National Library of Energy BETA

Sample records for digester gases methane

  1. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  2. Anaerobic Digestion (AD): not only methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Anaerobic Digestion (AD): not only methane Breakout Session 1: New Developments and Hot Topics Session 1-C: Beyond Biofuels Larry Baresi, Professor of Biology, California State University, Northridge b13_baresi_1-C.pdf (980.78 KB) More Documents & Publications Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Hydrogen, Hydrocarbons, and Bioproduct Precursors from

  3. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years ...

  4. Definition:Digester Gas | Open Energy Information

    Open Energy Info (EERE)

    digestion is a biological process that produces a gas principally composed of methane (CH4) and carbon dioxide (CO2) otherwise known as biogas. These gases are produced...

  5. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gasesHe, Ne, and Aras additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  6. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  7. Nanostructured carbon materials for adsorption of methane and other gases

    DOE Patents [OSTI]

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  8. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect (OSTI)

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  9. Methane enrichment digestion experiments at the anaerobic experimental test unit at Walt Disney World. Final report, March 1989-August 1990

    SciTech Connect (OSTI)

    Srivastava, V.J.; Hill, A.H.

    1993-06-01

    The goal of the project was to determine the technical feasibility of utilizing a novel concept in anaerobic digestion, in-situ methane enrichment digestion or MED for producing utility-grade gas from a pilot-scale anaerobic digester. MED tests conducted during this program consistently achieved digester product gas with a methane (CH4) content of greater than 90% (on a dry-, nitrogen-free basis). The MED concept, because it requires relatively simple equipment and modest energy input, has the potential to simplify gas cleanup requirements and substantially reduce the cost of converting wastes and biomass to pipeline quality gas.

  10. Influence of H/sub 2/ stripping on methane production in conventional digesters

    SciTech Connect (OSTI)

    Poels, J.; Van Assche, P.; Verstraete, W.

    1985-12-01

    Hydrogen is a central metabolite in the methanization process. In this study the partial pressure of hydrogen in the gas phase of laboratory manure digesters was monitored over extensive periods of time and found to vary between 50 and 100.10/sup -6/ atm. By sparging the gas phase of the digester through an auxiliary reactor, hydrogenotrophic methanogens were allowed to develop at the expense of hydrogen and carbon dioxide present in the biogas, independently of the liquid or cell residence time in the main reactor. By scrubbing ca. 100 volumes of biogas per liter reactor per day through an auxiliary reactor, hydrogen concentration could be decreased maximally 25%. This resulted in an increase in the gas production rate of the main digester of ca. 10% and a concomitant improved removal of volatile fatty acids from the mixed liquor. The results obtained indicate that considerable stripping of hydrogen from the digester could be achieved at acceptable energy expenditure. However, the microbial removal of the hydrogen at these low concentrations is extremely slow and limits the applicability of this approach.

  11. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    SciTech Connect (OSTI)

    Solli, Linn Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  12. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  13. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  14. Effects of nickel on biological methane generation from a laboratory poultry waste digester

    SciTech Connect (OSTI)

    Williams, C.M.; Shih, J.C.H.; Spears, J.W.

    1986-01-01

    Nickel added in concentrations as low as 10..mu..M significantly increased biogas production in a laboratory poultry waste digester utilizing excreta from laying hens as the organic energy source. It was shown that the initial rate of biogas production increased as early as 4 h after the addition of nickel to the laboratory cultures. Analysis of the excreta for nickel content prior to addition of exogenous NiCl/sub 2/ showed appreciable amounts of nickel present. The data indicate that nickel naturally present in layer excreta is suboptimal or unavailable to the bacteria for biogas production purposes.

  15. Anaerobic digestion process

    SciTech Connect (OSTI)

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  16. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    SciTech Connect (OSTI)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-04-15

    Highlights: ? Microaeration pretreatment was effective for brown water and food waste mixture. ? The added oxygen was consumed fully by facultative microorganisms. ? Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ? Microaeration pretreatment improved methane yield by 1021%. ? Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to

  17. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect (OSTI)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  18. Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases

    SciTech Connect (OSTI)

    Wilmer, CE; Farha, OK; Yildirim, T; Eryazici, I; Krungleviciute, V; Sarjeant, AA; Snurr, RQ; Hupp, JT

    2013-04-01

    We have synthesized and characterized a new metal-organic framework (MOF) material, NU-125, that, in the single-crystal limit, achieves a methane storage density at 58 bar (840 psi) and 298 K corresponding to 86% of that obtained with compressed natural gas tanks (CNG) used in vehicles today, when the latter are pressurized to 248 bar (3600 psi). More importantly, the deliverable capacity (58 bar to 5.8 bar) for NU-125 is 67% of the deliverable capacity of a CNG tank that starts at 248 bar. (For crystalline granules or powders, particle packing inefficiencies will yield densities and deliverable capacities lower than 86% and 67% of high-pressure CNG.) This material was synthesized in high yield on a gram-scale in a single-batch synthesis. Methane adsorption isotherms were measured over a wide pressure range (0.1-58 bar) and repeated over twelve cycles on the same sample, which showed no detectable degradation. Adsorption of CO2 and H-2 over a broad range of pressures and temperatures are also reported and agree with our computational findings.

