature amorphous oxide thin film transistor (TFT) backplane technology for flexible organic light emitting diode (OLED) displays has been developed to create 4.1-in. diagonal backplanes. The critical steps in

    E-Print Network [OSTI]

    organic light emitting diode (OLED) displays has been developed to create 4.1-in. diagonal backplanes organic light emitting diode (OLED) displays. Mixed oxide semiconductor thin film transistors (TFT

  5. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  6. OLEDS FOR GENERAL LIGHTING

    SciTech Connect (OSTI)

    Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

    2004-02-29

    The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

  7. Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex

    SciTech Connect (OSTI)

    Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2009-07-07

    Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

  8. Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In

    E-Print Network [OSTI]

    emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light

  9. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J.

    2014-03-21

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  10. Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of

    E-Print Network [OSTI]

    Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient

  11. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  12. Organic Light-Emitting Diodes Having Carbon Nanotube Anodes

    E-Print Network [OSTI]

    Gruner, George

    , flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure applications. Polymer and small molecule-based organic light-emitting diodes (OLEDs) are rapidly approachingOrganic Light-Emitting Diodes Having Carbon Nanotube Anodes Jianfeng Li, Liangbing Hu, Lian Wang

  13. Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

    SciTech Connect (OSTI)

    Liu, Rui [Ames Laboratory

    2012-08-01

    After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

  14. Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method

    E-Print Network [OSTI]

    proposed for fabricating the side-by- side color tunable organic light-emitting diodes (OLEDs-voltage organic light emitting diodes (OLEDs) in 1987 [1], OLEDs have attracted much attention for the application of the white light OLEDs can be as high as 100 lm/W at a illumination level of 1000 cd/m2 [2], which is beyond

  15. Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Hwang, Sung Woo

    acrylate layer and MS-31 (MgO : SiO2 ¼ 3 : 1 wt %) layer was adopted in organic light emitting diode (OLED the penetrations of oxygen and moisture. [DOI: 10.1143/JJAP.45.5970] KEYWORDS: organic light emitting diode (OLED. Introduction As a next generation display, the organic light emitting diode (OLED) has to great performances

  16. High-Performance Organic Light-Emitting Diodes Using ITO

    E-Print Network [OSTI]

    Ho, Seng-Tiong

    High-Performance Organic Light-Emitting Diodes Using ITO Anodes Grown on Plastic by Room,* Mark E. Madsen, Antonio DiVenere, and Seng-Tiong Ho Organic light-emitting diodes (OLEDs) fabricated

  17. Fabrication of High Efficiency, Printable Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Petta, Jason

    design of OLED: Transparent Anode--ITO Glass substrate Organic layer(s) Metal Cathode Light #12;PRISMFabrication of High Efficiency, Printable Organic Light Emitting Diodes Michael AdamsMichael Adams: Design, fabricate, and characterize high efficiency OLEDs · Introduction · Background on OLEDs · Methods

  18. Polymer OLED White Light Development Program

    SciTech Connect (OSTI)

    Homer Antoniadis; Vi-En Choong; Stelios Choulis; Brian Cumpston; Rahul Gupta; Mathew Mathai; Michael Moyer; Franky So

    2005-12-19

    OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the major polymer material suppliers to develop the polymer emissive technology. M&D was successful in demonstrating a 7-8 lm/W white light source which was based on fluorescent materials. However, it became apparent that the major gains in efficiency could only be made if phosphorescent materials were utilized. Thus, in order to improve the performance of the resulting devices, the focus of the project shifted towards development of solution-processable phosphorescent light emitting diodes (PHOLEDs) and device architectures. The result is a higher efficiency than the outlined project milestone.

  19. 22.3 / H. J. Peng 22.3: High Efficiency Electrophosphorescent Organic Light Emitting Diodes

    E-Print Network [OSTI]

    in an organic light emitting diode (OLEDs) based on tris(phenyl pyridine)iridium [Ir(ppy)3]. Using. The improvement is due to a carefully designed microcavity. 1. Introduction Organic light emitting diodes (OLEDs rate can be enhanced due to Purcell effect. Therefore, a microcaivty OLED should emit more light than

  20. AC-driven, color-and brightness-tunable organic light-emitting diodes constructed from an electron only device

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    - and brightness-tunable organic light-emitting diode (OLED) is reported. This OLED was realized by inserting emission from an organic light- emitting diode (OLED) [1] results from the electron/hole recombinationAC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron

  1. Using a low-index host layer to increase emission from organic light-emitting diode structures

    E-Print Network [OSTI]

    Exeter, University of

    The out-coupling efficiency of organic light-emitting diodes (OLEDs) may be significantly increased by use.60.Jb; 72.80.Le Keywords: Organic light-emitting diode (OLED); Out-coupling efficiency; Refractive index organic light-emitting diodes (OLEDs), with a large amount of this work centring on the efficiency

  2. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  3. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Cincinnati, University of

    -7707 USA. We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs. DNA has been used in organic light-emitting diodes (OLEDs)4,5,7­14 yielding significant increasesDNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes Eliot F. Gomez1 , Vishak

  4. White organic light-emitting diodes: Status and perspective

    E-Print Network [OSTI]

    Reineke, Sebastian

    White organic light-emitting diodes (OLEDs) are ultrathin, large-area light sources made from organic semiconductor materials. Over the past decades, much research has been spent on finding suitable materials to realize ...

  5. Enhanced coupling of light from organic light emitting diodes using nanoporous films

    E-Print Network [OSTI]

    Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

  6. Advanced Light Extraction Material for OLED Lighting | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extraction Material for OLED Lighting Lead Performer: Pixelligent Technologies LLC - Baltimore, MD Partners: OLEDWorks LLC DOE Total Funding: 1,000,000 Project Term: April 6,...

  7. Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device

    E-Print Network [OSTI]

    Wu, Shin-Tson

    based on a hybrid structure consisting of a trans- parent organic light-emitting diode (OLED) stacked Introduction The organic light-emitting diode (OLED) holds great prom- ise as a display technology due of the ambient light by using an OLED and RLCD under dark and bright ambient, respectively. Also, an emi

  8. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

  9. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  10. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  11. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode

    E-Print Network [OSTI]

    .1063/1.2032604 Organic light-emitting diodes OLED have attracted much interest due to their potential application in flat with silicon microdisplay OLED.8,9 However, silicon has high absorption in the visible light which greatlyEfficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent

  12. Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes

    E-Print Network [OSTI]

    to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong of Physics. DOI: 10.1063/1.2099520 Organic light-emitting diodes OLEDs have attracted wide attention dueVanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light

  13. Top-emitting Organic Light-Emitting Diode with a Cap Layer Chengfeng Qiu, Huajun Peng, Haiying Chen, Zhilang Xie,

    E-Print Network [OSTI]

    , Kowloon, Hong Kong, China ABSTRACT For top emitting Organic Light-Emitting Diodes (OLED), the study of top layer. INTRODUCTION Organic light-emitting diodes (OLEDs) [1] is challenging liquid-crystal display (LCD8.4.4-86 Top-emitting Organic Light-Emitting Diode with a Cap Layer Chengfeng Qiu, Huajun Peng

  14. Chameleon: A Color-Adap0ve Web Browser for Mobile OLED Displays

    E-Print Network [OSTI]

    Zhong, Lin

    Light- Emittin g Diode #12;2010 2009 2011 #12;Power = 2.0W!Power = 0.5W!OLED RocksChameleon: A Color-Adap0ve Web Browser for Mobile OLED Displays Mian Dong !!! OLED Rocks !!! OLED Rocks !!! OLED Rocks !!! OLED Rocks !!! OLED Rocks

  15. Highly stable and high power efficiency tandem organic light-emitting diodes with transition metal oxide-based charge generation layers

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    efficiency improvement Transition metal oxide a b s t r a c t Tandem organic light-emitting diodes (OLEDs. Ó 2015 Elsevier B.V. All rights reserved. 1. Introduction Organic light-emitting diodes (OLEDs) [1 displays and lighting panels. However, before mass production of OLEDs for the consumer market can start

  16. Surface plasmonpolariton mediated emission of light from top-emitting organic light-emitting diode type structures

    E-Print Network [OSTI]

    Exeter, University of

    .60.Jb; 72.80.Le Keywords: Surface plasmons; Organic light-emitting diodes (OLEDs); Microstructure 1Surface plasmon­polariton mediated emission of light from top-emitting organic light-emitting diode as significant loss channels in organic light-emitting diode devices. We present experimental data illustrating

  17. Single-layer organic light-emitting diodes using naphthyl diamine S. C. Tse, K. K. Tsung, and S. K. Soa

    E-Print Network [OSTI]

    So, Shu K.

    , was employed to fabricate single-layer organic light-emitting diodes OLEDs . With a quasi-Ohmic anode, NPB. DOI: 10.1063/1.2740110 Organic light-emitting diodes OLEDs are thin, light- weight, and powerSingle-layer organic light-emitting diodes using naphthyl diamine S. C. Tse, K. K. Tsung, and S. K

  18. Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design

    E-Print Network [OSTI]

    Boyer, Edmond

    Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

  19. Efficient blue organic light-emitting diodes employing thermally activated delayed

    E-Print Network [OSTI]

    Cai, Long

    Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,2 * Organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) have energy is high enough and the 3 LE state is higher than the 3 CT state. O rganic light-emitting diodes

  20. Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode

    E-Print Network [OSTI]

    Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode are presented from polymer/molecular organic heterostructure light emitting diodes composed of a layer,2 organic light emitting diodes OLEDs utilizing fluorescent molecules have attracted considerable interest

  1. High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode

    E-Print Network [OSTI]

    -film transistors can be bur- ied under the organic light-emitting diode OLED .3 Thus, complicated pixel circuitsHigh-efficiency microcavity top-emitting organic light-emitting diodes using silver anode Huajun February 2006 Top-emitting organic light-emitting diodes TOLEDs employing highly reflective Ag as anode

  2. The synthesis, characterization and electroluminescent properties of zinc(II) complexes for single-layer organic light-emitting diodes

    E-Print Network [OSTI]

    Li, Jing

    reserved. 1. Introduction Organic light-emitting diodes (OLEDs) are making significant advances in flat are in commercial volume production [3]. In a typical OLED, a hole transporter, an electron transporter, and a light-layer organic light-emitting diodes He-Ping Zeng a,*, Guang-Rong Wang a , Gong-Chang Zeng c , Jing Li a

  3. 1 Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits 2 and Its Application in Organic Light Emitting Diode Control

    E-Print Network [OSTI]

    Zhou, Chongwu

    attention. Recently, the 27 organic light emitting diode (OLED)3 has shed new light on this 28 realm in Organic Light Emitting Diode Control 3 Pochiang Chen,,|| Yue Fu,,|| Radnoosh Aminirad,,§ Chuan Wang, Jialu. Compared to LCD, OLED has lightweight, compatibility 29 with flexible plastic substrate, wide viewing

  4. Direct Evidence of Molecular Aggregation and Degradation Mechanism of Organic Light-Emitting Diodes under Joule Heating: an STM and Photoluminescence Study

    E-Print Network [OSTI]

    Gong, Jian Ru

    of organic light-emitting diodes (OLED). Scanning tunneling microscopy (STM) and photoluminescence (PL the PL intensity due to temperature. Introduction Organic light-emitting diodes (OLED) have attractedDirect Evidence of Molecular Aggregation and Degradation Mechanism of Organic Light-Emitting Diodes

  5. GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays

    E-Print Network [OSTI]

    North Virginia Tech Blacksburg, VA north@cs.vt.edu ABSTRACT The organic light emitting diode (OLED, Color Scheme, Visualization 1. INTRODUCTION The organic light-emitting diode (OLED) display is an emerg

  6. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect (OSTI)

    Zhang, Shuyu; Turnbull, Graham A., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)] [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2013-11-18

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275?nm and 335?nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  7. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  8. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  9. Text-Alternative Version: Challenges in OLED Research and Development

    Broader source: Energy.gov [DOE]

    Narrator: Organic light-emitting diodes, OLEDs, are made using organic carbon-based materials. Unlike LEDs, which are small point light sources, OLEDs are made in sheets that create diffuse area...

  10. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  11. Comparative study of metal or oxide capped indiumtin oxide anodes for organic light-emitting diodes

    E-Print Network [OSTI]

    of Physics. DOI: 10.1063/1.1556184 I. INTRODUCTION Organic light-emitting diodes OLEDs 1 are challengingComparative study of metal or oxide capped indium­tin oxide anodes for organic light as anodes in organic light-emitting diodes based on N,N -diphenyl-N,N bis 3-methyl-phenyl-1,1 -biphenyl-4

  12. 4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display

    E-Print Network [OSTI]

    4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode active matrix organic light emitting diode (AMOLED) pixel with high pixel to pixel luminance uniformity such as organic light emitting diodes (OLEDs) are presently of great interest due to their potential application

  13. High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

  14. Efficient organic light-emitting diode using semitransparent silver as anode Huajun Peng, Xiuling Zhu, Jiaxin Sun, Zhiliang Xie, Shuang Xie,

    E-Print Network [OSTI]

    A semitransparent silver layer is investigated as the anode for organic light-emitting devices OLEDs.1063/1.2115076 Organic light-emitting diodes OLEDs have attracted a great deal of attention due to their applicationsEfficient organic light-emitting diode using semitransparent silver as anode Huajun Peng, Xiuling

  15. Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag as anode

    E-Print Network [OSTI]

    Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag The emission efficiency in an organic light-emitting diode OLED based on fac tris phenyl pyridine iridium Ir current efficiency of 81 cd/A and a power efficiency of 79 lm/W, compared with 46 cd/A and 39 lm

  16. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  17. Organic Light Emitting Diodes Using a Ga:ZnO Anode

    SciTech Connect (OSTI)

    Berry, J. J.; Ginley, D. S.; Burrows, Paul E.

    2008-05-12

    We report the application of gallium doped zinc oxide (GZO) films as anodes in organic light emitting diodes (OLEDs). Pulsed laser deposited GZO films of differing Ga composition are examined. Bilayer OLEDs using GZO and indium tin oxide (ITO) anodes are then compared. Relative to ITO, the GZO anodes have slightly better sheet resistance and transparency in the visible spectral region. Device data suggest GZO results in more effective hole injection into an aromatic triamine hole transporting layer. Indium free anodes are expected toimprove OLED stability while lowering the cost per unit area, crucial for OLED based lighting applications.

  18. P-165: Efficient RGBW OLEDs Based on 4, 4'-Bis (1, 2, 2-triphenylvinyl) biphenyl

    E-Print Network [OSTI]

    light-emitting diodes (OLEDs) have been the subject of intense research in recent years due to their potential applications in display and lighting [1, 3, 4]. During the past several decades, green (G) OLEDs color OLEDs and white (W) OLEDs for display and lighting. In this paper, we report a newly synthesized

  19. Functional Polymer Architectures for Solution Processed Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Poulsen, Daniel Andrew

    2010-01-01

    developing new OLED displays and lighting devices withOLED technology has reached a point where highly efficient thin film devices which rival other lighting

  20. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect (OSTI)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  1. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  2. Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs

    DOE Patents [OSTI]

    Thompson, Mark E; Forrest, Stephen

    2015-02-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  3. Highly efficient organic light-emitting diodes with a silole-based compound Center for Display Research, Department of Electrical and Electronic Engineering, The Hong Kong

    E-Print Network [OSTI]

    the emission efficiency of organic light-emitting diodes OLED . For con- ventional undoped small-molecule OLEDHighly efficient organic light-emitting diodes with a silole-based compound H. Y. Chen Center Efficient light emission was obtained in a silole-based organic light-emitting diode. A high luminous

  4. Toward ZnO Light Emitting Diode

    E-Print Network [OSTI]

    Liu, Jianlin

    2008-01-01

    applications such as light emitting diodes (LEDs) and laser009 "Toward ZnO Light Emitting Diode" Jianlin Liu July 2008Title: “Toward ZnO Light Emitting Diode” Sponsor: UC Energy

  5. SciTech Connect: "light emitting diode"

    Office of Scientific and Technical Information (OSTI)

    light emitting diode" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "light emitting diode" Semantic Semantic Term Title: Full Text:...

