National Library of Energy BETA

Sample records for digital sky survey

  1. Sloan digital sky survey

    SciTech Connect (OSTI)

    Kent, S.M.; Stoughton, C.; Newberg, H.; Loveday, J.; Petravick, D.; Gurbani, V.; Berman, E.; Sergey, G.; Lupton, R.

    1994-04-01

    The Sloan Digital Sky Survey will produce a detailed digital photometric map of half the northern sky to about 23 magnitude using a special purpose wide field 2.5 meter telescope. From this map we will select {approximately} 10{sup 6} galaxies and 10{sup 5} quasars, and obtain high resolution spectra using the same telescope. The imaging catalog will contain 10{sup 8} galaxies, a similar number of stars, and 10{sup 6} quasar candidates.

  2. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Monitor Telescope Pipeline Citation Details In-Document Search Title: The Sloan Digital Sky Survey Monitor Telescope Pipeline You are accessing a...

  3. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release Citation Details In-Document Search Title: The Sloan Digital Sky Survey...

  4. The Sloan Digital Sky Survey COADD: 275 deg{sup 2} of deep Sloan...

    Office of Scientific and Technical Information (OSTI)

    Title: The Sloan Digital Sky Survey COADD: 275 degsup 2 of deep Sloan Digital Sky Survey imaging on stripe 82 We present details of the construction and characterization of the ...

  5. Sloan Digital Sky Survey II (SDSS-II) Supernova Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is a series of three interlocking imaging and spectroscopic surveys, carried out over an eight-year period with a dedicated 2.5m telescope located at Apache Point Observatory in Southern New Mexico. The SDSS Supernova Survey was one of those three components of SDSS and SDSS-II, a 3-year extension of the original SDSS that operated from July 2005 to July 2008. The Supernova Survey was a time-domain survey, involving repeat imaging of the same region of sky every other night, weather permitting. The primary scientific motivation was to detect and measure light curves for several hundred supernovae through repeat scans of the SDSS Southern equatorial stripe 82 (about 2.5? wide by ~120? long). Over the course of three 3-month campaigns SDSS-II SN discovered and measured multi-band lightcurves for ~500 spectroscopically confirmed Type Ia supernovae in the redshift range z=0.05-0.4. In addition, the project harvested a few hundred light curves for SNe Ia and discovered about 80 spectroscopically confirmed core-collapse supernovae (supernova types Ib/c and II).

  6. Sloan Digital Sky Survey (SDSS): Data Release 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR2 provides provides images, imaging catalogs, spectra, and redshifts for download.

  7. Sloan Digital Sky Survey (SDSS): Data Release 5

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR5 provides provides images, imaging catalogs, spectra, and redshifts for download.

  8. Sloan Digital Sky Survey (SDSS): Data Release 3

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR3 provides provides images, imaging catalogs, spectra, and redshifts for download.

  9. Sloan Digital Sky Survey (SDSS): Data Release 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR4 provides provides images, imaging catalogs, spectra, and redshifts for download.

  10. Sloan Digital Sky Survey (SDSS): Data Release 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR1 was the first major data release, providing images, imaging catalogs, spectra, and redshifts for download.

  11. Ensemble Properties of Comets in the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Solontoi, Michael; Ivezic, Zeljko; Juric, Mario; Becker, Andrew C.; Jones, Lynne; West, Andrew A.; Kent, Steve; Lupton, Robert H.; Claire, Mark; Knapp, Gillian R.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2012-02-01

    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(

  12. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    SciTech Connect (OSTI)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.; Hall, Patrick B.; McGreer, Ian D.; Fan, Xiaohui; Anderson, Scott F.; Chen, Yuguang; Denney, Kelly D.; Eftekharzadeh, Sarah; Gao, Yang; Green, Paul J.; Greene, Jenny E.; Ho, Luis C.; Horne, Keith; Kelly, Brandon C.; and others

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ?4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ?2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ?10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.

  13. The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary

    SciTech Connect (OSTI)

    Frieman, Joshua A.; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Don Frederic; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marriner, John; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; Nichol, Robert C.; Prieto, Jose Luis; /Ohio State U. /Rochester Inst. Tech. /Stanford U., Phys. Dept. /Pennsylvania U. /Penn State U., Astron. Astrophys. /Portsmouth U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Stanford U., Phys. Dept. /Fermilab /Fermilab /Ohio State U. /Stanford U., Phys. Dept. /Fermilab /Bristol U. /Apache Point Observ. /Liverpool John Moores U., ARI /Columbia U., CBA /Apache Point Observ. /Ohio State U. /Durham U. /Portsmouth U. /South African Astron. Observ. /Naval Academy, Annapolis /UC, Berkeley /UC, Berkeley /Ohio State U. /Stockholm U. /New Mexico State U. /Princeton U. Observ. /Tokyo U. /Washington U., Seattle, Astron. Dept. /Stanford U., Phys. Dept. /Jefferson Lab /Apache Point Observ. /Gottingen U. /Chicago U. /San Francisco State U. /DARK Cosmology Ctr. /Fermilab /Apache Point Observ. /Durham U. /Princeton U. Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Barcelona U. /Stockholm U. /Apache Point Observ. /Lick Observ. /Sussex U. /Barcelona U. /Apache Point Observ. /Ohio State U. /Apache Point Observ. /Fermilab /DARK Cosmology Ctr. /Chicago U. /Fermilab /South African Astron. Observ. /Ohio State U. /Apache Point Observ. /Texas U., McDonald Observ. /Fermilab

    2007-09-14

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

  14. Sloan Digital Sky Survey II (SDSS-II), Data Release 7, including the Legacy Survey

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is a series of three interlocking imaging and spectroscopic surveys, carried out over an eight-year period with a dedicated 2.5m telescope located at Apache Point Observatory in Southern New Mexico. The seventh data release (DR7) from the SDSS represents a completion of the overall, original project, though SDSS-III began in 2008 and will build upon the knowledge gained already. The SDSS Legacy Survey provided a uniform, well-calibrated map of more than 7,500 square degrees of the North Galactic Cap, and three stripes in the South Galactic Cap totaling 740 square degrees. The central stripe in the South Galactic Gap, Stripe 82, was scanned multiple times to enable a deep co-addition of the data and to enable discovery of variable objects. Legacy data supported studies ranging from asteroids and nearby stars to the large-scale structure of the universe. All of the imaging data have been processed to yield calibrated astrometric and photometric parameters and classifications. These parameters are available in one or more tables in a database accessible via the Catalog Archive Server (CAS) at http://cas.sdss.org/astro. [taken and edited from the Legacy page at http://www.sdss.org/legacy/index.html] All three surveys summarized are: 1) Legacy: an imaging survey in five bands over a contiguous 7646 deg2 high-latitude elliptical region in the Northern Galactic Cap, plus an additional 750 deg2 in the Southern Galactic Cap, together with spectroscopy of complete samples of galaxies and quasars covering about 8200 square degrees. The total imaging area in the Legacy survey is 8423 square degrees; 2) SEGUE: (Sloan Extension for Galactic Understanding and Exploration): additional imaging of 3240 deg2 of sky at lower Galactic latitudes, together with spectroscopy of 240,000 stars towards 200 sight lines covering 1400 square degrees (spread throughout the Legacy and SEGUE imaging footprints), to study the structure of the Milky Way; 3

  15. Sloan Digital Sky Survey III (SDSS-III), Data Release 8

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III Collaboration is working to map the Milky Way, search for extrasolar planets, and solve the mystery of dark energy. SDSS-III's first release, Data Release 8 (DR8), became available in the first half of 2012. DR8 contains all the images ever taken by the SDSS telescope. Together, these images make up the largest color image of the sky ever made. A version of the DR8 image is shown to the right. DR8 also includes measurements for nearly 500 million stars, galaxies, and quasars, and spectra for nearly two million. All of DR8's images, spectra, and measurements are available to anyone online. You can browse through sky images, look up data for individual objects, or search for objects anywhere using any criteria. SDSS-III will collect data from 2008 to 2014, using the 2.5-meter telescope at Apache Point Observatory. SDSS-III consists of four surveys, each focused on a different scientific theme. These four surveys are: 1) Baryon Oscillation Spectroscopic Survey (BOSS); 2) SEGUE-2 (Sloan Extension for Galactic Understanding and Exploration); 3) The APO Galactic Evolution Experiment (APOGEE); and 4) The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). [Copied with edits from http://www.sdss3.org/index.php

  16. The Sloan Digital Sky Survey data acquisition system, and early results

    SciTech Connect (OSTI)

    J. Annis, J. Bakken, D. Holmgren, D. Petravick, R. Rechenmacher

    1999-06-29

    The Sloan Digital Sky Survey will systematically map one- quarter of the sky, producing detailed images in five color bands and determining the positions and absolute bright- nesses of more than 100 million celestial objects. It will also measure the redshifts of a million selected galaxies and of 100,000 quasars, yielding a three-dimensional map of the universe through a volume one hundred times larger than that explored to date. The SDSS collaboration is currently in the process of commissioning the 2.5-meter survey tele- scope. We describe the data acquisition system used to record the survey data. This system consists of twelve sin- gle board computers and their associated interfaces to the camera and spectrograph CCD electronics, to tape drives, and to online video displays, distributed among several VME crates. A central UNIX computer connected to the VME crates via a vertical bus adapter coordinates the sys- tem and provides the interface to telescope operations. We briefly discuss results from the observing runs to date and plans for the archiving and distribution of data.

  17. The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    SciTech Connect (OSTI)

    Aihara, Hiroaki; Prieto, Carlos Allende; An, Deokkeun; Anderson, Scott F.; Aubourg, Eric; Balbinot, Eduardo; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; /New York U., CCPP /Penn State U.

    2011-01-01

    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly{alpha} forest, and a radial velocity search for planets around {approx}8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes 5-band imaging of roughly 5200 deg{sup 2} in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg{sup 2}, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.

  18. Sloan Digital Sky Survey II (SDSS-II), Data Release 6, including Extension for Galactic Understanding and Exploration (SEGUE)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yanny, Brian; Rockosi, Constance; Newberg, Heidi Jo; Knapp, Gillian R.

    The Sloan Digital Sky Survey (see www.sdss.org for general information) will map one-quarter of the entire sky and perform a redshift survey of galaxies, quasars and stars. The DR6 is the sixth major data release and provides images, imaging catalogs, spectra, and redshifts for download. It is the first data release of SDSS-II, an extension of the original SDSS consisting of three subprojects: Legacy, SEGUE and a Supernova survey. Be sure to check out the separate page for SEGUE also at http://classic.sdss.org/dr6/start/aboutsegue.html.

  19. THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

    SciTech Connect (OSTI)

    Reis, Ribamar R. R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao Jiangang; Johnston, David; Kubo, Jeffrey; Lin Huan; Seo, Hee-Jong; Simet, Melanie

    2012-03-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for {approx}13 million objects classified as galaxies in the co-add with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx}83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph-Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  20. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect (OSTI)

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  1. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer, Hans; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U., ICG /North Carolina U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Michigan U. /Fermilab /Princeton U. Observ. /Garching, Max Planck Inst., MPE /Pittsburgh U. /Tokyo U., ICRR /Baltimore, Space Telescope Sci. /Penn State U. /Chicago U. /Stavropol, Astrophys. Observ. /Heidelberg, Max Planck Inst. Astron. /INI, SAO

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster. However, if we

  2. The Sloan Digital Sky Survey Quasar Catalog. 3. Third data release

    SciTech Connect (OSTI)

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Vanden Berk, Daniel E.; Anderson, Scott F.; Fan, Xiao-Hui; Jester, Sebastian; Stoughton, Chris; Strauss, Michael A.; SubbaRao, Mark; Brandt, W.N.; Gunn, James E.; Yanny, Brian; Bahcall, Neta A.; Barentine, J.C.; Blanton, Michael R.; Boroski, William N.; Brewington, Howard J.; Brinkmann, J.; Brunner, Robert; Csabai, Istvan; /Penn State U., Astron. Astrophys. /York U., Canada /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Adler Planetarium, Chicago /Apache Point Observ. /New York U. /Illinois U., Urbana, Astron. Dept. /Eotvos U. /Tokyo U., Astron. Dept. /Tokyo U., RESCEU /Tokyo U., ICRR /Princeton, Inst. Advanced Study /Microsoft, BARC /Johns Hopkins U. /Mt. Suhora Observ., Cracow /Sussex U., Astron. Ctr. /Baltimore, Space Telescope Sci.