  19. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  20. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  1. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  2. Methane Gas Conversion Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  3. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What are Greenhouse Gases? Carbon Dioxide Methane Gas Oxides of Nitrogen Halocarbons Ozone Water Vapor Greenhouse gases are atmospheric gases that trap infrared radiation emitted from the earth, lower atmosphere, or clouds or aerosols and, as

  4. Methane generation from waste materials

    SciTech Connect (OSTI)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  5. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  6. The anaerobic digestion process

    SciTech Connect (OSTI)

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  7. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  8. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  9. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1995-11-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters-type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates-define the investment and operating costs of anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters in somewhat higher than that of anaerobic digestion, but the investment costs 11/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  10. Methane production from grape skins. Final technical report

    SciTech Connect (OSTI)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  11. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    SciTech Connect (OSTI)

    Bayr, S. Ojanper, M.; Kaparaju, P.; Rintala, J.

    2014-10-15

    Highlights: Rendering wastes mono-digestion and co-digestion with potato pulp were studied. CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. Free NH{sub 3} inhibited mono-digestion of rendering wastes. CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.

  12. Where Greenhouse Gases Come From | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where Greenhouse Gases Come From In the United States, greenhouse gas emissions come primarily from the burning of fossil fuels in energy use. Carbon Dioxide Carbon Dioxide is the main greenhouse gas. In 2013, 82% of human-caused greenhouse gas emissions were carbon dioxide emissions, resulting from the burning of fossil fuels, solid waste, trees, wood, and other chemical reactions. Methane and Other Gases Another greenhouse gas, methane, comes from landfills, coal mines, oil and natural gas

  13. Science Digests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Digests Science Digests Our Science Digests embrace complex issues around our science, technologies, and mission in a series of mini-articles that provide a context for our historical approach, current problem solving and our vision for the future. Spatial partitioning for the ocean simulation data set. Data triage enables extreme-scale computing Data selection and triage are important techniques for large-scale data, which can drastically reduce the amount of data written to disk or

  14. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  15. Hog farm in California uses anaerobic digestion

    SciTech Connect (OSTI)

    Swanson, D.

    1995-12-31

    This article describes a system of covered lagoons which help address the waste management problems of hog farmers as well as producing methane used to power generators. Four advantages of anaerobic digestion are described along with the system: energy production from methane; fertilizer for fields; economic development in rural areas; and improved water quality through reduction of nonpoint source pollution. Address for full report is given.

  16. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  17. Photoenhanced anaerobic digestion of organic acids

    DOE Patents [OSTI]

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  18. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  19. Two-phase anaerobic digestion of screened dairy manure

    SciTech Connect (OSTI)

    Lo, K.V.; Liao, P.H.

    1985-01-01

    The paper describes the operating results of a two-phase process that separate the acid-phase and methane-phase digestion of screened dairy manure under mesophilic temperature. Acidogenesis pretreatment prior to the methanogenic fixed-film reactor phase resulted in a significant increase in methane yield.

  20. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    SciTech Connect (OSTI)

    Michele, Pognani; Giuliana, D’Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  1. Flash pyrolysis of biomass with reactive and nonreactive gases

    SciTech Connect (OSTI)

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1982-10-01

    Studies were done on the flash pyrolysis of Douglas fir wood in the presence of reactive and nonreactive gases including hydrogen, methane, and helium. Pyrolysis and gasification of the wood particles was done in one step, without catalysts. Almost complete (98%) gasification of the carbon in Douglas fir wood was achieved at 1000/sup 0/C and 500-psi hydrogen pressure. The reaction products were methane, ethane, ethylene, carbon monoxide, BTX, and water. Flash hydropyrolysis produced a large yield of hydrocarbon gases (up to 78% C) comprising methane and ethane. High yields of ethylene (up to 21% C) and BTX (up to 12% C) were obtained via methane pyrolysis of fir wood; a free-radical mechanism is proposed to explain the enhanced yield of ethylene in a methane atmosphere.

  2. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  3. Methane Hydrates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrates 2016 Methane Hydrates Funding Opportunity Announcement The objective of this Funding Opportunity Announcement is to select projects in FY16 that will further ongoing programmatic efforts to characterize naturally occurring gas hydrate deposits as well as their role in the natural environment and that will: Support fundamental laboratory and numerical simulation studies of gas hydrate reservoir response to potential production activities Support fundamental field, laboratory and

  4. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  5. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    SciTech Connect (OSTI)

    Hickey, R.

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  6. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO conversion into carbon-neutral fuels and chemicals November ...