  6. Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes

    E-Print Network [OSTI]

    Meng, Hsin-Fei

    -coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

  7. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer

    E-Print Network [OSTI]

    Cincinnati, University of

    as an integral element of organic light-emitting diodes OLED . Devices that incorporate DNA thin films#12;Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid as an electron blocking EB material has been demonstrated in both green- and blue-emitting organic light

  8. 47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes

    E-Print Network [OSTI]

    been obtained. 1. Introduction Organic light-emitting diode (OLED) is challenging liquid- crystal (LC47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes- metal layer such as, carbon, gallium, silicon, has been used as hole-injecting anode in organic light

  9. Organic light-emitting diodes from homoleptic square planar complexes

    SciTech Connect (OSTI)

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  10. JOURNAL OF DISPLAY TECHNOLOGY, VOL. 2, NO. 2, JUNE 2006 143 Maximizing Alq3 OLED Internal and External

    E-Print Network [OSTI]

    Cincinnati, University of

    bright, efficient Alq3-based [tris-(8-hydroxyquinoline) aluminum] organic light-emitting diode (OLED conversion material, lensed device, luminous intensity, organic light emitting diodes (OLED), outcoupling efficiency, quantum efficiency. I. INTRODUCTION ORGANIC light-emitting devices (OLEDs), using Alq (tris(8

  11. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  12. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  13. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of...

  14. Integrated fuses for OLED lighting device

    DOE Patents [OSTI]

    Pschenitzka, Florian (San Jose, CA)

    2007-07-10

    An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.

  15. Microcavity OLED using Ag electrodes Huajun Peng, Xiuling Zhu, Jiaxin Sun, Xiaoming Yu, Man Wong and Hoi-Sing Kwok

    E-Print Network [OSTI]

    , metal electrodes, silver. 1. INTRODUCTION Efficient organic light emitting diode (OLED) is now routinely 22%. Thus most of the light from the OLED is trapped inside the OLED which acts as a waveguideMicrocavity OLED using Ag electrodes Huajun Peng, Xiuling Zhu, Jiaxin Sun, Xiaoming Yu, Man Wong

  16. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    )aluminum(III), Alq3, is used in organic light-emitting diodes (OLEDs) as an electron transport material and emitting. Introduction Organic light-emitting diodes (OLEDs) are currently under intense investigation for applicationMolecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline

  17. 19FEBRUARY 2015 OPTICS & PHOTONICS NEWS OLED Versus LCD: Who Wins?

    E-Print Network [OSTI]

    Wu, Shin-Tson

    , there is strong competition for market share between organic light-emitting diode (OLED) display and liquid their own light; LCDs are non-emissive--they are illuminated with a backlight. An OLED display is composed. OLED displays also require a circular polarizer to mitigate ambient light reflection from metallic

  18. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  19. Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs

    SciTech Connect (OSTI)

    Mohammad Omary; Bruce Gnade; Qi Wang; Oussama Elbjeirami; Chi Yang; Nigel Shepherd; Huiping Jia; Manuel Quevedo; Husam Alshareef; Minghang Li; Ming-Te Lin; Wei-Hsuan Chen; Iain Oswald; Pankaj Sinha; Ravi Arvapally; Usha Kaipa; John Determan; Sreekar Marpu; Roy McDougald; Gustavo Garza; Jason Halbert; Unnat Bhansali; Michael Perez

    2010-08-31

    This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.

  20. LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)

    E-Print Network [OSTI]

    McNeill, John A.

    1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

  1. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    SciTech Connect (OSTI)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially pronounced in solution processed OLEDs lacking the accuracy and precision of fabrication found in their small molecule counterparts. From this point of view, it seems beneficial to develop materials allowing reduction of the operation bias voltage via improvement of the charge injection. The materials sought have to be compatible with solution-based fabrication process and allow easy incorporation of metal nanostructures.

  2. Dependence of film morphology on deposition rate in ITO/TPD/Alq3/Al organic luminescent diodes

    E-Print Network [OSTI]

    Klotzkin, David

    In the last decade, organic light emitting diodes (OLED) have attracted great attention in both funda- mental of top Alq3 films and I­V curves of organic luminescent diodes (OLED)s is studied, in order to optimize- mendous progress has been made, and OLED technol- ogy is expected to show great impact on the future

  3. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  4. A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.M.A. Dawson, Z. Shen, D.A. Furst, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri

    E-Print Network [OSTI]

    A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.S.A. Abstract The design of an active matrix organic light emitting diode (AMOLED) display using a polysilicon. Introduction Organic light emitting diodes (OLEDs) are presently of great interest due to their potential

  5. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 6, JUNE 2002 991 Active-Matrix Organic Light-Emitting Diode

    E-Print Network [OSTI]

    manufacturing practice, it is far from ideal. Organic light- emitting diodes (OLEDs) [1] are being hotly pursuedIEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 6, JUNE 2002 991 Active-Matrix Organic Light, particularly in terms of current-drive and parameter uniformity, for ac- tive-matrix organic light

  6. Series connected OLED structure and fabrication method

    DOE Patents [OSTI]

    Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

    2006-05-23

    A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

  7. Demonstration Assessment of Light Emitting Diode (LED) Street...

    Energy Savers [EERE]

    Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This...

  8. Demonstration Assessment of Light-Emitting Diode (LED) Freezer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

  9. Power-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays

    E-Print Network [OSTI]

    Zhong, Lin

    , Houston, TX 77025 {dongmian, ykc1,lzhong}@rice.edu ABSTRACT Emerging organic light-emitting diode (OLED of the display content or GUI design [1]. In contrast, emerging organic light-emitting diode (OLEDPower-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays Mian

  10. Laterally injected light-emitting diode and laser diode

    DOE Patents [OSTI]

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  11. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    SciTech Connect (OSTI)

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  12. Energy Savings Estimates of Light Emitting Diodes

    Broader source: Energy.gov [DOE]

    This report is an analysis of niche markets and applications for light emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy

  13. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  14. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  15. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01

    E. Fred Schubert, Light-Emitting Diodes, New York (2006) [8]ZnO homojunction light emitting diode 3. 1. Motivation ofAlGaAs red light-emitting diodes, in: G.B. Stringfellow, M.

  16. Indoor positioning algorithm using light-emitting diode visible light

    E-Print Network [OSTI]

    Kavehrad, Mohsen

    Indoor positioning algorithm using light- emitting diode visible light communications Zhou Zhou of Use: http://spiedl.org/terms #12;Indoor positioning algorithm using light-emitting diode visible light. This paper proposes a novel indoor positioning algorithm using visible light communications (VLC

  17. P-14 / C. Chen P-14: AM-OLED Pixel Circuits Based on a-InGaZnO Thin Film Transistors

    E-Print Network [OSTI]

    Kanicki, Jerzy

    film transistors (TFTs) to active- matrix organic light emitting display (AM-OLED) pixel circuits-matrix organic light-emitting display (AM-OLED) is now generally viewed as the next generation display because to constantly supply a current to the organic light- emitting diode (OLED) instead of just acting like a switch

  18. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Presenter: Arpan Chakraborty, Soraa Inc. This...

  19. Temporal stability of blue phosphorescent organic light-emitting diodes affected by thermal annealing of emitting layers

    E-Print Network [OSTI]

    Chen, Shaw H.

    Temporal stability of blue phosphorescent organic light-emitting diodes affected by thermal morphological instability as part of the challenge to the PhOLED device lifetime. Introduction Blue. In addition to the need for efficient and stable blue emitters,1,2 the technological advances in blue Ph

  20. Record External Quantum Efficiency in Blue OLED Device

    Broader source: Energy.gov [DOE]

    Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting

    SciTech Connect (OSTI)

    None

    2009-11-01

    A U.S. Department of Energy Solid-State Lighting Gateway Report on a Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting in Lija Loop, Portland, Oregon.

  2. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect (OSTI)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  3. P-129 / J. X. Sun P-129: Highly Efficient Stacked OLED Employing New Anode-Cathode Layer

    E-Print Network [OSTI]

    light emitting diode (OLED) [1], much development has been made to improve this device for applicationsP-129 / J. X. Sun P-129: Highly Efficient Stacked OLED Employing New Anode-Cathode Layer J. X. Sun Highly efficient stacked OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects

  4. Role of surface profiles in surface plasmon-polariton-mediated emission of light through a thin metal film

    E-Print Network [OSTI]

    Exeter, University of

    such as organic light-emitting diodes. 1. Introduction The field of organic light-emitting diodes (OLEDs, several research laboratories have begun to explore top-emitting OLEDs where light is emitted through of topical concern [5, 6]. Light is produced in OLEDs when excitons formed by the injection of opposite

  5. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  6. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  7. Thermal pumping of light-emitting diodes

    E-Print Network [OSTI]

    Gray, Dodd (Dodd J.)

    2011-01-01

    The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

  8. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York This a report about a...

  9. 11.4 / H. J. Peng 11.4: Coupling Efficiency Enhancement of Organic Light Emitting Devices

    E-Print Network [OSTI]

    the coupling efficiency of organic light emitting diodes (OLEDs) is studied. Refractive microlens arrays as mask. Over 65% more light is extracted from the OLED on the microlens array substrate as compared by the microlens array. 1. Introduction High efficiency organic light emitting diodes (OLED) are required

  10. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    SciTech Connect (OSTI)

    Hwang, Joohyun [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Hong Kyw [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Sung-Yool [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Lee, Jeong-Ik, E-mail: jiklee@etri.re.kr [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Chu, Hye Yong [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

    2012-10-15

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  11. Chameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    system energy consumers in mobile systems. Emerging organic light-emitting diode (OLED)-based displaysChameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong Department of Electrical promise unprecedented flexibility in power savings because all pixels are light-emitting and the power

  12. Spectrum flattening of white OLED with photonic crystal patterned capping layer

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    OLED (ITE-WOLEDs) structure to simultaneously enhance the light extraction efficiency and to flattenSpectrum flattening of white OLED with photonic crystal patterned capping layer Feng Li, P. K. A to enhance the extraction and flatten the spectrum of white organic light-emitting diode. Spectrum

  13. Structure and infrared (IR) assignments for the OLED material: N,N-diphenyl-N,N-bis(1-naphthyl)-1,1-biphenyl-4,4/-diamine

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    May 2001 Organic light-emitting diodes (OLEDs) are currently under intense investigation for useStructure and infrared (IR) assignments for the OLED material: N,Nº-diphenyl-N,Nº-bis(1-naphthyl)-1 in OLEDs, such as structure and vibrational modes, will help provide experimental probes which are required

  14. Demonstration Assessment of Light-Emitting Diode (LED) Street...

    Office of Scientific and Technical Information (OSTI)

    Street Lighting Host Site: Lija Loop, Portland, Oregon Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site:...

  15. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  16. Compact and efficient method of RGB to RGBW data conversion for OLED microdisplays 

    E-Print Network [OSTI]

    Can, Chi

    2012-06-25

    Colour Electronic Information Displays (EIDs) typically consist of pixels that are made up of red, green and blue (RGB) subpixels. A recent technology, Organic Light Emitting Diode (OLED), offers the potential to create ...

  17. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  18. Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Geyer, Ulf; Hauss, Julian; Riedel, Boris; Gleiss, Sebastian; Lemmer, Uli; Gerken, Martina

    2008-11-01

    We describe a cost-efficient and large area scalable production process of organic light-emitting diodes (OLEDs) with photonic crystals (PCs) as extraction elements for guided modes. Using laser interference lithography and physical plasma etching, we texture the indium tin oxide (ITO) electrode layer of an OLED with one- and two-dimensional PC gratings. By optical transmission measurements, the resonant mode of the grating is shown to have a drift of only 0.4% over the 5 mm length of the ITO grating. By changing the lattice constant between 300 and 600 nm, the OLED emission angle of enhanced light outcoupling is tailored from -24.25 deg. to 37 deg. At these angles, the TE emission is enhanced up to a factor of 2.14.

  19. Entangled Light Emission From a Diode

    SciTech Connect (OSTI)

    Stevenson, R. M.; Shields, A. J. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Salter, C. L. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, I.; Nicoll, C. A.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-12-23

    Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

  20. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sørensen, Henrik Published in Citation for published version (APA): Sørensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sørensen

  1. Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays

    E-Print Network [OSTI]

    Zhong, Lin

    Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays Mian Dong and Lin Zhong Department}@rice.edu ABSTRACT Displays based on organic light-emitting diode (OLED) technology are appearing on many mobile this problem, we present the motivational studies, design, and realization of Chameleon, a color adaptive web

  2. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure...

  3. New OLED Lighting Systems Shine Bright, Save Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study that describes how Universal Display Corporation received SBIR funding to adapt its PHOLED lighting technology for high-end commercial and institutional building applications.

  4. World Record White OLED Performance Exceeds 100 lm/W

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

  5. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  6. New Efficiency Record Achieved for White OLED Device

    Broader source: Energy.gov [DOE]

    Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

  7. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect (OSTI)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti E-mail: chihiwu@cc.ee.ntu.edu.tw; Wu, Chih-I E-mail: chihiwu@cc.ee.ntu.edu.tw

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  8. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01

    and J. K. Kim, “Solid-state light sources getting smart,”power phosphor-converted light-emitting diodes based on III-for phosphor- based white-light-emitting diodes,” Appl.

  9. Effective intermediate layers for highly efficient stacked organic light-emitting devices

    E-Print Network [OSTI]

    studied in stacked organic light-emitting devices OLEDs . Stacked OLEDs with two identical emissive units organic light-emitting diode OLED device.1­3 The first three-color SOLED was reported in 1997, in whichEffective intermediate layers for highly efficient stacked organic light-emitting devices J. X. Sun

  10. Solid-State lighting ReSeaRch & development at Sandia national laboRatoRieS

    E-Print Network [OSTI]

    &d Technology snapshoT SSL uses inorganic or organic light-emitting diodes (LEDs or OLEDs)--which are solid

  11. Demonstration Assessment of Light-Emitting Diode (LED) Accent...

    Office of Scientific and Technical Information (OSTI)

    Accent Lighting at the Field Museum in Chicago, IL Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field...

  12. Light extraction analysis and enhancement in a quantum dot light emitting diode

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Light extraction analysis and enhancement in a quantum dot light emitting diode Ruidong Zhu outcoupling and angular performance of quantum dot light emitting diode (QLED). To illustrate the design principles, we use a red QLED as an example and compare its performance with an organic light emitting diode

  13. TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT

    E-Print Network [OSTI]

    Pang, Grantham

    1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

  14. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect (OSTI)

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  15. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  16. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I A report describing the process and results of...

  17. White light emitting diode as liquid crystal display backlight

    E-Print Network [OSTI]

    Soon, Chian Myau

    2007-01-01

    The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One of the most promising sectors would be using white LED to ...

  18. Wide band-gap nanowires for light emitting diodes

    E-Print Network [OSTI]

    Chesin, Jordan (Jordan Paul)

    2015-01-01

    Wide band-gap nanowires composed of GaN and ZnO are promising materials for unique designs and potential efficiency improvement of light emitting diodes (LEDs) for solid state lighting. The large surface-to-volume ratio ...

  19. High power light emitting diode based setup for photobleaching fluorescent impurities

    E-Print Network [OSTI]

    Kaufman, Laura

    High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

  20. Achieving Record Efficiency for Blue OLEDs by Controlling the Charge Balance

    Broader source: Energy.gov [DOE]

    Researchers at the University of Florida (UF) have demonstrated a blue phosphorescent organic light-emitting diode (OLED) with a peak power efficiency of 50 lm/W and an external quantum efficiency exceeding 20 percent at a luminance of 1,000 cd/m2, using no external light extraction techniques. This accomplishment is believed to be the world record in blue OLED efficiency.