    2005-03-01

    We present the third edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 46,420 objects in the SDSS Third Data Release that have luminosities larger than M{sub i} = -22 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or are unambiguously broad absorption line quasars, are fainter than i = 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 4188 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.47; the high-redshift sample includes 520 quasars at redshifts greater than four, of which 17 are at redshifts greater than five. For each object the catalog presents positions accurate to better than 0.2'' rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 at a spectral resolution of {approx} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. A total of 44,221 objects in the catalog were discovered by the SDSS; 28,400 of the SDSS discoveries are reported here for the first time.

  3. The Sloan Digital Sky Survey Quasar Catalog. 4. Fifth Data Release

    SciTech Connect (OSTI)

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Strauss, Michael A.; Vanden Berk, Daniel E.; Anderson, Scott F.; Brandt, W.N.; Fan, Xiao-Hui; Jester, Sebastian; Gray, Jim; Gunn, James E.; /Penn State U., Astron. Astrophys. /York U., Canada /Johns Hopkins U. /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /Southampton U. /Heidelberg, Max Planck Inst. Astron. /Microsoft, BARC /Chicago U. /Adler Planetarium, Chicago

    2007-04-01

    We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog contains 77,429 objects; this is an increase of over 30,000 entries since the previous edition. The catalog consists of the objects in the SDSS Fifth Data Release that have luminosities larger than M{sub i} = -22.0 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or have interesting/complex absorption features, are fainter than i {approx} 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 5740 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the catalog includes 891 quasars at redshifts greater than four, of which 36 are at redshifts greater than five. Approximately half of the catalog quasars have i < 19; nearly all have i < 21. For each object the catalog presents positions accurate to better than 0.2-minutes rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains basic radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 {angstrom} at a spectral resolution of {approx_equal} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. The average SDSS colors of quasars as a function of redshift, derived from the catalog entries, are presented in tabular form. Approximately 96% of the objects in the catalog were discovered by the SDSS.

  4. A deep proper motion catalog within the Sloan digital sky survey footprint

    SciTech Connect (OSTI)

    Munn, Jeffrey A.; Harris, Hugh C.; Tilleman, Trudy M.; Hippel, Ted von; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGenarro, Steven; Jeffery, Elizabeth E-mail: hch@nofs.navy.mil E-mail: ted.vonhippel@erau.edu E-mail: jamesliebert@gmail.com E-mail: studiofortytwo@yahoo.com

    2014-12-01

    A new proper motion catalog is presented, combining the Sloan Digital Sky Survey (SDSS) with second epoch observations in the r band within a portion of the SDSS imaging footprint. The new observations were obtained with the 90prime camera on the Steward Observatory Bok 90 inch telescope, and the Array Camera on the U.S. Naval Observatory, Flagstaff Station, 1.3 m telescope. The catalog covers 1098 square degrees to r = 22.0, an additional 1521 square degrees to r = 20.9, plus a further 488 square degrees of lesser quality data. Statistical errors in the proper motions range from 5 mas year{sup ?1} at the bright end to 15 mas year{sup ?1} at the faint end, for a typical epoch difference of six years. Systematic errors are estimated to be roughly 1 mas year{sup ?1} for the Array Camera data, and as much as 24 mas year{sup ?1} for the 90prime data (though typically less). The catalog also includes a second epoch of r band photometry.

  5. Red giant stars from the Sloan digital sky survey. II. Distances

    SciTech Connect (OSTI)

    Tan, Kefeng; Chen, Yuqin; Carrell, Kenneth; Zhao, Jingkun; Zhao, Gang

    2014-10-10

    We present distance determinations for a large and clean sample of red giant branch stars selected from the ninth data release of the Sloan Digital Sky Survey. The distances are calculated based on both observational cluster fiducials and theoretical isochrones. Distributions of distances from the two methods are very similar with peaks at about 10 kpc and tails extending to more than 70 kpc. We find that distances from the two methods agree well for the majority of the sample stars; though, on average, distances based on isochrones are 10% higher than those based on fiducials. We test the accuracy of our distance determinations using 332 stars from 10 Galactic globular and open clusters. The average relative deviation from the literature cluster distances is 4% for the fiducial-based distances and 8% for the isochrone-based distances, both of which are within the uncertainties. We find that the effective temperature and surface gravity derived from low-resolution spectra are not accurate enough to essentially improve the performance of distance determinations. However, for stars with significant extinction, effective temperature may help to better constrain their distances to some extent. We make our sample stars and their distances available from an online catalog. The catalog comprises 17,941 stars with reasonable distance estimations reaching to more than 70 kpc, which is suitable for the investigation of the formation and evolution of the Galaxy, especially the Galactic halo.

  6. RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect (OSTI)

    Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2012-09-10

    From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotation axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.

  7. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    SciTech Connect (OSTI)

    Salviander, S.; Shields, G. A.; Bonning, E. W. E-mail: shields@astro.as.utexas.edu

    2015-02-01

    We investigate the relationship between the mass of the central supermassive black hole, M {sub BH}, and the host galaxy luminosity, L {sub gal}, in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M {sub BH}-L {sub gal} relationship by examining the redshift dependence of ? log M {sub BH}, the offset in M {sub BH} from the local M {sub BH}-L {sub gal} relationship. There is little systematic trend in ? log M {sub BH} out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, ?{sub *}, we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for ?{sub *} in statistical studies.

  8. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    SciTech Connect (OSTI)

    Smee, Stephen A.; Barkhouser, Robert H.; Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Leger, French; Owen, Russell; Anderson, Lauren; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Long, Dan; Honscheid, Klaus; Harding, Paul; Annis, James; and others

    2013-08-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Ly{alpha} absorption of 160,000 high redshift quasars over 10,000 deg{sup 2} of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = {lambda}/FWHM {approx} 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < {lambda} < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  9. The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release

    SciTech Connect (OSTI)

    Schneider, Donald P.; Richards, Gordon T.; Hall, Patrick B.; Strauss, Michael A.; Anderson, Scott F.; Boroson, Todd A.; Ross, Nicholas P.; Shen, Yue; Brandt, W.N.; Fan, Xiaohui; Inada, Naohisa; /Wako, RIKEN /Southampton U. /Heidelberg, Max Planck Inst. Astron.

    2010-04-01

    We present the fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog, which is based upon the SDSS Seventh Data Release. The catalog, which contains 105,783 spectroscopically confirmed quasars, represents the conclusion of the SDSS-I and SDSS-II quasar survey. The catalog consists of the SDSS objects that have luminosities larger than M{sub i} = -22.0 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or have interesting/complex absorption features, are fainter than i {approx} 15.0, and have highly reliable redshifts. The catalog covers an area of {approx} 9380 deg{sup 2}. The quasar redshifts range from 0.065 to 5.46, with a median value of 1.49; the catalog includes 1248 quasars at redshifts greater than 4, of which 56 are at redshifts greater than 5. The catalog contains 9210 quasars with i < 18; slightly over half of the entries have i < 19. For each object the catalog presents positions accurate to better than 0.1-inch rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 {angstrom} at a spectral resolution of {approx_equal} 2000; the spectra can be retrieved from the SDSS public database using the information provided in the catalog. Over 96% of the objects in the catalog were discovered by the SDSS. We also include a supplemental list of an additional 207 quasars with SDSS spectra whose archive photometric information is incomplete.

  10. BINARY QUASARS IN THE SLOAN DIGITAL SKY SURVEY: EVIDENCE FOR EXCESS CLUSTERING ON SMALL SCALES

    SciTech Connect (OSTI)

    Hennawi, J F; Strauss, M A; Oguri, M; Inada, N; Richards, G T; Pindor, B; Schneider, D P; Becker, R H; Gregg, M D; Hall, P B; Johnston, D E; Fan, X; Burles, S; Schlegel, D J; Gunn, J E; Lupton, R; Bahcall, N A; Brunner, R J; Brinkman, J

    2005-11-10

    We present a sample of 218 new quasar pairs with proper transverse separations R{sub prop} < 1 h{sup -1} Mpc over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R{sub prop} < 50 h{sup -1} kpc ({theta} < 10''), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 h{sup -1} kpc < R{sub prop} < 400 h{sup -1} kpc is presented. For R{sub prop} {approx}< 40 h{sup -1} kpc, we detect an order of magnitude excess clustering over the expectation from the large scale (R{sub prop} {approx}> 3 h{sup -1} Mpc) quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to {approx}30 at R{sub prop} {approx} 10 h{sup -1} kpc, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.

  11. Sloan Digital Sky Survey III (SDSS-III), Data Release 9, including the Baryon Oscillation Spectroscopic Survey (BOSS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Third Sloan Digital Sky Survey (SDSS-III) has issued Data Release 9 (DR9), the first public release of data from the Baryon Oscillation Spectroscopic Survey (BOSS). In this release BOSS, the largest of SDSS-IIIs four surveys, provides spectra for 535,995 newly observed galaxies, 102,100 quasars, and 116,474 stars, plus new information about objects in previous Sloan surveys (SDSS-I and II). Spectroscopy yields a wealth of information about astronomical objects including their motion (called redshift and written z), their composition, and sometimes also the density of the gas and other material that lies between them and observers on Earth. The new release lists spectra for galaxies with redshifts up to z = 0.8 (roughly 7 billion light years away) and quasars with redshifts between z = 2.1 and 3.5 (from 10 to 11.5 billion light years away). When BOSS is complete it will have measured 1.5 million galaxies and at least 150,000 quasars, as well as many thousands of stars and other ancillary objects for scientific projects other than BOSSs main goal. [extracts copied from LBL news release of August 8, 2012

  12. Sloan Digital Sky Survey III (SDSS-III), Data Release 9, including the Baryon Oscillation Spectroscopic Survey (BOSS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Third Sloan Digital Sky Survey (SDSS-III) has issued Data Release 9 (DR9), the first public release of data from the Baryon Oscillation Spectroscopic Survey (BOSS). In this release BOSS, the largest of SDSS-III’s four surveys, provides spectra for 535,995 newly observed galaxies, 102,100 quasars, and 116,474 stars, plus new information about objects in previous Sloan surveys (SDSS-I and II). Spectroscopy yields a wealth of information about astronomical objects including their motion (called redshift and written z), their composition, and sometimes also the density of the gas and other material that lies between them and observers on Earth. The new release lists spectra for galaxies with redshifts up to z = 0.8 (roughly 7 billion light years away) and quasars with redshifts between z = 2.1 and 3.5 (from 10 to 11.5 billion light years away). When BOSS is complete it will have measured 1.5 million galaxies and at least 150,000 quasars, as well as many thousands of stars and other ancillary objects for scientific projects other than BOSS’s main goal. [extracts copied from LBL news release of August 8, 2012

  13. Red giant stars from Sloan Digital Sky Survey. I. The general field

    SciTech Connect (OSTI)

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P. E-mail: pen@phys.au.dk

    2014-11-01

    We have obtained a sample of ∼22,000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey, and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V {sub gsr} versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ∼16,000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc < |Z| < 10 kpc. It is found that the canonical thick disk dominates at 0 kpc < |Z| < 2 kpc and its contribution becomes negligible at |Z| > 3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc < |Z| < 3 kpc. The inner halo starts at 2 kpc < |Z| < 3 kpc and becomes the dominated population for 4 kpc < |Z| < 10 kpc. For halo stars with |Z| > 5 kpc, bimodal metallicity distributions are found for 20 kpc < |Z| < 25 kpc and 35 kpc < RR < 45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. at low |Z| values. The peak of metallicity for the inner halo is at [Fe/H] ∼ –1.6 and appears to be at [Fe/H] ∼ –2.3 for the outer halo. The transition point from the inner to the outer halo is located at |Z| ∼ 20 kpc and RR ∼ 35 kpc.