  7. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  8. EIA - Emissions of Greenhouse Gases in the United States 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  9. EIA - Emissions of Greenhouse Gases in the United States 2009

    Gasoline and Diesel Fuel Update (EIA)

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  10. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  11. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  12. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  13. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  14. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  15. FCPP application to utilize anaerobic digester gas

    SciTech Connect (OSTI)

    Nakayama, Yoshio; Kusama, Nobuyuki; Wada, Katsuya

    1996-12-31

    Toshiba and a municipal organization of Yokohama city are jointly conducting a program to utilize ADG (Anaerobic Digester Gas) more effectively. ADG which contains about 60% methane is produced by anaerobic digestion of waste water treatment sludge and has been used as an energy source for heating digestion tanks in sewage treatment plants and/or for combustion engine fuel. This program is focused on operating a commercial Phosphoric Acid Fuel Cell (PAFC) power plant on ADG because of its inherently high fuel efficiency and low emissions characteristics. According to the following joint program, we have successfully demonstrated an ADG fueled FCPP The success of this study promises that the ADG fueled FCPP, an environment-friendly power generation system, will be added to the line-up of PC25{trademark}C applications.

  16. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  17. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Lee, Dae Hoon Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-10-15

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions.

  18. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO₂ conversion into carbon-neutral fuels and chemicals November 6, 2013 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Environmentalists have long lamented the destructive effects of greenhouse gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,

  19. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  20. Anaerobic Digestion | Open Energy Information

    Open Energy Info (EERE)

    Anaerobic Digestion (Redirected from - Anaerobic Digestion) Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:...

  1. RCM Digesters | Open Energy Information

    Open Energy Info (EERE)

    RCM Digesters Jump to: navigation, search Name: RCM Digesters Place: Berkeley, California Zip: CA 94704 Product: Manufactures anaerobic manure digesters which process animal waste...

  2. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  3. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  4. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  5. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  6. Experimental co-digestion of corn stalk and vermicompost to improve biogas production

    SciTech Connect (OSTI)

    Chen Guangyin; Zheng Zheng; Yang Shiguan; Fang Caixia; Zou Xingxing; Luo Yan

    2010-10-15

    Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

  7. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  8. Exploiting coalbed methane and protecting the global environment

    SciTech Connect (OSTI)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  9. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  10. Anaerobic digestion of livestock manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.D.

    1995-08-01

    Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  11. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  12. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  13. Improved efficiency and stable digestion of biomass in non-mixed upflow solids reactors

    SciTech Connect (OSTI)

    Srivastava, V.J.; Fannin, K.F.; Chynoweth, D.P.; Frank, J.R.

    1987-01-01

    A non-mixed upflow solids reactor (USR), which permitted longer solids than hydraulic retention times, was used to study the anaerobic digestion performance of sea kelp (Macrocystis pyrifera). The performance of the USR was compared to that of the continuously stirred tank reactor (CSTR) at different organic loading rates in terms of methane yield, methane production rate, and process stability. Results showed that, although digester performance was markedly affected by kelp compositional variability, methane yields and production rates in the USR were significantly higher than those observed with the CSTR. Results also showed that volatile acid concentrations, which are generally inversely related to digester stability, were significantly lower in the USR than in the CSTR. 8 refs., 10 figs., 3 tabs.

  14. Methane Hydrate Field Studies

    Broader source: Energy.gov [DOE]

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  15. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  16. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  17. Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report

    SciTech Connect (OSTI)

    Wolcott, Joanne; Shayegi, Sara

    1997-01-13

    Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

  18. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  19. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    and continued ural gas liquids and crude oil, which have a higher value in energy ... Submersible pump Coal Methane released from coal Methane to pipeline Water (discharged) ...

  20. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  1. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  2. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect (OSTI)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  3. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  4. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  5. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  6. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect (OSTI)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  7. Greenhouse Gases Converted to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for...

  8. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  9. A mass transfer model of ammonia volatilisation from anaerobic digestate

    SciTech Connect (OSTI)

    Whelan, M.J.; Everitt, T.; Villa, R.

    2010-10-15

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

  10. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  11. Steam Digest Volume IV

    SciTech Connect (OSTI)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  12. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  13. Anaerobic Digestion Basics

    Broader source: Energy.gov [DOE]

    Anaerobic digestion is an alternative to composting for a wide range of organic substances including livestock manure, municipal wastewater solids, food waste, industrial wastewater and residuals, fats, oils and grease, and other organic waste streams.

  14. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  15. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  16. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  17. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress ...

  18. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  19. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  20. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. Anaerobic digestion of autoclaved and untreated food waste

    SciTech Connect (OSTI)

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-02-15

    Highlights: Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. Use of acclimated inoculum allowed very rapid increases in OLR. Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 510% higher for untreated FW (maximum 0.483 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

  2. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect (OSTI)

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  3. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect (OSTI)

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  4. Modeling fatty acid relationships in animal waste anaerobic digesters

    SciTech Connect (OSTI)

    Hill, D.T.; Bolte, J.P.