  1. Organic light emitting diodes with structured electrodes

    DOE Patents [OSTI]

    Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

    2012-12-04

    A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

  2. 29.3 / X. L. Zhu 29.3: Very Bright and Efficient Top-Emitting OLED with Ultra-Thin Yb as

    E-Print Network [OSTI]

    29.3 / X. L. Zhu 29.3: Very Bright and Efficient Top-Emitting OLED with Ultra-Thin Yb as Effective, Kowloon, Hong Kong Abstract Very bright and efficient top-emitting organic light-emitting diodes (TOLEDs OLEDs have attracted much interest due to its potential application in flat-panel displays [1

  3. 23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission

    E-Print Network [OSTI]

    23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission J. X. Sun, X. L;23.2 / J. X. Sun 2. Experimental Details The SOLED were fabricated on 75nm-ITO coated glass with a sheet

  4. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    SciTech Connect (OSTI)

    Schmidt, Tobias D. Jäger, Lars; Brütting, Wolfgang; Noguchi, Yutaka; Ishii, Hisao

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  5. Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes, IEEE DOI: 10.1109/JPHOT.2011.2150745 1943-0655/$26.00 ©2011 IEEE #12;Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect

  6. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect (OSTI)

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  7. Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    A heated semiconductor light-emitting diode at low forward bias voltage Velectrical work to pump heat from the lattice to the photon field. Here the rates of both radiative and nonradiative recombination ...

  8. Bright Light-Emitting Diodes based on Organometal Halide Perovskite

    E-Print Network [OSTI]

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-08-03

    temperature and high vacuum processes, rendering them uneconomical for use in large area displays. Here, we report high brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near...

  9. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  10. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  11. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  12. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    none,

    2011-01-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  13. Demonstration Assessment of Light-Emitting Diode (LED) Area Lights for a Commercial Garage

    SciTech Connect (OSTI)

    None

    2008-11-01

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications.

  14. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    None

    2008-10-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  15. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  16. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs)

    E-Print Network [OSTI]

    Ashworth, Stephen H.

    Depth of cure and compressive strength of dental composites cured with blue light emitting diodes with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do reserved. Keywords: Blue light emitting diodes; Light curing unit; Composites; Irradiance; Spectrum; Depth

  17. COMMUNIQU DE PRESSE NATIONAL I PARIS I 31 JANVIER 2014 La course la miniaturisation des diodes lectroluminescentes (DEL, en anglais : Light-

    E-Print Network [OSTI]

    Arleo, Angelo

    diodes électroluminescentes (DEL, en anglais : Light- Emitting Diode, LED) vient sans doute de franchir l

  18. Stability improvement of organic light emitting diodes by the insertion of hole injection materials on the indium tin oxide substrate

    SciTech Connect (OSTI)

    Chang, Jung-Hung; Liu, Shang-Yi; Wu, I-Wen; Chen, Tsung-Chin; Liu, Chia-Wei [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan (China); Wu, Chih-I, E-mail: chihiwu@cc.ee.ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan (China); Department of Electrical and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2014-03-28

    The degradation of organic light-emitting diodes (OLEDs) is a very complex issue, which might include interfacial charge accumulation, material diffusion, and electrical-induced chemical reaction during the operation. In this study, the origins of improvement in device stability from inserting a hole injection layer (HIL) at the indium tin oxide (ITO) anode are investigated. The results from aging single-layer devices show that leakage current increases in the case of ITO/hole transport layer contact, but this phenomenon can be prevented by inserting molybdenum oxide (MoO{sub 3}) or 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN{sub 6}) as an HIL. Moreover, X-ray photoemission spectroscopy suggests that the diffusion of indium atoms and active oxygen species can be impeded by introducing MoO{sub 3} or HAT-CN{sub 6} as an HIL. These results reveal that the degradation of OLEDs is related to indium and oxygen out-diffusion from the ITO substrates, and that the stability of OLEDs can be improved by impeding this diffusion with HILs.

  19. Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

  20. Point defect engineered Si sub-bandgap light-emitting diode

    E-Print Network [OSTI]

    Bao, Jiming

    Point defect engineered Si sub-bandgap light-emitting diode Jiming Bao1 , Malek Tabbal1,2 , Taegon light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction OCIS codes: (230.3670) Light-emitting diodes; (160.6000) Semiconductors; (130-0250) Optoelectronics

  1. Color-tunable light emitting diodes based on quantum dot suspension

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Color-tunable light emitting diodes based on quantum dot suspension Zhenyue Luo, Haiwei Chen, Yifan March 2015 We propose a color-tunable light emitting diode (LED) consisting of a blue LED as the light, rendering and metamerism; (230.3670) Light-emitting diodes. http://dx.doi.org/10.1364/AO.54.002845 1

  2. Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex

    E-Print Network [OSTI]

    Huang, Yanyi

    Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex form 18 October 2001 Abstract A bilayer organic light-emitting diode using a blue-fluorescent yttrium

  3. Multispectral imaging of the ocular fundus using light emitting diode illumination

    E-Print Network [OSTI]

    Claridge, Ela

    Multispectral imaging of the ocular fundus using light emitting diode illumination N. L. Everdell,1 on light emitting diode LED illumination that produces multispectral optical images of the human ocular

  4. Injection and transport processes in organic light emitting diodes based on N. Huby a,b

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Injection and transport processes in organic light emitting diodes based on a silole. N. Huby a- conductors in light emitting diodes1 . The different fields of research around the organic electronic allowed

  5. Flip-chip light emitting diode with resonant optical microcavity

    SciTech Connect (OSTI)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  6. A description and evaluation of light-emitting diode displays for generation of visual stimuli*

    E-Print Network [OSTI]

    Massaro, Dominic

    A description and evaluation of light-emitting diode displays for generation of visual stimuli 53706 A description of the design and function of light-emitting diode (LED) display modules is given (Time, April 1972). Light-emitting diodes (L~Ds) are examples of these spin-offs, LED display devices

  7. Correlation between the Indium Tin Oxide morphology and the performances of polymer light-emitting diodes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : This paper reports on performance enhancement of polymer light-emitting diodes (PLEDs) based on poly(2,5-bis. Keywords : Polymer light emitting diode; Indium tin oxide; Atomic force microscopy; Rutherford backscattering spectroscopy 1. Introduction Polymer light-emitting diodes (PLEDs) have received worldwide

  8. High efficiency light emitting diode with anisotropically etched GaN-sapphire interface

    E-Print Network [OSTI]

    High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

  9. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  10. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  11. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  12. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  13. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  14. spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer

    E-Print Network [OSTI]

    spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

  15. Optical manifold for light-emitting diodes

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  16. A novel class of phosphorescent gold(III) alkynyl-based organic light-emitting devices with tunable colour{

    E-Print Network [OSTI]

    in the roles of electrophosphorescent emitters or dopants of organic light-emitting diodes (OLEDs) with highA novel class of phosphorescent gold(III) alkynyl-based organic light-emitting devices with tunable brightness and efficiency. There have been significant improvements in OLED efficiencies by using

  17. Solid-State Lighting Research and Development: Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of reaching these performance levels. * LG Chem has commercialized organic light-emitting diode (OLED) panels with efficacy levels of 60 lmW and a color rendering index of...

  18. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    SciTech Connect (OSTI)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the deposition profile of material so that arbitrary concentration gradients can be implemented in layers with mixed composition. These concentration profiles are known to increase device efficiency and longevity and we confirmed that experimentally. Third, we investigated a new method for analyzing degradation in devices using mass spectrometry to look for degradation products. We showed that these methods are not simple to interpret unambiguously and need to be used with caution.

  19. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

  20. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes

    E-Print Network [OSTI]

    Dutton, Robert W.

    trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

  1. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    E-Print Network [OSTI]

    Mayer, Alexandre

    Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

  2. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    SciTech Connect (OSTI)

    Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patanè, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2013-12-09

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  3. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal

    E-Print Network [OSTI]

    Baba, Toshihiko

    Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic 21 November 2003 We demonstrate a light-emitting diode exhibiting 1.7­2.7-fold enhancement in light light emitting diode LED , the ef- ficiency is limited to several percents by a low light extrac- tion

  4. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Hlobil, Patrik

    2015-01-01

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  5. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Patrik Hlobil; Peter P. Orth

    2015-05-11

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  6. Improving OLED technology for displays

    E-Print Network [OSTI]

    Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

    2008-01-01

    Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

  7. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    SciTech Connect (OSTI)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  8. Challenges in OLED Research and Development

    Broader source: Energy.gov [DOE]

    View the video about OLED technology’s advantages and what is needed to move it fully into the lighting market.

  9. P-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting

    E-Print Network [OSTI]

    . Introduction Organic-light emitting diodes (OLEDs) as pixels for flat- panel displays are being hotly pursuedP-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting Diode and Technology Clear Water Bay, Kowloon, Hong Kong Abstract The characteristics of an organic light

  10. Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes S. L. Rumyantseva well light emitting diodes. The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase

  11. Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire

    E-Print Network [OSTI]

    Gilchrist, James F.

    -patterned AGOG sapphire demonstrated a 24% enhancement of output power enhancement over that of LEDs grown) light-emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano- emitting diodes (LEDs) in solid state lighting applications [1 À11]. In conventional metalorganic vapor

  12. Light Effects on the Charge Storage in the A-SI:H Pin Diode 

    E-Print Network [OSTI]

    Wu, Shu-Hsien

    2013-04-19

    was verified with a pre-fabricated circuit which is a charge storage readout device. The diode under the long wavelength light illumination condition stored more charges than that under the short wavelength light illumination condition because the former could...

  13. Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes

    E-Print Network [OSTI]

    Shirasaki, Yasuhiro

    2013-01-01

    Saturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the ...

  14. Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix

    E-Print Network [OSTI]

    Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; Friend, Richard H.; Greenham, Neil C.

    2015-02-24

    Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting...

  15. Broadband visible light source based on AllnGaN light emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  16. Demonstration of a semipolar (10(1)over-bar(3)over-bar) InGaN/GaN green light emitting diode

    E-Print Network [OSTI]

    2005-01-01

    InGaN / GaN green light emitting diode R. Sharma, a? P. M.green ??525 nm? light emitting diode ?LED?. The fabricated

  17. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004 101 Polymer Electrophosphorescent Light-Emitting

    E-Print Network [OSTI]

    obtained by harvesting both singlet and triplet excitons in organic light-emitting diodes (OLEDs) doped Polymer Electrophosphorescent Light-Emitting Diode Using Aluminum Bis(2-Methyl-8-Quinolinato) 4, Senior Member, IEEE, and Hoi-Sing Kwok, Fellow, IEEE Abstract--The characteristics of organic light

  18. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  19. Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source

    Broader source: Energy.gov [DOE]

    General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

  20. Enhanced hole injection in a polymer light emitting diode using a small molecule monolayer bound to the anode

    E-Print Network [OSTI]

    Schwartz, Jeffrey

    Enhanced hole injection in a polymer light emitting diode using a small molecule monolayer bound of modern display technologies [1]. A simple polymer light emitting diode (PLED) can be constructed-naphthyl)-N,N0 -diphenyl1- 1,1-biphenyl1-4, 40 -diamine (a-NPD) in light emitting diode devices [14

  1. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

  2. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect (OSTI)

    James Ibbetson

    2006-05-01

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  3. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  4. Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology

    E-Print Network [OSTI]

    Huang, Hao, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

  5. A strategy for the use of light emitting diodes by autonomous underwater vehicles

    E-Print Network [OSTI]

    Curran, Joseph R. (Joseph Robinson)

    2004-01-01

    Light Emitting Diode (LED) technology has advanced dramatically in a few short years. An expensive and difficult to manufacture LED array containing nearly 100 individual LEDs and measuring at least 5 cm² can now be replaced ...

  6. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top...

    Office of Scientific and Technical Information (OSTI)

    Central Park in New York City A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the...

  7. Note: Scanned multi-light-emitting-diode illumination for volumetric particle image velocimetry

    E-Print Network [OSTI]

    Wettlaufer, John S.

    Note: Scanned multi-light-emitting-diode illumination for volumetric particle image velocimetry M-based three-dimensional illumination systems for volumetric particle image velocimetry PIV that uses a single

  8. Red light-emitting diodes based on InP/GaP quantum dots

    SciTech Connect (OSTI)

    Hatami, F.; Lordi, V.; Harris, J.S.; Kostial, H.; Masselink, W.T.

    2005-05-01

    The growth, fabrication, and device characterization of InP quantum-dot light-emitting diodes based on GaP are described and discussed. The diode structures are grown on gallium phosphide substrates using gas-source molecular-beam epitaxy and the active region of the diode consists of self-assembled InP quantum dots embedded in a GaP matrix. Red electroluminescence originating from direct band-gap emission from the InP quantum dots is observed at low temperatures.With increasing temperature, however, the emission line shifts to the longer wavelength. The emission light is measured to above room temperature.

  9. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  10. Photonic modes of organic light emitting Submitted by

    E-Print Network [OSTI]

    Exeter, University of

    is a metallic cathode. To achieve high efficiency OLEDs a primary issue to address is how the light resultingPhotonic modes of organic light emitting structures Submitted by Peter Allen Hobson for the award of a degree by this or any other University. #12;Abstract 2 Abstract Organic light emitting diodes

  11. 7.3: Reliability Enhancement of AM-OLED with a-Si:H TFT and Top-Anode OLED Employing a New Pixel Circuit

    E-Print Network [OSTI]

    Kanicki, Jerzy

    device and top-anode OLED structure as a top light emission device. We focused on maintaining constant7.3: Reliability Enhancement of AM-OLED with a-Si:H TFT and Top-Anode OLED Employing a New Pixel, USA Abstract: This paper reports a new pixel circuit suitable for enhancing the reliability of AM-OLED

  12. Electro-luminescent cooling: light emitting diodes above unity efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    Experimental demonstration of net electro-luminescent cooling in a diode, or equivalently electroluminescence with wall-plug efficiency greater than unity, had eluded direct observation for more than five decades. We review ...

  13. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOE Patents [OSTI]

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  14. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    SciTech Connect (OSTI)

    Wang, Chao-Hung; Huang, Yu-Wen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Shang-En [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China)] [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China); Liu, Chuan-Pu, E-mail: cpliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China) [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81?×?10{sup 9}?cm{sup ?2} with the size unchanged or the size can be increased to 854.4?nm with the density unchanged.

  15. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes Keywords: III-Nitride InGaN QWs Light-emitting diodes Efficiency-droop a b s t r a c t Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes

  16. Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene Derivatives

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and to stop the well known spectral shift degradation occurring in fluorene based materials. In this paper we1 Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene, copolymerization of siloles with fluorene was aimed at improving electron injection into the polymer layer and so

  17. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Keywords: GaInN/GaN Light emitting diode temperature Micro-Raman Photoluminescence Electroluminescence well light emitting diode (LED) dies is analyzed by micro-Raman, photoluminescence, cathodoluminescenceJunction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting

  18. Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes

    E-Print Network [OSTI]

    Carter, Sue

    the thickness-dependent optical properties of single layer polymer light emitting diodes for two materials, poly the electronic and optical properties of these materials in light emitting diode LED structures.2 OurThickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting

  19. Method and apparatus for improving the performance of light emitting diodes

    DOE Patents [OSTI]

    Lowery, Christopher H. (Fremont, CA); McElfresh, David K. (Union City, CA); Burchet, Steve (Cedar Crest, NM); Adolf, Douglas B. (Albuquerque, NM); Martin, James (Tijeras, NM)

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  20. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect (OSTI)

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  1. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Patents [OSTI]

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  2. White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    . Griffin, C. W. Jeon, and M. D. Dawson, "Spectral conversion of InGaN ultraviolet microarray light functionalization to facilitate cross-linking intentionally when cast into solid-state form. Hybridized on n-UV InGaN/Ga generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes

  3. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Parking Structure Lighting at U.S. Department of Labor Headquarters Kinzey, Bruce R.; Myer, Michael solid-state lighting; LEDs; occupancy sensor controls; parking facility lighting...