  14. Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-Body

    SciTech Connect (OSTI)

    Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H. /KIPAC, Menlo Park /SLAC

    2010-12-16

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-h{sup -1}Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  15. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    SciTech Connect (OSTI)

    Kostrzewa-Rutkowska, Zuzanna; Koz?owski, Szymon; Wyrzykowski, ?ukasz; Djorgovski, S. George; Mahabal, Ashish A.; Glikman, Eilat; Koposov, Sergey E-mail: simkoz@astrouw.edu.pl

    2013-12-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m {sub g} < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of ? = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M{sub B} = 18.2 0.2 mag and an oxygen abundance of 12+log?[O/H]=8.30.2; hence, the SN peaked at M {sub g} < 21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  16. Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Hoversten, Erik A.; /Johns Hopkins U.

    2007-10-01

    This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisiting the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set ({approx} 10{sup 5} galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy H{alpha} equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M{sub {circle_dot}} is {Lambda} = 1.5 {+-} 0.1 with the error dominated by systematics. Galaxies brighter than around M{sub r,0.1} = -20 (including galaxies like the Milky Way which has M{sub r,0.1} {approx} -21) are well fit by a universal {Lambda} {approx} 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf

  17. The eleventh and twelfth data releases of the Sload Digital Sky Survey: final data from SDSS-III

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alam, S.; Slosar, A.; Albareti, F. D.; Prieto, C. A.; Anders, F.

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  18. The eleventh and twelfth data releases of the Sload Digital Sky Survey: final data from SDSS-III

    SciTech Connect (OSTI)

    Alam, S.; Slosar, A.; Albareti, F. D.; Prieto, C. A.; Anders, F.

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

  19. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    SciTech Connect (OSTI)

    Toba, Y.; Matsuhara, H.; Oyabu, S.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K.; Ohyama, Y.; Yamauchi, C.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  20. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. IV. STATISTICAL LENS SAMPLE FROM THE FIFTH DATA RELEASE

    SciTech Connect (OSTI)

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Fukugita, Masataka; Strauss, Michael A.; Gott, J. Richard; Hennawi, Joseph F.; Morokuma, Tomoki; Becker, Robert H.; Gregg, Michael D.; White, Richard L.; Kochanek, Christopher S.; Chiu, Kuenley; Johnston, David E.; Clocchiatti, Alejandro; Richards, Gordon T.; Schneider, Donald P.; Frieman, Joshua A.

    2010-08-15

    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1'' < {theta} < 20'' and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, three have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be {Omega}{sub {Lambda}} = 0.84{sup +0.06}{sub -0.08}(stat.){sup +0.09}{sub -0.07}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of seven binary quasars with separations ranging from 1.''1 to 16.''6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.

  1. Optical spectroscopic observations of blazars and ?-ray blazar candidates in the Sloan digital sky survey data release nine

    SciTech Connect (OSTI)

    Massaro, F.; Masetti, N.; D'Abrusco, R.; Paggi, A.; Funk, S.

    2014-10-01

    We present an analysis of the optical spectra available in the Sloan Digital Sky Survey data release nine (SDSS DR9) for the blazars listed in the ROMA-BZCAT and for the ?-ray blazar candidates selected according to their IR colors. First, we adopt a statistical approach based on Monte Carlo simulations to find the optical counterparts of the blazars listed in the ROMA-BZCAT catalog. Then, we crossmatched the SDSS spectroscopic catalog with our selected samples of blazars and ?-ray blazar candidates, searching for those with optical spectra available to classify our blazar-like sources and, whenever possible, to confirm their redshifts. Our main objectives are to determine the classification of uncertain blazars listed in the ROMA-BZCAT and to discover new gamma-ray blazars. For the ROMA-BZCAT sources, we investigated a sample of 84 blazars, confirming the classification for 20 of them and obtaining 18 new redshift estimates. For the ?-ray blazars, indicated as potential counterparts of unassociated Fermi sources or with uncertain nature, we established the blazar-like nature of 8 out of the 27 sources analyzed and confirmed 14 classifications.

  2. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    SciTech Connect (OSTI)

    Oguri, Masamune; et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  3. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  4. Color-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7

    SciTech Connect (OSTI)

    Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng; Huang, Song; Shi, Yong

    2014-05-20

    We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enough to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.

  5. THE SLOAN DIGITAL SKY SURVEY STRIPE 82 IMAGING DATA: DEPTH-OPTIMIZED CO-ADDS OVER 300 deg{sup 2} IN FIVE FILTERS

    SciTech Connect (OSTI)

    Jiang, Linhua; Fan, Xiaohui; McGreer, Ian D.; Green, Richard; Bian, Fuyan; Strauss, Michael A.; Buck, Zoë; Annis, James; Hodge, Jacqueline A.; Myers, Adam D.; Rafiee, Alireza; Richards, Gordon

    2014-07-01

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ∼300 deg{sup 2} on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ∼1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ∼90 deg{sup 2} of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources)

  6. The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-Optimized Co-adds Over 300 deg$^2$ in Five Filters

    SciTech Connect (OSTI)

    Jiang, Linhua; Fan, Xiaohui; Bian, Fuyan; McGreer, Ian D.; Strauss, Michael A.; Annis, James; Buck, Zoë; Green, Richard; Hodge, Jacqueline A.; Myers, Adam D.; Rafiee, Alireza; Richards, Gordon

    2014-06-25

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ~300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources).

  7. STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7

    SciTech Connect (OSTI)

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Chiba, Masashi; Ivezic, Zeljko; Rockosi, Constance M.; Yanny, Brian E-mail: jen@mso.anu.edu.a E-mail: beers@pa.msu.ed E-mail: chiba@astr.tohoku.ac.j E-mail: crockosi@ucolick.or

    2010-03-20

    The structure and kinematics of the recognized stellar components of the Milky Way are explored, based on well-determined atmospheric parameters and kinematic quantities for 32360 'calibration stars' from the Sloan Digital Sky Survey (SDSS) and its first extension, SDSS-II, which included the sub-survey Sloan Extension for Galactic Understanding and Exploration (SEGUE). Full space motions for a sub-sample of 16,920 stars, exploring a local volume within 4 kpc of the Sun, are used to derive velocity ellipsoids for the inner- and outer-halo components of the Galaxy, as well as for the canonical thick-disk and proposed metal-weak thick-disk (MWTD) populations. This new sample of calibration stars represents an increase of 60% relative to the numbers used in a previous analysis. We first examine the question of whether the data require the presence of at least a two-component halo in order to account for the rotational behavior of likely halo stars in the local volume, and whether more than two components are needed. We also address the question of whether the proposed MWTD is kinematically and chemically distinct from the canonical thick disk, and point out that the Galactocentric rotational velocity inferred for the MWTD, as well as its mean metallicity, appear quite similar to the values derived previously for the Monoceros stream, suggesting a possible association between these structures. In addition, we consider the fractions of each component required to understand the nature of the observed kinematic behavior of the stellar populations of the Galaxy as a function of distance from the plane. Scale lengths and scale heights for the thick-disk and MWTD components are determined. Spatial density profiles for the inner- and outer-halo populations are inferred from a Jeans theorem analysis. The full set of calibration stars (including those outside the local volume) is used to test for the expected changes in the observed stellar metallicity distribution function

  8. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  9. Mass calibration of galaxy clusters at redshift 0.11.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    SciTech Connect (OSTI)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster massrichness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These massrichness relations are presented for four redshift bins, 0.1 < z ? 0.4, 0.4 < z ? 0.7, 0.7 < z ? 1.0 and 0.1 < z ? 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present massrichness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the massrichness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (?) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 0.526, 14.1 1.78, 30.2 8.74 and 9.23 0.525 1013 h1 M? for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 0.0585, 0.948 0.100, 1.33 0.260 and 0.883 0.0500, respectively.

  10. Digital Surveying Directional Surveying Specialists | Open Energy...

    Open Energy Info (EERE)

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  11. The variable sky of deep synoptic surveys

    SciTech Connect (OSTI)

    Ridgway, Stephen T.; Matheson, Thomas; Mighell, Kenneth J.; Olsen, Knut A. [National Optical Astronomy Observatory, Tucson, AZ 85725 (United States); Howell, Steve B., E-mail: ridgway@noao.edu [NASA Ames Research Center, P.O. Box 1, M/S 244-30, Moffett Field, CA 94035 (United States)

    2014-11-20

    The discovery of variable and transient sources is an essential product of synoptic surveys. The alert stream will require filtering for personalized criteriaa process managed by a functionality commonly described as a Broker. In order to understand quantitatively the magnitude of the alert generation and Broker tasks, we have undertaken an analysis of the most numerous types of variable targets in the skyGalactic stars, quasi-stellar objects (QSOs), active galactic nuclei (AGNs), and asteroids. It is found that the Large Synoptic Survey Telescope (LSST) will be capable of discovering ?10{sup 5} high latitude (|b| > 20) variable stars per night at the beginning of the survey. (The corresponding number for |b| < 20 is orders of magnitude larger, but subject to caveats concerning extinction and crowding.) However, the number of new discoveries may well drop below 100 per night within less than one year. The same analysis applied to GAIA clarifies the complementarity of the GAIA and LSST surveys. Discovery of AGNs and QSOs are each predicted to begin at ?3000 per night and decrease by 50 times over four years. Supernovae are expected at ?1100 per night, and after several survey years will dominate the new variable discovery rate. LSST asteroid discoveries will start at >10{sup 5} per night, and if orbital determination has a 50% success rate per epoch, they will drop below 1000 per night within two years.

  12. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect (OSTI)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ? 1; their offset from the z ? 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ? 2-3 galaxies. We provide the largest local (0.050

  13. Cosmological Simulations for Large-Scale Sky Surveys | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The focus of cosmology today is on its two mysterious pillars, dark matter and dark energy. Large-scale sky surveys are the current drivers of precision cosmology and have been ...

  14. Cosmological Simulations for Large-Scale Sky Surveys | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The focus of cosmology today revolves around two mysterious pillars, dark matter and dark energy. Large-scale sky surveys are the current drivers of precision cosmology and have ...

  15. Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Cosmological Simulations for Large-Scale Sky Surveys PI Name: Salman Habib PI Email: habib@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Physics The next generation of large-scale sky surveys aims to establish a new regime of cosmic discovery through fundamental measurements of the universe's geometry and the growth of structure. The aim of this project is to accurately

  16. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Citation Details In-Document Search Title: SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY ...

  17. Reliability of radio transients detected in the Nasu sky survey

    SciTech Connect (OSTI)

    Aoki, Takahiro; Daishido, Tsuneaki; Tanaka, Tai; Nakao, Ryota; Nomura, Naomi; Sugisawa, Kentaro; Niinuma, Kotaro; Takefuji, Kazuhiro; Kida, Sumiko

    2014-01-20

    This article reports on the reliability of 11 radio transients detected in the Nasu sky survey. We derived false detection rates and evaluated the statistical significance of each transient source. A single source, labeled WJN J1443+3439, was statistically significant at the 10{sup 5} significance level; the other 10 sources were insignificant. On the basis of this single detection, the sky surface density of live radio transients was estimated to be 2{sub ?1.9}{sup +9}10{sup ?6} deg{sup ?2} at a flux density above 3 Jy and a frequency of 1.42 GHz. Since this result is comparable with other survey results and known transients, WJN J1443+3439 could not be excluded. The sky surface density supported a power-law distribution of source count versus flux density. For transient events, the power-law exponent was approximately 3/2. These results are expected to assist radio variable/transient surveys in next-generation facilities such as the Square Kilometre Array.

  18. Surveying The TeV Sky With Milagro

    SciTech Connect (OSTI)

    Walker, G. P.