    1987-01-01

    Volatile fatty acid (VFA) relationships are important in the anaerobic digestion of animal wastes as they (acetic, propionic and butyric) are direct precursors of methane, either through direct conversion of acetate or through the intermediate formation of hydrogen and carbon dioxide. Thus, they are essential compounds in the biological conversion of heterogenous wastes to useable products. VFA's are also known inhibitors in the biological conversion process if their concentrations are sufficiently high. Thus, VFA's are simultaneously essential for the process and can be toxic agents should they be present in excess quantities. This relationship makes quantifying VFA's in the modeling studies essential to accurately predicting digester failure or success. A highly correlated relationship between the level of acetic acid and/or the propionic to acetic acid ratio in digesters that were successful and in digesters that failed has been shown. These data have been used to calibrate an original comprehensive methanogenesis model and along with the addition of dual-use substrate kinetics for the simultaneous catalysis of propionate and butyrate, have produced a much improved prediction of the VFA relationships observed in operating anaerobic digesters. This manuscript describes the addition of the dual-use substrate kinetics and the modification of the kinetic parameters of the original methanogenic model and compared the simulated output of the original and modified models to demonstrate the improved predictive ability. (Refs. 12).

  5. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  6. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    SciTech Connect (OSTI)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  7. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  8. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. Fossil Energy Research Benefits - Coalbed Methane (920.32 KB) More Documents & Publications Before the Senate Energy and Natural

  9. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  10. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  11. Methane Hydrates R&D Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  12. Anaerobic digestion of hog wastes: Principles and practice

    SciTech Connect (OSTI)

    Oleszkiewicz, J.A.; Bujoczek, G.

    1996-12-31

    The principles and overview of research, development and implementation of anaerobic digestion for hog wastes are discussed. Based on economic evaluations, an anaerobic technology is cost-effective, especially for a larger herd and becomes more competitive with aerobic treatment. Nevertheless, the rate of treatment is more sensitive and dependent on the particular fraction of manure being processed. Considering the different factors affecting anaerobic digestion, a complete mixed reactor with solids recycle (having high solids retention time and low hydraulic retention time) was found to be the more reliable system with regards to methane generation and manure stabilization. By solids recycle one can obtain significant saving in the reactor volume required, while still achieving the expected degree of treatment. It was also found that even though treatment using advanced anaerobic systems when compared with simple anaerobic systems is more expensive, the rate of return on investment and efficiency of the process are higher.

  13. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    SciTech Connect (OSTI)

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  14. Refeeding biogas digester solids

    SciTech Connect (OSTI)

    Licht, L.A.

    1981-01-01

    Biosolid, the digester residue from a biogas plant, must be of economical use to ensure the financial feasibility of biogas facilities. This paper sumarizes work performed for a Department of Energy study in the Imperial Valley of California. Feeding trials show that biosolid can only be used as a small proportion of feed rations. Apart from bacterial debris, biosolid is composed larely of non-nutritive residues. 5 refs.

  15. Project identification for methane reduction options

    SciTech Connect (OSTI)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  16. ,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Nonhydrocarbon Gases Removed ... 2:52:09 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed ...

  17. Pulse power enhancement of the anaerobic digester process

    SciTech Connect (OSTI)

    Greene, H.W.

    1996-12-31

    A pilot study of the effects of Pulse Power Processing on an anaerobic digester system was completed at the Decatur Utilities Dry Creek Wastewater Treatment Plant, in Decatur Alabama, in September, 1995. This patented method generates several significant effects when all biosolids material is treated as it enters the anaerobic system. Intense, high peak-power plasma arcs are created, one at each end of the parabolic processing chamber, to produce an amplified synergy of alterations to the digester sludge flowing between them. The millisecond electric discharges generate localized temperatures as high as 30,000 K{degrees}, followed by a rapid cooling of the flowing liquid, which produces acoustic shock waves with pressures approaching 5,000 atmospheres. This destructive force: ruptures many of the cell walls of the bacteria and other single-cell organisms, releasing their vacuole fluids; breaks carbon bonds to form smaller organic compounds; and pulverizes large particle conglomerates, increasing the overall surface area of the solids. These beneficial results serve to boost the nutrient source for the anaerobes in the digester. In conjunction with LTV radiation, the formation of excited chemical radicals (including OH{sup -}), and the changes in ionic charge through alteration of the zeta potential, the bioreactor system is turbocharged to enhance the conversion of volatile biosolids to methane gas, which is the natural respiratory by-product of anaerobic digestion.

  18. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  19. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  20. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  1. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect (OSTI)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  2. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.

    1982-06-01

    The rapid or flash pyrolysis of wood biomass is being studied in a 1'' downflow entrained tubular reactor with a capacity of approximately 1 lb/hr of wood. The process chemistry data is being obtained with the view of building a data base and ascertaining the value of producing synthetic fuels and chemical feedstocks by the flash pyrolysis method. Data is being obtained on the effect of non-reactive pyrolyzing gases and the effect of reactive gases, hydrogen for the flash hydropyrolysis of wood and methane for flash methanolysis of wood. Preliminary process design and analysis has been made. The yield of ethylene and benzene is especially attractive for the production of chemical feedstocks from the reaction of methane and wood in a flash methanolysis process.

  3. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  4. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect (OSTI)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  5. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect (OSTI)

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  6. Long-term anaerobic digestion of food waste stabilized by trace elements

    SciTech Connect (OSTI)

    Zhang Lei; Jahng, Deokjin

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  7. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  8. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  9. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  10. Flash hydropyrolysis and methanolysis of biomass with hydrogen and methane

    SciTech Connect (OSTI)

    Steinberg, M.