  4. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  5. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  6. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  7. Conference 5739, SPIE International Symposium Integrated Optoelectronic Devices, 22-27 Jan 2005, San Jose, CA Development of high power green light emitting diode dies in

    E-Print Network [OSTI]

    Wetzel, Christian M.

    , San Jose, CA Development of high power green light emitting diode dies in piezoelectric Ga in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

  8. Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520525 nm employing graded growth-temperature profile

    E-Print Network [OSTI]

    Gilchrist, James F.

    Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520­525 nm employing current spreading and light extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012

  9. Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes

    E-Print Network [OSTI]

    Lai, Elaine Michelle

    2009-01-01

    wide conversion to LED lighting. It will not be surprisingThese LEDs are bright enough to be used for lighting and areautomotive lighting. A breakdown of the LED market is shown

  10. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  11. ISSUANCE 2015-06-25: Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

  12. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode

    E-Print Network [OSTI]

    Wang, Zhong L.

    a commercial light-emitting diode (LED) without the energy storage process. KEYWORDS: Nanogenerator, high and so on. Among these systems, many of them need an energy storage unit to make them work properly. This energy storage circuit adds much complexity to the self-powered system and hinders its capacity to work

  13. Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application

    E-Print Network [OSTI]

    of Electrical Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 (Received 21 MaySolvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application

  14. Commercialization of Quantum Dot White Light Emitting Diode technology

    E-Print Network [OSTI]

    Zhao, Xinyue, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    It is well known that the use of high-brightness LEDs for illumination has the potential to substitute conventional lighting and revolutionize the lighting industry over the next 10 to 20 years. However, successful penetration ...

  15. Direct nanoimprint of submicron organic light-emitting structures Jian Wang, Xiaoyun Sun, Lei Chen, and Stephen Y. Choua)

    E-Print Network [OSTI]

    light-emitting diodes OLED , organic flat panel dis- plays, and organic lasers have been under intensiveDirect nanoimprint of submicron organic light-emitting structures Jian Wang, Xiaoyun Sun, Lei Chen demonstrated a method to directly pattern organic light-emitting structures with a submicron resolution without

  16. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L., E-mail: lauri.riuttanen@aalto.fi; Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Kivisaari, P.; Oksanen, J.; Tulkki, J. [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  17. C. Wetzel et al MRS Internet J. Nitride Semicond. Res. 10, 2 (2005) 1 Development of High Power Green Light Emitting Diode Chips

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2005-01-01

    Power Green Light Emitting Diode Chips C. Wetzel and T. Detchprohm Future Chips Constellation Abstract The development of high emission power green light emitting diodes chips using GaInN/GaN multi production-scale implementation of this green LED die process. Keywords: nitrides, light emitting diode

  18. InP-Based Oxide-Confined 16 p.m Microcavity Light Emitting Diodes Weidong Zhou, Omar Qasaimeh, and Pallab Bhattacharya

    E-Print Network [OSTI]

    Zhou, Weidong

    InP-Based Oxide-Confined 16 p.m Microcavity Light Emitting Diodes Weidong Zhou, Omar Qasaimeh light emitting diodes (MCLEDs) have been designed, fabricated and characterized. Oxide- confined MCLEDs region emission peak and cavity resonance peak. Key words: Microcavity light emitting diode (MCLED), wet

  19. ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy Zheng Yang, Sheng Chu, Winnie V. Chen1

    E-Print Network [OSTI]

    Yang, Zheng

    ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy Zheng Yang, Sheng substrates using plasma-assisted molecular-beam epitaxy. Mesa geometry light emitting diodes (LEDs) were demonstrated in recent years, such as photodetectors,8,9) light-emitting diodes (LEDs),10­13) and random lasing

  20. Microcavity enhanced vertical-cavity light-emitting diodes U. Keller, G. R. Jacobovitz-Veselka, J. E. Cunningham, W. Y. Jan, B. Tell,

    E-Print Network [OSTI]

    Keller, Ursula

    Microcavity enhanced vertical-cavity light-emitting diodes U. Keller, G. R. Jacobovitz-Veselka, J-cavity light-emitting diode (LED) by continuously changing the microcavity resonance with respect for optical interconnects seems to be the light emitting diode (LED), or better yet, the microcavity en

  1. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect (OSTI)

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias [Physikalisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany)

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  2. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect (OSTI)

    Zhengqing, Gan

    2010-05-16

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a profound understanding of the EL dynamics of OLED, and the theoretical model can fit and explain the experiment data quite well. For the edge emission, we focused on the spectrum and the relative intensity of the edge emission. In the future, more research can be done on the comparison of the intensity between the total edge emission and the surface emission which will give us a sense what fraction of light was trapped in the device. Micro structures can be integrated into the OLED such as DFB and DBR, the character of edge emission should be very interesting. For the transient spike, the CCP model can give a good explanation. But in the model, the effect of the electric field change is not included, because from the start point (t=0), we assume the mobility of carriers is a constant. If we consider the details of the change of the electric field, then when turning of the bias, the decrease of the electric field results in decrease of the carrier mobility and the dissociation rate. If we can add the electric field effect into the model, the whole theory will be more convincing.

  3. Solid-state lighting technology perspective.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  4. Promising Technology: Parabolic Aluminized Reflector Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    Parabolic aluminized reflectors, or PARs, are directional lamps typically used in recessed lighting. In contrast to CFLs, LEDs offer additional advantages including no warm up time, improved dimming and control capabilities, and for some products much greater efficacy ratings.

  5. A silicon current sensing amplifier and organic imager for an optical feedback OLED display

    E-Print Network [OSTI]

    Lin, Albert, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    Organic LEDs (OLEDs) have the potential to be used to build thin, flexible cost effective displays. Currently, the primary drawback to their usage lies in the difficulty of producing OLEDs that emit light at a constant and ...

  6. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect (OSTI)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  7. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect (OSTI)

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

    2013-03-15

    Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  8. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    E-Print Network [OSTI]

    Naeser, Margaret A.

    Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are ...

  9. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  10. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOE Patents [OSTI]

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  11. Novel a-Si:H TFT pixel circuit for electrically stable top-anode light-emitting Juhn Suk Yoo

    E-Print Network [OSTI]

    Kanicki, Jerzy

    Novel a-Si:H TFT pixel circuit for electrically stable top-anode light-emitting AMOLEDs Juhn Suk for electrically stable AMOLEDs with an a-Si:H TFT backplane and top-anode organic light-emitting diode is reported. The OLED current compensation for drive TFT threshold voltage variation has been verified using SPICE

  12. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  13. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

  14. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  15. OLED Stakeholder Meeting Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Stakeholder Meeting Report OLED Stakeholder Meeting Report OLED Stakeholder Meeting Report.pdf More Documents & Publications 2015 Project Portfolio 2015 SSL R&D WORKSHOP...

  16. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  17. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01

    for general white LED lighting. ©2010 Optical Society offor general white LED lighting. #122987 - $15.00 USD (C)state lighting: Failure analysis of white LEDs,” J. Cryst.

  18. Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model

    SciTech Connect (OSTI)

    Chow, Weng W.; Crawford, Mary H.; Tsao, Jeffrey Y.; Kneissl, Michael

    2010-01-01

    We propose a model to better investigate InGaN light-emitting diode (LED) internal efficiency by extending beyond the usual total carrier density rate equation approach. To illustrate its capability, the model is applied to study intrinsic performance differences between violet and green LEDs. The simulations show performance differences, at different current densities and temperatures, arising from variations in spontaneous emission and heat loss rates. By tracking the momentum-resolved carrier populations, these rate changes are, in turn, traced to differences in bandstructure and plasma heating. The latter leads to carrier distributions that deviate from the quasiequilibrium ones at lattice temperature.

  19. Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    is 48.3%. Moreover, the light output power was enhanced from 770 mW for the ETQB LEDs to 870 m; accepted 3 June 2013; published online 19 June 2013) InGaN/GaN light-emitting diodes (LEDs) with graded , which is much smaller than that of the conventional equal-thickness quantum barriers (ETQB) LED, which

  20. Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using Si O 2 /polystyrene microlens arrays

    E-Print Network [OSTI]

    Gilchrist, James F.

    November 2007 Improvement of light extraction efficiency of InGaN quantum wells light emitting diodes LEDs microlens arrays on InGaN quantum wells LEDs, deposited via rapid convective deposition, allows the increase of the effective photon escape cone and reduction in the Fresnel reflection. Improvement of output power by 219

  1. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOE Patents [OSTI]

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  2. A spin light emitting diode incorporating ability of electrical helicity switching

    SciTech Connect (OSTI)

    Nishizawa, N., E-mail: nishizawa@isl.titech.ac.jp; Nishibayashi, K.; Munekata, H. [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-J3-15 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-03-17

    Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a computer-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.

  3. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  4. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect (OSTI)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  5. Demonstration Assessment of Light-Emitting Diode (LED) Residential Downlights and Undercabinet Lights

    SciTech Connect (OSTI)

    None

    2008-10-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY Demonstration Program.

  6. Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Phase III Continuation

    SciTech Connect (OSTI)

    None

    2008-11-01

    This report summarizes the third phase of an LED street lighting assessment project in Oakland, California, conducted to study the applicability of LED luminaires in a street lighting application.

  7. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Phase I

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2010-06-22

    U.S. DOE Solid-State Lighting Technology Demonstration GATEWAY Program Report on the TJMaxx Demonstration.

  8. The Laser DiodeThe Laser Diode Jason HillJason Hill

    E-Print Network [OSTI]

    La Rosa, Andres H.

    a Laser Diode Works Edge Emitting Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n junctionn Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium

  9. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  10. Low Voltage White Phosphorescent OLED Achievements

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

  11. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  12. Temperature-dependent light-output characteristics of GaInN light-emitting diodes with different dislocation densities

    SciTech Connect (OSTI)

    Chhajed, Sameer; Cho, Jaehee; Schubert, E. Fred; Kim, Jong Kyu; Koleske, Daniel D.; Crawford, Mary H.

    2011-01-01

    We have experimentally investigated the temperature dependence of optical-output power of light-emitting diodes (LEDs) with different threading dislocation densities (TDDs) to assess the influence of the TDD on the temperature stability of LEDs. Whereas the LED with high TDD shows a 64% decrease in optical-output power when the ambient temperature increases from 20 to 150?°C, the LED with low TDD shows only a 54% decrease. The temperature dependence of the optical-output power and current dependence of the characteristic temperature T{sub ch} of LEDs shows that short radiative recombination lifetime and low TDDs are essential to obtain LED characteristics that are tolerant of high temperatures.

  13. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--Semiconductor nanocrystal quantum dots (NQD)

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    of energy saving and carbon dioxide emission reduction [1]. By extrapolating from current rates convertors integrated on light-emitting diodes (LEDs). The use of nonradiative energy transfer, also known as Förster-type resonance energy transfer (FRET), in such NQD nanophosphors provides additional benefits

  14. P-55 / J. X. Sun P-55: Bright and Efficient Stacked White Organic Light-emitting Diodes

    E-Print Network [OSTI]

    P-55 / J. X. Sun P-55: Bright and Efficient Stacked White Organic Light-emitting Diodes J. X. Sun N mCP N NN N N N TPBi FirPic Alq3 N O N O N O Al EuroDisplay 2005 · 397 #12;P-55 / J. X. Sun

  15. Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy

    E-Print Network [OSTI]

    Kim, Sehun

    Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study,10 -biphenyl-4,40 -diamine (NPB)/indium tin oxide (ITO) was estimated 1.32 eV, while that with a thin WO3 layer annealing the WO3 interlayer at 350 °C, the reduction of hole injection barrier height largely disappears

  16. Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    E-Print Network [OSTI]

    J. Hu; L. Yang; M. -W. Shin

    2008-01-07

    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

  17. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  18. The role of triplet states in the emission mechanism of polymer light-emitting diodes

    E-Print Network [OSTI]

    M. Arif; S. Mukhopadhyay; S. Ramasesha; S. Guha

    2009-03-01

    The blue emission of polyfluorene (PF) based light-emitting diodes (LEDs) is known to degrade due to a low energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low energy emission mechanism. Our time-dependent many-body studies show that there is a large cross-section for the triplet formation in the electron-hole recombination process in presence of PM, and intersystem crossing from excited singlet to triplet states.

  19. A hole accelerator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Demir, Hilmi Volkan, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-10-13

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    SciTech Connect (OSTI)

    None

    2009-10-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology combined with occupancy sensors in a set of upright grocery store freezer cases.

  1. LASER DIODE TECHNOLOGY AND APPLICATIONS Submitted to

    E-Print Network [OSTI]

    La Rosa, Andres H.

    and a normal diode and a light emitting diode. I will also define the terms homojunction and heterojunction, and is the main source of light in a light-emitting diode. Under suitable conditions, the electron and the hole

  2. Optical Simulation of Top-emitting Organic Light Emitting Diodes H. J. Peng, C.F. Qiu, Z. L. Xie, H. Y. Chen, M. Wong and H. S. Kwok

    E-Print Network [OSTI]

    8.3.3-89 Optical Simulation of Top-emitting Organic Light Emitting Diodes H. J. Peng, C.F. Qiu, Z the optical effects for the top-emitting organic light emitting diodes. The optical performance of the devices with experiments Keywords: Top-emitting organic light emitting diode, optical modeling, microcavity INTRODUCTION

  3. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2 2) semipolar versus (0001) polar

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Articles you may be interested in Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam light-emitting diodes prepared on ( 11 2 ¯ 2 ) -plane GaN J. Appl. Phys. 100, 113109 (2006); 10.1063/1.2382667 Demonstration of a semipolar ( 10 1 ¯ 3 ¯ ) In Ga N Ga N green light emitting diode Appl. Phys. Lett. 87, 231110

  4. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  5. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    SciTech Connect (OSTI)

    Li, Ting (Ventura, CA)

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  6. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  7. Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays

    E-Print Network [OSTI]

    Gilchrist, James F.

    in the Fresnel reflection. Improvement of output power by 219% for InGaN quantum wells LEDs emitting at peakGaN quantum wells light emitting diodes LEDs using SiO2/polystyrene microspheres was demonstrated experimentally. The utilization of SiO2/polystyrene microlens arrays on InGaN quantum wells LEDs, deposited via

  8. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  9. Roll-to-Roll Solution-Processible Small-Molecule OLEDs

    SciTech Connect (OSTI)

    Liu, Jie Jerry

    2012-07-31

    The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

  10. Original articles Ole Seehausen Jacques J.M. van Alphen

    E-Print Network [OSTI]

    Original articles Ole Seehausen á Jacques J.M. van Alphen The effect of male coloration on female white light and under monochromatic light, under which the interspe- ci®c dierences in coloration were visible, but chose non-as- sortatively when colour dierences were masked by light conditions. Neither male

  11. Strain-tunable entangled-light-emitting diodes with high yield and fast operation speed

    E-Print Network [OSTI]

    Jiaxiang Zhang; Johannes S. Wildmann; Fei Ding; Rinaldo Trotta; Yongheng Huo; Eugenio Zallo; Daniel Huber; Armando Rastelli; Oliver G. Schmidt

    2015-05-12

    Triggered sources of entangled photons play crucial roles in almost any existing protocol of quantum information science. The possibility to generate these non-classical states of light with high speed and using electrical pulses could revolutionize the field. Entangled-light-emitting-diodes (ELEDs) based on semiconductor quantum dots (QDs) are at present the only devices that can address this task 5. However, ELEDs are plagued by a source of randomness that hampers their practical exploitation in the foreseen applications: the very low probability (~10-2) of finding QDs with sufficiently small fine-structure-splitting for entangled-photon-generation. Here, we overcome this hurdle by introducing the first strain-tunable ELEDs (S-ELEDs) that exploit piezoelectric-induced strains to tune QDs for entangled-photon-generation. We demonstrate that up to 30% of the QDs in S-ELEDs emit polarization-entangled photon pairs with entanglement-fidelities as high as f+ = 0.83(5). Driven at the highest operation speed of 400 MHz ever reported so far, S-ELEDs emerge as unique devices for high-data rate entangled-photon applications.