    2006-11-17

    A wide field of view, high duty factor TeV gamma-ray observatory is essential for studying TeV astrophysical sources, because most of these sources are either highly variable or are extended. Milagro is such a TeV detector and has performed the deepest survey of the Northern Hemisphere sky. In addition to detecting the Crab Nebula and Mrk 421, which are known TeV sources, Milagro has made the first detection of diffuse TeV emission from the Galactic plane. The Milagro data has been searched for unknown point sources and extended sources. A new extended TeV source is seen and is coincident with an EGRET unidentified source. Based on the success of Milagro, a second generation water Cherenkov gamma-ray observatory is planned which will give an increase in sensitivity of more than an order of magnitude.

  19. Surveying the TeV Sky with Milagro

    SciTech Connect (OSTI)

    Lansdell, C. P.

    2006-07-11

    A wide field of view, high duty factor, TeV gamma-ray observatory is essential for studying TeV astrophysical sources, because most of these sources are either highly variable or are extended. Milagro is such a TeV detector and has performed the deepest survey of the Northern Hemisphere sky. In addition to detecting the known TeV sources of the Crab Nebula and Markarian 421, Milagro has made the first detection of diffuse TeV emission from the Galactic plane. The Milagro data has been searched for unknown point sources and extended sources. Evidence for a new extended TeV source is seen and is coincident with an EGRET unidentified source. The Milagro data has also been searched for the predicted TeV emitters of gamma-ray bursts, galaxy clusters, and EGRET unidentified sources. Based on the success of Milagro, a second generation water Cherenkov gamma-ray observatory is planned which will give an increase in sensitivity of more than an order of magnitude.

  20. IS THE TWO MICRON ALL SKY SURVEY CLUSTERING DIPOLE CONVERGENT?

    SciTech Connect (OSTI)

    Bilicki, Maciej; Chodorowski, Michal; Jarrett, Thomas; Mamon, Gary A.

    2011-11-01

    There is a long-standing controversy about the convergence of the dipole moment of the galaxy angular distribution (the so-called clustering dipole). Is the dipole convergent at all, and if so, what is the scale of the convergence? We study the growth of the clustering dipole of galaxies as a function of the limiting flux of the sample from the Two Micron All Sky Survey (2MASS). Contrary to some earlier claims, we find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e., up to 13.5 mag in the near-infrared K{sub s} band (equivalent to an effective distance of 300 Mpc h{sup -1}). We compare the observed growth of the dipole with the theoretically expected, conditional one (i.e., given the velocity of the Local Group relative to the cosmic microwave background), for the {Lambda}CDM power spectrum and cosmological parameters constrained by the Wilkinson Microwave Anisotropy Probe. The observed growth turns out to be within 1{sigma} confidence level of its theoretical counterpart once the proper observational window of the 2MASS flux-limited catalog is included. For a contrast, if the adopted window is a top hat, then the predicted dipole grows significantly faster and converges (within the errors) to its final value for a distance of about 300 Mpc h{sup -1}. By comparing the observational windows, we show that for a given flux limit and a corresponding distance limit, the 2MASS flux-weighted window passes less large-scale signal than the top-hat one. We conclude that the growth of the 2MASS dipole for effective distances greater than 200 Mpc h{sup -1} is only apparent. On the other hand, for a distance of 80 Mpc h{sup -1} (mean depth of the 2MASS Redshift Survey) and the {Lambda}CDM power spectrum, the true dipole is expected to reach only {approx}80% of its final value. Eventually, since for the window function of 2MASS the predicted growth is consistent with the observed one, we can compare the two to evaluate

  1. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very ...

  2. A Southern Sky Survey with Fermi LAT and ASKAP

    SciTech Connect (OSTI)

    Cameron, Robert A.; /SLAC /KIPAC, Menlo Park

    2010-04-29

    We present the prospects for a future joint gamma-ray and radio survey of southern hemisphere sources using the Fermi Large Area Telescope (LAT) and the upcoming Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. ASKAP is a next generation radio telescope designed to perform surveys at GHz frequencies at a much higher survey speed than previous radio telescopes, and is scheduled to start engineering observations in 2011. The survey capabilities of both Fermi LAT and ASKAP are described, and the planned science surveys for ASKAP are summarized. We give some expected details of the Variable and Slow Transient (VAST) survey using ASKAP, which will search for transients on timescales from 5 seconds to years. Some observational properties of faint and transient sources seen at gamma-ray and radio wavelengths are summarized, and prospects and strategies for using ASKAP survey data for LAT source counterpart identification are summarized.

  3. Ensemble Properties of Comets in the Sloan Digital Sky Survey...

    Office of Scientific and Technical Information (OSTI)

    in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(

  4. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical...

    Office of Scientific and Technical Information (OSTI)

    Article Resource Relation: Journal Name: Submitted to Astron.J.; Journal Volume: 140; Journal Issue: 2 Research Org: Fermi National Accelerator Laboratory (FNAL), Batavia, IL...

  5. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    No abstract prepared. Authors: Tucker, Douglas L. ; Kent, S. ; Richmond, M.W. ; Annis, J. ; Smith, J.A. ; Allam, S.S. ; Rodgers, C.T. ; Stute, J.L. ; Adelman-McCarthy, Jennifer K....

  6. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    Authors: Tucker, D.L. ; Kent, S. ; Richmond, M.W. ; Annis, J. ; Smith, J.A. ; Allam, S.S. ; Rodgers, C.T. ; Stute, J.L. ; Adelman-McCarthy, Jennifer K. ; Brinkmann, J. ; Doi, M. ;...

  7. A SOUTHERN SKY AND GALACTIC PLANE SURVEY FOR BRIGHT KUIPER BELT OBJECTS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Udalski, Andrzej; Kubiak, Marcin; Pietrzynski, Grzegorz; Poleski, Radoslaw; Soszynski, Igor; Szymanski, Michal K.; Ulaczyk, Krzysztof; Trujillo, Chadwick

    2011-10-15

    About 2500 deg{sup 2} of sky south of declination -25{sup 0} and/or near the Galactic Plane were surveyed for bright outer solar system objects. This survey is one of the first large-scale southern sky and Galactic Plane surveys to detect dwarf planets and other bright Kuiper Belt Objects in the trans-Neptunian region. The survey was able to obtain a limiting R-band magnitude of 21.6. In all, 18 outer solar system objects were detected, including Pluto which was detected near the Galactic center using optimal image subtraction techniques to remove the high stellar density background. Fourteen of the detections were previously unknown trans-Neptunian objects, demonstrating that the southern sky had not been well searched to date for bright outer solar system objects. Assuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets. Combining this survey with previous surveys from the northern hemisphere suggests that the Kuiper Belt is nearly complete to around 21st magnitude in the R band. All the main dynamical classes in the Kuiper Belt are occupied by at least one dwarf-planet-sized object. The 3:2 Neptune resonance, which is the innermost well-populated Neptune resonance, has several large objects while the main outer Neptune resonances such as the 5:3, 7:4, 2:1, and 5:2 do not appear to have any large objects. This indicates that the outer resonances are either significantly depleted in objects relative to the 3:2 resonance or have a significantly different assortment of objects than the 3:2 resonance. For the largest objects (H < 4.5 mag), the scattered disk population appears to have a few times more objects than the main Kuiper Belt (MKB) population, while the Sedna population could be several times more than that of the MKB.

  8. FIRST: Faint Images of the Radio Sky at Twenty-Centimeters (Data Catalogs from the Very Large Array (VLA) First Survey)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Becker, Robert H.; Helfand, David J.; White, Richard L.; Gregg, Michael D.; Laurent-Muehleisen, Sally A.

    FIRST, Faint Images of the Radio Sky at Twenty-cm, is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid using 27 3-MHz frequency channels centered at 1365 and 1435 MHz. The data were edited, self-calibrated, mapped, and cleaned using an automated pipeline based largely on routines in the Astronomical Image Processing System (AIPS). Data were collected from 1993 through 2002, with enhanced images produced up through 2011. The Data Catalogs have been cleaned and reissued over time, with the latest version coming out in March, 2014. They contain maps, images, and binary data. The FIRST survey area was chosen to coincide with that of the Sloan Digital Sky Survey (SDSS); at the m(v)~24 limit of SDSS, ~50% of the optical counterparts to FIRST sources will be detected.

  9. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    SciTech Connect (OSTI)

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.; Murphy, T.; Pisano, D. J.; Curran, J. R.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup 1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ?19 km s{sup 1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.

  10. NERSC Hosts Digital Stargazing Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Hosts Digital Stargazing Portal NERSC Hosts Digital Stargazing Portal June 4, 2015 Legacy highres 1400x800 Courtesy of DECam Legacy Survey Even non-scientists can now browse sky survey images hosted at NERSC. The DECam Legacy Survey has published the first in a series of web-based catalogs that will offer an update to images of the night sky originally taken with the 15-year-old camera of the Sloan Digital Sky Survey. In the spirit of the new information age, the survey will share frequent

  11. A serendipitous all sky survey for bright objects in the outer solar system

    SciTech Connect (OSTI)

    Brown, M. E.; Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Bannister, M. T.; Schmidt, B. P.; McNaught, R.; Larson, S.; Christensen, E.; Beshore, E.

    2015-02-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having V=19.8±0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V≲19.1 (V≲18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.

  12. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    SciTech Connect (OSTI)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Blain, Andrew W.; Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Smith, Daniel J. B.; Bonfield, David; Baes, Maarten; Bridge, Carrie; Buttiglione, Sara; De Zotti, Gianfranco; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  13. Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey

    SciTech Connect (OSTI)

    Huber, M E; Everett, M E; Howell, S B

    2005-03-07

    The authors present an analysis of the color and variability characteristics for point sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged {approx} 23 square degrees in BVI filters from {approx} 16-24 mag to investigate variability in faint sources at moderate to high Galactic latitudes. Point source completeness is found to be >83% for a selected representative sample (V - 17.5-22.0 mag, B-V = 0.0-1.5) containing both photometric B, V detections and 80% of the time-sampled V data available compared to a basic internal source completeness of 99%. Multi-epoch (10-30) observations in V spanning minutes to years modeled by light curve simulations reveal amplitude sensitivities to {approx} 0.015-0.075 mag over a representative V = 18-22 mag range. Periodicity determinations appear viable to time-scales of an order 1 day or less using the most sampled fields ({approx} 30 epochs). The fraction of point sources is found to be generally variable at 5-8% over V = 17.5-22.0 mag. For V brighter than 19 mag, the variable population is dominated by low amplitude (< 0.05 mag) and blue (B-V < 0.35) sources, possibly representing a population of {gamma} Doradus stars. Overall, the dominant population of variable sources are bluer than B-V = 0.65 and have Main Sequence colors, likely reflecting larger populations of RR Lyrae, SX Phe, {gamma} Doradus, and W UMa variables.

  14. Dark Energy Survey

    SciTech Connect (OSTI)

    Roodman, Aaron; Nord, Brian; Elliot, Ann

    2012-12-06

    Members of the Dark Energy Survey collaboration explain what they hope to learn by studying the southern sky with the world's most advanced digital camera, mounted on a telescope in Chile.

  15. Dark Energy Survey

    ScienceCinema (OSTI)

    Roodman, Aaron; Nord, Brian; Elliot, Ann

    2014-08-12

    Members of the Dark Energy Survey collaboration explain what they hope to learn by studying the southern sky with the world's most advanced digital camera, mounted on a telescope in Chile.

  16. SURVEYING THE DYNAMIC RADIO SKY WITH THE LONG WAVELENGTH DEMONSTRATOR ARRAY

    SciTech Connect (OSTI)

    Lazio, T. Joseph W.; Clarke, Tracy E.; Lane, W. M.; Gross, C.; Kassim, N. E.; Hicks, B.; Polisensky, E.; Stewart, K.; Ray, P. S.; Wood, D.; York, J. A.; Kerkhoff, A.; Dalal, N. Paravastu; Cohen, A. S.; Erickson, W. C.

    2010-12-15

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10{sup -2} events yr{sup -1} deg{sup -2}, having a pulse energy density {approx}>1.5 x 10{sup -20} J m{sup -2} Hz{sup -1} at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.