    1985-04-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  11. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Houston, TX PDF icon July 26, 2012 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  12. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Environmental Management (EM)

    Washington, DC PDF icon July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  13. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy Savers [EERE]

    DC PDF icon March 27-28, 2014, Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory...

  14. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  15. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    June 6th - 7th, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting...

  16. A car-borne highly sensitive near-IR diode-laser methane detector

    SciTech Connect (OSTI)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-08-31

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-{mu}m laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO{sub 2}, HF, NO{sub 2}, H{sub 2}O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  17. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  18. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  19. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect (OSTI)

    Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  20. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  1. A novel plug-flow digester for biogasification of conventional and hazardous organics

    SciTech Connect (OSTI)

    Ghosh, S.; Kato, Y.; Liu, T.; Fukushi, K.

    1996-12-31

    A novel plug-flow digestion system of simple construction was designed, fabricated and operated for several years with a synthetic mixture of solid and liquid wastes simulating conditions south of the US-Mexican border and other developing countries. Benzene, toluene, and o-xylene (BTX) were mixed with the synthetic feed in several phases of this research to simulate field conditions where these solvents are discharged to public sewers and mixed with non-hazardous pollutants. The mesophilic plug-flow digester exhibited a high gas yield of 0.46 SCM /kg VS added, a methane content of 77 mol%, and a VS reduction of 75% at an HRT of 13 days with a 96% biodegradation of the feed toluene. At a feed concentration of 50 mg/l, toluene did not inhibit anaerobic fermentation. Gas and methane yields, and VS and COD conversion efficiencies were about the same with or without toluene present in the feed. At a reduced HRT of 8 days, a high feed COD concentration of 50,000 mg/l, and a loading rate of 0.48 kg VS/m{sup 3}-day, the digester afforded a gas yield of 3.1 SCM /kg VS added, and a methane content of 67 mol%. Benzene, toluene, and o-xylene were biodegraded at efficiencies of 94%, 90%, and 88%, respectively. The degradation kinetics of the xenobiotic compound could be described by a model based on cometabolic degradation of these secondary substrates.

  2. 7.4 Landfill Methane Utilization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  3. Biogasification of sorghum in a novel anaerobic digester

    SciTech Connect (OSTI)

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

    1987-01-01

    The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digester design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.

  4. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect (OSTI)

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  5. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  6. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; et al

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain.more » Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  7. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  8. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Stakeholder Roundtables Methane Stakeholder Roundtables April 24, 2014 - 3:00pm Addthis Methane Stakeholder Roundtables Advancing the Interagency Methane Strategy As directed by President Obama in his Climate Action Plan, the Department of Energy (DOE) collaborated with other Federal agencies to develop a Strategy to Reduce Methane Emissions, which was formally announced by the White House last month. To advance this strategy, DOE is now working with other Federal agencies and the White

  9. methane hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane hydrates methane-hydrates.jpg Maintaining a focused vision on what's next is one trait that makes NETL a lab of the future, and methane hydrates are one "cool" part of that vision. Found in Arctic and deep-water marine environments, methane hydrates are an untapped abundant source of natural gas. A hydrate comprises a crystal structure in which frozen water creates a cage that traps molecules of primarily methane (natural gas). NETL researchers are exploring and developing

  10. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the...

  11. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline...

  12. Green House Gases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green House Gases Did You Know? If it were not for naturally occurring greenhouse gases, the Earth would be too cold to support life as we know it. Without the greenhouse effect,...

  13. ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2006-07-10

    Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

  14. Methane emission from single cropping rice paddies amended different manures

    SciTech Connect (OSTI)

    Du Daodeng; Tao Zhan

    1996-12-31

    Methane emission fluxes were determined from single cropping rice paddies amended with different manures through a productively comparative experiment. The average fluxes in the whole growth season ranged from 3.92 to 10.96 mg/m{sup 2}.hr. The compost amended paddies gave the highest emission fluxes of 10.26 mg/m{sup 2}.hr, while the fluxes from the other manure amended paddies ranked as follows: horse dung biogas digester sediment 10.02, chemical fertilizer only 8.81, nightsoil biogas sediment 7.76, chicken dropping biogas digester sediment 4.48 and pig dung biogas digester sediment 3.92 mg/m{sup 2}.hr. The latter 3 sediments gave the significant less ({alpha} < 0.05) fluxes than compost. The highest fluxes peaks of all treated paddies appeared unanimously between the stages of the midtillering and the earing, with a half of total CH{sub 4} emissions were produced in this period which could be chosen as the key period for control of CH{sub 4} emission from the single cropping rice paddies. The positive correlation of the fluxes with the temperatures in 5 cm soil layers and the negative correlation of the fluxes with the rice yields, the soil N and P{sub 2}O{sub 5} contents were also observed.

  15. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  16. Methane Hydrate Advisory Committee Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter PDF icon Methane Hydrate Advisory Committee Charter More Documents & Publications ...

  17. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department...

    Office of Environmental Management (EM)

    May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda PDF icon...