  12. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N., E-mail: kurose@fc.ritsumei.ac.jp; Aoyagi, Y. [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Shibano, K.; Araki, T. [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400?nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  13. 2015 OLED Stakeholder Meeting Report

    Energy Savers [EERE]

    engineering than LED fixtures because the panels are lighter weight, do not require optics, and do not have heat transfer problems; however, the OLED industry will need to...

  14. Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications: First Budget Period Technical Report

    SciTech Connect (OSTI)

    Yijian Shi

    2009-09-30

    A COLED device consists of a top electrode (anode) and a bottom electrode (cathode) separated by a thin dielectric layer. In this metal/dielectric stack, numerous small wells, or cavities, are etched through the top electrode and the dielectric layer. These cavities are subsequently filled with LEP molecules. When a voltage is applied between the top and bottom electrodes, holes (from the top electrode) and electrons (from the bottom electrode) are injected into the polymer. Light emission is generated upon recombination of holes and electrons within the polymer along the perimeters of cavities. Figure 1 compares the structures of the COLED and the traditional OLED. The existing COLED fabrication process flow is illustrated in Figure 2. A COLED can potentially be 5 times more efficient and can operate at as much as 100 times higher current density with much longer lifetime than an OLED. To fully realize these potential advantages, the COLED technology must overcome the following technical barriers, which were the technical focused points for Years 1 and 2 (Phase I) of this project: (1) Construct optimum thickness dielectric layer: In the traditional OLED structure, the optimal thickness of the LEP film is approximately 80-100 nm. In a COLED device, the effective LEP thickness roughly equals the thickness of the dielectric layer. Therefore, the optimal dielectric thickness for a COLED should also be roughly equal to 80-100 nm. Generally speaking, it is technically challenging to produce a defect-free dielectric layer at this thickness with high uniformity, especially over a large area. (2) Develop low-work-function cathode: A desired cathode should have a low work function that matches the lowest unoccupied molecular orbital (LUMO) level of the LEP molecules. This is usually achieved by using a low-work-function metal such as calcium, barium, lithium, or magnesium as the cathode. However, these metals are very vulnerable to oxygen and water. Since the cathode of the COLED will be exposed to air and processing chemicals during the COLED fabrication process, these low-work-function metals cannot be used directly in the COLED structure. Thus, new materials with low work function and better chemical stability are needed for the COLED cathode. (3) Increase active device area: Since photons are only generated from perimeters of the cavities, the actual active area in a COLED device is smaller than the device surface area. The cavity diameter and cavity spacing of the COLED devices previously produced at SRI by conventional photolithography processing are typically in the range of 3 to 7 {mu}m with an estimated active area of 2-3%. To achieve the same brightness of a traditional OLED at the same applied voltage, the active device area of a COLED should be at least 20% (1/5) of the device surface area, provided the COLED has 5 times higher EQE. This requires reducing the cavity diameter and cavity spacing to the sub-micrometer region, which can be achieved by electron-beam lithography or nanoimprint lithography. (4) Improve metal/polymer interfaces: The polymer/metal interfaces are critical issues to improve and optimize since they directly affect the effectiveness and balance of hole and electron injection, and consequently the device performance. Conventional approaches for improving a metal/polymer interface include deposition of a special interfacial material on the selected electrode surface or applying a proper surface treatment prior to deposition of the LEP. Since these approaches are generally nonselective to the cathode and anode, they cannot be directly adopted for COLED devices. Generally, the interface integration in current OLED technology still needs a better chemical approach. Hence, advanced methodology developed for the COLED technology as promoted in this project may be also suitable for other OLED devices.

  15. Note: A portable, light-emitting diode-based ruby fluorescence spectrometer for high-pressure calibration

    SciTech Connect (OSTI)

    Feng Yejun [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2011-04-15

    Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.

  16. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect (OSTI)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup ?2} and a low dislocation density of 3 × 10{sup 8} cm{sup ?2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A}???0.04?eV, E{sub A1}???0.13?eV, and E{sub B}???0.54?eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  17. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect (OSTI)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun, E-mail: tongjun@pku.edu.cn; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  18. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  19. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is “lost” in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

  20. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect (OSTI)

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

  1. Stacked white OLED having separate red, green and blue sub-elements

    DOE Patents [OSTI]

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  2. Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures

    SciTech Connect (OSTI)

    Liu, D.-S.; Lin, T.-W.; Huang, B.-W.; Juang, F.-S.; Lei, P.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 63201, Taiwan (China); Hu, C.-Z. [Chilin Technology Co. Ltd., Tainan County 71758, Taiwan (China)

    2009-04-06

    Amorphous titanium oxide (a-TiO{sub x}:OH) films prepared by plasma-enhanced chemical-vapor deposition at 200 and 25 deg. C are in turn deposited onto the GaN-based light-emitting diode (LED) to enhance the associated light extraction efficiency. The refractive index, porosity, and photocatalytic effect of the deposited films are correlated strongly with the deposition temperatures. The efficiency is enhanced by a factor of {approx}1.31 over that of the uncoated LEDs and exhibited an excellent photocatalytic property after an external UV light irradiation. The increase in the light extraction is related to the reduction in the Fresnel transmission loss and the enhancement of the light scattering into the escape cone by using the graded-refractive-index a-TiO{sub x}:OH film with porous structures.

  3. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect (OSTI)

    Miller, Naomi

    2011-07-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  4. Studies of solution-processed organic light-emitting diodes and their materials

    SciTech Connect (OSTI)

    Hellerich, Emily

    2013-05-15

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

  5. a-IGZO TFT Based Pixel Circuits for AM-OLED Displays Hyunseung Jung, Yongchan Kim, Youngseok Kim, Charlene Chen1

    E-Print Network [OSTI]

    Kanicki, Jerzy

    ) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on aa-IGZO TFT Based Pixel Circuits for AM-OLED Displays Hyunseung Jung, Yongchan Kim, Youngseok Kim-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced

  6. The solid state lighting initiative: An industry/DOE collaborativeeffort

    SciTech Connect (OSTI)

    Johnson, Steve

    2000-10-01

    A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

  7. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    SciTech Connect (OSTI)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Yuan, Dajun; Guo, Rui; Liu, Jianping; Asadirad, Mojtaba; Kwon, Min-Ki; Dupuis, Russell D.; Das, Suman; Ryou, Jae-Hyun

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500?nm, depth of 50?nm, and a periodicity of 1??m were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of the top p-GaN layer and the active region, respectively.

  8. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  9. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  10. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  11. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Supplemental Notice of Proposed Rulemaking regarding Test Procedures for Integrated Light-Emitting Diode Lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  12. Graded InxGa1 xAs/GaAs 1.3 m wavelength light emitting diode structures grown with molecular beam epitaxy

    E-Print Network [OSTI]

    Graded InxGa1 xAs/GaAs 1.3 m wavelength light emitting diode structures grown with molecular beam 11 June 1997; accepted for publication 29 September 1997 In this study 1.1­1.3 m wavelength light at a lower cost. Such a technology could have an impact on the economic feasibility of fiber to the home

  13. Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor- and Nano-systems Programme, Singapore-MIT Alliance, Singapore 117576 Received 22 June 2010; accepted 10 hybridized, radial p-n junction based, nanopillar solar cells with photovoltaic performance enhanced

  14. The use of short-period InGaN/GaN superlattices in blue-region light-emitting diodes

    SciTech Connect (OSTI)

    Sizov, V. S., E-mail: vsizov@mail.ioffe.ru; Tsatsulnikov, A. F.; Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Cherkashin, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Hytch, M. J. [National Center for Scientific Research (CNRS), Center for Material Elaboration and Structural Studies (CEMES) (France); Nikolaev, A. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mintairov, A. M.; He Yan; Merz, J. L. [University of Notre Dame, EE Department (United States)

    2010-07-15

    Optical and light-emitting diode structures with an active InGaN region containing short-period InGaN/GaN superlattices are studied. It is shown that short-period superlattices are thin two-dimensional layers with a relatively low In content that contain inclusions with a high In content 1-3 nm thick. Inclusions manifest themselves from the point of view of optical properties as a nonuniform array of quantum dots involved in a residual quantum well. The use of short-period superlattices in light-emitting diode structures allows one to decrease the concentration of nonradiative centers, as well as to increase the injection of carriers in the active region due to an increase in the effective height of the AlGaN barrier, which in general leads to an increase in the quantum efficiency of light-emitting diodes.

  15. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  16. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect (OSTI)

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  17. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  18. Bi-layer non-doped small-molecular white organic light-emitting diodes with high colour This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Bi-layer non-doped small-molecular white organic light-emitting diodes with high colour stability and conditions apply. View the table of contents for this issue, or go to the journal homepage for more Home-layer non-doped small-molecular white organic light-emitting diodes with high colour stability Shuming Chen1

  19. Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire

    SciTech Connect (OSTI)

    Michael Hack

    2010-07-09

    In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

  20. Energy Savings Potential for Street Lighting in India

    E-Print Network [OSTI]

    Johnson, Alissa K.

    2014-01-01

    M. B. Kostic, “Light-emitting diodes in street and roadwayCompact fluorescent Light emitting diode High intensityCompact fluorescent Light emitting diode Mercury Vapor High

  1. Materials design concepts for efficient blue OLEDs: A joint theoretical and experimental study

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Padmaperuma, Asanga B.

    2012-04-01

    Since their discovery, organic light emitting devices have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize the lighting market. During their relatively short history, the technology incorporated into OLEDs has rapidly advanced. Device quantum efficiencies have increased more than 20-fold since the first OLEDs, approaching the theoretical limit for internal quantum efficiencies. , , At this point, OLED research moves towards optimization of manufacturing processes, drive circuitry, light extraction, and overall cost reduction. However, finding the organic materials that provide both operational stability and high efficiency for the devices still remains one of the biggest challenges, particularly for blue emission. In this presentation, we will describe our approach to design functional OLED materials to meet the complex criteria set forth by device efficiency and stability goals.

  2. Demonstration Assessment of Light-Emitting Diode Post-Top Lighting at Central Park in New York City

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2012-09-01

    GATEWAY program report on a demonstration of LED post-top lighting in Central Park in New York City.

  3. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  4. An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode

    SciTech Connect (OSTI)

    Mehta, M.; Michaelis de Vasconcellos, S.; Zrenner, A.; Meier, C. [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), University of Paderborn, Warburger Street 100, 33098 Paderborn (Germany); Reuter, D.; Wieck, A. D. [Applied Solid State Physics, Ruhr-University of Bochum, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-10-04

    We have integrated individual (In,Ga)As quantum dots (QDs) using site-controlled molecular beam epitaxial growth into the intrinsic region of a p-i-n junction diode. This is achieved using an in situ combination of focused ion beam prepatterning, annealing, and overgrowth, resulting in arrays of individually electrically addressable (In,Ga)As QDs with full control on the lateral position. Using microelectroluminescence spectroscopy we demonstrate that these QDs have the same optical quality as optically pumped Stranski-Krastanov QDs with random nucleation located in proximity to a doped interface. The results suggest that this technique is scalable and highly interesting for different applications in quantum devices.

  5. Demonstration Assessment of Light Emitting Diode (LED) Walkway Lighting at the Federal Aviation Administration William J. Hughes Technical Center, in Atlantic City, New Jersey

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2008-03-18

    This report documents the results of a collaborative project to demonstrate a solid state lighting (SSL) general illumination product in an outdoor area walkway application. In the project, six light-emitting diode (LED) luminaires were installed to replace six existing high pressure sodium (HPS) luminaires mounted on 14-foot poles on a set of exterior walkways and stairs at the Federal Aviation Administration (FAA) William J. Hughes Technical Center in Atlantic City, New Jersey, during December, 2007. The effort was a U.S. Department of Energy (DOE) SSL Technology Gateway Demonstration that involved a collaborative teaming agreement between DOE, FAA and Ruud Lighting (and their wholly owned division, Beta LED). Pre- and post-installation power and illumination measurements were taken and used in calculations of energy savings and related economic payback, while personnel impacted by the new lights were provided questionnaires to gauge their perceptions and feedback. The SSL product demonstrated energy savings of over 25% while maintaining illuminance levels and improving illuminance uniformity. PNNL's economic analysis yielded a variety of potential payback results depending on the assumptions used. In the best case, replacing HPS with the LED luminaire can yield a payback as low as 3 years. The new lamps were quite popular with the affected personnel, who gave the lighting an average score of 4.46 out of 5 for improvement.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    SciTech Connect (OSTI)

    None

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  7. InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ) In conventional InGaN/GaN light-emitting diodes (LEDs), thin InGaN quantum wells are usually adopted to mitigate recombination scales with the third power of the carrier density. As a result, the efficiency droop of the Auger recombination severely limits the LED performance. Here, we proposed and showed wide InGaN quantum wells

  8. WHITE ORGANIC LIGHT-EMITTING DIODES USING 1,1,2,3,4,5-HEXAPHENYLSILOLE (HPS) AS GREENISH-BLUE EMITTER

    E-Print Network [OSTI]

    WHITE ORGANIC LIGHT-EMITTING DIODES USING 1,1,2,3,4,5- HEXAPHENYLSILOLE (HPS) AS GREENISH-BLUE emitter and the 1,1,2,3,4,5- hexaphenylsilole (HPS) layer was used as the greenish- blue emitter. White of 160cd/m2 . This high efficiency was attributed to the highly efficient greenish- blue emitter-1

  9. AlNAlGaInN superlattice light-emitting diodes at 280 nm G. Kipshidze, V. Kuryatkov, K. Zhu, and B. Borisov

    E-Print Network [OSTI]

    Holtz, Mark

    -emitting diodes operating at 280 nm, grown by gas source molecular-beam epitaxy with ammonia, are described storage. However, despite recent progress, preparation of light sources operating below 300 nm is still molecular-beam epitaxy with ammonia13 on sapphire substrates. Epitaxial growth starts with the nitridation

  10. Room-temperature ultraviolet emission from an organic light-emitting diode C. F. Qiu, L. D. Wang, H. Y. Chen, M. Wong, and H. S. Kwok

    E-Print Network [OSTI]

    Room-temperature ultraviolet emission from an organic light-emitting diode C. F. Qiu, L. D. Wang, H Ultraviolet emission was obtained from N,N -diphenyl-N,N -bis 3-methylphenyl - 1,1 -bi phenyl -4,4 -diamine. Gallium nitride was used as a hole-blocking layer to contain the holes. A peak emission wavelength of 400

  11. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect (OSTI)

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang, E-mail: timtclu@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 300 (China)

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20?mA and a 27.0% efficiency droop at 100?mA (corresponding to a current density of 69?A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  12. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption

    SciTech Connect (OSTI)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Zuo, Peng; Jia, Haiqiang; Chen, Hong, E-mail: hchen@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-18

    We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20?mA are 0.24 mW and 556.3?nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resulted from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.

  13. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

    SciTech Connect (OSTI)

    Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2010-12-10

    We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

  14. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  15. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  16. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  17. Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3?MeV proton irradiation

    SciTech Connect (OSTI)

    De Santi, C.; Meneghini, M. Trivellin, N.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Meneghesso, G.; Zanoni, E.