  17. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    SciTech Connect (OSTI)

    Li, T.S.; et al.

    2016-01-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  18. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources Healey...

    Office of Scientific and Technical Information (OSTI)

    of interesting sources, especially high energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power...

  19. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources (Journal...

    Office of Scientific and Technical Information (OSTI)

    of interesting sources, especially high energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power...

  20. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST...

    Office of Scientific and Technical Information (OSTI)

    Aurelio R. ; Carr, Michael A. ; Chiappini, Cristina ; Chojnowski, S. Drew ; Chuang, Chia-Hsun ; Comparat, Johan ; Crepp, Justin R. ; Cristiani, Stefano ; Croft, Rupert A. C. ; ...

  1. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    SciTech Connect (OSTI)

    Gagn, Jonathan; Lafrenire, David; Doyon, Ren; Malo, Lison; Artigau, tienne

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ?13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ?M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup 1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNsII tool (BANYANII). We used the most probable statistical distances inferred from BANYANII to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ?M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  2. Astronomical Images from the Very Large Array (VLA) FIRST Survey Images from the STScI Archive (Faint Images of the Radio Sky at Twenty-cm)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    FIRST, Faint Images of the Radio Sky at Twenty-Centimeters was a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid. The binary data are available in detailed source catalogs, but the full images themselves, developed through special techniques, are also available for public access. Note that the images are fairly large, typically 1150x1550 pixels. Access to the images is simple through the search interface; the images are also available via anonymous ftp at ftp://archive.stsci.edu/pub/vla_first/data. Another convenient way to obtain images is through the FIRST Cutout Server, which allows an image section to be extracted from the coadded image database at a user-specified position. The cutout server is also linked to the FIRST Search Engine, so that the catalog can be searched for sources of interest and then images can be obtained for those objects. All images taken through 2011 are available through the cutout server at http://third.ucllnl.org/cgi-bin/firstcutout.

  3. Survey on Failure Modes and Failure Mechanisms in Digital Components and Systems

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Korsah, Kofi; Muhlheim, Michael David

    2009-01-01

    This paper presents the preliminary results of a survey on the operating experience of a broad range of digital components and systems deployed in various industries. The primary objective of this survey is to identify principal modes and mechanisms of failure in field-deployed digital systems. Earlier works have sought to determine the failure rates of various classes of digital devices with the intent to integrate this information into the risk analysis calculations though still immature for such systems. Failure rates of individual components or systems are not taken into account in this evaluation; only failure modes and their respective probabilistic distribution are considered. Preliminary results from two data sources, SPIDR and FARADIP, are presented.

  4. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luque, E.

    2016-02-09

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  5. Cosmological Simulations for Sky Surveys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Gnedin (FNAL), Katrin Heitmann (ANL), David Higdon (LANL), Peter Nugent (LBNL), Rob Ross (ANL), Anze Slosar (BNL), Risa Wechsler (SLAC), Martin White (UC Berkeley) NERSC...

  6. COSMIC FLOW FROM TWO MICRON ALL-SKY REDSHIFT SURVEY: THE ORIGIN OF COSMIC MICROWAVE BACKGROUND DIPOLE AND IMPLICATIONS FOR LAMBDACDM COSMOLOGY

    SciTech Connect (OSTI)

    Lavaux, Guilhem; Mohayaee, Roya; Colombi, Stephane

    2010-01-20

    We generate the peculiar velocity field for the Two Micron All-Sky Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well correlated with the peculiar velocities obtained from high-precision observed distances within 3000 km s{sup -1}. We estimate the mean matter density to be OMEGA{sub m} = 0.31 +- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3000 km s{sup -1} agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Having tested our method against observed distances, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence toward the cosmic microwave background (CMB) dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 h {sup -1} Mpc. Although most of the amplitude of the CMB dipole seems to be recovered by 120 h {sup -1} Mpc, the direction does not agree and hence we observe no convergence up to this scale. Due to dominant superclusters such as Shapley or Horologium-Reticulum in the southern hemisphere at scales above 120 h {sup -1} Mpc, one might need to go well beyond 200 h {sup -1} Mpc to fully recover the dipole vector. We develop a statistical model which allows us to estimate cosmological parameters from the reconstructed growth of convergence of the velocity of the Local Group toward the CMB dipole motion. For scales up to 60 h {sup -1} Mpc, assuming a Local Group velocity of 627 km s{sup -1}, we estimate OMEGA{sub m} h {sup 2} = 0.11 +- 0.06 and sigma{sub 8} = 0.9 +- 0.4, in agreement with WMAP5 measurements at the 1sigma level. However, for scales up to 100 h {sup -1} Mpc, we obtain OMEGA{sub m} h {sup 2} = 0.08 +- 0.03 and sigma{sub 8

  7. Sky Volt | Open Energy Information

    Open Energy Info (EERE)

    Volt Jump to: navigation, search Name Sky Volt Facility Sky Volt Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sky Volt LLC (community owned)...

  8. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  9. Source Catalog Data from FIRST (Faint Images of the Radio Sky at Twenty-Centimeters)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Becker, Robert H.; Helfand, David J.; White, Richard L.; Gregg, Michael D.; Laurent-Muehleisen, Sally A.

    FIRST, Faint Images of the Radio Sky at Twenty-Centimeters, is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid using 2?7 3-MHz frequency channels centered at 1365 and 1435 MHz. The data were edited, self-calibrated, mapped, and CLEANed using an automated pipeline based largely on routines in the Astronomical Image Processing System (AIPS). A final atlas of maps is produced by coadding the twelve images adjacent to each pointing center. Source catalogs with flux densities and size information are generated from the coadded images also. The 2011 catalog is the latest version and has been tested to ensure reliability and completness. The catalog, generated from the 1993 through 2004 images, contains 816,000 sources and covers more than 9000 square degrees. A specialized search interface for the catalog resides at this website, and the catalog is also available as a compressed ASCII file. The user may also view earlier versions of the source catalog. The FIRST survey area was chosen to coincide with that of the Sloan Digital Sky Survey (SDSS); at the m(v)~24 limit of SDSS, ~50% of the optical counterparts to FIRST sources will be detected.

  10. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  11. NERSC Hosts Digital Stargazing Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highres 1400x800 Courtesy of DECam Legacy Survey Even non-scientists can now browse sky survey images hosted at NERSC. The DECam Legacy Survey has published the first in a...

  12. Sky Energy | Open Energy Information

    Open Energy Info (EERE)

    Sky Energy Place: Germany Product: A German company which is involved with the development of a 10MW STEG plant in the Moura region of Portugal. References: Sky Energy1 This...

  13. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT:...

  14. Mapping the Heavens: Probing Cosmology with Large Surveys

    ScienceCinema (OSTI)

    Frieman, Joshua [Fermilab

    2009-09-01

    This talk will provide an overview of recent and on-going sky surveys, focusing on their implications for cosmology. I will place particular emphasis on the Sloan Digital Sky Survey, the most ambitious mapping of the Universe yet undertaken, showing a virtual fly-through of the survey that reveals the large-scale structure of the galaxy distribution. Recent measurements of this large-scale structure, in combination with observations of the cosmic microwave background, have provided independent evidence for a Universe dominated by dark matter and dark energy as well as insights into how galaxies and larger-scale structures formed. Future planned surveys will build on these foundations to probe the history of the cosmic expansion--and thereby the dark energy--with greater precision.

  15. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  16. Sky Vegetables | Open Energy Information

    Open Energy Info (EERE)

    Vegetables Jump to: navigation, search Name: Sky Vegetables Address: 45 Rosemary Street, Suite F Place: Needham, MA Zip: 02494 Sector: Solar Website: www.skyvegetables.comindex.ht...

  17. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Big Sky Learning Event Description Bring your kids and teens to the museum for an afternoon of "maker-space" activities with Big Sky Learning. Participants will be able to: Build their own Shake Bot-a small simple robot that shakes-and take

  18. North Sky River | Open Energy Information

    Open Energy Info (EERE)

    Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  19. One Sky Homes | Open Energy Information

    Open Energy Info (EERE)

    Sky Homes Jump to: navigation, search Name: One Sky Homes Place: Los Gatos, CA Website: www.oneskyhomes.com References: One Sky Homes1 Information About Partnership with NREL...

  20. Desert Sky Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ? 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg{sup 2}

    SciTech Connect (OSTI)

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-08-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ? 1 clusters of galaxies over an area of 10,000 deg{sup 2}. Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.

  2. Sky Train Corp | Open Energy Information

    Open Energy Info (EERE)

    Train Corp Jump to: navigation, search Name: Sky Train Corp. Place: Palm Harbor, Florida Zip: 34684 Sector: Services Product: Sky Train Corporation is a consultant company...

  3. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Blue Sky Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    Optimum Energy Jump to: navigation, search Name: Blue Sky Optimum Energy Place: Buffalo, New York Product: Blue Sky offers a processing system to produce biodiesel at a cheaper...

  5. New Sky Energy | Open Energy Information

    Open Energy Info (EERE)

    Sky Energy Jump to: navigation, search Name: New Sky Energy Place: Boulder, Colorado Sector: Carbon Product: Colorado-based startup that focuses on using chemical technology to...

  6. EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES

    SciTech Connect (OSTI)

    Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo; Ivezi?, eljko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C.; Rudjak, Domagoj; Sudar, Davor; Boi?, Hrvoje; Galin, Mario; Kroflin, Andrea; Mesari?, Martina; Munk, Petra; Vrbanec, Dijana; Sesar, Branimir; Stuart, J. Scott; Srdo?, Gregor; and others

    2013-10-01

    We describe the construction of a highly reliable sample of ?7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ?0.03 mag at r = 15 to ?0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ?200,000 most probable candidate variables with r < 17 and visually confirmed and classified ?7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (? Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the median

  7. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  8. Surveys

    Broader source: Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  9. Red Sky with Red Mesa

    SciTech Connect (OSTI)

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  10. Red Sky with Red Mesa

    ScienceCinema (OSTI)

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  11. Blue Sky Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Group Inc Jump to: navigation, search Name: Blue Sky Group Inc Place: Laramie, Wyoming Zip: WY 82072-3 Product: Blue Sky is an incubator that builds high quality, high tech...

  12. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Blue Sky Bio-Fuels Place: Oakland, California Zip: 94602 Product: Blue Sky owns and operates a biodiesel plant in Idaho with a capacity...

  13. Einstein and the Daytime Sky - A

    Office of Scientific and Technical Information (OSTI)

    Einstein found how this relates to the reason the sky is blue. A B C D A. A path with a ... exist, we may, somewhat unconsciously, associate Einstein with the dark nighttime sky. ...

  14. SkyFuel Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Logo: SkyFuel Inc Name: SkyFuel Inc Address: 18300 W Highway 72 Place: Arvada, Colorado Zip: 80007 Region: Rockies Area Sector: Solar...

  15. The core collapse supernova rate from the SDSS-II supernova survey

    SciTech Connect (OSTI)

    Taylor, Matt; Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202 (United States); Dilday, Ben [Spokane, WA 99203 (United States); Galbany, Lluis [Millennium Institute of Astrophysics, Universidad de Chile, Casilla 36-D, Santiago (Chile); Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kessler, R. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Marriner, John [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 2FX (United Kingdom); Richmond, Michael [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: cinabro@physics.wayne.edu [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-09-10

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 0.19 10{sup 4}((h/0.7){sup 3}/(yr Mpc{sup 3})) at a mean redshift of 0.072 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  16. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  17. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  18. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    SciTech Connect (OSTI)

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark; Wilkinson, Peter E-mail: Mark.Birkinshaw@bristol.ac.uk E-mail: ajk@astro.uni.torun.pl

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub ?11} new radio sources brighter than 0.87mJy at 30 GHz in a 1deg{sup 2} field at >5? CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3? CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 ?Jy (at 3? CL), and would detect about 3.4נ10{sup 4} point sources brighter than 1mJy at 5? CL, with confusion causing flux density errors ?<2%(20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (? sr) radio source survey at 15 GHz. This survey will detect nearly 3נ10{sup 5} radio sources at 5? CL down to 1.3 mJy, and tens of galaxy clusters, in one year of

  19. Sky Solar Global SA | Open Energy Information

    Open Energy Info (EERE)

    Global SA Jump to: navigation, search Name: Sky Solar Global SA Place: Madrid, Spain Zip: 28046 Product: Project developer, and distributor of Chinese PV modules to Spain and...