  18. Methane Hydrate Advisory Committee Meeting Minutes, March 2010...

    Energy Savers [EERE]

    March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC PDF icon Methane Hydrate...

  19. Methane Hydrate Advisory Committee Meeting Minutes, January 2010...

    Broader source: Energy.gov (indexed) [DOE]

    0 Atlanta, GA Methane Hydrate Advisory Committee Meeting Minutes, January 2010 More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane...

  20. Methane Hydrate Advisory Committee Meeting Minutes, June 6th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

  1. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  2. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  3. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  4. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  5. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  6. Methane Hydrate Research and Development Act of 2000 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and ...

  7. Nuclear Regulatory Commission information digest

    SciTech Connect (OSTI)

    None,

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide.

  8. EIA-Voluntary Reporting of Greenhouse Gases Program

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects ...

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - What are...

    U.S. Energy Information Administration (EIA) Indexed Site

    What are Greenhouse Gases? Voluntary Reporting of Greenhouse Gases Program What are Greenhouse Gases? Many chemical compounds found in the Earth's atmosphere act as "greenhouse ...

  10. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as ...

  11. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. |

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  12. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    SciTech Connect (OSTI)

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-07-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  13. Solubilities of heavy fossil fuels in compressed gases

    SciTech Connect (OSTI)

    Monge, A. Jr.

    1982-01-01

    Design of processes for upgrading heavy fossil fuels such as coal-derived liquids, heavy petroleum fractions, tar sands, and shale oil, requires quantitative information for equilibrium properties of the fossil fuel in the presence of compressed light gases at elevated temperatures. Presented here are methods to predict and measure solubilities of heavy fossil fuels in compressed gases in the region ambient to 100 bar and 600 K. A molecular-thermodynamic model is used to predict heavy fossil-fuel solubilities. The heavy fuel is fractionated ina spinning-band column at low pressure and high reflux; each fraction is considered to be a pseudo-component. Each fraction is characterized by one vapor-pressure datum (obtained during fractionation), elemental analysis, and proton-NMR spectra (to determine aromaticity). Liquid-phase properties are obtained from the SWAP equation for vapor pressure and from a density correlation. Vapor-phase properties are obtained using the virial equation of state with virial coefficients from Kaul's correlation. The molecular-thermodynamic model has been used to establish a design-oriented computer program for calculating heavy, fossil-fuel solubility for general application in process design and, in particular, for isobaric condensation as a function of temperature as required for design of a continuous-flow heat exchanger. A total-vaporization technique is used to measure the solubilities of narrow-boiling, heavy fossil-fuel fractions in compressed gases. The solubility of a heavy fraction is determined from the volume of gas required to vaporize completely a small, measured mass of fossil-fuel sample. To test the molecular-thermodynamic model, the total-vaporization technique has been used to measure the solubilities of two Lurgi coal-tar fractions in compressed methane. Predicted and experimental solubilities agree well.

  14. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    SciTech Connect (OSTI)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  15. Methane Hydrate Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  16. Methane Hydrate Reservoir Simulator Code Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  17. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30

    process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date

  18. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  19. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially

  20. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------ 1. Committee's Official Designation. Methane Hydrate Advisory...

  1. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect (OSTI)

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.

  2. Weak interactions between water and clathrate-forming gases at low pressures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence ofmore » the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  3. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect (OSTI)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  4. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect (OSTI)

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  5. Rural biogas technology: effect of digester pressure on gas rate and composition

    SciTech Connect (OSTI)

    Hamad, M.A.; Abdel, Dayem, A.M.; El-Halwagi, M.M.

    1983-01-01

    The effect of digester pressure on gas rate and composition was studied using an experimental Chinese-type digester of 5 m/sup 3/ volume. Water buffalo dung was used as feedstock and was fermented at 40 days retention time. The increase in digester pressure was accompanied by a decrease in the amount of biogas produced. However, this decrease was partially compensated for by the increase in methane content. The latter may be attributed to the transfer of carbon dioxide from the gas phase to the liquid phase. The remainder of the noted decrease in the obtained gas amount was related to the increase of the nonconfined amount of slurry in the outlet chamber. Thus, it can be concluded that the initial amount of gas liberated was not a direct consequence of varying the digester pressure. A modified design for the outlet chamber is proposed. Such modification is anticipated to decrease the gas losses, partially stabilize the gas pressure and accordingly increase the efficiency of the digester operation as well as the gas combustion process.

  6. Flash pyrolysis of biomass with reactive and non-reactive gases. Summary report, March 1982-March 1983

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1983-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gas He is being determined in a 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol production. With methane, flash methanolysis of wood, leads to high yields of ethylene, benzene and CO which can be used for the production of valuable feedstocks and methanol fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the ethylene yield based on wood carbon converted is 22%, benzene 12% and the CO yield is 48%. The yield of ethylene is 2.2 times higher with methane than with helium, thus indicating a free radical rection between CH/sub 4/ and the pyrolyzed wood. A preliminary process analysis indicates an economically competitive process for the production of ethylene, benzene and methanol based on the methanolysis of wood. It is recommended to further develop the data base for the flash pyrolysis of wood and other biomass materials with methane as well as with other reactive gases (e.g. CO and CO/sub 2/) and determine the role of the hemi-cellulose and lignin in the formation of these valuable fuels and feedstocks.