    2014-11-24

    This paper reports on the degradation and recovery of two different series of commercially available InGaN-based blue light emitting diodes submitted to proton irradiation at 3?MeV and various fluences (10{sup 11}, 10{sup 13}, and 10{sup 14}?p{sup +}/cm{sup 2}). After irradiation, we detected (i) an increase in the series resistance, in the sub-turn-on current and in the ideality factor, (ii) a spatially uniform drop of the output optical power, proportional to fluence, and (iii) a reduction of the capacitance of the devices. These results suggest that irradiation induced the generation of non-radiative recombination centers near the active region. This hypothesis is further confirmed by the results of the recovery tests carried out at low temperature (150?°C)

  18. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect (OSTI)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100?mT is markedly larger at the high-energy blue end of the EL spectrum (?I/I???11%) than at the low-energy red end (?4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  19. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  20. Power Modeling of Graphical User Interfaces on OLED Mian Dong Yung-Seok Kevin Choi Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    Algorithms, Measurement, Human Factors Keywords OLED Display, Graphic User Interface, Low Power 1Power Modeling of Graphical User Interfaces on OLED Displays Mian Dong Yung-Seok Kevin Choi Lin external lighting; and consume drastically different power when displaying different colors, due

  1. Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs

    E-Print Network [OSTI]

    Park, Won Young

    2013-01-01

    crystal display LED light emitting diode MEPS minimum energyOLED organic light emitting diode PC personal computer PDPdisplay (LCD) to light emitting diode (LED) backlit LCD

  2. Design for enhanced thermo-electric pumping in light emitting diodes Dodd J. Gray Jr., Parthiban Santhanam, and Rajeev J. Ram

    E-Print Network [OSTI]

    Ram, Rajeev J.

    of EL cooling in an LED, the low light power ($70 pW or $1.1 Â 10À9 W mmÀ2 ) and elevated LED tem for optimization of thermo-electric pumping in light emitting diodes (LEDs). We use a finite element model for charge transport in a GaInAsSb/GaSb double hetero-junction LED that is verified experimentally

  3. Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO{sub 2} thin film

    SciTech Connect (OSTI)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul

    2008-11-10

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe/ZnS nanocrystals in TiO{sub 2} thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO{sub 2}/QDs/p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO{sub 2}/QDs/Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  4. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills.

  5. 124 Department of Chemistry Graduate Catalogue 201314

    E-Print Network [OSTI]

    Shihadeh, Alan

    -deficient materials for organic electronics and opto-electronics applications; organic light emitting diodes (OLEDs

  6. Display Blocks: a Set of Cubic Displays for Tangible, Multi-Perspective Data Exploration

    E-Print Network [OSTI]

    -digital disconnect. Each Display Block consists of six organic light emitting diode (OLED) screens, arranged

  7. 2009-10 Princeton Global Scholar Takao Someya. Professor Someya of the University of Tokyo is one of the world's leading

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    on stretchable organic light- emitting diode (OLED) display driven by organic transistors. Professors Lynn Loo

  8. Materials Research Lab -Research Internships in Science and Engineering http://www.mrl.ucsb.edu/mrl/outreach/educational/RISE/interns03.html[5/10/12 9:53:34 AM

    E-Print Network [OSTI]

    Bigelow, Stephen

    and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education

  9. Energy-Efficient Graphical User Interface Design Keith S. Vallerio Member, IEEE,, Lin Zhong Student Member, IEEE, and Niraj K. Jha Fellow, IEEE,

    E-Print Network [OSTI]

    Zhong, Lin

    . consumption. Researchers at HP Labs have investigated how future organic light-emitting diodes (OLED) based

  10. Interacting with a Personal Cubic 3D Display Billy Lam, Ian Stavness, Ryan Barr, and Sidney Fels

    E-Print Network [OSTI]

    British Columbia, University of

    Cubee's design to min- imize display weight and edge thickness, although organic light emitting diode (OLED

  11. Peripherally Inserted Central Catheter PlacementWith the Sonic Flashlight

    E-Print Network [OSTI]

    Stetten, George

    , interventional radiology; IV, intravenous; OLED, organic light-emitting diode; PICC, peripherally inserted

  12. The Spectrum of Clean Energy Innovationinnovati nGreen Light-Emitting Diode Makes

    E-Print Network [OSTI]

    in the indoor lighting world. LEDs are fundamentally solar cells operating in reverse--that is, when- or ultraviolet-emitting LED energizes a phosphorescent substance to produce white light indirectly, similar in development by several NREL scientists studying high- efficiency solar cells, and they have been very

  13. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    SciTech Connect (OSTI)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ?120?mA (?7.5?kA/Cm{sup 2}) at 300?K. The range of peak emission wavelengths for different currents is 423–426?nm and the emission bandwidth is ?5?nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600?mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  14. A hole modulator for InGaN/GaN light-emitting diodes Zi-Hui Zhang, Zabu Kyaw, Wei Liu, Yun Ji, Liancheng Wang, Swee Tiam Tan, Xiao Wei Sun, and Hilmi Volkan

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    well on optical power of light-emitting diodes Appl. Phys. Lett. 96, 051113 (2010); 10-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which

  15. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    SciTech Connect (OSTI)

    Lo Savio, R.; Galli, M.; Liscidini, M.; Andreani, L. C. [Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Franzò, G.; Iacona, F.; Miritello, M. [MATIS-IMM CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Irrera, A. [CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina (Italy); Sanfilippo, D.; Piana, A. [ST Microelectronics, Stradale Primosole 50, 95121 Catania (Italy); Priolo, F. [MATIS-IMM CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2014-03-24

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54??m, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission in a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.

  16. Development of monolithic CMOS-compatible visible light emitting diode arrays on silicon

    E-Print Network [OSTI]

    Chilukuri, Kamesh

    2006-01-01

    The synergies associated with integrating Si-based CMOS ICs and III-V-material-based light-emitting devices are very exciting and such integration has been an active area of research and development for quite some time ...

  17. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  18. Light emitting diode with porous SiC substrate and method for fabricating

    DOE Patents [OSTI]

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  19. Stimulated emission in GaN-based laser diodes far below the threshold region

    E-Print Network [OSTI]

    2014-01-01

    forward current of light-emitting diodes,” J. Appl. Phys.superluminescent light-emitting diodes based on GaN,” Appl.superluminescent light emitting diode structures,” J. Appl.

  20. Where Do OLEDs Fit In?

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergyDepartment ofNuclearWhere Do OLEDs Fit

  1. Pressure-assisted fabrication of organic light emitting diodes with MoO{sub 3} hole-injection layer materials

    SciTech Connect (OSTI)

    Du, J. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Anye, V. C.; Vodah, E. O. [Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria); Tong, T. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Zebaze Kana, M. G. [Physics Advanced Laboratory, Sheda Science and Technology Complex, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Kwara State (Nigeria); Soboyejo, W. O. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria)

    2014-06-21

    In this study, pressures of ?5 to ?8?MPa were applied to organic light emitting diodes containing either evaporated molybdenum trioxide (MoO{sub 3}) or spin-coated poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) hole-injection layers (HILs). The threshold voltages for both devices were reduced by about half, after the application of pressure. Furthermore, in an effort to understand the effects of pressure treatment, finite element simulations were used to study the evolution of surface contact between the HIL and emissive layer (EML) under pressure. The blister area due to interfacial impurities was also calculated. This was shown to reduce by about half, when the applied pressures were between ?5 and 8?MPa. The finite element simulations used Young's modulus measurements of MoO{sub 3} that were measured using the nanoindentation technique. They also incorporated measurements of the adhesion energy between the HIL and EML (measured by force microscopy during atomic force microscopy). Within a fracture mechanics framework, the implications of the results are then discussed for the pressure-assisted fabrication of robust organic electronic devices.

  2. Highly-selective wettability on organic light-emitting-diodes patterns by sequential low-power plasmas

    SciTech Connect (OSTI)

    Svarnas, P.; Edwards, A. J.; Bradley, J. W. [Department of Electrical Engineering and Electronics, Technological Plasmas Group, University of Liverpool, Merseyside L69 3GJ (United Kingdom); Yang, L.; Munz, M.; Shard, A. G. [Analytical Science Division, National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2010-05-15

    Patterned organic light-emitting-diode substrates were treated by oxygen (O{sub 2}) and tetrafluoromethane (CF{sub 4}) radio-frequency (rf, 13.56 MHz) plasmas of low-power (close to 1 W) that were capacitively-coupled. An unexpected wettability contrast (water contact angle difference up to 90 deg. ) between the indium-tin-oxide anode and the bank resist regions was achieved, providing excellent conditioning prior to the ink-jet printing. This selectivity was found to be adjustable by varying the relative exposure time to the O{sub 2} and CF{sub 4} sequential plasmas. Static contact angle measurements and extensive x-ray photoelectron spectroscopy analyses showed that the wetting properties depend on the carbon and fluorine chemical functional groups formed at the outermost surface layers, whereas atomic force microscopy images did not show a morphological change. Plasma optical emission spectroscopy and ion mass spectroscopy suggested that surface functionalization was initiated by energy transfer from ionic species (O{sup +}, O{sub 2}{sup +}, CF{sup +}, CF{sub 2}{sup +}, and CF{sub 3}{sup +}) and excited neutrals (O{sup *} and F{sup *}). The absolute ion fluxes measured on the substrates were up to 10{sup 14} cm{sup -2} s{sup -1} and the ion energies up to 20 eV, despite the low powers applied during the process.

  3. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths

    E-Print Network [OSTI]

    Shakoor, A; Cardile, P; Portalupi, S L; Gerace, D; Welna, K; Boninelli, S; Franzo, G; Priolo, F; Krauss, T F; Galli, M; Faolain, L O

    2013-01-01

    Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({\\Delta}{\\lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects a...

  4. Edge electroluminescence of the effective silicon point-junction light-emitting diode in the temperature range 80-300 K

    SciTech Connect (OSTI)

    Emel'yanov, A. M. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: Emelyanov@mail.ioffe.ru

    2008-11-15

    The edge electroluminescence spectra of silicon point-junction light-emitting diodes with a p-n junction area of 0.008 mm{sup 2} are studied at temperatures ranging from 80 to 300 K. Unprecedentedly high stability of the position of the spectral peak is observed at temperatures in the range between 130 and 300 K. The spectral characteristics of the light emitting diodes are studied at 80 K at different current densities up to 25 kA/cm{sup 2}. In contrast to the earlier reported data obtained at 300 K, the data obtained at 80 K do not show any noticeable Augerrecombination-related decrease in the quantum efficiency. From an analysis of the electroluminescence spectra at 80 K in a wide range of currents, it follows that radiative annihilation of free excitons is not a governing mechanism of electroluminescence in the entire emitting region in the base of the point-junction light-emitting diode at all currents used in the experiment.

  5. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In{sub 0.2}Ga{sub 0.8}N/GaN quantum wells

    SciTech Connect (OSTI)

    Lelikov, Yu. S.; Bochkareva, N. I.; Gorbunov, R. I.; Martynov, I. A.; Rebane, Yu. T.; Tarkin, D. V.; Shreter, Yu. G. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: YShreter@mail.ioffe.ru

    2008-11-15

    A procedure for measuring the absorption coefficient for light propagating parallel to the surface of a GaN-based light emitting diode chip on a sapphire substrate is suggested. The procedure implies the study of emission from one end face of the chip as the opposite end face is illuminated with a light emitting diode. The absorption coefficient is calculated from the ratio between the intensities of emission emerging from the end faces of the sapphire substrate and the epitaxial layer. From the measurements for chips based on p-GaN/In{sub 0.2}Ga{sub 0.8}N/n-GaN structures, the lateral absorption coefficient is determined at a level of (23 {+-} 3)cm{sup -1} at a wavelength of 465 nm. Possible causes for the discrepancy between the absorption coefficients determined in the study and those reported previously are analyzed.

  6. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu, E-mail: jyzhang@seu.edu.cn [Advanced Photonic Center, Southeast University, Nanjing 210096 (China); Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo [Research Institute of Electric Light Source Materials, Nanjing University of Technology, Nanjing 210015 (China)

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  7. Materials for solid state lighting

    SciTech Connect (OSTI)

    Johnson, S.G.; Simmons, J.A.

    2002-03-26

    Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

  8. Improving the external extraction efficiency of organic light emitting devices

    E-Print Network [OSTI]

    Ho, John C., 1980-

    2004-01-01

    Over the last decade Organic Light Emitting Device (OLED) technology has matured, progressing to the point where state-of-the-art OLEDs can demonstrate external extraction efficiencies that surpass those of fluorescent ...

  9. OLED Stakeholder Meeting Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | DepartmentOLED Stakeholder Meeting Report OLED Stakeholder Meeting Report

  10. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim, E-mail: piprek@nusod.org [NUSOD Institute LLC, P.O. Box 7204, Newark, Delaware 19714 (United States)

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  11. Active region based on graded-gap InGaN/GaN superlattices for high-power 440- to 470-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F., E-mail: Andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Cherkashin, N. A.; Ber, B. Ya.; Kazantsev, D. Yu. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Mizerov, M. N. [Russian Academy of Sciences, Center for Microelectronics, Ioffe Physicotechnical Institute (Russian Federation); Park, Hee Seok [Samsung Electro-Mechanics Co. Ltd. (Korea, Republic of); Hytch, M.; Hue, F. [National Center for Scientific Research, Center for Material Elaboration and Structural Studies (France)

    2010-01-15

    The structural and optical properties of light-emitting diode structures with an active region based on ultrathin InGaN quantum wells limited by short-period InGaN/GaN superlattices from both sides have been investigated. The dependences of the external quantum efficiency on the active region design are analyzed. It is shown that the use of InGaN/GaN structures as limiting graded-gap short-period superlattices may significantly increase the quantum efficiency.

  12. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    'll build the circuit! We'll use an LED to represent the room lights! #12;4! Block diagram! Battery! Rail! #12;23! LED: light-emitting diode! Diode conducts current in only one direction! When current flows1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if

  13. Experimental and theoretical insights into the sequential oxidations of 3-2spiro molecules derived from oligophenylenes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    been the design of efficient and stable blue light emitters for organic light-emitting diodes (OLED in organic light emitting diode (OLED) leading to violet to blue light emitting devices. [31

  14. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  15. Energy Department Announces $4 Million Solicitation for Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy...

  16. Highly efficient non-doped fluorescent OLEDs based on aggregation-induced emission emitters

    E-Print Network [OSTI]

    26 Highly efficient non-doped fluorescent OLEDs based on aggregation-induced emission emitters quenches light emission due to strong intermolecular - interaction, a notorious effect known as aggregation as emitters will be present. The TPE derivatives show aggregation-induced emission (AIE) characteristics, i

  17. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect (OSTI)

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  18. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect (OSTI)

    Wang, Qi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Ma, Dongge, E-mail: mdg1014@ciac.jl.cn; Ding, Junqiao; Wang, Lixiang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Leo, Karl [Tech. Univ. Dresden, Inst. Angew. Photophys., D-01062 Dresden (Germany); Qiao, Qiquan [Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Jia, Huiping; Gnade, Bruce E. [Department of Materials Science and Engineering and Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye ? green dye ? red host ? red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1?±?0.8% and power efficiency of 37.5?±?1.4?lm/W but shows no color shift over a wide range of voltages.

  19. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  20. BreakthroughsBreakthroughsBreakthroughsBreakthroughsBreakthroughsBreakthroughs in Photonicsin Photonicsin Photonicsin Photonicsin Photonicsin Photonics 201120112011

    E-Print Network [OSTI]

    Rogers, John A.

    : Microscale light-emitting diodes (LEDs), organic LEDs (OLEDs), flexible electronics, stretchable electronics, biomedical devices, transfer printing. 1. Introduction The emergence of organic light-emitting diodes (OLEDs Lighting Integrated Photonic Systems Photovoltaics Sensors, Imaging, and Visualization #12;Microscale

  1. Efficacy of 45 lm/W Achieved in White OLED

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) successfully demonstrated an all phosphorescent white organic light emitting diode (WOLED™) with a power efficacy of 45 lm/W at 1,000 cd/m2. This high-efficacy device was enabled by lowering the device operating voltage, increasing the outcoupling efficiency to ~40% from ~20%, and by incorporating highly efficient phosphorescent emitters that are capable of converting nearly all current passing through a WOLED into light.