  20. Sky Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Power LLC Jump to: navigation, search Name: Sky Power LLC Place: Portland, Oregon Zip: 97204 Sector: Wind energy Product: Developer of a high-altitude wind turbine technology....

  1. Sky Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc Jump to: navigation, search Name: Sky Energy, Inc Place: Greenville, South Carolina Zip: 29607 Sector: Renewable Energy, Wind energy Product: Sells renewable...

  2. SkyPilot Networks | Open Energy Information

    Open Energy Info (EERE)

    California Product: US-based provider of broadband wireless solutions to utilities, public service agencies and municipalities. References: SkyPilot Networks1 This article...

  3. 3.2B Pixel Camera to Shed Light on Southern Sky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.2B Pixel Camera to Shed Light on Southern Sky 3.2B Pixel Camera to Shed Light on Southern Sky July 24, 2012 - 10:56am Addthis This is an artist's rendering of the Large Synoptic Survey Telescope (LSST), the 8.4 meter wide-field telescope that the National Science Board recently approved to advance to its final design stage. Construction is expected to begin in 2014 and take about five years. | Photo courtesy of LSST Corporation. This is an artist's rendering of the Large Synoptic Survey

  4. PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY

    SciTech Connect (OSTI)

    Schlafly, E. F.; Finkbeiner, D. P.; Stubbs, C. W.; Juric, M.; Magnier, E. A.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Grav, T.; Martin, N. F.; Rix, H.-W.; Price, P. A.

    2012-09-10

    We present a precise photometric calibration of the first 1.5 years of science imaging from the Pan-STARRS1 survey (PS1), an ongoing optical survey of the entire sky north of declination -30 Degree-Sign in five bands. Building on the techniques employed by Padmanabhan et al. in the Sloan Digital Sky Survey (SDSS), we use repeat PS1 observations of stars to perform the relative calibration of PS1 in each of its five bands, simultaneously solving for the system throughput, the atmospheric transparency, and the large-scale detector flat field. Both internal consistency tests and comparison against the SDSS indicate that we achieve relative precision of <10 mmag in g, r, and i{sub P1}, and {approx}10 mmag in z and y{sub P1}. The spatial structure of the differences with the SDSS indicates that errors in both the PS1 and SDSS photometric calibration contribute similarly to the differences. The analysis suggests that both the PS1 system and the Haleakala site will enable <1% photometry over much of the sky.

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  6. Conergy SkyPower JV | Open Energy Information

    Open Energy Info (EERE)

    SkyPower JV Jump to: navigation, search Name: Conergy & SkyPower JV Place: Canada Sector: Solar Product: Canada-based solar project developer. References: Conergy & SkyPower JV1...

  7. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  9. Cogenra Solar formerly SkyWatch Energy | Open Energy Information

    Open Energy Info (EERE)

    Cogenra Solar formerly SkyWatch Energy Jump to: navigation, search Name: Cogenra Solar (formerly SkyWatch Energy) Place: Mountain View, California Zip: 94043 Sector: Solar Product:...

  10. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name: Big Sky Carbon Sequestration Partnership Address: 2327 University...

  11. Deep Sky Astronomical Image Database Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  12. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: SkyPower-Pekon Electronics JV Place: India Sector: Wind energy Product: Joint venture for development of Indian wind farms. References: SkyPower-Pekon Electronics...

  13. Beijing Sky Solar Investment Management Co | Open Energy Information

    Open Energy Info (EERE)

    Sky Solar Investment Management Co Jump to: navigation, search Name: Beijing Sky Solar Investment & Management Co. Place: Beijing, China Sector: Solar Product: Beijing based...

  14. CECIC Blue Sky Investment Consulting Management Co Ltd | Open...

    Open Energy Info (EERE)

    CECIC Blue Sky Investment Consulting Management Co Ltd Jump to: navigation, search Name: CECIC Blue-Sky Investment Consulting & Management Co. Ltd Place: Beijing, Beijing...

  15. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration ...

  16. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  17. Carolina Blue Skies & Green Jobs Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative New York State-wide Alternative Fuel Vehicle Program for ...

  18. Carolina Blue Skies & Green Jobs Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (577.38 KB) More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative Advanced Electric Drive Vehicle Education Program

  19. Einstein and the Daytime Sky - D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Fun with polarizers In one respect, Einstein's mathematical analysis (like Rayleigh's earlier one) proves quite accurate, in a way that's easy to demonstrate. This has to do with how the sky's scattered light is polarized. Try looking at a patch of clear sky through one lens of a pair of polarizing sunglasses while you rotate the lens. You'll notice that the sky looks brighter as you look through the lens in some positions, and darker when the lens is in other positions. If the sun is not far

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  1. SkyBuilt Power | Open Energy Information

    Open Energy Info (EERE)

    US-based renewable energy system integrator such as solar, wind, fuel cells, and micro-hydro power. References: SkyBuilt Power1 This article is a stub. You can help OpenEI by...

  2. SkyTrough Parabolic Solar Collector

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features a collaboration between the solar industry and national laboratories that resulted in a ground-breaking, low-cost system for utility-scale power generation: the SkyTrough ...

  3. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  4. Science satellites scour skies for Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science satellites scour skies for Santa Science satellites scour skies for Santa Beginning at 6 a.m. Monday, Dec. 24, scientists will use two advanced science satellites to mark the path of the elfin traveler. December 20, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  5. Film vs. magnetic tape recording for IRLS AN/AAD-5 for open skies imaging

    SciTech Connect (OSTI)

    Kumar, V.; Saatzer, P.; Goede, W.

    1996-11-01

    The United States Government (USG) Full Operational Capability (FOC) Open Skies aircraft (OC-135) will be equipped with an Infrared Line Scanner AN/AAD-5, fully compliant with the treaty requirements. An extensive trade study is conducted to explore the possibility of switching from film recording to either analog or digital magnetic tape recording when the AAD-5 IRLS is flown in the Open Skies Aircraft. This paper presents preliminary trade study results and the overall conclusions and recommendations based on the analysis. A flight measurement program is now being carried out under the Follow On Sensor Evaluation Program (FOSEP) to evaluate the digital magnetic recording as compared to the film recording and the results of these fight measurement will be presented at a later date. 6 figs., 4 tabs.

  6. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect (OSTI)

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  7. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  8. A MULTI-SURVEY APPROACH TO WHITE DWARF DISCOVERY

    SciTech Connect (OSTI)

    Sayres, Conor; Davenport, James R. A.; AlSayyad, Yusra; Tofflemire, Benjamin M.; Subasavage, John P.; Bergeron, P.; Dufour, P.

    2012-04-15

    By selecting astrometric and photometric data from the Sloan Digital Sky Survey (SDSS), the Lepine and Shara Proper Motion North Catalog (LSPM-North), the Two Micron All Sky Survey (2MASS), and the USNO-B1.0 catalog, we use a succession of methods to isolate white dwarf (WD) candidates for follow-up spectroscopy. Our methods include reduced proper motion diagram cuts, color cuts, and atmospheric model adherence. We present spectroscopy of 26 WDs obtained from the CTIO 4 m and APO 3.5 m telescopes. Additionally, we confirm 28 WDs with spectra available in the SDSS DR7 database but unpublished elsewhere, presenting a total of 54 WDs. We label one of these as a recovered WD while the remaining 53 are new discoveries. We determine physical parameters and estimate distances based on atmospheric model analyses. Three new WDs are modeled to lie within 25 pc. Two additional WDs are confirmed to be metal-polluted (DAZ). Follow-up time series photometry confirms another object to be a pulsating ZZ Ceti WD.

  9. Clear Sky Detection Paper for Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Reno and C. W. Hansen, "Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements," Renewable Energy, 2016. Preprint. DOI: 10.1016/j.renene.2015.12.031 1 Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements Matthew J. Reno * and Clifford W. Hansen Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1033, USA *Corresponding author. E-mail address: mjreno@sandia.gov TEL.: +1 505 844 3087; Fax: +1 505 844 7231

  10. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    SciTech Connect (OSTI)

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia -Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco -Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastian E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scoccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.

  11. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; et al

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  12. OZZ Solar Inc Sky Ozz International | Open Energy Information

    Open Energy Info (EERE)

    OZZ Solar Inc Sky Ozz International Jump to: navigation, search Name: OZZ Solar Inc. (Sky Ozz International) Place: Concord, Ontario, Canada Zip: L4K 4R1 Sector: Solar Product:...

  13. Blue Sky Green Field Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Green Field Wind Farm Jump to: navigation, search Name Blue Sky Green Field Wind Farm Facility Blue Sky Green Field Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  14. Sky WindPower Corp | Open Energy Information

    Open Energy Info (EERE)

    WindPower Corp Jump to: navigation, search Name: Sky WindPower Corp Place: Ramona, California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that...

  15. Fast All-Sky Radiation Model for Solar Applications (FARMS):...

    Office of Scientific and Technical Information (OSTI)

    Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of ... Citation Details In-Document Search Title: Fast All-Sky Radiation Model for Solar ...

  16. Autonomous global sky monitoring with real-time robotic follow...

    Office of Scientific and Technical Information (OSTI)

    Conference: Autonomous global sky monitoring with real-time robotic follow-up Citation Details In-Document Search Title: Autonomous global sky monitoring with real-time robotic...

  17. NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk...

  18. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  19. MULTI-SCALE MORPHOLOGICAL ANALYSIS OF SDSS DR5 SURVEY USING THE METRIC SPACE TECHNIQUE

    SciTech Connect (OSTI)

    Wu Yongfeng; Batuski, David J.; Khalil, Andre

    2009-12-20

    Following the novel development and adaptation of the Metric Space Technique (MST), a multi-scale morphological analysis of the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) was performed. The technique was adapted to perform a space-scale morphological analysis by filtering the galaxy point distributions with a smoothing Gaussian function, thus giving quantitative structural information on all size scales between 5 and 250 Mpc. The analysis was performed on a dozen slices of a volume of space containing many newly measured galaxies from the SDSS DR5 survey. Using the MST, observational data were compared to galaxy samples taken from N-body simulations with current best estimates of cosmological parameters and from random catalogs. By using the maximal ranking method among MST output functions, we also develop a way to quantify the overall similarity of the observed samples with the simulated samples.

  20. Meet a Machine: AMS is NNSA's eye in the sky | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Meet a Machine: AMS is NNSA's eye in the sky Tuesday, September 13, 2016 - 1:46pm The Aerial Measuring System (AMS) provides a sophisticated radiation detection system that supports NNSA's mission to prepare for, respond to, and mitigate nuclear and radiological accidents and incidents globally. AMS provides real-time measurements of ground contamination. By quickly surveying very large areas that could not easily be accomplished otherwise, AMS aircraft (helicopters

  1. Infrared Sky Imager (IRSI) Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Infrared Sky Imager Instrument Handbook VR Morris April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  2. Airborne Electromagnetic Survey At Chena Geothermal Area (Kolker...

    Open Energy Info (EERE)

    Phase I) Notes Fugro, Inc. performed an airborne geophysical survey using the DIGHEM (Digital Helicopter ElectroMagnetics) aircraft over a 937 km2 survey grid. An coplanar...

  3. The diffuse galactic far-ultraviolet sky

    SciTech Connect (OSTI)

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  4. Methods for Bayesian power spectrum inference with galaxy surveys

    SciTech Connect (OSTI)

    Jasche, Jens; Wandelt, Benjamin D.