  7. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 600 pixels. Go to page 1 2 3 4 5 Go next page next page ...

  8. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  10. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  11. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  12. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  13. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect (OSTI)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  14. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  15. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1985-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  16. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  17. Table 5. Greenhouse gases and 100-year net global warming potentials

    U.S. Energy Information Administration (EIA) Indexed Site

    Greenhouse gases and 100-year net global warming potentials" "Greenhouse Gas Name","Formula","GWP" ,,"SAR1","TAR2","AR43" "(1) Carbon Dioxide","CO2",1,1,1 "(2) Methane","CH4",21,23,25 "(3) Nitrous Oxide","N2O",310,296,298 "(4) Hydroflourocarbons" "HFC-23 (trifluoromethane)","CHF3",11700,12000,14800 "HFC-32

  18. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOE Patents [OSTI]

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  19. Manure digester and power generating system

    SciTech Connect (OSTI)

    Santina, P.F.; Chatterjee, A.K.

    1988-06-14

    A manure digester and power generating system is described comprising: a mixing tank for receiving manure, and for mixing water with the manure to produce a manure slurry of desired consistency; a closed anaerobic digester tank of fixed volume; the mixing tank being separate from and spaced from the digester tank; pumping and conduit means for transferring the contents of the mixing tank to the digester tank; automatic control means, associated with the pumping means, for monitoring and controlling temperature and volume of the contents of the mixing tank before transfer to the digester tank; means for discharging effluent by-products out the outflow end of the digester tank; a gas-fueled engine and a generator coupled to the engine, for generating electrical power; heater means; means for drawing off biogas from the digester tank and for conducting it to the engine as fuel, and wherein the manure slurry is heated sufficiently, prior to introduction into the digester tank and separately from the digester tank, to prevent temperature shock of already digesting slurry in the digester tank when the slurry is introduced into the digester tank.

  20. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  1. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  2. Methane Hydrates and Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater

  3. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases. [Patent application

    DOE Patents [OSTI]

    Barker, R.E.; Scott, C.D.; Ryon, A.D.

    1980-10-27

    Gas produced from coal and containing CH/sub 4/, CO, CO/sub 2/, H/sub 2/ and H/sub 2/S is contacted with CO/sub 2/ scrub liquid to form (1) a liquid CO/sub 2/ stream containing as solutes CH/sub 4/, H/sub 2/S and minor portions of the CO and H/sub 2/, and (2) a gas stream containing CO/sub 2/ and major portions of the CO and H/sub 2/, the CO and H/sub 2/ in this stream being recycled to the means which produces gas from coal, and CO/sub 2/ in the stream being recycled to the scrub liquid. The solute-bearing liquid CO/sub 2/ stream is fractionated into (1) a liquid CO/sub 2/ stream containing CH/sub 4/ and H/sub 2/S, and (2) a H/sub 2//CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO/sub 2/ stream is fractionated into (1) a CH/sub 4//CO/sub 2/ gas stream the CO/sub 2/ of which is recycled to the scrub liquid, and (2) a liquid CO/sub 2/ stream containing H/sub 2/S, and CO/sub 2/ of this stream is also recycled to the scrub liquid.

  4. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases

    DOE Patents [OSTI]

    Barker, Ray E.; Scott, Charles D.; Ryon, Allen D.

    1982-01-01

    Gas produced from coal and containing CH.sub.4, CO, CO.sub.2, H.sub.2 and H.sub.2 S is contacted with CO.sub.2 scrub liquid to form (1) a liquid CO.sub.2 stream containing as solutes CH.sub.4, H.sub.2 S and minor portions of the CO and H.sub.2, and (2) a gas stream containing CO.sub.2 and major portions of the CO and H.sub.2, the CO and H.sub.2 in this stream being recycled to the means which produces gas from coal, and CO.sub.2 in the stream being recycled to the scrub liquid. The solute-bearing liquid CO.sub.2 stream is fractionated into (1) a liquid CO.sub.2 stream containing CH.sub.4 and H.sub.2 S, and (2) a H.sub.2 /CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO.sub.2 stream is fractionated into (1) a CH.sub.4 /CO.sub.2 gas stream the CO.sub.2 of which is recycled to the scrub liquid, and (2) a liquid CO.sub.2 stream containing H.sub.2 S, and CO.sub.2 of this stream is also recycled to the scrub liquid.