  2. Dynamic Voltage Scaling of OLED Displays Donghwa Shin, Younghyun Kim,

    E-Print Network [OSTI]

    Pedram, Massoud

    thanks to their self-illuminating characteristic. In spite of this fact, the OLED dis- play panel attempts to reduce the OLED power consumption. Since power consumption of any pixel of the OLED display systems account for a significant portion of the total power consumption in battery-powered electronics

  3. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  4. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect (OSTI)

    Slafer, W. Dennis

    2010-06-02

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  5. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  6. Advanced Light Extraction Structure for OLED Lighting | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For

  7. A hole accelerator for InGaN/GaN light-emitting diodes Zi-Hui Zhang, Wei Liu, Swee Tiam Tan, Yun Ji, Liancheng Wang, Binbin Zhu, Yiping Zhang, Shunpeng Lu,

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    GaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, the effectiveness of the hole ac- celerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10

  8. Influence of n-type versus p-type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    to be further improved in order for the high- power LEDs to penetrate into the consumer market of gen- eral to higher optical output power and external quantum efficiency, compared to the devices with p-AlGaN EBLGaN/GaN based light-emitting diodes (LEDs) possess unique advantages including high energy conversion effi

  9. InGaN/GaN light-emitting diode with a polarization tunnel junction Zi-Hui Zhang, Swee Tiam Tan, Zabu Kyaw, Yun Ji, Wei Liu et al.

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    to the enhanced optical output power and external quantum efficiency. Compared to the reference InGaN/GaN LEDs; accepted 29 April 2013; published online 15 May 2013) We report InGaN/GaN light-emitting diodes (LED have been devoted to boosting the optical output power and enhancing the external quantum efficiency

  10. Characterization of the deep levels responsible for non-radiative recombination in InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Meneghini, M. La Grassa, M.; Vaccari, S.; Meneghesso, G.; Zanoni, E.

    2014-03-17

    This paper presents an extensive investigation of the deep levels related to non-radiative recombination in InGaN/GaN light-emitting diodes (LEDs). The study is based on combined optical and deep-level transient spectroscopy measurements, carried out on LEDs with identical structure and with different values of the non-radiative recombination coefficient. Experimental data lead to the following, relevant, results: (i) LEDs with a high non-radiative recombination coefficient have a higher concentration of a trap (labeled as “e{sub 2}”) with an activation energy of 0.7 eV, which is supposed to be located close to/within the active region; (ii) measurements carried out with varying filling pulse duration suggest that this deep level behaves as a point-defect/dislocation complex. The Arrhenius plot of this deep level is critically compared with the previous literature reports, to identify its physical origin.

  11. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    SciTech Connect (OSTI)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Changchun 130022 (China); Zhao, Yongbiao [Luminous Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Zhang, Hongmei [Department of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2014-06-28

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000?cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2?lm/W, 59.3?cd/A, and 23.1%, which slightly shift to 53.4?lm/W, 57.1?cd/A, and 22.2% at 1000?cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thin non-doped orange emission layer in WOLEDs.

  12. Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Zhang, Xueliang; Wang, Liancheng; Kyaw, Zabu; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-23

    InGaN/GaN light-emitting diodes (LEDs) grown along the [0001] orientation inherit very strong polarization induced electric fields. This results in a reduced effective conduction band barrier height for the p-type AlGaN electron blocking layer (EBL) and makes the electron blocking effect relatively ineffective and the electron injection efficiency drops. Here, we show the concept of polarization self-screening for improving the electron injection efficiency. In this work, the proposed polarization self-screening effect was studied and proven through growing a p-type EBL with AlN composition partially graded along the [0001] orientation, which induces the bulk polarization charges. These bulk polarization charges are utilized to effectively self-screen the positive polarization induced interface charges located at the interface between the EBL and the last quantum barrier when designed properly. Using this approach, the electron leakage is suppressed and the LED performance is enhanced significantly.

  13. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  14. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  15. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  16. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  17. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density

    SciTech Connect (OSTI)

    Rozhansky, I. V., E-mail: igor@quantum.ioffe.ru; Zakheim, D. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2006-07-15

    The study is devoted to theoretical explanation of a decrease in the electroluminescence efficiency as the pump current increases, which is characteristic of light-emitting-diode (LED) heterostructures based on AlInGaN. Numerical simulation shows that the increase in the external quantum efficiency at low current densities J {approx} 1 A/cm{sup 2} is caused by the competition between radiative and nonradiative recombination. The decrease in the quantum efficiency at current densities J > 1 A/cm{sup 2} is caused by a decrease in the efficiency of hole injection into the active region. It is shown that the depth of the acceptor energy level in the AlGaN emitter, as well as low electron and hole mobilities in the p-type region, plays an important role in this effect. A modified LED heterostructure is suggested in which the efficiency decrease with the pump current should not occur.

  18. Optoelectrical properties of four amorphous silicon thin-film transistors 200 dpi active-matrix organic polymer light-emitting display

    E-Print Network [OSTI]

    Kanicki, Jerzy

    with the polycrystal- line silicon poly-Si TFTs technology1­3 for the active- matrix organic light-emitting displays AM­OLEDs . Fur- thermore, recent enhancements of the organic light-emitting device OLED performances4 have made and driving devices in pixel electrode circuits. To drive light-emitting devices in AM­ OLEDs, a continuous

  19. Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer the radiative recombination rates across the active region. Consequently, the light output power was enhanced

  20. 278 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 1, NO. 2, DECEMBER 2005 Coupling Efficiency Enhancement in Organic

    E-Print Network [OSTI]

    of the OLED. Index Terms--Coupling efficiency, microlens array, organic light-emitting diodes (OLEDs), soft lithography. I. INTRODUCTION HIGH efficiency organic light-emitting diodes (OLEDs) are required for display and solid-state lighting ap- plications. The external quantum efficiency of an OLED is determined

  1. Electroluminescence from Organometallic Lead Halide Perovskite - Conjugated Polymer Diodes

    E-Print Network [OSTI]

    Sadhanala, Aditya; Kumar, Abhishek; Pathak, Sandeep; Rao, Akshay; Steiner, Ullrich; Greenham, Neil C.; Snaith, Henry J.; Friend, Richard H.

    2015-02-19

    Organometallic lead perovskite-based solar cells can be converted to light-emitting diodes by engineering the current density. Diodes are fabricated with adjacent perovskite and conjugated polymer layers using orthogonal solvents. Under forward bias...

  2. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  3. REFINING THE SONIC FLASHLIGHT FOR INTERVENTIONAL PROCEDURES

    E-Print Network [OSTI]

    Stetten, George

    /or color display. For the latest handheld SF, a 54.8mm (diagonal) organic light emitting diode (OLED

  4. Carrier Dynamics Resulting from Above and Below Gap Excitation of P3HT and P3HT/ PCBM Investigated by Optical-Pump Terahertz-Probe Spectroscopy

    E-Print Network [OSTI]

    Hayden, L. Michael

    -electronic devices such as organic field-effect transistors (OFET), organic light-emitting diodes (OLED), and organic

  5. Organic magnetoresistance from deep traps N. J. Harmon1,a)

    E-Print Network [OSTI]

    Flatte, Michael E.

    ,16 Traps that exhibit strong spin-orbit effects can enhance organic light-emitting diode (OLED) emission

  6. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    SciTech Connect (OSTI)

    Parker, Ian

    2012-02-29

    Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  7. Stacked white OLED having separate red, green and blue sub-elements

    SciTech Connect (OSTI)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  8. Deep Ultraviolet AlGaInN-Based Light-Emitting Diodes on Si(111) and Sapphire

    E-Print Network [OSTI]

    Holtz, Mark

    molecular beam epitaxy with ammonia, are described. The typical multi-quantum well (MQW) structure LED to data storage. Despite recent progress, the prepara- tion of light sources operating below 300 nm

  9. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at Intercontinental Hotel in San Francisco, CA

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-11-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program have been prescreened and tested to verify their actual performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products.

  10. Metameric Modulation for Diffuse Visible Light Communications with Constant Ambient Lighting

    E-Print Network [OSTI]

    Little, Thomas

    untapped for wireless communications. Advancements in light emitting diode (LED) technology are making

  11. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    SciTech Connect (OSTI)

    Brian D'Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents an innovative low-cost approach to conserving energy, and such innovative approaches are required to drive towards the DOE's goal of a 50% reduction in electric lighting consumption by 2020, and an energy efficient building. Furthermore, the team of UDC and Princeton University is ideally suited to develop and demonstrate this technical approach because of our recognized expertise in the fields of PHOLED and OLED technologies.

  12. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  13. Luminescent properties of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} and its potential application in white light emitting diodes

    SciTech Connect (OSTI)

    Wang, Zhijun; Li, Panlai; Li, Ting; Zhang, Xing; Li, Qingxuan; Yang, Zhiping; Guo, Qinglin

    2013-06-01

    Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ? White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes.

  14. Effect of Forster Energy Transfer and Hole Transport Layer on Performance of Polymer Light-Emitting Diodes

    E-Print Network [OSTI]

    Lin, Zhiqun

    Effect of Fo¨rster Energy Transfer and Hole Transport Layer on Performance of Polymer Light was blended at three different weight ratios with the green-emitting polymer II, providing materials which interactions in the films. Only green emission was obtained from films of the polymer blends and from

  15. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes

    SciTech Connect (OSTI)

    Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Zhang, Shuming; Li, Deyao; Zhang, Liqun; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Cai, Jin; Wang, Hui; Wang, H. B. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Suzhou Nanojoin Photonics Co., Ltd., Suzhou (China)

    2014-10-27

    The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3?nm–6?nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200?A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelength we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.

  16. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    SciTech Connect (OSTI)

    Massabuau, F. C.-P., E-mail: fm350@cam.ac.uk; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Materials Science and Metallurgy, University of Cambridge, 22 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Davies, M. J.; Dawson, P. [Photon Science Institute, School of Physics and Astronomy, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kovács, A.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt- Straße, D-52425 Jülich (Germany); Williams, T.; Etheridge, J. [Monash Centre for Electron Microscopy, Monash University, Clayton Campus, VIC 3800 (Australia); Hopkins, M. A.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-15

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  17. InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tan, Swee Tiam; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Sun, Xiao Wei, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Demir, Hilmi Volkan, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-07-21

    In conventional InGaN/GaN light-emitting diodes (LEDs), thin InGaN quantum wells are usually adopted to mitigate the quantum confined Stark effect (QCSE), caused due to strong polarization induced electric field, through spatially confining electrons and holes in small recombination volumes. However, this inevitably increases the carrier density in quantum wells, which in turn aggravates the Auger recombination, since the Auger recombination scales with the third power of the carrier density. As a result, the efficiency droop of the Auger recombination severely limits the LED performance. Here, we proposed and showed wide InGaN quantum wells with the InN composition linearly grading along the growth orientation in LED structures suppressing the Auger recombination and the QCSE simultaneously. Theoretically, the physical mechanisms behind the Auger recombination suppression are also revealed. The proposed LED structure has experimentally demonstrated significant improvement in optical output power and efficiency droop, proving to be an effective solution to this important problem of Auger recombination.

  18. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect (OSTI)

    Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin [State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China); Lan, Ding [National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080 (China)

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  19. Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount

    SciTech Connect (OSTI)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavlyuchenko, A. S. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kukushkin, M. V.; Vasil'eva, E. D. [ZAO Innovation 'Tetis' (Russian Federation); Chernyakov, A. E. [Russian Academy of Sciences, Science-and-Technology Microelectronics Center (Russian Federation); Usikov, A. S. [De Core Nanosemiconductors Ltd. (India)

    2013-03-15

    Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm{sup 2} in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

  20. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect (OSTI)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  1. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wenyan; Zhang, Yu; Ruan, Cheng; Wang, Dan; Zhang, Tieqiang; Feng, Yi; Gao, Wenzhu; Yin, Jingzhi; Wang, Yiding; Riley, Alexis P.; et al

    2015-01-01

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0?lm/W for red, 47.1?lm/W for yellow, and 62.4?lm/W for green LEDs at 2.6?V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM), and power efficiency (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to themore »low emission temperature coefficients of 0.022, 0.050, and 0.068?nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.« less

  2. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Moseley, Michael Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-08-07

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al{sub 0.7}Ga{sub 0.3}N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al{sub 0.7}Ga{sub 0.3}N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

  3. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect (OSTI)

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10?mA to (0.351, 0.322) at 30?mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  4. Luminescence properties of light-emitting diodes based on GaAs with the up-conversion Y{sub 2}O{sub 2}S:Er,Yb luminophor

    SciTech Connect (OSTI)

    Gruzintsev, A. N. [Russian Academy of Sciences, Institute of Problems of Microelectronics Technology (Russian Federation)], E-mail: gran@ipmt-hpm.ac.ru; Barthou, C.; Benalloul, P. [Institute des NanoSciences (France)

    2008-03-15

    Y{sub 2}O{sub 2}S luminophors doped with Er{sup 3+} and Yb{sup 3+} ions are produced by means of solid-phase synthesis and deposited onto standard AL123A infrared light-emitting diodes. When excited with 940 nm radiation from a light-emitting diode, the structures exhibit intense visible up-conversion luminescence. A maximal brightness of 2340 cd/m{sup 2} of green and red up-conversion luminescence at corresponding wavelengths around 550 and 600 nm is observed for the Y{sub 2}O{sub 2}S compound doped with 2 at % Er{sup 3+} ions and 6 at % Yb{sup 3+} ions. The ratio of the intensity of green (or red) up-conversion luminescence to the intensity of infrared Stokes luminescence increases with increasing applied voltage. The efficiency of visible emission of the light-emitting diode structures is {eta} = 1.2 lm/W at an applied voltage of 1.5 V.

  5. Phys. Med. Biol. 43 (1998) 24072412. Printed in the UK PII: S0031-9155(98)90934-4 Effects of read-out light sources and ambient light on

    E-Print Network [OSTI]

    Yu, Peter K.N.

    1998-01-01

    laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose

  6. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    SciTech Connect (OSTI)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-04-14

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes.

  7. DuPont Displays Develops Low-Cost Method of Printing OLED Panels

    Broader source: Energy.gov [DOE]

    DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

  8. Space charge spectroscopy of integrated quantum well infrared photodetectorlight emitting diode

    E-Print Network [OSTI]

    Perera, A. G. Unil

    Space charge spectroscopy of integrated quantum well infrared photodetector±light emitting diode M ± light emitting diode (QWIP-LED). Quasistatic capacitance±voltage (C±V ) characteristics under reverse.V. All rights reserved. Keywords: Quantum-well infrared photodetector; Light-emitting diode; Space charge

  9. P-78 / H. J. Peng 516 SID 03 DIGEST

    E-Print Network [OSTI]

    , Clear Water Bay, Kowloon, Hong Kong Abstract An organic light emitting diode with a microcavity calculations. 1. Introduction Organic light emitting diodes (OLEDs) are challenging liquid crystal displays organic light emitting diodes (b) the normal direction electroluminescent spectra of devices

  10. Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL

    SciTech Connect (OSTI)

    None

    2012-07-15

    An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

  11. Many exterior entry and walkway lights in residential and commercial

    E-Print Network [OSTI]

    be difficult since retail stocking is inconsistent. The Light-Emitting Diode (LED) Hybrid Outdoor Fixture

  12. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    SciTech Connect (OSTI)

    Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A. [VI Systems GmbH, Hardenbergstr. 7, Berlin D-10623 (Germany); Lyytikäinen, J.; Okhotnikov, O. [Optoelectronics Research Centre, Tampere University of Technology, Tampere FI-33720 (Finland); Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu.; Maximov, M. V. [A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Schlichting, S.; Nippert, F.; Hoffmann, A. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin D-10623 (Germany)

    2014-11-03

    We report on green (550–560?nm) electroluminescence (EL) from (Al{sub 0.5}Ga{sub 0.5}){sub 0.5}In{sub 0.5}P-(Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P double p-i-n heterostructures with monolayer-scale GaP insertions in the cladding layers and light-emitting diodes based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. At moderate current densities (?500?A/cm{sup 2}), the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (?550?nm at room temperature). At high current densities (>1?kA/cm{sup 2}), a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4?kA/cm{sup 2}, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14?kA/cm{sup 2}. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure, which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p-doped (Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P cladding layers.