    2013-12-10

    We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves upon previous Bayesian methods by performing a joint inference of the three-dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases, and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate subsamples. This method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal-to-noise regimes by using a deterministic reversible jump algorithm. This approach reduces the correlation length of the sampler by several orders of magnitude, turning the otherwise numerically unfeasible problem of joint parameter exploration into a numerically manageable task. We test our method on an artificial mock galaxy survey, emulating characteristic features of the Sloan Digital Sky Survey data release 7, such as its survey geometry and luminosity-dependent biases. These tests demonstrate the numerical feasibility of our large scale Bayesian inference frame work when the parameter space has millions of dimensions. This method reveals and correctly treats the anti-correlation between bias amplitudes and power spectrum, which are not taken into account in current approaches to power spectrum estimation, a 20% effect across large ranges in k space. In addition, this method results in constrained realizations of density fields obtained without assuming the power spectrum or bias parameters

  5. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  6. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  7. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  8. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  9. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    SciTech Connect (OSTI)

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng; Wu Xuebing

    2013-08-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  10. Big Sky, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sky, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2846507, -111.368292 Show Map Loading map... "minzoom":false,"mappingservice":...

  11. Blue Sky Energy Inc BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc BSE Jump to: navigation, search Name: Blue Sky Energy Inc (BSE) Place: Vista, California Zip: 92081 Product: MPPT (Maximum Power Point Tracking) technology. Own a...

  12. University of California, San Diego (UCSD) Sky Imager Cloud Position...

    Office of Scientific and Technical Information (OSTI)

    University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report Citation Details In-Document Search Title: University of California, San Diego ...

  13. Fast All-sky Radiation Models for Solar applications (FARMS)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Fast All-sky Radiation Models for Solar applications ... Radiative transfer (RT) models simulating broadband solar radiation have been widely used ...

  14. NREL Success Stories - SkyFuel Partnership Reflects Bright Future

    ScienceCinema (OSTI)

    Jorgensen, Gary; Gee, Randy

    2013-05-29

    NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

  15. COLOR-MAGNITUDE RELATION AND MORPHOLOGY OF LOW-REDSHIFT ULIRGs...

    Office of Scientific and Technical Information (OSTI)

    IN SLOAN DIGITAL SKY SURVEY Citation Details In-Document Search Title: COLOR-MAGNITUDE RELATION AND MORPHOLOGY OF LOW-REDSHIFT ULIRGs IN SLOAN DIGITAL SKY SURVEY We present ...

  16. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose...

    Energy Savers [EERE]

    One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA Case study of a...

  17. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA Case study of a ...

  18. Directional sky luminance versus cloud cover and solar position

    SciTech Connect (OSTI)

    Harrison, A.W. )

    1991-01-01

    Measurements of sky luminance at 121 equally spaced points ({theta},{phi}) over the sky dome under clear, partly cloudy and overcast skies have led to the following analytical expression for normalized sky luminance L{sub v}({theta},{phi},{theta}*,C) = CL {sub vc}{sup 0}({theta},{phi},{theta}*) + (1 {minus} C)L{sub vc}{sup c}({theta},{phi},{theta}*) L{sub vc}{sup 0}({theta},{phi},{theta}I) = 0.40 + 0.21{theta}* + 0.27 cos {theta} + 1.45 e{sup {minus}2.4l{psi}}L{sub vc}({theta},{phi},{theta}*) = (1.28 + 147e{sup {minus}11.1{phi}} + 4.28 cos{sup 2}{phi} cos{theta}*)*(1 {minus} e{sup {minus}0.42sec{theta}})*(1{minus}e{sup {minus}0.67sec{theta}}) where {theta} = sky point zenith angle, {phi} = sky point azimuth angle, {theta}* = solar zenith angle, {phi} = scattering angle between sky, and sun direction and C = opaque cloud cover ({theta}* and {phi} in radians).

  19. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  20. A survey of satellite galaxies around NGC 4258

    SciTech Connect (OSTI)

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 10{sup 12} M {sub ?} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue ur colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  1. Ultra-short period binaries from the Catalina Surveys

    SciTech Connect (OSTI)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Donalek, C.; Williams, R.; García-Álvarez, D.; Catelan, M.; Torrealba, G.; Prieto, J. L.; Abraham, S.; Larson, S.; Christensen, E.

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  2. Sky Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Sky Lake is a census-designated place in Orange County, Florida.1 References US...

  3. Zhenjiang Sky Solar Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Co Ltd Jump to: navigation, search Name: Zhenjiang Sky-Solar Co Ltd Place: Zhenjiang, Jiangsu Province, China Zip: 212009 Sector: Solar Product: A high-tech enterprise...

  4. American Clean Skies Foundation | OpenEI Community

    Open Energy Info (EERE)

    American Clean Skies Foundation Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 2 October, 2012 - 13:01 Nominations open for 250,000 Multimedia Clean...

  5. SkySails GmbH | Open Energy Information

    Open Energy Info (EERE)

    which it supplements the momentum of commercial vessels on long journeys, saving fuel costs. References: SkySails GmbH1 This article is a stub. You can help OpenEI by expanding...

  6. Sky Energy Luoyang Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Henan-based Sky Energy is engaged in the researching and manufacturing of lithium-ion batteries. Coordinates: 24.964109, 118.70932 Show Map Loading map......

  7. Mobile Climate Monitoring Facility to Sample Skies in Africa | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa January 18, 2006 - 10:47am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate. Dust from Africa's

  8. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    Preliminary CO2-PENS model (Technical Report) | SciTech Connect LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Authors: Stauffer, Philip H. [1] ; Dai, Zhenxue [1] ; Lu, Zhiming [1] ; Middleton, Richard S. [1] ; Jacobs, John F. [1] ; Carey, James W. [1] + Show Author Affiliations Los Alamos National Laboratory

  9. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2006-01-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  10. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-10-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  11. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    SciTech Connect (OSTI)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  12. Digital Sofcell Digital Ultracap joint venture | Open Energy...

    Open Energy Info (EERE)

    Ultracap joint venture Jump to: navigation, search Name: Digital Sofcell - Digital Ultracap joint venture Product: Digital Sofcell will joint venture with Digital Ultracap to...

  13. A simple formula for determining globally clear skies

    SciTech Connect (OSTI)

    Long, C.N.; George, A.T.; Mace, G.G.

    1996-04-01

    Surface measurements to serve as {open_quotes}ground truth{close_quotes} are of primary importance in the development of retrieval algorithms using satellite measurements to predict surface irradiance. The most basic algorithms of this type deal with clear sky (i.e., cloudless) top-to-surface shortwave (SW) transfer, serving as a necessary prerequisite towards treating both clear and cloudy conditions. Recently, atmosphere SW cloud forcing to infer the possibility of excess atmospheric absorption (compared with model results) in cloudy atmospheres. The surface component of this ratio relies on inferring the expected clear sky SW irradiance to determine the effects of clouds on the SW energy budget. Solar renewable energy applications make use of clear and cloud fraction climatologies to assess solar radiation resources. All of the above depend to some extent on the identification of globally clear sky conditions and the attendant measurements of downwelling SW irradiance.

  14. Providing Diurnal Sky Cover Data at ARM Sites

    SciTech Connect (OSTI)

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  15. First-Year Spectroscopy for the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

    2008-03-25

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

  16. JGI Digital Scavenger Hunt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JGI Digital Scavenger Hunt JGI Digital Scavenger Hunt The NERSC webpages are a great resource for New and Old users, so this is the first stop on the JGI Digital Scavenger Hunt....

  17. Bright Skies Ahead for Moapa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa March 1, 2013 - 7:19pm Addthis In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second

  18. Aeromagnetic Survey At Chena Geothermal Area (Kolker, 2008) ...

    Open Energy Info (EERE)

    Phase I) Notes Fugro, Inc. performed an airborne geophysical survey using the DIGHEM (Digital Helicopter ElectroMagnetics) aircraft over a 937 km2 survey grid. Total field, nT...

  19. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Gravitational Redshift of Galaxies in Clusters from the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey Sadeh, Iftach ; Feng, Low Lerh ; Lahav, Ofer Full ...

  20. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  1. Digital Ultracap Corp formerly Digital Ultracap LLC | Open Energy...

    Open Energy Info (EERE)

    Ultracap Corp formerly Digital Ultracap LLC Jump to: navigation, search Name: Digital Ultracap Corp (formerly Digital Ultracap LLC) Place: Netherlands Product: Partnership between...

  2. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWhole Sky Imager Cloud Fraction Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Whole Sky Imager Cloud Fraction Data 1994.01.01 - 1994.12.31 Lead Scientist : Tim Tooman Data Availability sgpwsicldcoverC1.c1.19931230.144000.asc POR028T.CCV 30 Dec 93 - 06 Jan 94 sgpwsicldcoverC1.c1.19940107.151000.asc POR029T.CCV 07 Jan 94 - 14 Jan 94 sgpwsicldcoverC1.c1.19940114.144000.asc POR030T.CCV 14

  3. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    SciTech Connect (OSTI)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  4. METALLICITY AND KINEMATIC DISTRIBUTIONS OF RED HORIZONTAL-BRANCH STARS FROM THE SDSS SURVEY

    SciTech Connect (OSTI)

    Chen, Y. Q.; Zhao, G.; Zhao, J. K.; Xue, X. X.; Schuster, W. J. E-mail: schuster@astrosen.unam.m

    2010-08-15

    On the basis of a recently derived color-metallicity relation and stellar parameters from the Sloan Digital Sky Survey Data Release 7 spectroscopic survey, a large sample of red horizontal-branch (RHB) candidates have been selected to serve as standard candles. The metallicity and kinematic distributions of these stars indicate that they mainly originate from the thick-disk and the halo populations. The typical thick disk is characterized by the first group peaking at [Fe/H] {approx} -0.6, V{sub rot} {approx} 170 km s{sup -1} with a vertical scale height around |Z| {approx} 1.2 kpc, while stars with [Fe/H] < -0.9 are dominated by the halo population. Two sub-populations of the halo are suggested by the RHB stars peaking at [Fe/H] {approx} -1.3: one component with V{sub rot} > 0 km s{sup -1} (Halo I) shows a sign of metallicity gradient in the [Fe/H] versus |Z| diagram, while the other with V{sub rot} < 0 km s{sup -1} (Halo II) does not. The Halo I mainly clumps at the inner halo with R < 10 kpc and the Halo II comes both from the inner halo with R < 10 kpc and the outer halo with R > 10 kpc based on the star distribution in the R versus |Z| diagram.

  5. All-sky interferometry with spherical harmonic transit telescopes

    SciTech Connect (OSTI)

    Shaw, J. Richard; Pen, Ue-Li; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert

    2014-02-01

    In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

  6. Signals from the Noise: Image Stacking for Quasars in the FIRST Survey

    SciTech Connect (OSTI)

    White, R L; Helfand, D J; Becker, R H; Glikman, E; deVries, W

    2006-05-05

    We present a technique to explore the radio sky into the nanoJansky regime by employing image stacking using the FIRST radio sky survey. We begin with a discussion of the non-intuitive relationship between the mean and median values of a non-Gaussian distribution in which measurements of the members of the distribution are dominated by noise. Following a detailed examination of the systematic effects present in the 20 cm VLA snapshot images that comprise FIRST, we demonstrate that image stacking allows us to recover the average properties of source populations with flux densities a factor of 30 or more below the rms noise level. With the calibration described herein, mean estimates of radio flux density, luminosity, radio loudness, etc. are derivable for any undetected source class having arcsecond positional accuracy. We demonstrate the utility of this technique by exploring the radio properties of quasars found in the Sloan Digital Sky Survey. We compute the mean luminosities and radio-loudness parameters for 41,295 quasars in the SDSS DR3 catalog. There is a tight correlation between optical and radio luminosity, with the radio luminosity increasing as the 0.72 power of optical luminosity. This implies declining radio-loudness with optical luminosity, with the most luminous objects (M{sub UV} = -30) having on average ten times lower radio-to-optical ratios than the least luminous objects (M{sub UV} = -21). There is also a striking correlation between optical color and radio loudness: quasars that are either redder or bluer than the norm are brighter radio sources. Quasars having g-r {approx} 0.8 magnitudes redder than the SDSS composite spectrum are found to have radio-loudness ratios that are higher by a factor of 8. We examine the radio properties of the subsample of quasars with broad absorption lines, finding, surprisingly, that BAL quasars have higher mean radio flux densities at all redshifts, with the greatest disparity arising in the rare low

  7. The SDSS view of the Palomar-Green bright quasar survey

    SciTech Connect (OSTI)

    Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.; Green, Richard F.; Schmidt, Maarten; Hall, Patrick B.; Strauss, Michael A.; Vanden Berk, Daniel E.; Stoughton, Chris; Gunn, James E.; Brinkmann, Jon; Kent, Stephen M.; Smith, J.Allyn; Tucker, Douglas, L.; Yanny, Brian; /Fermilab /Penn State U., Astron. Astrophys. /Princeton U. Observ. /Kitt Peak Observ. /Caltech /Chicago U., Astron. Astrophys. Ctr. /York U., Canada /Apache Point Observ. /Wyoming U. /Los Alamos

    2005-02-01

    The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.