  5. Utilisation of single added fatty acids by consortia of digester sludge in batch culture

    SciTech Connect (OSTI)

    Wagner, Andreas Otto; Gstrauntaler, Gudrun; Illmer, Paul

    2010-10-15

    Inocula derived from an anaerobic digester were used to study (i) their potential for methane production and (ii) the utilisation rates of different short chain fatty acids (SCFAs) by the microbial community in defined media with mono-carbon sources (formic-, acetetic-, propionic-, butyric acid) in batch culture. It could be demonstrated that the microbial reactor population could be transferred successfully to the lab, and its ability to build up methane was present even with deteriorating biogas plant performance. Therefore, this reduction in performance of the biogas plant was not due to a decrease in abundance, but due to an inactivity of the microbial community. Generally, the physico-chemical properties of the biogas plant seemed to favour hydrogenotrophic methanogens, as seen by the high metabolisation rates of formate compared with all other carbon sources. In contrast, acetoclastic methanogenesis could be shown to play a minor role in the methane production of the investigated biogas plant, although the origin of up to 66% of methane is generally suggested to be generated through acetoclastic pathway.

  6. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Nayono, Satoto E.; Winter, Josef; Gallert, Claudia

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

  7. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  8. Methane production from marine biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.

    1980-01-01

    The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

  9. Method of concurrently filtering particles and collecting gases

    SciTech Connect (OSTI)

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  10. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  11. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to 7 days to minimize the biogas production. Summary Renewable Methane Production We developed a novel process using biochar for producing biomethane at pipeline quality ...

  12. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    SciTech Connect (OSTI)

    Esposito, G.; Frunzo, L.; Panico, A.; Pirozzi, F.

    2011-12-15

    thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.

  13. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda Meeting Agenda (443.71 KB) More Documents & Publications Advisory Committee Meeting Minutes, May 7, 2015 Methane Hydrate Program Reports Report of the Task Force on Methane Hydrates

  14. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1984-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in an 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the ethylene yield based on pine wood carbon conversion is 27%, for benzene it is 25% and for CO the yield is 39%, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood. The yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, thus indicating a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicate an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 7 references, 13 figures, 1 table.

  15. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  16. On flame kernel formation and propagation in premixed gases

    SciTech Connect (OSTI)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  17. Method of concurrently filtering particles and collecting gases (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: Method of concurrently filtering particles and collecting gases Citation Details In-Document Search Title: Method of concurrently filtering particles and collecting gases A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be

  18. Methane Hydrate Program Annual Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report

  19. Geothermal source potential and utilization for methane generation and alcohol production

    SciTech Connect (OSTI)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  20. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect (OSTI)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  1. New model more accurately tracks gases for underground nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, ...

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - About the...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program About the 1605(b) Program History Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases ...

  3. EIA-Voluntary Reporting of Greenhouse Gases Program - Under Constructi...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program This Page is Currently Under Construction Please check back at a later time For more information on the Voluntary Reporting of Greenhouse Gases ...

  4. EIA-Voluntary Reporting of Greenhouse Gases Program -Data and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data and Reports Voluntary Reporting of Greenhouse Gases Program Data and Reports The first reporting cycle under the revised Voluntary Reporting of Greenhouse Gases Program closed ...

  5. EIA-Voluntary Reporting of Greenhouse Gases Program - Getting...

    U.S. Energy Information Administration (EIA) Indexed Site

    Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form ... The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters ...

  6. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact Voluntary Reporting of Greenhouse Gases Program Contact For more information on the Voluntary Reporting of Greenhouse Gases Program, contact us via e-mail, phone, fax, or ...

  7. Method and apparatus for separating mixtures of gases using an...

    Office of Scientific and Technical Information (OSTI)

    Method and apparatus for separating mixtures of gases using an acoustic wave Title: Method and apparatus for separating mixtures of gases using an acoustic wave A thermoacoustic ...

  8. EPA's Recent Advance Notice on Greenhouse Gases | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA's Recent Advance Notice on Greenhouse Gases EPA's Recent Advance Notice on Greenhouse Gases Summary EPA's advanced notice of proposed rulemaking on mobile sources of greenhouse ...

  9. OSTIblog Articles in the greenhouse gases Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    greenhouse gases Topic Carbon Sequestration - Helping to Save Our Beautiful World by Kathy ... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  10. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  11. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  12. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  13. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  14. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  15. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  16. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane hotspot points to coal-related sources Four Corners methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like ...

  17. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  18. The anaerobic digestion of organic solid wastes

    SciTech Connect (OSTI)

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  19. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels ...

  20. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  1. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Broader source: Energy.gov (indexed) [DOE]

    ... - Journal Papers 1. An overview of biogas production and utilization at full-scale ... review) 2. Producing pipeline-quality biomethane via anaerobic digestion of sludge ...

  2. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  3. Methane Hydrate Advisory Committee Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings Methane Hydrate Advisory Committee Meetings May 7, 2015 Advisory Committee ... Federal Register Notice for May 15, 2014 Meeting Methane Hydrates Committee Meeting Agenda ...

  4. Estimating global and North American methane emissions with high...

    Office of Scientific and Technical Information (OSTI)

    methane emissions with high spatial resolution using GOSAT satellite data Citation Details In-Document Search Title: Estimating global and North American methane emissions ...

  5. Methane Hydrate Advisory Committee Meeting Minutes, October 2011...

    Office of Environmental Management (EM)

    October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC PDF icon Advisory...

  6. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  7. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  8. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Environmental Management (EM)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  9. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  10. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...