  13. Task lights, commonly used in offices, homes, and dormitories, often use

    E-Print Network [OSTI]

    and posing difficulties in focusing the light. Light-emitting diode (LED) lighting, a fairly new solid

  14. The Problem Conventional office lighting typically consists of bright fluo-

    E-Print Network [OSTI]

    by delamping--result in lower power consump- tion. The PLS, which features light-emitting diode (LED lighting is reduced and three light-emitting diode (LED) task lights (two desk lamps and one undercabinet

  15. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01

    application in white light emitting diode,” J. Mater. Res. ,S.Y. Choi. “White light-emitting diodes of GaN-based Sr 2phosphor for white light-emitting diodes prepared by sol–gel

  16. OLED Luminaire with Panel Integrated Drivers and Advanced Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the panels. The goal is to demonstrate a luminaire with an efficacy of 65 lmW and a luminous output of 4000 lm. Project Impact This advancement in OLED technology could lead...

  17. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  18. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

  19. Nature ofNature of Light is a self-propagatingLight is a self-propagating

    E-Print Network [OSTI]

    Shirley, Yancy

    within 10% ! Ole Christensen Rømer #12;Aberration of LightAberration of Light James Bradley DeterminedTheThe Nature ofNature of LightLight #12;Light is a self-propagatingLight is a selfWavelength & Frequency = c #12;Speed of lightSpeed of light Timing the occultations of Io from Earth in 1676 : got

  20. Healthcare Energy: Spotlight on Lighting and Other Electric Loads...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light...

  1. A LIGHT LINK COUPLED CURRENT MONITOR L. ROHRER and H. SCHNITTER

    E-Print Network [OSTI]

    Boyer, Edmond

    to frequency converter and a light emitting diode. The emitted light pulses are transmitted by a light pipe of a battery operated current to frequency converter which feeds a light emitting diode, an acrylic light guide

  2. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOE Patents [OSTI]

    Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  3. New OLED Lighting Systems Shine Bright, Save Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    entered into business agreements with leading manufacturers in the U.S., Japan, Korea, Taiwan, China, and Europe. Cumulative Estimated Savings by 2018 1 Energy Estimated potential...

  4. Integrated Plastic Substrates for OLED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02 InspectionCONFERENCE ofPilotProjectIntegrated

  5. Room temperature thermo-electric pumping in mid-infrared light-emitting diodes Parthiban Santhanam, Duanni Huang, Rajeev J. Ram, Maxim A. Remennyi, and Boris A. Matveev

    E-Print Network [OSTI]

    Ram, Rajeev J.

    -emitting diodes (LEDs) to convert electrical power into optical power above 100% wall-plug efficiency was recently of 100% electrical-to-optical power conversion efficiency. At low forward bias, lattice heat is absorbed results. Although non-radiative recombination limits the power density available above unity efficiency

  6. Fabry-Perot fiber optic sensor using multimode laser diode 

    E-Print Network [OSTI]

    Chu, Siu Yi Andrew

    1993-01-01

    irm. CD laser diodes are a candidate to be considered as a light source for our proposed fiber optic sensing scheme. A cost effective fiber sensing scheme would enable production of high volume affordable sensing devices for commercial... etc. The input light source of a fiber optic sensing scheme is usually a semiconductor singlemode laser diode, a high coherence light source; or a LED, a low coherence light source. The input optical power is launched into a singlemode or multimode...

  7. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide

    E-Print Network [OSTI]

    Baugher, Britton W. H.

    The p–n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p–n junctions, the ...

  8. Voltage-induced electroluminescence characteristics of hybrid light-emitting diodes with CdSe/Cd/ZnS core-shell nanoparticles embedded in a conducting polymer on plastic substrates

    SciTech Connect (OSTI)

    Kwak, Kiyeol; Cho, Kyoungah, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr; Kim, Sangsig, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-03-10

    We investigate the electroluminescence (EL) characteristics of a hybrid light-emitting diode (HyLED) with an emissive layer comprised of CdSe/Cd/ZnS core-shell nanoparticles (NPs) embedded in poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) on a plastic substrate. The EL characteristics change dramatically with increasing of the biased voltage. At low voltages, recombination of electrons and holes occurs only in the PFO film because of poor charge transfer in the PFO-CdSe/Cd/ZnS NPs composite film, while the color of the light-emitting from the HyLED changes from blue to red as the biased voltage increases from 7.5 to 17.5?V. We examine and discuss the mechanism of this color tunability.

  9. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 2012 1 Dynamic Driver Supply Voltage Scaling for Organic

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission

  10. Pousset, Obein, Razet, LED lighting quality with CQS samples CIE 2010 : Lighting Quality and Energy Efficiency, 14-17 March 2010, Vienna, Austria 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A psychophysical experiment developed to evaluate light quality of Light Emitting Diodes (LEDs) is described. Keywords: Light Emitting Diode, quality of light, Color Rendering Index, Color Quality Scale, visual

  11. Chemistry of Organic Electronic Materials 6483-Fall

    E-Print Network [OSTI]

    Sherrill, David

    . Example of a flexible organic light-emitting diode (OLED) (from the Center-inch OLED television coming on the market this fall (from LG) !" + 0-vibration couplings Luminescent materials Basic concepts of light absorption

  12. Typically, hotel bathroom lights are left on between five to eight hours per occupied

    E-Print Network [OSTI]

    -public spaces, the energy efficient, super bright light-emitting diode (LED) nightlight remains on whenever

  13. Collimated light from a waveguide for a display Adrian Travis,1,2*

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    between this light-guide and a liquid crystal panel guides light from color light-emitting diodes by light emitting diodes but these are point #116996 - $15.00 USD Received 9 Sep 2009; revised 9 Oct 2009

  14. Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible Light Communication

    E-Print Network [OSTI]

    Tufts University

    Light Communication What is the problem? The white light-emitting diode (LED) stands at the threshold

  15. Enhancing the Field of View Limitation of Visible Light Communication-based Platoon

    E-Print Network [OSTI]

    Boyer, Edmond

    . In the mean time, Light Emitting Diode (LED) has become very common in automotive lighting due to its long

  16. Impact of Lighting Requirements on VLC Systems J. Gancarz, H. Elgala, T.D.C. Little

    E-Print Network [OSTI]

    Little, Thomas

    Report No. 11-01-2013 Abstract Advances in Solid State Lighting (SSL) are enabling Light-Emitting Diodes

  17. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  18. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate...

  19. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112{sup ¯}2) semipolar versus (0001) polar planes

    SciTech Connect (OSTI)

    Ji, Yun; Liu, Wei; Chen, Rui; Tiam Tan, Swee; Zhang, Zi-Hui; Ju, Zhengang; Zhang, Xueliang; Sun, Handong; Wei Sun, Xiao; Erdem, Talha; Zhao, Yuji; DenBaars, Steven P. E-mail: volkan@stanfordalumni.org; Nakamura, Shuji; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-04-07

    The characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (112{sup ¯}2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.

  20. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  1. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  2. Numerical Modelling of Light Emission and Propagation in (Organic) LEDs with the Green's Tensor

    E-Print Network [OSTI]

    Floreano, Dario

    light emitting diodes, light emission, light extraction, dipole radiation, stratified media, layered surpasses incandescent sources by a factor of 2 and with further improvements light emitting diodes could on light extraction techniques from inorganic light emitting diodes we recommend chapter 5 in 1 . Organic

  3. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    SciTech Connect (OSTI)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56?cd/A at the remarkably high brightness of 10{sup 5}?cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  4. Hyperfine-Field-Mediated Spin Beating in Electrostatically Bound Charge Carrier Pairs D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S.-Y. Paik, J. M. Lupton,* and C. Boehme

    E-Print Network [OSTI]

    McCamey, Dane

    of the current through an organic light emitting diode under coherent spin-resonant excitation. At weak driving processes responsible for light emission in organic light-emitting diodes (OLEDs), such local variations

  5. Ultrabright fluorescent OLEDS using triplet sinks

    DOE Patents [OSTI]

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  6. Patterned three-color ZnCdSeZnCdMgSe quantum-well structures for integrated full-color and white light emitters

    E-Print Network [OSTI]

    . This result demonstrates the feasibility of fabricating integrated full-color light emitting diode and laser American Institute of Physics. S0003-6951 00 04149-8 Light emitting diodes LEDs and laser diodes LDs having

  7. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  8. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    L. Replacing Fuel Based Lighting with Light Emitting DiodesCountries: Energy and Lighting in Rural Nepali Homes. Leukosrn3-illum-threshold.pdf Lighting Africa, 2008. Lighting

  9. The OCT-Penlight: In-Situ Image Display for Guiding Microsurgery Using Optical Coherence Tomography (OCT)

    E-Print Network [OSTI]

    Stetten, George

    surgical access. The two prototypes constructed thus far have used, respectively, a miniature organic light emitting diode (OLED) display and a reflective liquid crystal display (LCD). The OLED has the advantage

  10. NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials 1 news & views

    E-Print Network [OSTI]

    Rogers, John A.

    array of organic light- emitting diodes (OLEDs). Each pixel of this electronic skin consists of a pressure sensor and a thin-film transistor that controls the current driving a coloured OLED

  11. Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine

    E-Print Network [OSTI]

    Klotzkin, David

    have opened doors to novel device implementation. For example, organic light emitting diodes (OLED) con in luminance and luminous efficiency compared to conventional OLED without the DNA layer. Organic solid

  12. Dynamics Displayed by Energetic C60 Bombardment of Metal Overlayers on an Organic Substrate

    E-Print Network [OSTI]

    Zbigniew, Postawa

    in organic light- emitting diodes (OLED).5 However, metal layers have also been applied in developing organic used successfully to depth profile through OLED type devices using large gas cluster ion beams

  13. Calibration Sets for Multiprimary Displays: Representation, Vi-sualization, and Applications

    E-Print Network [OSTI]

    Sharma, Gaurav

    . For instance, in organic light emitting diode (OLED) and other similar displays, where power is controlled and of alternative calibration strate- gies for multiprimary displays. For display technologies such as OLED, where

  14. LED Light Fixture Project FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis

    E-Print Network [OSTI]

    Johnston, Daniel

    . A light-emitting diode (LED) is a solid-state lighting source that switches on instantly, is readily

  15. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    SciTech Connect (OSTI)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

  16. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Jang, Ho Seong; Kwon, Byoung-Hwa; Jeon, Duk Young [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yang, Heesun [Department of Materials Science and Engineering, Hongik University, 72-1, Sangsu-dong, Mapo-gu, Seoul 121-791 (Korea, Republic of)

    2009-10-19

    In this study, bright three-band white light was generated from the CdSe/ZnSe quantum dot (QD)-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode (WLED). The CdSe/ZnSe core/shell structure was confirmed by energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The CdSe/ZnSe QDs showed high quantum efficiency (79%) and contributed to the high luminous efficiency ({eta}{sub L}) of the fabricated WLED. The WLED showed bright natural white with excellent color rendering property ({eta}{sub L}=26.8 lm/W, color temperature=6140 K, and color rendering index=85) and high stability against the increase in forward bias currents from 20 to 70 mA.

  17. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  18. 5-23 Photonics MTL Annual Research Report 2008 Micro-patterning Organic Thin Films via Contact Stamp Lift-off for Organic Light-emitting

    E-Print Network [OSTI]

    in an ambient environment, although a nitrogen environment is preferred for organic light-emitting device (OLED Stamp Lift-off for Organic Light-emitting Device Arrays J Yu, V Bulovi Sponsor: CMSE, PECASE Patterning) fabrication. This technique is applied to pattern 13 micron-sized features of a two-color OLED structure

  19. Diode amplifier of modulated optical beam power

    SciTech Connect (OSTI)

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (?10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  20. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  1. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    manufacturing and marketing of display products typically OLED Organic Light Emitting Diode Display Vista International Inc Vista International Inc Englewood Colorado...

  3. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12-month development project that culminates in the development an Organic Light Emitting Diode (OLED) luminaire that features a base stationpanel integrated driver...

  4. Energy Department Announces $10 Million to Advance Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to...

  5. Temperature dependence of electron mobility, electroluminescence and photoluminescence This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Klotzkin, David

    mobility were investigated over temperature from 60 to 300 K in small-molecule organic light emitting diode technological advances have been achieved in this decade on organic light emitting diodes (OLEDs) driven

  6. PUBLISHED ONLINE: 21 JULY 2013 | DOI: 10.1038/NMAT3711 User-interactive electronic skin for instantaneous

    E-Print Network [OSTI]

    California at Berkeley, University of

    diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting

  7. Energy Department Announces $10 Million to Advance Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the...

  8. The Junction Diode Basic Operation

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    biased diode. Figure 1(b) shows the diode with a battery connected across it. The polarity of the battery in the p-type side away from the junction. No current can flow. The diode is said to be reverse biased. Figure 1(c) shows the diode with the battery polarity reversed. The battery now tends to cancel out

  9. PAPER www.rsc.org/loc | Lab on a Chip High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics

    E-Print Network [OSTI]

    Klotzkin, David

    -on-a-chip with a thin-film organic light-emitting diode (OLED) excitation source and an organic photodiode (OPD a fluorescent dye emission spectrum. The excitation light from the OLED was linearly polarized and used candidate for disposable LOC applications. Broadband OLED light sources can excite many different dyes

  10. P-143 / Y.-C. Lin P-143: A Novel Current-Scaling a-Si:H TFTs Pixel Electrode Circuit

    E-Print Network [OSTI]

    Kanicki, Jerzy

    is proposed for active-matrix organic light-emitting displays (AM-OLEDs). In contrast to the conventional current mirror pixel electrode circuit, in this circuit a high data-to-organic light-emitting device (OLED organic light-emitting diodes (OLEDs) [1], there is increasing interest in their applications to the large

  11. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect (OSTI)

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

  12. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  13. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    SciTech Connect (OSTI)

    Romero, V.H.; De la Rosa, E.; Salas, P.; Velazquez-Salazar, J.J.

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  14. Standards Development for Solid-State Lighting | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IES G-2, Guideline for the Application of General Illumination ("White") Light-Emitting Diode (LED) Technologies Provides lighting and design professionals with a general...

  15. DOE Announces Winners of Lighting for Tomorrow 2010 Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004. This year, the SSL competition was expanded beyond fixtures to include light-emitting diode (LED) replacement bulbs as well as lighting control devices that are compatible...

  16. Energy Conservation Standards for Ceiling Fan Light Kits Notice...

    Office of Environmental Management (EM)

    for Ceiling Fan Light Kits; Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking...

  17. Lighting Choices to Save You Money | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recycle CFLs for free. See EPA's website for more information. LEDs The light emitting diode (LED) are a type of solid-state lighting -- semiconductors that convert...

  18. LED Traffic Light as a Communications Device Grantham Pang, Thomas Kwan, Chi-Ho Chan, Hugh Liu.

    E-Print Network [OSTI]

    Pang, Grantham

    :http://www.eee.hku.hk/~gpang Abstract The visible light from an LED (light emitting diode) traffic light can be modulated and encoded on the description of an audio information system made up of high brightness, visible light emitting diodes (LEDs messages 1. Introduction Recently, high intensity light emitting diodes for traffic signals are available

  19. Surface plasmon enhanced InGaN light emitter Koichi Okamoto*a

    E-Print Network [OSTI]

    Okamoto, Koichi

    is a very promising method for developing the super bright light emitting diodes (LEDs). Moreover, we foundGaN/GaN, light emitting diode, quantum well, internal quantum efficiency, solid-state light source 1. INTRODUCTION Since 1993, InGaN quantum wells (QW)-based light emitting diodes (LEDs) have been continuously

  20. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.