  8. THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS

    SciTech Connect (OSTI)

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Huchra, John P.; Civano, Francesca; Hao, Heng; McCarthy, Patrick J.; Scoville, Nick Z.; Smolcic, Vernesa; Brusa, Marcella; Cappelluti, Nico; Hasinger, Gunther; Salvato, Mara; Capak, Peter; Comastri, Andrea; Jahnke, Knud; Schinnerer, Eva; Lilly, Simon J.

    2009-05-10

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg{sup 2} Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f {sub 0.5-10keV} > 8 x 10{sup -16} erg cm{sup -2} s{sup -1} and i {sup +} {sub AB} < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i {sup +} {sub AB} < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L {sub 0.5-10keV} > 3 x 10{sup 42} erg s{sup -1}) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity.

  9. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Authors: Inoue, Yoshiyuki ; KIPAC, Menlo Park Stanford U., Physics Dept. SLAC ; Kalashev, Oleg E. ; Moscow, INR ; Kusenko, Alexander ; UCLA Tokyo U., KIPMU ; , Publication ...

  10. CGRaBS: An All-Sky Survey of Gamma-Ray Blazar Candidates (Journal...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 79 ASTRONOMY AND ASTROPHYSICS; COSMIC GAMMA SOURCES; GAMMA RADIATION; ASTROPHYSICS ...

  11. The 60-month all-sky BAT Survey of AGN and the Anisotropy of...

    Office of Scientific and Technical Information (OSTI)

    Garching, Max Planck Inst., MPE ; Madejski, G.M. ; KIPAC, Menlo Park ; Gehrels, N. ; NASA, Goddard ; Burlon, D. ; Garching, Max Planck Inst., MPE Publication Date: 2012-04-02...

  12. Prospects for future very high-energy gamma-ray sky survey: impact...

    Office of Scientific and Technical Information (OSTI)

    of Science (DOE SC) Country of Publication: United States Language: English Subject: ASTRO Word Cloud More Like This Full Text preview image File size NAView Full Text View...

  13. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing...

    Office of Scientific and Technical Information (OSTI)

    Authors: Habib, Salman ; Pope, Adrian ; Finkel, Hal ; Frontiere, Nicholas ; Heitmann, Katrin ; Daniel, David ; Fasel, Patricia ; Morozov, Vitali ; Zagaris, George ; Peterka, Tom ; ...

  14. Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters P. J. Ricchiazzi and C. Gautier University of California Santa Barbara, California Introduction Recent studies of clear-sky radiation indicate that current radiative transfer (RT) models underestimate atmospheric absorption when standard aerosol properties are used. This so-called clear-sky anomaly is manifested in predicted levels of diffuse radiation significantly below those observed at Southern Great Plains

  15. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    SciTech Connect (OSTI)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W.; Blake, C. H.; Carlberg, J. K.; Zasowski, G.; Hearty, F.; Crepp, J.; Rajpurohit, A. S.; Reyl, C.; Nidever, D. L.; Prieto, C. Allende; Hernndez, J.; Bizyaev, D.; Ebelke, G.; Frinchaboy, P. M.; Ge, J.; and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ?2 km s{sup 1} and a measurement floor at vsin i = 4 km s{sup 1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ?100-200 m s{sup 1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to

  16. Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    North Carolina for More Than a Decade Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade to someone by E-mail Share Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade on Facebook Tweet about Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade on Twitter Bookmark Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in North Carolina for

  17. NREL and SkyFuel Partnership Reflects Bright Future for Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Return to Search NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy National Renewable Energy Laboratory Success Story Details Partner ...

  18. Robotic Surveying

    SciTech Connect (OSTI)

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  19. Digital Sensor Technology

    SciTech Connect (OSTI)

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  20. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect (OSTI)

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is

  1. Cool covered sky-splitting spectrum-splitting FK

    SciTech Connect (OSTI)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone; Miñano, Juan C.; Benitez, Pablo; Buljan, Marina

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  2. GALEX DIFFUSE OBSERVATIONS OF THE SKY: THE DATA

    SciTech Connect (OSTI)

    Murthy, Jayant

    2014-08-01

    I present tabulations of the diffuse observations made by the GALEX spacecraft in two UV bands (FUV: 1539 and NUV: 2316 ) from the (almost) final data release of the GALEX spacecraft (GR6/GR7). This data release includes all the FUV observations and the majority of the NUV observations. I discuss overall trends in the data but the primary purpose of this paper is to make the data available to the public. The data files described in this paper are hosted by the Mikulski Archive for Space Telescopes at the Space Telescope Science Insitute from whence they may be downloaded. For ease of use, I have also created maps of the diffuse radiation in both bands over the entire observed sky at 6' resolution.

  3. Digital rotation measurement unit

    DOE Patents [OSTI]

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  4. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Optical Spectroscopic Observations of Blazars and gamma-ray Blazar Candidates in the Sloan Digital Sky Survey Data Release Nine Massaro, F. ; SLAC KIPAC, Menlo Park ; Masetti, N. ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... States) Idaho Chemical Processing Plant, Idaho Falls, ID ... spectra from the Sloan Digital Sky Survey and compile a ... Gravitational lensing as signal and noise in Lyman-alpha ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... States) Idaho Chemical Processing Plant, Idaho Falls, ID ... to account for the lensing signal to be underestimated. ... derived from the Sloan Digital Sky Survey, we show that ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... States) Idaho Chemical Processing Plant, Idaho Falls, ID ... associated with even a moderately localized GW signal. ... AGNs from the Sloan Digital Sky Survey (SDSS) which ...

  9. The Mean and Scatter of the Velocity Dispersion-Optical Richness...

    Office of Scientific and Technical Information (OSTI)

    Digital Sky Survey, we study the BCG--galaxy velocity ... We test our methods in the C4 cluster catalog, a ... Country of Publication: United States Language: English ...

  10. IGM CONSTRAINTS FROM THE SDSS-III/BOSS DR9 Lyα FOREST TRANSMISSION...

    Office of Scientific and Technical Information (OSTI)

    (BOSS) quasars from Sloan Digital Sky Survey Data Release 9, and compare with mock spectra that include careful modeling of the noise, continuum, and astrophysical uncertainties. ...

  11. "Flying Through the Known Universe" Screens at 3D Film Festival...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Perseus Cluster, captured by the Sloan Digital Sky Survey. Similar to other large galaxy clusters, this cluster contains mostly old, elliptical galaxies. Their yellowish hue...

  12. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  13. Monument Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs from the WIPP Permanent Marker Monument Survey John Hart & Associates, 2000 Photograph of the Gnome Marker located about 10 miles SW of the WIPP site For more...

  14. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  15. Digital sonar system

    DOE Patents [OSTI]

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  16. Digital sonar system

    DOE Patents [OSTI]

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  17. Fast transient digitizer

    DOE Patents [OSTI]

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  18. JGI Digital Scavenger Hunt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JGI Digital Scavenger Hunt JGI Digital Scavenger Hunt The NERSC webpages are a great resource for New and Old users, so this is the first stop on the JGI Digital Scavenger Hunt. Here is your first clue: 1) Log on to Genepool (ssh -Y genepool.nersc.gov) 2) Load the JAMO (dev) module (module load jamo/dev) 3) Run the following sequence of commands and answer the questions: genpool10: ~ $ jamo What is the third letter of the sixth jamo command in the help menu? genepool10: ~ $ jamo info What is the

  19. A VIRTUAL SKY WITH EXTRAGALACTIC H I AND CO LINES FOR THE SQUARE KILOMETRE ARRAY AND THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    SciTech Connect (OSTI)

    Obreschkow, D.; Kloeckner, H.-R.; Heywood, I.; Rawlings, S.; Levrier, F.

    2009-10-01

    We present a sky simulation of the atomic H I-emission line and the first 10 {sup 12}C{sup 16}O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h {sup -1} Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z {sub max}; e.g., for z {sub max} = 10, the field of view yields approx4 x 4 deg{sup 2}. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 10{sup 8} M {sub sun}. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a LAMBDA cold dark matter (LAMBDACDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h {sup -1} Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z approx> 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models.

  20. Digital ac monitor

    DOE Patents [OSTI]

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  1. Digital ac monitor

    DOE Patents [OSTI]

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  2. Energy Efficient Digital Networks

    Broader source: Energy.gov (indexed) [DOE]

    and rising * About 7% of all U.S. electricity consumption -Much of this digitally networked already Our Future? Media room in high-end home Electronics are Different - Service ...

  3. Cloud classification using whole-sky imager data

    SciTech Connect (OSTI)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  4. THE GALEX NEARBY YOUNG-STAR SURVEY

    SciTech Connect (OSTI)

    Rodriguez, David R.; Faherty, Jacqueline K.; Zuckerman, B.; Kastner, Joel H.; Bessell, M. S.; Murphy, Simon J.

    2013-09-10

    We describe a method that exploits data from the Galaxy Evolution Explorer (GALEX) ultraviolet and Wide-field Infrared Survey Explorer and Two Micron All Sky Survey infrared source catalogs, combined with proper motions and empirical pre-main sequence isochrones, to identify candidate nearby, young, low-mass stars. Applying our method across the full GALEX-covered sky, we identify 2031 mostly M-type stars that, for an assumed age of 10 (100) Myr, all lie within {approx}150 ({approx}90) pc of Earth. The distribution of M spectral subclasses among these {approx}2000 candidate young stars peaks sharply in the range M3-M4; these subtypes constitute 50% of the sample, consistent with studies of the M star population in the immediate solar neighborhood. We focus on a subset of 58 of these candidate young M stars in the vicinity of the Tucana-Horologium association. Only 20 of these 58 candidates were detected in the ROSAT All-Sky X-ray Survey-reflecting the greater sensitivity of GALEX for the purposes of identifying active nearby, young stars, particularly for stars of type M4 and later. Based on statistical analysis of the kinematics and/or spectroscopic followup of these 58 M stars, we find that 50% (29 stars) indeed have properties consistent with Tuc-Hor membership, while 12 are potential new members of the Columba association, and 2 may be AB Dor moving group members. Hence, {approx}75% of our initial subsample of 58 candidates are likely members of young (age {approx} 10-40 Myr) stellar moving groups within 100 pc, verifying that the stellar color- and kinematics-based selection algorithms described here can be used to efficiently isolate nearby, young, low-mass objects from among the field star population. Future studies will focus on characterizing additional subsamples selected from among this list of candidate nearby, young M stars.

  5. Discovery of two gravitationally lensed quasars in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnello, A.

    2015-10-01

    In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES andmore » the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.« less

  6. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    SciTech Connect (OSTI)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Leo; and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  7. Discovery of two gravitationally lensed quasars in the Dark Energy Survey

    SciTech Connect (OSTI)

    Agnello, A.

    2015-10-01

    In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 1011 M?. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.

  8. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  9. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    SciTech Connect (OSTI)

    Misra, Amit K.; Meadows, Victoria S.

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  10. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.